1
|
Gardette J, Delhaye E, Bastin C. The Multiple Dimensions of Familiarity: From Representations to Phenomenology. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2025; 16:e1698. [PMID: 39506460 DOI: 10.1002/wcs.1698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
This article focuses on familiarity, the form of memory allowing humans to recognize stimuli that have been encountered before. We aim to emphasize its complex nature which includes representational and phenomenological dimensions. The former implies that its neural correlates depend on the type and complexity of the cue stimulus, as different classes of stimuli are represented in distributed ventral visual and medial temporal regions. The second dimension relates to the subjective feeling of familiarity, which results from a fluency signal that is attributed to past encounters with the stimulus. We review mnemonic and non-mnemonic sources of fluency that can induce a sense of familiarity, as well as cases where fluency is not attributed to memory, among which the phenomenological experience of déjà-vu. Across these two dimensions, we highlight key questions to be answered by future studies to improve our understanding of the underpinnings of this form of memory and contribute to building an integrative neurocognitive model of familiarity. Essential to this aim is the clarification of the computational, cognitive, and neural mechanisms involved, namely global matching, fluency attribution, and sharpening. Furthermore, future research is needed to unravel the relationships between these mechanisms. We argue that to achieve these goals, researchers must use appropriate behavioral paradigms and clearly define which dimension of familiarity they investigate.
Collapse
Affiliation(s)
- Jérémy Gardette
- GIGA Research, CRC Human Imaging, University of Liège, Liege, Belgium
- Psychology and Neuroscience of Cognition, Department of Psychology, University of Liège, Liege, Belgium
| | - Emma Delhaye
- GIGA Research, CRC Human Imaging, University of Liège, Liege, Belgium
- Psychology and Neuroscience of Cognition, Department of Psychology, University of Liège, Liege, Belgium
| | - Christine Bastin
- GIGA Research, CRC Human Imaging, University of Liège, Liege, Belgium
- Psychology and Neuroscience of Cognition, Department of Psychology, University of Liège, Liege, Belgium
| |
Collapse
|
2
|
Banda N, Soe NC, Yabe J, Doya R, Yohannes YB, Ikenaka Y, Ishizuka M, Nakayama SMM. Sex dependent intergenerational effects of lead in mouse model. Sci Rep 2024; 14:30233. [PMID: 39633019 PMCID: PMC11618497 DOI: 10.1038/s41598-024-81839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Lead (Pb) exposure negatively impacts fertility in both males and females, pregnancy outcomes, and child brain development. We investigated the reproductive and neurological effects of Pb exposure on male and female mice via Pb-contaminated soil for 4 weeks. Breeding was conducted after completion of exposure, in four groups; group 1 consisted of exposed dams and unexposed sires, group 2 consisted of exposed sires and unexposed dams, group 3 consisted of exposed sires and exposed dams and group 4 was the control. Generally, Pb exposure reduced observed conception rates, with a cumulative decrement observed when both males and females are exposed. Gene expression of the testes revealed oxidative stress as the cause of reduced conception rates. Neurological tests: Morris water maze and rotarod were conducted on F1 generation offspring. Maternally and paternally exposed F1 mice performed poorly in the Morris water maze when compared to the control. The severity of the neurological effects was also parent-dependent and sex-dependent. Paternal Pb exposure effects were more pronounced in female offspring. A comparison of gene expression changes of the hippocampus and prefrontal cortex showed paternal Pb-exposure resulted in more prefrontal cortex changes than in the hippocampus, a trend also recorded in the exposed sires. The pronounced effects in female offspring of paternal Pb exposure may suggest that Pb neurological effects may be X-chromosome-linked.
Collapse
Affiliation(s)
- Nelly Banda
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Nyein Chan Soe
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - John Yabe
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
- School of Veterinary Medicine, University of Namibia, P/B. 13301, Windhoek, Namibia
| | - Rio Doya
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, 2531, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia.
