1
|
Mitchnick KA, Labardo S, Rosenbaum RS. Dissociations in perceptual discrimination following selective damage to the dentate gyrus versus CA1 subfield of the hippocampus. Cortex 2024; 179:191-214. [PMID: 39197409 DOI: 10.1016/j.cortex.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
The hippocampus (HPC) is well-known for its involvement in declarative (consciously accessible) memory, but there is evidence that it may also play a role in complex perceptual discrimination. Separate research has demonstrated separable contributions of HPC subregions to component memory processes, with the dentate gyrus (DG) required for mnemonic discrimination of similar inputs and the CA1 subfield required for retention and retrieval, but contributions of these subregions to perceptual processes is understudied. The current study examined the nature and extent of a double dissociation between the dentate gyrus (DG) to discrimination processes and CA1 subfield to retention/retrieval by testing two unique individuals with bilateral damage to the DG (case BL) and CA1 (case BR). We tested BL and BR on a wide range of standardized neuropsychological tests to assess information encoding and retention/retrieval and co-opted many measures to assess perceptual discrimination. Compared to normative data, BL exhibited performance below expectations on most measures requiring perceptual discrimination and on measures of encoding but demonstrated intact retention. Conversely, BR showed no difficulties with perceptual discrimination or verbal encoding but exhibited poor verbal retention, as well as poor encoding and retention of spatial/integrative tasks (e.g., object in a location). These results indicate that, despite its prominent role in memory, the DG is necessary for perceptual discrimination and encoding, whereas CA1 is necessary for retention/retrieval and encoding of spatial information. The pattern of results highlights the critical nature of individual case studies in the nuanced understanding of HPC subfield contributions to different memory processes, as well as the utility of repurposing neuropsychological measures to capture individual differences.
Collapse
Affiliation(s)
- Krista A Mitchnick
- Department of Psychology, York University, Toronto, ON, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, ON, Canada.
| | - Sabrina Labardo
- Department of Psychology, York University, Toronto, ON, Canada.
| | - R Shayna Rosenbaum
- Department of Psychology, York University, Toronto, ON, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, ON, Canada; Centre for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ezi S, Shadi M, Vafaei-Nezhad M, Vafaei-Nezhad S. Does Tramadol Exposure Have Unfavorable Effects on Hippocampus? A Review Study. ADDICTION & HEALTH 2024; 16:213-223. [PMID: 39439859 PMCID: PMC11491864 DOI: 10.34172/ahj.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Background Tramadol, one of the most common opioid pain relievers, acts upon the µ-receptor in the central nervous system (CNS) to alleviate pain associated with various situations like postoperative pain, arthritis, and muscular pain. Additionally, it has been utilized to address depression and anxiety disorders. Extensive research has shown that tramadol can potentially inflict irreversible harm on different regions of the CNS, including the cerebrum, cerebellum, amygdala, and, notably, the hippocampal formation. However, the precise mechanism behind these effects remains unclear. Within this study, we conducted a comprehensive examination of the impacts of tramadol on the CNS, specifically focusing on hippocampal formation. Methods In this study, we collected relevant articles published between 2000 and 2022 by conducting searches using specific keywords, including tramadol, tramadol hydrochloride, central nervous system, hippocampus, and hippocampal formation, in various databases. Findings The results of this study proposed several processes by which tramadol may impact the CNS, including the induction of apoptosis, autophagy, excessive production of free radicals, and dysfunction of cellular organelles. These processes ultimately lead to disturbances in neural cell function, particularly within the hippocampus. Furthermore, it is revealed that tramadol administration led to a significant decrease in the neural cell count and the volume of various regions within the brain and spinal cord. Conclusion Consequently, neuropsychological impairments, such as memory formation, attention deficits, and cognitive impairment, may happen. This finding highlights the potential impacts of tramadol on neural structures and warrants further investigation.
Collapse
Affiliation(s)
- Samira Ezi
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehri Shadi
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Masood Vafaei-Nezhad
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Espadas I, Wingfield JL, Nakahata Y, Chanda K, Grinman E, Ghosh I, Bauer KE, Raveendra B, Kiebler MA, Yasuda R, Rangaraju V, Puthanveettil S. Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity. Nat Commun 2024; 15:2694. [PMID: 38538603 PMCID: PMC10973417 DOI: 10.1038/s41467-024-46972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Karl E Bauer
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
4
|
Robles-Gómez ÁA, Ordaz B, Lorea-Hernández JJ, Peña-Ortega F. Deleterious and protective effects of epothilone-D alone and in the context of amyloid β- and tau-induced alterations. Front Mol Neurosci 2023; 16:1198299. [PMID: 37900942 PMCID: PMC10603193 DOI: 10.3389/fnmol.2023.1198299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (P-tau) are Alzheimer's disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aβ, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aβ, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aβ and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aβ and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aβ and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.
Collapse
Affiliation(s)
- Ángel Abdiel Robles-Gómez
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México City, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | | | | |
Collapse
|
5
|
Espadas I, Wingfield J, Grinman E, Ghosh I, Chanda K, Nakahata Y, Bauer K, Raveendra B, Kiebler M, Yasuda R, Rangaraju V, Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. RESEARCH SQUARE 2023:rs.3.rs-2489387. [PMID: 36993323 PMCID: PMC10055528 DOI: 10.21203/rs.3.rs-2489387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute, Jupiter, FL, USA
| | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael Kiebler
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
6
|
Vago DR, Farb N, Spreng RN. Clarifying Internally-Directed Cognition: A Commentary on the Attention to Thoughts Model. PSYCHOLOGICAL INQUIRY 2022. [DOI: 10.1080/1047840x.2022.2141005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- David R. Vago
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
- Contemplative Sciences Center, University of Virginia, Charlottesville, Virginia
| | - Norman Farb
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - R. Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, Verdun, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Harvey J. Food for Thought: Leptin and Hippocampal Synaptic Function. Front Pharmacol 2022; 13:882158. [PMID: 35784728 PMCID: PMC9247348 DOI: 10.3389/fphar.2022.882158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
It is well documented that the endocrine hormone, leptin controls energy homeostasis by providing key signals to specific hypothalamic nuclei. However, our knowledge of leptin’s central actions has advanced considerably over the last 20 years, with the hippocampus now established as an important brain target for this hormone. Leptin receptors are highly localised to hippocampal synapses, and increasing evidence reveals that activation of synaptically located leptin receptors markedly impacts cognitive processes, and specifically hippocampal-dependent learning and memory. Here, we review the recent actions of leptin at hippocampal synapses and explore the consequences for brain health and disease.