| |
Collapse
|
3
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
4
|
Zhao H, Li J, Wang Y, Li N, Pan R, Li B. A Unique Case of Adoption in Golden Snub-Nosed Monkeys. Animals (Basel) 2024; 14:3075. [PMID: 39518799 PMCID: PMC11545503 DOI: 10.3390/ani14213075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Adoption among nonhuman primates (hereafter primates) has been widely reported, particularly in chimpanzees, renowned for their higher intelligence and well-developed cognition. In contrast to adoption in other Old World monkeys, this case of adoption in golden snub-nosed monkeys (Rhinopithecus roxellana) involves two infants associated with three units characterized by distinct social structures and reproductive functions. Consequently, this case extends beyond traditional hypotheses on allomaternal care and adoption-such as enhancing the fitness of adoptive mothers, fostering maternal behaviors, and improving fitness through social and individual interactions-to necessitate an association with the complex social structure characterized by hierarchical, multilevel composition, akin to human society, and intense sexual selection that frequently results in infanticide. Specifically, adopting an infant with a genetic link to the dominant male of the adopting female may reduce the risk of infanticide against her offspring that do not share a biological link with the dominant male. This adoption pattern suggests that golden snub-nosed monkeys may possess more sophisticated intelligence and cognition, characteristics supported by more developed brain structure and facial muscles than the other Old World monkeys.
Collapse
Affiliation(s)
- Haitao Zhao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China; (H.Z.); (N.L.)
- Shaanxi Provincial Field Observation & Research Station for Golden Monkey, Giant Panda and Biodiversity, Shaanxi Institute of Zoology, Xi’an 710032, China;
- International Centre of Biodiversity and Primate Conservation Centre, Dali University, Dali 671000, China
| | - Jiaxuan Li
- Graduate School of Management, University of California Davis, Davis, CA 95616, USA
| | - Yan Wang
- Shaanxi Provincial Field Observation & Research Station for Golden Monkey, Giant Panda and Biodiversity, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Nianlong Li
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China; (H.Z.); (N.L.)
| | - Ruliang Pan
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China; (H.Z.); (N.L.)
- International Centre of Biodiversity and Primate Conservation Centre, Dali University, Dali 671000, China
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China; (H.Z.); (N.L.)
- Shaanxi Provincial Field Observation & Research Station for Golden Monkey, Giant Panda and Biodiversity, Shaanxi Institute of Zoology, Xi’an 710032, China;
- College of Life Science, Yanan University, Yanan 710032, China
| |
Collapse
|
5
|
Kafkas A, Mayes AR, Montaldi D. The hippocampus supports the representation of abstract concepts: Implications for the study of recognition memory. Neuropsychologia 2024; 199:108899. [PMID: 38697557 DOI: 10.1016/j.neuropsychologia.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Words, unlike images, are symbolic representations. The associative details inherent within a word's meaning and the visual imagery it generates, are inextricably connected to the way words are processed and represented. It is well recognised that the hippocampus associatively binds components of a memory to form a lasting representation, and here we show that the hippocampus is especially sensitive to abstract word processing. Using fMRI during recognition, we found that the increased abstractness of words produced increased hippocampal activation regardless of memory outcome. Interestingly, word recollection produced hippocampal activation regardless of word content, while the parahippocampal cortex was sensitive to concreteness of word representations, regardless of memory outcome. We reason that the hippocampus has assumed a critical role in the representation of uncontextualized abstract word meaning, as its information-binding ability allows the retrieval of the semantic and visual associates that, when bound together, generate the abstract concept represented by word symbols. These insights have implications for research on word representation, memory, and hippocampal function, perhaps shedding light on how the human brain has adapted to encode and represent abstract concepts.
Collapse
Affiliation(s)
- Alex Kafkas
- School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, UK.
| | - Andrew R Mayes
- School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, UK
| | - Daniela Montaldi
- School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, UK
| |
Collapse
|
6
|
Bencze D, Marián M, Szőllősi Á, Pajkossy P, Nemecz Z, Keresztes A, Hermann P, Vidnyánszky Z, Racsmány M. Contribution of the lateral occipital and parahippocampal cortices to pattern separation of objects and contexts. Cereb Cortex 2024; 34:bhae295. [PMID: 39077920 DOI: 10.1093/cercor/bhae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/23/2024] [Indexed: 07/31/2024] Open
Abstract
Contextual features are integral to episodic memories; yet, we know little about context effects on pattern separation, a hippocampal function promoting orthogonalization of overlapping memory representations. Recent studies suggested that various extrahippocampal brain regions support pattern separation; however, the specific role of the parahippocampal cortex-a region involved in context representation-in pattern separation has not yet been studied. Here, we investigated the contribution of the parahippocampal cortex (specifically, the parahippocampal place area) to context reinstatement effects on mnemonic discrimination, using functional magnetic resonance imaging. During scanning, participants saw object images on unique context scenes, followed by a recognition task involving the repetitions of encoded objects or visually similar lures on either their original context or a lure context. Context reinstatement at retrieval improved item recognition but hindered mnemonic discrimination. Crucially, our region of interest analyses of the parahippocampal place area and an object-selective visual area, the lateral occipital cortex indicated that while during successful mnemonic decisions parahippocampal place area activity decreased for old contexts compared to lure contexts irrespective of object novelty, lateral occipital cortex activity differentiated between old and lure objects exclusively. These results imply that pattern separation of contextual and item-specific memory features may be differentially aided by scene and object-selective cortical areas.