Collapse
|
8
|
Stasenko A, Kaestner E, Reyes A, Lalani SJ, Paul B, Hegde M, Helm JL, Ben-Haim S, McDonald CR. Association Between Microstructural Asymmetry of Temporal Lobe White Matter and Memory Decline After Anterior Temporal Lobectomy. Neurology 2022; 98:e1151-e1162. [PMID: 35058338 PMCID: PMC8935440 DOI: 10.1212/wnl.0000000000200047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Risk for memory decline is a substantial concern in patients with temporal lobe epilepsy (TLE) undergoing anterior temporal lobectomy (ATL). Although prior studies have identified associations between memory and integrity of white matter (WM) networks within the medial temporal lobe (MTL) preoperatively, we contribute a study examining whether microstructural asymmetry of deep and superficial WM networks within the MTL predicts postoperative memory decline. METHODS Patients with drug-resistant TLE were recruited from 2 epilepsy centers in a prospective longitudinal study. All patients completed preoperative T1 and diffusion-weighted MRI (DWI) as well as preoperative and postoperative neuropsychological testing. Preoperative fractional anisotropy (FA) of the WM directly beneath the neocortex (i.e., superficial WM [SWM]) and of deep WM tracts associated with memory were calculated. Asymmetry was calculated for hippocampal volume and FA of each WM tract or region and examined in linear and logistic regressions with preoperative to postoperative memory change as the primary outcome. RESULTS Data were analyzed from 42 patients with TLE (19 left TLE [LTLE], 23 right TLE [RTLE]) who underwent ATL. Leftward FA asymmetry of the entorhinal SWM was associated with decline on prose and associative recall in LTLE, whereas leftward FA asymmetry of the uncinate fasciculus (UNC) was associated with decline on prose recall only. After controlling for preoperative memory score and hippocampal volume, leftward FA asymmetry of the entorhinal SWM uniquely contributed to decline in both prose and associative recall (β = -0.46; SE 0.14 and β = -0.68; SE 0.22, respectively) and leftward FA asymmetry of the UNC uniquely contributed to decline in prose recall (β = -0.31; SE 0.14). A model combining asymmetry of hippocampal volume and entorhinal FA correctly classified memory outcomes in 79% of patients with LTLE for prose (area under the curve [AUC] 0.89; sensitivity 82%; specificity 75%) and 81% of patients for associative (AUC 0.79; sensitivity 83%; specificity 80%) recall. Entorhinal SWM asymmetry was the strongest predictor in both models. DISCUSSION Preoperative asymmetry of deep WM and SWM integrity within the MTL is a strong predictor of postoperative memory decline in TLE, suggesting that surgical decision-making may benefit from considering each patient's WM network adequacy and reserve in addition to hippocampal integrity. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that preoperative asymmetry of deep WM and SWM integrity within the MTL is a predictor of postoperative memory decline.
Collapse
Affiliation(s)
- Alena Stasenko
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Erik Kaestner
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Anny Reyes
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Sanam J Lalani
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Brianna Paul
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Manu Hegde
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Jonathan L Helm
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Sharona Ben-Haim
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Carrie R McDonald
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA.
| |
Collapse
|
9
|
Zhu T, Zhu M, Qiu Y, Wu Z, Huang N, Wan G, Xu J, Song P, Wang S, Yin Y, Li P. Puerarin Alleviates Vascular Cognitive Impairment in Vascular Dementia Rats. Front Behav Neurosci 2021; 15:717008. [PMID: 34720898 PMCID: PMC8554240 DOI: 10.3389/fnbeh.2021.717008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia triggers vascular dementia (VD), which is characterized by memory loss, cognitive deficits, and vascular injury in the brain. Puerarin (Pur) represents the major isoflavone glycoside of Radix Puerariae, with verified neuroprotective activity and cardiovascular protective effects. However, whether Pur ameliorates cognitive impairment and vascular injury in rats with permanent occlusion of bilateral common carotid arteries (BCCAO) remains unknown. This work aimed to assess Pur's effects on BCCAO-induced VD and to dissect the underlying mechanisms, especially examining the function of transient receptor potential melastatin-related 2 (TRPM2) in alleviating cognitive deficits and vascular injuries. Rats with BCCAO developed VD. Pur (50, 100, and 150 mg/kg) dose-dependently attenuated the pathological changes, increased synaptic structural plasticity in the dorsal CA1 hippocampal region and decreased oxidative stress, which eventually reduced cognitive impairment and vascular injury in BCCAO rats. Notably, Pur-improved neuronal cell loss, synaptic structural plasticity, and endothelial vasorelaxation function might be mediated by the reactive oxygen species (ROS)-dependent TRPM2/NMDAR pathway, evidenced by decreased levels of ROS, malondialdehyde (MDA), Bax, Bax/Bcl2, and TRPM2, and increased levels of superoxide dismutase (SOD), Bcl2, and NR2A. In conclusion, Pur has therapeutic potential for VD, alleviating neuronal cell apoptosis and vascular injury, which may be related to the ROS-dependent TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Moli Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Zeqing Wu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guangrui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuangxi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yaling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| |
Collapse
|
10
|
Soltani Zangbar H, Shahabi P, Seyedi Vafaee M, Ghadiri T, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Jafarzadehgharehziaaddin M. Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord injury in male rats. Brain Res Bull 2021; 172:31-42. [PMID: 33848614 DOI: 10.1016/j.brainresbull.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Spinal Cord Injury (SCI), triggers neurodegenerative changes in the spinal cord, and simultaneously alters oscillatory manifestations of motor cortex. However, these disturbances may not be limited to motor areas and other parts such as hippocampus, which is vital in the neurogenesis and cognitive function, may be affected in the neurogenic and oscillatory manners. Addressing this remarkable complication of SCI, we evaluated the hippocampal neurogenesis and rhythms through acute phase of SCI. In the present study, we used 40 male rats (Sham.W1 = 10, SCI.W1 = 10, Sham.W2 = 10, SCI.W2 = 10), and findings revealed that contusive SCI declines hippocampal rhythms (Delta, Theta, Beta, Gamma) power and max-frequency. Also, there was a significant decrease in the DCX + and BrdU + cells of the dentate gyrus; correlated significantly with rhythms power decline. Considering the TUNEL assay analysis, there were significantly greater apoptotic cells, in the CA1, CA3, and DG regions of injured animals. Furthermore, according to the western blotting analysis, the expression of receptors (NMDA, GABAA, Muscarinic1), which are essential in the neurogenesis and generation of rhythms significantly attenuated following SCI. Our study demonstrated that acute SCI, alters the power and max-frequency of hippocampal rhythms parallel with changes in the hippocampal neurogenesis, apoptosis, and receptors expression.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Psychiatry, Odense University Hospital, Odense, Denmark
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Hamilton K, Harvey J. Leptin regulation of hippocampal synaptic function in health and disease. VITAMINS AND HORMONES 2021; 115:105-127. [PMID: 33706945 DOI: 10.1016/bs.vh.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is widely accepted that the metabolic hormone leptin regulates food intake and body weight via activation of hypothalamic leptin receptors. However, as leptin receptors are also highly expressed in other brain regions, such as the hippocampus, alterations in leptin responsiveness also impacts on key functions of the hippocampus, like learning and memory. Within the hippocampus, high levels of leptin receptors are expressed at excitatory synapses, and in accordance with a synaptic localization, leptin potently regulates synaptic transmission at both Schaffer collateral (SC) and temporoammonic (TA) inputs to CA1 pyramidal neurons. Increasing evidence from cellular and behavioral studies examining leptin action at CA1 synapses support the notion that leptin is a potential cognitive enhancer. However, the capacity of leptin to regulate synaptic efficacy at SC-CA1 and TA-CA1 synapses declines in an age-dependent manner. Moreover, clinical evidence that supports a link between circulating leptin levels and the risk of the age-related neurodegenerative disorder, Alzheimer's disease (AD) is accumulating. Consequently, it has been proposed that the leptin system is a potential therapeutic target in AD, and that boosting the hippocampal actions of leptin may be beneficial in the treatment of AD. Here we review recent progress in our understanding of the neuronal and hippocampal synaptic functions that are regulated by leptin and how alterations in the leptin system influence age-related CNS-related disorders like AD.
Collapse
Affiliation(s)
- Kirsty Hamilton
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
12
|
Pitsikas N, Zoupa E, Gravanis A. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts cognitive deficits induced by the D1/D2 dopaminergic receptor agonist apomorphine in rats. Psychopharmacology (Berl) 2021; 238:227-237. [PMID: 33005973 DOI: 10.1007/s00213-020-05672-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a devastating mental disease that affects nearly 1% of the population worldwide. It is well documented that the dopaminergic (DAergic) system is compromised in schizophrenia. It is of note that the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induces schizophrenia-like symptoms in rodents, including disruption of memory abilities. Neuroactive steroids, comprising dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS), were shown to affect brain DAergic system and to be involved in schizophrenia. BNN27 is a novel DHEA derivative, which is devoid of steroidogenic activity. It has recently been reported that BNN27 counteracted schizophrenia-like behavioural deficits produced by glutamate hypofunction in rats. OBJECTIVES The aim of the present study was to investigate the ability of BNN27 to attenuate non-spatial, spatial recognition and discrete memory deficits induced by apomorphine in rats. METHODS To this end, the object recognition task (ORT), the object location task (OLT) and the step-through passive avoidance test (STPAT) were used. RESULTS BNN27 (3 and 6 mg/kg, i.p.) attenuated apomorphine (0.5 mg/kg, i.p.)-induced non-spatial, spatial recognition and discrete memory deficits. Interestingly, the effects of compounds on memory cannot be ascribed to changes in locomotor activity. CONCLUSIONS Our findings suggest that BNN27 is effective to DA dysfunction caused by apomorphine, attenuating cognitive impairments induced by this D1/D2 receptor agonist in rats. Additionally, our findings illustrate a functional interaction between BNN27 and the DAergic system that may be of relevance for schizophrenia-like behavioural symptoms.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece.
| | - Elli Zoupa
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, and Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, University of Crete, Heraklion, Greece
| |
Collapse
|
13
|
Bein O, Duncan K, Davachi L. Mnemonic prediction errors bias hippocampal states. Nat Commun 2020; 11:3451. [PMID: 32651370 PMCID: PMC7351776 DOI: 10.1038/s41467-020-17287-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
When our experience violates our predictions, it is adaptive to upregulate encoding of novel information, while down-weighting retrieval of erroneous memory predictions to promote an updated representation of the world. We asked whether mnemonic prediction errors promote hippocampal encoding versus retrieval states, as marked by distinct network connectivity between hippocampal subfields. During fMRI scanning, participants were cued to internally retrieve well-learned complex room-images and were then presented with either an identical or a modified image (0-4 changes). In the left hemisphere, we find that CA1-entorhinal connectivity increases, and CA1-CA3 connectivity decreases, with the number of changes. Further, in the left CA1, the similarity between activity patterns during cued-retrieval of the learned room and during the image is lower when the image includes changes, consistent with a prediction error signal in CA1. Our findings provide a mechanism by which mnemonic prediction errors may drive memory updating—by biasing hippocampal states. When our expectations are violated, it is adaptive to update our internal models to improve predictions in the future. Here, the authors show that during mnemonic violations, hippocampal networks are biased towards an encoding state and away from a retrieval state to potentially update these predictions.
Collapse
Affiliation(s)
- Oded Bein
- Department of Psychology, New York University, New York, NY, 10003, USA.
| | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, 10027, USA. .,Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
| |
Collapse
|
14
|
Stubbendorff C, Stevenson CW. Dopamine regulation of contextual fear and associated neural circuit function. Eur J Neurosci 2020; 54:6933-6947. [DOI: 10.1111/ejn.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
|
15
|
Cognitive impairment appears progressive in the mdx mouse. Neuromuscul Disord 2020; 30:368-388. [PMID: 32360405 PMCID: PMC7306157 DOI: 10.1016/j.nmd.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle wasting disease caused by mutations in the DMD gene, which encodes the large cytoskeletal protein dystrophin. Approximately one-third of DMD patient's exhibit cognitive problems yet it is unknown if cognitive impairments worsen with age. The mdx mouse model is deficient in dystrophin demonstrates cognitive abnormalities, but no studies have investigated this longitudinally. We assessed the consequences of dystrophin deficiency on brain morphology and cognition in male mdx mice. We utilised non-invasive methods to monitor CNS pathology with an aim to identify changes longitudinally (between 4 and 18 months old) which could be used as outcome measures. MRI identified a total brain volume (TBV) increase in control mice with ageing (p < 0.05); but the mdx mice TBV increased significantly more (p < 0.01). Voxel-based morphometry (VBM) identified decreases in grey matter volume, particularly in the hippocampus of the mdx brain, most noticeable from 12 months onwards, as were enlarged lateral ventricles in mdx mice. The caudate putamen of older mdx mice showed increases in T2- relaxometry which may be considered as evidence of increased water content. Hippocampal spatial learning and memory was decreased in mdx mice, particularly long-term memory, which progressively worsened with age. The novel object recognition (NOR) task highlighted elevated anxiety-related behaviour in older mdx mice. Our studies suggest that dystrophin deficiency causes a progressive cognitive impairment in mice (compared to ageing control mice), becoming evident at late disease stages, and may explain why progressive CNS symptoms are not obvious in DMD patients.
Collapse
|
16
|
Hagger-Vaughan N, Storm JF. Synergy of Glutamatergic and Cholinergic Modulation Induces Plateau Potentials in Hippocampal OLM Interneurons. Front Cell Neurosci 2019; 13:508. [PMID: 31780902 PMCID: PMC6861217 DOI: 10.3389/fncel.2019.00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023] Open
Abstract
Oriens-lacunosum moleculare (OLM) cells are hippocampal inhibitory interneurons that are implicated in the regulation of information flow in the CA1 circuit, inhibiting cortical inputs to distal pyramidal cell dendrites, whilst disinhibiting CA3 inputs to pyramidal cells. OLM cells express metabotropic cholinergic (mAChR) and glutamatergic (mGluR) receptors, so modulation of these cells via these receptors may contribute to switching between functional modes of the hippocampus. Using a transgenic mouse line to identify OLM cells, we found that both mAChR and mGluR activation caused the cells to exhibit long-lasting depolarizing plateau potentials following evoked spike trains. Both mAChR- and mGluR-induced plateau potentials were eliminated by blocking transient receptor potential (TRP) channels, and were dependent on intracellular calcium concentration and calcium entry. Pharmacological tests indicated that Group I mGluRs are responsible for the glutamatergic induction of plateaus. There was also a pronounced synergy between the cholinergic and glutamatergic modulation, plateau potentials being generated by agonists applied together at concentrations too low to elicit any change when applied individually. This synergy could enable OLM cells to function as coincidence detectors of different neuromodulatory systems, leading to their enhanced and prolonged activation and a functional change in information flow within the hippocampus.
Collapse
Affiliation(s)
| | - Johan F. Storm
- Brain Signaling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Royea J, Martinot P, Hamel E. Memory and cerebrovascular deficits recovered following angiotensin IV intervention in a mouse model of Alzheimer's disease. Neurobiol Dis 2019; 134:104644. [PMID: 31669735 DOI: 10.1016/j.nbd.2019.104644] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II type 1 receptor antagonists like losartan have been found to lower the incidence and progression to Alzheimer's disease (AD), as well as rescue cognitive and cerebrovascular deficits in AD mouse models. We previously found that co-administration of an angiotensin IV (AngIV) receptor (AT4R) antagonist prevented losartan's benefits, identifying AT4Rs as a possible target to counter AD pathogenesis. Therein, we investigated whether directly targeting AT4Rs could counter AD pathogenesis in a well-characterized mouse model of AD. Wild-type and human amyloid precursor protein (APP) transgenic (J20 line) mice (4.5 months old) received vehicle or AngIV (~1.3 nmol/day, 1 month) intracerebroventricularly via osmotic minipumps. AngIV restored short-term memory, spatial learning and memory in APP mice. AngIV normalized hippocampal AT4R levels, increased hippocampal subgranular zone cellular proliferation and dendritic arborization, and reduced oxidative stress. AngIV rescued whisker-evoked neurovascular coupling, endothelial- and smooth muscle cell-mediated cerebral vasodilatory responses, and cerebrovascular nitric oxide bioavailability. AngIV did not alter blood pressure, neuroinflammation or amyloid-β (Aβ) pathology. These preclinical findings identify AT4R as a promising target to counter Aβ-related cognitive and cerebrovascular deficits in AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Pauline Martinot
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
18
|
Gisabella B, Scammell T, Bandaru SS, Saper CB. Regulation of hippocampal dendritic spines following sleep deprivation. J Comp Neurol 2019; 528:380-388. [PMID: 31454077 DOI: 10.1002/cne.24764] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Accumulating evidence supports the role of sleep in synaptic plasticity and memory consolidation. One line of investigation, the synaptic homeostasis hypothesis, has emphasized the increase in synaptic strength during waking, and compensatory downsizing of (presumably less frequently used) synapses during sleep. Conversely, other studies have reported downsizing and loss of dendritic spines following sleep deprivation. We wanted to determine the effect of sleep deprivation on dendritic spines of hippocampal CA1 neurons using genetic methods for fluorescent labeling of dendritic spines. Male Vglut2-Cre mice were injected with an AAV-DIO-ChR2-mCherry reporter in CA1 hippocampus. Gentle handling was used to sleep deprive mice for 5 hr, from lights on (7 am) to 12 noon. Control and sleep-deprived mice were euthanized at 12 noon and processed for quantification of dendritic spines. We used confocal microscope imaging and three-dimensional (3D) analysis to quantify thin, mushroom, and stubby spines from CA1 dendrites, distinguishing between branch segments. We observed significantly greater density of spines in CA1 of sleep-deprived mice, driven primarily by greater numbers of thin spines, and significantly larger spine volume and head diameter. Branch and region-specific analysis revealed that spine volume was greater in primary dendrites of apical and basal segments, along with proximal segments on both apical and basal dendrites, and spine density was increased in secondary branches and distal segments on apical dendrites following sleep deprivation. Our 3D quantification suggests sleep contributes to region- and branch-specific synaptic downscaling in the hippocampus, supporting the theory of broad but selective synaptic downscaling during sleep.