Collapse
Affiliation(s)
- Dorottya Bencze
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Miklós Marián
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, University of Szeged, Egyetem utca 2., Szeged 6722, Hungary
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Dugonics tér 13., Szeged 6720, Hungary
| | - Péter Pajkossy
- Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Dugonics tér 13., Szeged 6720, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1., Budapest 1111, Hungary
| | - Zsuzsanna Nemecz
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46., Budapest 1064, Hungary
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca. 46., Budapest 1064, Hungary
| | - Attila Keresztes
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca. 46., Budapest 1064, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, University of Szeged, Egyetem utca 2., Szeged 6722, Hungary
- Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Dugonics tér 13., Szeged 6720, Hungary
| |
Collapse
|
7
|
Gellersen HM, McMaster J, Abdurahman A, Simons JS. Demands on perceptual and mnemonic fidelity are a key determinant of age-related cognitive decline throughout the lifespan. J Exp Psychol Gen 2024; 153:200-223. [PMID: 38236240 PMCID: PMC10795485 DOI: 10.1037/xge0001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 01/19/2024]
Abstract
Aging results in less detailed memories, reflecting reduced fidelity of remembered compared to real-world representations. We tested whether poorer representational fidelity across perception, short-term memory (STM), and long-term memory (LTM) are among the earliest signs of cognitive aging. Our paradigm probed target-lure object mnemonic discrimination and precision of object-location binding. Across the lifespan, cognitive deficits were observed in midlife when detailed stimulus representations were required for perceptual and short/long-term forced choice mnemonic discrimination. A continuous metric of object-location source memory combined with computational modeling demonstrated that errors in STM and LTM in middle-aged adults were largely driven by a loss of precision for retrieved memories, not necessarily by forgetting. On a trial-by-trial basis, fidelity of item and spatial information was more tightly bound in LTM compared to STM with this association being unaffected by age. Standard neuropsychological tests without demands on memory quality (digit span, verbal learning) were less sensitive to age effects than STM and LTM precision. Perceptual discrimination predicted mnemonic discrimination. Neuropsychological proxies for prefrontal executive functions correlated with STM, but not LTM fidelity. Conversely, neuropsychological indicators of hippocampal integrity correlated with mnemonic discrimination and precision of both STM and LTM, suggesting partially dissociable mechanisms of interindividual variability in STM and LTM fidelity. These findings suggest that reduced representational fidelity is a hallmark of cognitive aging across perception, STM, and LTM and can be observed from midlife onward. Continuous memory precision tasks may be promising for the early detection of subtle age-related cognitive decline. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Jon S Simons
- Department of Psychology, University of Cambridge
| |
Collapse
|
8
|
Read J, Delhaye E, Sougné J. Computational models can distinguish the contribution from different mechanisms to familiarity recognition. Hippocampus 2024; 34:36-50. [PMID: 37985213 DOI: 10.1002/hipo.23588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Familiarity is the strange feeling of knowing that something has already been seen in our past. Over the past decades, several attempts have been made to model familiarity using artificial neural networks. Recently, two learning algorithms successfully reproduced the functioning of the perirhinal cortex, a key structure involved during familiarity: Hebbian and anti-Hebbian learning. However, performance of these learning rules is very different from one to another thus raising the question of their complementarity. In this work, we designed two distinct computational models that combined Deep Learning and a Hebbian learning rule to reproduce familiarity on natural images, the Hebbian model and the anti-Hebbian model, respectively. We compared the performance of both models during different simulations to highlight the inner functioning of both learning rules. We showed that the anti-Hebbian model fits human behavioral data whereas the Hebbian model fails to fit the data under large training set sizes. Besides, we observed that only our Hebbian model is highly sensitive to homogeneity between images. Taken together, we interpreted these results considering the distinction between absolute and relative familiarity. With our framework, we proposed a novel way to distinguish the contribution of these familiarity mechanisms to the overall feeling of familiarity. By viewing them as complementary, our two models allow us to make new testable predictions that could be of interest to shed light on the familiarity phenomenon.