Collapse
Affiliation(s)
- Barbara Gisabella
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Anatomy and Neurobiological Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Thomas Scammell
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sathyajit S Bandaru
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Niknamfar S, Nouri Zadeh-Tehrani S, Sadat-Shirazi MS, Akbarabadi A, Rahimi-Movaghar A, Zarrindast MR. μ-Opioid receptor in the CA1 involves in tramadol and morphine cross state-dependent memory. Neurosci Lett 2019; 705:177-182. [PMID: 31051223 DOI: 10.1016/j.neulet.2019.04.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
In the present study, the effect of tramadol - an opioid painkiller drug with abuse potential- on amnesia and state-dependent memory and its interaction with the opioidergic system was investigated in male Wistar rats. Intra CA-1 administration of tramadol (0.5, 1, and 2 μg/rat) before training, dose-dependently decreased the learning ability in passive avoidance task. Amnesia induced by pre-train tramadol administration was significantly reversed by pre-test administration of tramadol (1 μg/rat). Pre-test administration of naltrexone (a μ-opioid receptor (MOR) antagonist) inhibited the effect of tramadol on memory retrieval. In addition, the pre-test administration of morphine (1 μg/rat, intra-CA1) also reversed memory impairment induced by pre-train tramadol administration. Although, pre-train morphine administration (1 μg/rat, intra-CA1), induced memory impairment reversed by pre-test tramadol administration (1 μg/rat, intra-CA1). In addition, the level of MOR in the hippocampus decreased in animals with memory impairment due to using tramadol in the training day. However, state-dependent retrieval using tramadol or cross state-dependent retrieval using morphine enhanced the MOR level in the hippocampus. The results of the study suggested that intra-CA1 tramadol administration induced memory impairment, improved by pre-test administration of either tramadol or morphine (MOR agonist). It could be concluded that tramadol is capable to induced state-dependent memory and also, it has a cross state-dependent memory with morphine in the hippocampus, done possibly through MOR.
Collapse
Affiliation(s)
- Saba Niknamfar
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Afarin Rahimi-Movaghar
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
20
|
Hippocampal Arc protein expression and conditioned fear. Neurobiol Learn Mem 2019; 161:175-191. [DOI: 10.1016/j.nlm.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022]
|
21
|
Chang YHA, Marshall A, Bahrami N, Mathur K, Javadi SS, Reyes A, Hegde M, Shih JJ, Paul BM, Hagler DJ, McDonald CR. Differential sensitivity of structural, diffusion, and resting-state functional MRI for detecting brain alterations and verbal memory impairment in temporal lobe epilepsy. Epilepsia 2019; 60:935-947. [PMID: 31020649 DOI: 10.1111/epi.14736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) is known to affect large-scale gray and white matter networks, and these network changes likely contribute to the verbal memory impairments observed in many patients. In this study, we investigate multimodal imaging patterns of brain alterations in TLE and evaluate the sensitivity of different imaging measures to verbal memory impairment. METHODS Diffusion tensor imaging (DTI), volumetric magnetic resonance imaging (vMRI), and resting-state functional MRI (rs-fMRI) were evaluated in 46 patients with TLE and 33 healthy controls to measure patterns of microstructural, structural, and functional alterations, respectively. These measurements were obtained within the white matter directly beneath neocortex (ie, superficial white matter [SWM]) for DTI and across neocortex for vMRI and rs-fMRI. The degree to which imaging alterations within left medial temporal lobe/posterior cingulate (LMT/PC) and left lateral temporal regions were associated with verbal memory performance was evaluated. RESULTS Patients with left TLE and right TLE both demonstrated pronounced microstructural alterations (ie, decreased fractional anisotropy [FA] and increased mean diffusivity [MD]) spanning the entire frontal and temporolimbic SWM, which were highly lateralized to the ipsilateral hemisphere. Conversely, reductions in cortical thickness in vMRI and alterations in the magnitude of the rs-fMRI response were less pronounced and less lateralized than the microstructural changes. Both stepwise regression and mediation analyses further revealed that FA and MD within SWM in LMT/PC regions were the most robust predictors of verbal memory, and that these associations were independent of left hippocampal volume. SIGNIFICANCE These findings suggest that microstructural loss within the SWM is pronounced in patients with TLE, and injury to the SWM within the LMT/PC region plays a critical role in verbal memory impairment.
Collapse
Affiliation(s)
- Yu-Hsuan A Chang
- Department of Psychiatry, University of California, San Diego, California.,Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Anisa Marshall
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Naeim Bahrami
- Department of Psychiatry, University of California, San Diego, California.,Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Kushagra Mathur
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Sogol S Javadi
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Manu Hegde
- Department of Neurology, University of California, San Francisco, California.,UCSF Comprehensive Epilepsy Center, San Francisco, California
| | - Jerry J Shih
- Department of Neurosciences, University of California, San Diego, California.,UCSD Comprehensive Epilepsy Center, San Diego, California
| | - Brianna M Paul
- Department of Neurology, University of California, San Francisco, California.,UCSF Comprehensive Epilepsy Center, San Francisco, California
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, California.,Center for Multimodal Imaging and Genetics, University of California, San Diego, California.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California.,UCSD Comprehensive Epilepsy Center, San Diego, California
| |
Collapse
|
22
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
23
|
Episodic-like memory impairment induced by sub-anaesthetic doses of ketamine. Behav Brain Res 2018; 359:165-171. [PMID: 30359643 DOI: 10.1016/j.bbr.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 01/07/2023]
Abstract
Episodic-like memory refers to integration of where and when a certain event (what) happened. The glutamatergic neurotransmission, particularly AMPA and NMDA receptors, in the dorsal hippocampus mediates episodic recall. Ketamine is a non-competitive NMDA antagonist with effect on cognitive performance and plasticity. The goal of this study was to evaluate the acute action of ketamine on behavioural and neurochemical aspects of episodic-like memory (WWWhen/ELM task) through immediate-early gene expression (IEG), c-Fos, in the dorsal hippocampus. Animals received saline 0.9% or ketamine at 8 mg/kg or 15 mg/kg (i.p.) immediately after the second sample. Our data indicate that untreated and saline rats integrate the three elements of episodic-like memory. Conversely, animals treated with ketamine showed impairment of ELM formation. In addition, the highest dose of ketamine increased c-Fos expression in dorsal CA1 subregion when compared to saline rats. Our results indicate that the antagonism of NMDA concurrently impair ELM formation of all three aspects of ELM and increase neuronal activation in dorsal CA1.