Collapse
Affiliation(s)
- John Read
- GIGA Centre de Recherche du Cyclotron In Vivo Imaging, University of Liège, Liège, Belgium
| | - Emma Delhaye
- GIGA Centre de Recherche du Cyclotron In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Jacques Sougné
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- UDI-FPLSE, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Tan NA, Carpio AMA, Heller HC, Pittaras EC. Behavioral and Neuronal Characterizations, across Ages, of the TgSwDI Mouse Model of Alzheimer's Disease. Genes (Basel) 2023; 15:47. [PMID: 38254938 PMCID: PMC10815655 DOI: 10.3390/genes15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that currently affects as many as 50 million people worldwide. It is neurochemically characterized by an aggregation of β-amyloid plaques and tau neurofibrillary tangles that result in neuronal dysfunction, cognitive decline, and a progressive loss of brain function. TgSwDI is a well-studied transgenic mouse model of AD, but no longitudinal studies have been performed to characterize cognitive deficits or β-amyloid plaque accumulation for use as a baseline reference in future research. Thus, we use behavioral tests (T-Maze, Novel Object Recognition (NOR), Novel Object Location (NOL)) to study long-term and working memory, and immunostaining to study β-amyloid plaque deposits, as well as brain size, in hippocampal, cerebellum, and cortical slices in TgSwDI and wild-type (WT) mice at 3, 5, 8, and 12 months old. The behavioral results show that TgSwDI mice exhibit deficits in their long-term spatial memory starting at 8 months old and in long-term recognition memory at all ages, but no deficits in their working memory. Immunohistochemistry showed an exponential increase in β-amyloid plaque in the hippocampus and cortex of TgSwDI mice over time, whereas there was no significant accumulation of plaque in WT mice at any age. Staining showed a smaller hippocampus and cerebellum starting at 8 months old for the TgSwDI compared to WT mice. Our data show how TgSwDI mice differ from WT mice in their baseline levels of cognitive function and β-amyloid plaque load throughout their lives.
Collapse
Affiliation(s)
| | | | | | - Elsa C. Pittaras
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (N.A.T.); (A.M.A.C.); (H.C.H.)
| |
Collapse
|
10
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst AL, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. Nat Commun 2023; 14:8505. [PMID: 38129375 PMCID: PMC10739909 DOI: 10.1038/s41467-023-44011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - A Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
| | - Paul E Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Renoult L, Debruille JB. From jamais to déjà vu: The respective roles of semantic and episodic memory in novelty monitoring and involuntary memory retrieval. Behav Brain Sci 2023; 46:e373. [PMID: 37961792 DOI: 10.1017/s0140525x23000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Barzykowski and Moulin's model proposes that déjà vu and involuntary autobiographical memories are the result of a continuously active memory system that tracks the novelty of situations. Déjà vu would only have episodic content and concern interpretation of prior experiences. We argue that these aspects of the model would gain to be clarified and explored further and we suggest possible directions.