Collapse
|
24
|
Zheng F, Cui D, Zhang L, Zhang S, Zhao Y, Liu X, Liu C, Li Z, Zhang D, Shi L, Liu Z, Hou K, Lu W, Yin T, Qiu J. The Volume of Hippocampal Subfields in Relation to Decline of Memory Recall Across the Adult Lifespan. Front Aging Neurosci 2018; 10:320. [PMID: 30364081 PMCID: PMC6191512 DOI: 10.3389/fnagi.2018.00320] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: The hippocampus is an important limbic structure closely related to memory function. However, few studies have focused on the association between hippocampal subfields and age-related memory decline. We investigated the volume alterations of hippocampal subfields at different ages and assessed the correlations with Immediate and Delayed recall abilities. Materials and Methods: A total of 275 participants aged 20-89 years were classified into 4 groups: Young, 20-35 years; Middle-early, 36-50 years; Middle-late, 51-65 years; Old, 66-89 years. All data were acquired from the Dallas Lifespan Brain Study (DLBS). The volumes of hippocampal subfields were obtained using Freesurfer software. Analysis of covariance (ANCOVA) was performed to analyze alterations of subfield volumes among the 4 groups, and multiple comparisons between groups were performed using the Bonferroni method. Spearman correlation with false discovery rate correction was used to investigate the relationship between memory recall scores and hippocampal subfield volumes. Results: Apart from no significant difference in the left parasubiculum (P = 0.269) and a slight difference in the right parasubiculum (P = 0.022), the volumes of other hippocampal subfields were significantly different across the adult lifespan (P < 0.001). The hippocampal fissure volume was increased in the Old group, while volumes for other subfields decreased. In addition, Immediate recall scores were associated with volumes of the bilateral molecular layer, granule cell layer of the dentate gyrus (GC-DG), cornus ammonis (CA) 1, CA2/3, CA4, left fimbria and hippocampal amygdala transition area (HATA), and right fissure (P < 0.05). Delayed recall scores were associated with the bilateral molecular layer, GC-DG, CA2/3 and CA4; left tail, presubiculum, CA1, subiculum, fimbria and HATA (P < 0.05). Conclusion: The parasubiculum volume was not significantly different across the adult lifespan, while atrophy in dementia patients in some studies. Based on these findings, we speculate that volume changes in this region might be considered as a biomarker for dementia disorders. Additionally, several hippocampal subfield volumes were significantly associated with memory scores, further highlighting the key role of the hippocampus in age-related memory decline. These regions could be used to assess the risk of memory decline across the adult lifespan.
Collapse
Affiliation(s)
- Fenglian Zheng
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Dong Cui
- College of Radiology, Taishan Medical University, Taian, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Li Zhang
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Shitong Zhang
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yue Zhao
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Xiaojing Liu
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Chunhua Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, China
| | - Zhengmei Li
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Dongsheng Zhang
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Liting Shi
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kun Hou
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Wen Lu
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| |
Collapse
|
25
|
Bayati M, Neher T, Melchior J, Diba K, Wiskott L, Cheng S. Storage fidelity for sequence memory in the hippocampal circuit. PLoS One 2018; 13:e0204685. [PMID: 30286147 PMCID: PMC6171846 DOI: 10.1371/journal.pone.0204685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Episodic memories have been suggested to be represented by neuronal sequences, which are stored and retrieved from the hippocampal circuit. A special difficulty is that realistic neuronal sequences are strongly correlated with each other since computational memory models generally perform poorly when correlated patterns are stored. Here, we study in a computational model under which conditions the hippocampal circuit can perform this function robustly. During memory encoding, CA3 sequences in our model are driven by intrinsic dynamics, entorhinal inputs, or a combination of both. These CA3 sequences are hetero-associated with the input sequences, so that the network can retrieve entire sequences based on a single cue pattern. We find that overall memory performance depends on two factors: the robustness of sequence retrieval from CA3 and the circuit's ability to perform pattern completion through the feedforward connectivity, including CA3, CA1 and EC. The two factors, in turn, depend on the relative contribution of the external inputs and recurrent drive on CA3 activity. In conclusion, memory performance in our network model critically depends on the network architecture and dynamics in CA3.
Collapse
Affiliation(s)
- Mehdi Bayati
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Torsten Neher
- Mental Health Research and Treatment Center, Department of Clinical Child and Adolescent Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Jan Melchior
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Kamran Diba
- Department of Anesthesiology, University of Michigan, Ann Arbor, United States of America
| | - Laurenz Wiskott
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Sen Cheng
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Long J, Feng Y, Liao H, Zhou Q, Urbin MA. Motor Sequence Learning Is Associated With Hippocampal Subfield Volume in Humans With Medial Temporal Lobe Epilepsy. Front Hum Neurosci 2018; 12:367. [PMID: 30319375 PMCID: PMC6168622 DOI: 10.3389/fnhum.2018.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Objectives: Medial temporal lobe epilepsy (mTLE) is characterized by decreased hippocampal volume, which results in motor memory consolidation impairments. However, the extent to which motor memory acquisition are affected in humans with mTLE remains poorly understood. We therefore examined the extent to which learning of a motor tapping sequence task is affected by mTLE. Methods: MRI volumetric analysis was performed using a T1-weighted three-dimensional gradient echo sequence in 15 patients with right mTLE and 15 control subjects. Subjects trained on a motor sequence tapping task with the left hand in right mTLE and non-dominant hand in neurologically-intact controls. Results: The number of correct sequences performed by the mTLE patient group increased after training, albeit to a lesser extent than the control group. Although hippocampal subfield volume was reduced in mTLE relative to controls, no differences were observed in the volumes of other brain areas including thalamus, caudate, putamen and amygdala. Correlations between hippocampal subfield volumes and the change in pre- to post-training performance indicated that the volume of hippocampal subfield CA2–3 was associated with motor sequence learning in patients with mTLE. Significance: These results provide evidence that individuals with mTLE exhibit learning on a motor sequence task. Learning is linked to the volume of hippocampal subfield CA2–3, supporting a role of the hippocampus in motor memory acquisition. HighlightsHumans with mTLE exhibit learning on a motor tapping sequence task but not to the same extent as neurologically-intact controls. Hippocampal subfield volumes are significantly reduced after mTLE. Surrounding brain area volumes do not show abnormalities. Hippocampal subfield CA2–3 volume is associated with motor sequence learning in humans with mTLE.
Collapse
Affiliation(s)
- Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Yanyun Feng
- Department of Radiology, The First People's Hospital of Foshan, Foshan, China
| | - HongPeng Liao
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
| | - Quan Zhou
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - M A Urbin
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
McGregor G, Clements L, Farah A, Irving AJ, Harvey J. Age-dependent regulation of excitatory synaptic transmission at hippocampal temporoammonic-CA1 synapses by leptin. Neurobiol Aging 2018; 69:76-93. [PMID: 29860205 PMCID: PMC6075472 DOI: 10.1016/j.neurobiolaging.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
The hippocampus is a key target for the hormone leptin and leptin regulation of excitatory synaptic transmission at Schaffer-collateral-CA1 synapses during aging are well documented. However, little is known about the age-dependent actions of leptin at the temporoammonic (TA) input to CA1 neurons. Here we show that leptin induces a novel form of N-methyl-D-aspartate receptor-dependent long-term depression (LTD) at adult (12-24 weeks old) TA-CA1 synapses. Leptin-induced LTD requires activation of canonical Janus tyrosine kinase 2- signal transducer and activator of transcription signaling and removal of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors from synapses. Moreover, leptin-induced LTD is occluded by activity-dependent LTD at TA-CA1 synapses. By contrast, leptin has no effect on excitatory synaptic transmission at aged (12-14 months old) TA-CA1 synapses, and low-frequency stimulation also fails to induce LTD at this age. These findings demonstrate clear age-related alterations in the leptin sensitivity of TA-CA1 synapses and provide valuable information on how the leptin system alters with age. As leptin has been linked to Alzheimer's disease, these findings have important implications for understanding of age-related disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Leigh Clements
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Adham Farah
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Andrew J Irving
- School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
28
|
Kristofova M, Aher YD, Ilic M, Radoman B, Kalaba P, Dragacevic V, Aher NY, Leban J, Korz V, Zanon L, Neuhaus W, Wieder M, Langer T, Urban E, Sitte HH, Hoeger H, Lubec G, Aradska J. A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behav Brain Res 2018; 343:83-94. [PMID: 29410048 DOI: 10.1016/j.bbr.2018.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 01/25/2023]
Abstract
Dopamine reuptake inhibitors have been shown to improve cognitive parameters in various tasks and animal models. We recently reported a series of modafinil analogues, of which the most promising, 5-((benzhydrylsulfinyl)methyl) thiazole (CE-123), was selected for further development. The present study aims to characterize pharmacological properties of CE-123 and to investigate the potential to enhance memory performance in a rat model. In vitro transporter assays were performed in cells expressing human transporters. CE-123 blocked uptake of [3H] dopamine (IC50 = 4.606 μM) while effects on serotonin (SERT) and the norepinephrine transporter (NET) were negligible. Blood-brain barrier and pharmacokinetic studies showed that the compound reached the brain and lower elimination than R-modafinil. The Pro-cognitive effect was evaluated in a spatial hole-board task in male Sprague-Dawley rats and CE-123 enhances memory acquisition and memory retrieval, represented by significantly increased reference memory indices and shortened latency. Since DAT blockers can be considered as indirect dopamine receptor agonists, western blotting was used to quantify protein levels of dopamine receptors D1R, D2R and D5R and DAT in the synaptosomal fraction of hippocampal subregions CA1, CA3 and dentate gyrus (DG). CE-123 administration in rats increased total DAT levels and D1R protein levels were significantly increased in CA1 and CA3 in treated/trained groups. The increase of D5R was observed in DG only. Dopamine receptors, particularly D1R, seem to play a role in mediating CE-123-induced memory enhancement. Dopamine reuptake inhibition by CE-123 may represent a novel and improved stimulant therapeutic for impairments of cognitive functions.
Collapse
Affiliation(s)
- Martina Kristofova
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Yogesh D Aher
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Bojana Radoman
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Nilima Y Aher
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Johann Leban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Volker Korz
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Zanon
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Competence Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| | - Jana Aradska
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
29
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|
30
|
Keilhoff G, Esser T, Titze M, Ebmeyer U, Schild L. Gynostemma pentaphyllum is neuroprotective in a rat model of cardiopulmonary resuscitation. Exp Ther Med 2017; 14:6034-6046. [PMID: 29250141 PMCID: PMC5729372 DOI: 10.3892/etm.2017.5315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/02/2017] [Indexed: 01/11/2023] Open
Abstract
Asphyxial cardiac arrest (ACA)-induced ischemia results in acute and delayed neuronal cell death. The early reperfusion phase is critical for the outcome. Intervention strategies directed to this period are promising to reduce ACA/resuscitation-dependent impairments. This study focused on the evaluation of the protective potential of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with antioxidative, glucose lowering and neuroprotective activities, in an ACA rat model. We tested the following parameters: i) Basic systemic parameters such as pCO2 and blood glucose value within the first 30 min post-ACA; ii) mitochondrial response by determining activities of citrate synthase, respiratory chain complexes I + III and II + III, and the composition of cardiolipin 6 and 24 h post-ACA; iii) neuronal vitality of the CA1 hippocampal region by immunohistochemistry 24 h and 7 days post-ACA; and iv) cognitive function by a novel object recognition test 7 days post-ACA. GP, administered after reaching spontaneous circulation, counteracted the following: i) ACA-mediated increases in arterial CO2 tension and blood glucose values; ii) transient increase in the activity of the respiratory chain complexes II + III; iii) elevation in cardiolipin content; iv) hippocampal CA1 neurodegeneration, and v) loss of normal novelty-object seeking. The protective effects of GP were accompanied by side effects of the vehicle DMSO, such as the stimulation of citrate synthase activity in control animals, inhibition of cardiolipin synthesis in ACA animals and complex II + III activity in both control and ACA animals. The results emphasize the importance of the early post-resuscitation phase for the neurological outcome after ACA/resuscitation, and demonstrated the power of GP substitution as neuroprotective intervention. Moreover, the results underline the need of a careful handling of the popular vehicle DMSO.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Torben Esser
- Department of Anesthesiology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Maximilian Titze
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Uwe Ebmeyer
- Department of Anesthesiology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Lorenz Schild
- Department of Pathological Biochemistry, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| |
Collapse
|
31
|
Comper SM, Jardim AP, Corso JT, Gaça LB, Noffs MHS, Lancellotti CLP, Cavalheiro EA, Centeno RS, Yacubian EMT. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis. Epilepsy Behav 2017; 75:183-189. [PMID: 28873362 DOI: 10.1016/j.yebeh.2017.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. METHODS The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). RESULTS There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (p<0.001). SIGNIFICANCE Cornu Ammonis 1 (CA1) hippocampal subfield was related to immediate and delayed recalls of verbal memory tests in left HS, while CA1 and epilepsy duration were associated with visual memory performance in patients with right HS.
Collapse
Affiliation(s)
- Sandra Mara Comper
- Clinical Neurology Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Anaclara Prada Jardim
- Clinical Neurology Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Jeana Torres Corso
- Clinical Neurology Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Larissa Botelho Gaça
- Clinical Neurology Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Maria Helena Silva Noffs
- Clinical Neurology Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Esper Abrão Cavalheiro
- Neuroscience Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo Silva Centeno
- Neurosurgery Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elza Márcia Targas Yacubian
- Clinical Neurology Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
32
|
McGregor G, Irving AJ, Harvey J. Canonical JAK‐STAT signaling is pivotal for long‐term depression at adult hippocampal temporoammonic‐CA1 synapses. FASEB J 2017; 31:3449-3466. [DOI: 10.1096/fj.201601293rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Gemma McGregor
- Division of NeuroscienceSchool of MedicineNinewells Hospital and Medical SchoolUniversity of Dundee Dundee United Kingdom
| | - Andrew J. Irving
- School of Biomolecular and Biomedical ScienceThe Conway InstituteUniversity College Dublin Dublin Ireland
| | - Jenni Harvey
- Division of NeuroscienceSchool of MedicineNinewells Hospital and Medical SchoolUniversity of Dundee Dundee United Kingdom
| |
Collapse
|
33
|
Pitsikas N, Tarantilis PA. Crocins, the active constituents of Crocus sativus L., counteracted apomorphine-induced performance deficits in the novel object recognition task, but not novel object location task, in rats. Neurosci Lett 2017; 644:37-42. [PMID: 28216334 DOI: 10.1016/j.neulet.2017.02.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a chronic mental disease that affects nearly 1% of the population worldwide. Several lines of evidence suggest that the dopaminergic (DAergic) system might be compromised in schizophrenia. Specifically, the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induces schizophrenia-like symptoms in rodents, including disruption of memory abilities. Crocins are among the active components of saffron (dried stigmas of Crocus sativus L. plant) and their implication in cognition is well documented. The present study investigated whether crocins counteract non-spatial and spatial recognition memory deficits induced by apomorphine in rats. For this purpose, the novel object recognition task (NORT) and the novel object location task (NOLT) were used. The effects of compounds on mobility in a locomotor activity chamber were also investigated in rats. Post-training peripheral administration of crocins (15 and 30mg/kg) counteracted apomorphine (1mg/kg)-induced performance deficits in the NORT. Conversely, crocins did not attenuate spatial recognition memory deficits produced by apomorphine in the NOLT. The present data show that crocins reversed non-spatial recognition memory impairments produced by dysfunction of the DAergic system and modulate different aspects of memory components (storage and/or retrieval). The effects of compounds on recognition memory cannot be attributed to changes in locomotor activity. Further, our findings illustrate a functional interaction between crocins and the DAergic system that may be of relevance for schizophrenia-like behavioral deficits. Therefore, the utilization of crocins as an adjunctive agent, for the treatment of cognitive deficits observed in schizophrenic patients should be further investigated.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
34
|
Gonzalez J, Villarreal DM, Morales IS, Derrick BE. Long-term Potentiation at Temporoammonic Path-CA1 Synapses in Freely Moving Rats. Front Neural Circuits 2016; 10:2. [PMID: 26903815 PMCID: PMC4748048 DOI: 10.3389/fncir.2016.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 11/23/2022] Open
Abstract
Hippocampal area CA1 receives direct entorhinal layer III input via the temporoammonic path (TAP) and recent studies implicate TAP-CA1 synapses are important for some aspects of hippocampal memory function. Nonetheless, as few studies have examined TAP-CA1 synaptic plasticity in vivo, the induction and longevity of TAP-CA1 long-term potentiation (LTP) has not been fully characterized. We analyzed CA1 responses following stimulation of the medial aspect of the angular bundle and investigated LTP at medial temporoammonic path (mTAP)-CA1 synapses in freely moving rats. We demonstrate monosynaptic mTAP-CA1 responses can be isolated in vivo as evidenced by observations of independent current sinks in the stratum lacunosum moleculare of both areas CA1 and CA3 following angular bundle stimulation. Contrasting prior indications that TAP input rarely elicits CA1 discharge, we observed mTAP-CA1 responses that appeared to contain putative population spikes in 40% of our behaving animals. Theta burst high frequency stimulation of mTAP afferents resulted in an input specific and N-methyl-D-aspartate (NMDA) receptor-dependent LTP of mTAP-CA1 responses in behaving animals. LTP of mTAP-CA1 responses decayed as a function of two exponential decay curves with time constants (τ) of 2.7 and 148 days to decay 63.2% of maximal LTP. In contrast, mTAP-CA1 population spike potentiation longevity demonstrated a τ of 9.6 days. To our knowledge, these studies provide the first description of mTAP-CA1 LTP longevity in vivo. These data indicate TAP input to area CA1 is a physiologically relevant afferent system that displays robust synaptic plasticity.
Collapse
Affiliation(s)
- Jossina Gonzalez
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | | | - Isaiah S Morales
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | - Brian E Derrick
- Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA; UTSA Neurosciences Institute, University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|
35
|
Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory. Physiol Behav 2015; 155:162-71. [PMID: 26687895 DOI: 10.1016/j.physbeh.2015.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 11/21/2022]
Abstract
The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits.
Collapse
|
36
|
Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol 2015; 273:11-23. [DOI: 10.1016/j.expneurol.2015.07.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
|
37
|
Smith CC, Smith LA, Bredemann TM, McMahon LL. 17β estradiol recruits GluN2B-containing NMDARs and ERK during induction of long-term potentiation at temporoammonic-CA1 synapses. Hippocampus 2015; 26:110-7. [PMID: 26190171 DOI: 10.1002/hipo.22495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/06/2022]
Abstract
When circulating 17β estradiol (E2) is elevated to proestrous levels, hippocampus-dependent learning and memory is enhanced in female rodents, nonhuman primates, and women due to heightened synaptic function at hippocampal synapses. We previously reported that proestrous-like levels of E2 administered to young adult ovariectomized (OVX) female rats increases the magnitude of LTP at CA3 Schaffer collateral (SC)-CA1 synapses only when dendritic spine density, the NMDAR/AMPAR ratio, and current mediated by GluN2B-containing NMDA receptors (NMDARs) are simultaneously increased. We also reported that this increase in GluN2B-mediated NMDAR current in area CA1 is causally related to the E2-induced increase in novel object recognition, tying together heightened synaptic function with improved learning and memory. In addition to SC inputs, innervation from the entorhinal cortex in the temporoammonic (TA) pathway onto CA1 distal dendrites in stratum lacunosum-moleculare is critical for spatial memory formation and retrieval. It is not known whether E2 modulates TA-CA1 synapses similarly to SC-CA1 synapses. Here, we report that 24 hours post-E2 injection, dendritic spine density on CA1 pyramidal cell distal dendrites and current mediated by GluN2B-containing NMDARs at TA-CA1 synapses is increased, similarly to our previous findings at SC-CA1 synapses. However, in contrast to SC-CA1 synapses, AMPAR transmission at TA-CA1 synapses is significantly increased, and there is no effect on the LTP magnitude. Pharmacological blockade of GluN2B-containing NMDARs or ERK activation, which occurs downstream of synaptic but not extrasynaptic GluN2B-containing NMDARs, attenuates the LTP magnitude only in slices from E2-treated rats. These data show that E2 recruits a causal role for GluN2B-containing NMDARs and ERK signaling in the induction of LTP, cellular mechanisms not required for LTP induction at TA-CA1 synapses in vehicle-treated OVX female rats.
Collapse
Affiliation(s)
- Caroline C Smith
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lindsey A Smith
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Teruko M Bredemann
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lori L McMahon
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama.,Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
38
|
Kinoshita KI, Tada Y, Muroi Y, Unno T, Ishii T. Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning. Life Sci 2015. [PMID: 26209139 DOI: 10.1016/j.lfs.2015.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). In PD, thinking and retrieval deficits often arise from cognitive impairments. However, the mechanism of cognitive disorders in PD remains unknown. Therefore, we investigated cognitive function in PD model mice produced by intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which specifically destroys the DAergic neurons in the SNpc. MAIN METHODS We evaluated the cognitive function of MPTP-treated mice (PD mice) using the contextual fear conditioning test. In the test, each experiment consists of three phases: training, re-exposure, and testing. Mice were trained with a foot shock (a weak unconditioned stimulus: 1mA/2s duration, once, or an intense unconditioned stimulus: 2mA/2s duration, twice), and 24h later, mice were re-exposed to the training context for 3min to determine reconsolidation or 30min to determine extinction. The percentage of time spent freezing was measured during the test session as indexes of memory consolidation, reconsolidation, and extinction. KEY FINDINGS Reconsolidation of PD mice occurred normally but memory extinction was facilitated in PD mice compared to control mice. Moreover, memory retention in PD mice was attenuated earlier than in controls following repeated conditioned stimuli every day. SIGNIFICANCE PD mice with selective loss of DAergic neurons in the SNpc showed attenuated memory retention, probably via facilitated extinction learning.
Collapse
Affiliation(s)
- Ken-ichi Kinoshita
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yayoi Tada
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshikage Muroi
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Toshihiro Unno
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; The Laboratory of Pharmacology, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshiaki Ishii
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
39
|
O'Connor WT, O'Shea SD. Clozapine and GABA transmission in schizophrenia disease models. Pharmacol Ther 2015; 150:47-80. [DOI: 10.1016/j.pharmthera.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
|
40
|
Seo H, Seol MJ, Lee K. Differential expression of hyperpolarization-activated cyclic nucleotide-gated channel subunits during hippocampal development in the mouse. Mol Brain 2015; 8:13. [PMID: 25761792 PMCID: PMC4352274 DOI: 10.1186/s13041-015-0103-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels help control the rhythmic activation of pacemaker neurons during brain development. However, little is known about the timing and cell type specificity of the expression of HCN isoforms during development of the hippocampus. RESULTS Here we examined the developmental expression of the brain-enriched HCN1, HCN2, and HCN4 isoforms of HCN channels in mouse hippocampus from embryonic to postnatal stages. All these isoforms were expressed abundantly in the hippocampus at embryonic day 14.5 and postnatal day 0. Each HCN channel isoform showed subfield-specific expression within the hippocampus from postnatal day 7, and only HCN4 was found in glial cells in the stratum lacunosum moleculare at this developmental stage. At postnatal days 21 and 56, all HCN isoforms were strongly expressed in the stratum lacunosum moleculare and the stratum pyramidale of the Cornu Ammonis (CA), as well as in the hilus of the dentate gyrus, but not in the subgranular zone. Furthermore, the immunolabeling for all these isoforms was colocalized with parvalbumin immunolabeling in interneurons of the CA field and in the dentate gyrus. CONCLUSIONS Our mapping data showing the temporal and spatial changes in the expression of HCN channels suggest that HCN1, HCN2, and HCN4 subunits may have distinct physiological roles in the developing hippocampus.
Collapse
Affiliation(s)
- Hyunhyo Seo
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| | - Myoung-Jin Seol
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| | - Kyungmin Lee
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| |
Collapse
|
41
|
Yau JLW, Noble J, Kenyon CJ, Ludwig M, Seckl JR. Diurnal and stress-induced intra-hippocampal corticosterone rise attenuated in 11β-HSD1-deficient mice: a microdialysis study in young and aged mice. Eur J Neurosci 2015; 41:787-92. [PMID: 25614240 PMCID: PMC4440343 DOI: 10.1111/ejn.12836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/30/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra-hippocampal corticosterone (CORT) levels upon Y-maze testing in aged wild-type than in 11β-HSD1(-/-) mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11β-HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra-hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild-type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra-hippocampal CORT levels was greatly diminished in 11β-HSD1(-/-) mice and there was no rise with ageing; basal intra-hippocampal CORT levels were similar to wild-type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra-hippocampal CORT levels in wild-type mice than in 11β-HSD1(-/-) mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11β-HSD1 activity contributes substantially to diurnal and stress-induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11β-HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.
Collapse
Affiliation(s)
- Joyce L W Yau
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | |
Collapse
|
42
|
A computational theory of hippocampal function, and tests of the theory: New developments. Neurosci Biobehav Rev 2015; 48:92-147. [DOI: 10.1016/j.neubiorev.2014.11.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023]
|
43
|
Arias N, Méndez M, Arias J. Differential contribution of the hippocampus in two different demanding tasks at early stages of hepatic encephalopathy. Neuroscience 2015; 284:1-10. [DOI: 10.1016/j.neuroscience.2014.08.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/30/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022]
|
44
|
Altered expression and chromatin structure of the hippocampal IGF1r gene is associated with impaired hippocampal function in the adult IUGR male rat. J Dev Orig Health Dis 2014; 3:83-91. [PMID: 25101918 DOI: 10.1017/s2040174411000791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure to intrauterine growth restriction (IUGR) is an important risk factor for impaired learning and memory, particularly in males. Although the basis of IUGR-associated learning and memory dysfunction is unknown, potential molecular participants may be insulin-like growth factor 1 (Igf1) and its receptor, IGF1r. We hypothesized that transcript levels and protein abundance of Igf1 and IGF1r in the hippocampus, a brain region critical for learning and memory, would be lower in IUGR male rats than in age-matched male controls at birth (postnatal day 0, P0), at weaning (P21) and adulthood (P120). We also hypothesized that changes in messenger Ribonucleic acid (mRNA) transcript levels and protein abundance would be associated with specific histone marks in IUGR male rats. Lastly, we hypothesized that IUGR male rats would perform poorer on tests of hippocampal function at P120. IUGR was induced by bilateral ligation of the uterine arteries in pregnant dams at embryonic day 19 (term is 21 days). Hippocampal Igf1 mRNA transcript levels and protein abundance were unchanged in IUGR male rats at P0, P21 or P120. At P0 and P120, IGF1r expression was increased in IUGR male rats. At P21, IGF1r expression was decreased in IUGR male rats. Increased IGF1r expression was associated with more histone 3 lysine 4 dimethylation (H3K4Me2) in the promoter region. In addition, IUGR male rats performed poorer on intermediate-term spatial working memory testing at P120. We speculate that altered IGF1r expression in the hippocampus of IUGR male rats may play a role in learning and memory dysfunction later in life.
Collapse
|
45
|
Comparison of automated home-cage monitoring systems: Emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions. J Neurosci Methods 2014; 234:13-25. [DOI: 10.1016/j.jneumeth.2014.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
|
46
|
McDonald CR, Leyden KM, Hagler DJ, Kucukboyaci NE, Kemmotsu N, Tecoma ES, Iragui VJ. White matter microstructure complements morphometry for predicting verbal memory in epilepsy. Cortex 2014; 58:139-50. [PMID: 25016097 DOI: 10.1016/j.cortex.2014.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/02/2014] [Accepted: 05/28/2014] [Indexed: 11/20/2022]
Abstract
Verbal memory is the most commonly impaired cognitive domain in patients with temporal lobe epilepsy (TLE). Although damage to the hippocampus and adjacent temporal lobe structures is known to contribute to memory impairment, little is known of the relative contributions of white versus gray matter structures, or whether microstructural versus morphometric measures of temporal lobe pathology are stronger predictors of impairment. We evaluate whether measures of temporal lobe pathology derived from diffusion tensor imaging (DTI; microstructural) versus structural MRI (sMRI; morphometric) contribute the most to memory performances in TLE, after controlling for hippocampal volume (HCV). DTI and sMRI were performed on 26 patients with TLE and 35 controls. Verbal memory was measured with the Logical Memory (LM) subtest of the Wechsler Memory Scale-III. Hierarchical regression analyses were performed to examine unique contributions of DTI and sMRI measures to verbal memory with HCV entered in block 1. In patients, impaired recall was associated with increased mean diffusivity (MD) of multiple fiber tracts that project through the temporal lobes. In addition, increased MD of the left cortical and bilateral pericortical white matter was associated with impaired recall. After controlling for left HCV, only microstructural measures of white matter pathology contributed to verbal recall. The best predictive model included left HCV and MD of the left inferior longitudinal fasciculus (ILF) and pericortical white matter beneath the left entorhinal cortex. This model explained 60% of the variance in delayed recall and revealed that MD of the left ILF was the strongest predictor. These data reveal that white matter microstructure within the temporal lobe can be used in conjunction with left HCV to enhance the prediction of verbal memory impairment, and speak to the complementary nature of DTI and sMRI for understanding cognitive dysfunction in epilepsy and possibly other memory disorders.
Collapse
Affiliation(s)
- Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, CA, USA; Multimodal Imaging Laboratory, University of California, San Diego, CA, USA.
| | - Kelly M Leyden
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA
| | - Donald J Hagler
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA
| | - Nuri E Kucukboyaci
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Nobuko Kemmotsu
- Department of Psychiatry, University of California, San Diego, CA, USA; Multimodal Imaging Laboratory, University of California, San Diego, CA, USA
| | - Evelyn S Tecoma
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Vicente J Iragui
- Department of Neurosciences, University of California, San Diego, CA, USA
| |
Collapse
|
47
|
Coras R, Pauli E, Li J, Schwarz M, Rössler K, Buchfelder M, Hamer H, Stefan H, Blumcke I. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain 2014; 137:1945-57. [DOI: 10.1093/brain/awu100] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. PLoS One 2014; 9:e87605. [PMID: 24498342 PMCID: PMC3912020 DOI: 10.1371/journal.pone.0087605] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/21/2013] [Indexed: 02/04/2023] Open
Abstract
The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer's disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer's disease.
Collapse
|
49
|
Aksoy-Aksel A, Manahan-Vaughan D. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing. Front Synaptic Neurosci 2013; 5:5. [PMID: 23986697 PMCID: PMC3750210 DOI: 10.3389/fnsyn.2013.00005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/03/2013] [Indexed: 11/28/2022] Open
Abstract
In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We observed that field excitatory postsynaptic potentials at the pp-CA1 synapse have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (>24 h) was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.
Collapse
Affiliation(s)
- Ayla Aksoy-Aksel
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
50
|
Glucocorticoid-induced enhancement of contextual fear memory consolidation in rats: Involvement of D1 receptor activity of hippocampal area CA1. Brain Res 2013; 1524:26-33. [DOI: 10.1016/j.brainres.2013.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/01/2013] [Accepted: 05/19/2013] [Indexed: 01/01/2023]
|