Collapse
Affiliation(s)
- Louis Renoult
- School of Psychology, University of East Anglia, Norwich, UK https://research-portal.uea.ac.uk/en/persons/louis-renoult
| | - J Bruno Debruille
- Department of Neuroscience, Frank B. Common Pavilion, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada ://www.mcgill.ca/psychiatry/bruno-debruille
| |
Collapse
|
12
|
Lai YM, Chang YL. Age-related differences in associative memory recognition of Chinese characters and hippocampal subfield volumes. Biol Psychol 2023; 183:108657. [PMID: 37562576 DOI: 10.1016/j.biopsycho.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Associative memory is a type of hippocampal-dependent episodic memory that declines with age. Studies have examined the neural substrates underlying associative memory and considered the hippocampus holistically; however, the association between associative memory decline and volumetric change in hippocampal subfields in the context of normal aging remains uncharacterized. Leveraging the distinct linguistic features of Chinese characters to evaluate distinct types of false recognition, we investigated age-related differences in associative recognition and hippocampal subfield volumes, as well as the relationship between behavioral performance and hippocampal morphometry in 25 younger adults and 32 older adults. The results showed an age-related associative memory deficit, which was exacerbated after a 30-min delay. Older adults showed higher susceptibility to false alarm errors with recombined and orthographically related foils compared to phonologically or semantically related ones. Moreover, we detected a disproportionately age-related, time-dependent increase in orthographic errors. Older adults exhibited smaller volumes in all hippocampal subfields when compared to younger adults, with a less pronounced effect observed in the CA2/3 subfield. Group-collapsed correlational analyses revealed associations between specific hippocampal subfields and associative memory but not item memory. Additionally, multi-subfield regions had prominent associations with delayed recognition. These findings underscore the significance of multiple hippocampal subfields in various hippocampal-dependent processes including associative memory, recollection-based retrieval, and pattern separation ability. Moreover, our observations of age-related difficulty in differentiating perceptually similar foils from targets provide a unique opportunity for examining the essential contribution of individual hippocampal subfields to the pattern separation process in mnemonic recognition.
Collapse
Affiliation(s)
- Ya-Mei Lai
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Clinical Psychology Center, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst L, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558688. [PMID: 37790541 PMCID: PMC10542525 DOI: 10.1101/2023.09.20.558688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
| | - Paul E. Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J. Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
14
|
Borst JP, Aubin S, Stewart TC. A whole-task brain model of associative recognition that accounts for human behavior and neuroimaging data. PLoS Comput Biol 2023; 19:e1011427. [PMID: 37682986 PMCID: PMC10511112 DOI: 10.1371/journal.pcbi.1011427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/20/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Brain models typically focus either on low-level biological detail or on qualitative behavioral effects. In contrast, we present a biologically-plausible spiking-neuron model of associative learning and recognition that accounts for both human behavior and low-level brain activity across the whole task. Based on cognitive theories and insights from machine-learning analyses of M/EEG data, the model proceeds through five processing stages: stimulus encoding, familiarity judgement, associative retrieval, decision making, and motor response. The results matched human response times and source-localized MEG data in occipital, temporal, prefrontal, and precentral brain regions; as well as a classic fMRI effect in prefrontal cortex. This required two main conceptual advances: a basal-ganglia-thalamus action-selection system that relies on brief thalamic pulses to change the functional connectivity of the cortex, and a new unsupervised learning rule that causes very strong pattern separation in the hippocampus. The resulting model shows how low-level brain activity can result in goal-directed cognitive behavior in humans.
Collapse
Affiliation(s)
- Jelmer P. Borst
- Bernoulli Institute, University of Groningen; Groningen, The Netherlands
| | - Sean Aubin
- Centre for Theoretical Neuroscience, University of Waterloo; Waterloo, Ontario, Canada
| | - Terrence C. Stewart
- National Research Council Canada, University of Waterloo Collaboration Centre; Waterloo, Ontario, Canada
| |
Collapse
|
15
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Gellersen HM, Trelle AN, Farrar BG, Coughlan G, Korkki SM, Henson RN, Simons JS. Medial temporal lobe structure, mnemonic and perceptual discrimination in healthy older adults and those at risk for mild cognitive impairment. Neurobiol Aging 2023; 122:88-106. [PMID: 36516558 DOI: 10.1016/j.neurobiolaging.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Cognitive tests sensitive to the integrity of the medial temporal lobe (MTL), such as mnemonic discrimination of perceptually similar stimuli, may be useful early markers of risk for cognitive decline in older populations. Perceptual discrimination of stimuli with overlapping features also relies on MTL but remains relatively unexplored in this context. We assessed mnemonic discrimination in two test formats (Forced Choice, Yes/No) and perceptual discrimination of objects and scenes in 111 community-dwelling older adults at different risk status for cognitive impairment based on neuropsychological screening. We also investigated associations between performance and MTL sub-region volume and thickness. The at-risk group exhibited reduced entorhinal thickness and impaired perceptual and mnemonic discrimination. Perceptual discrimination impairment partially explained group differences in mnemonic discrimination and correlated with entorhinal thickness. Executive dysfunction accounted for Yes/No deficits in at-risk adults, demonstrating the importance of test format for the interpretation of memory decline. These results suggest that perceptual discrimination tasks may be useful tools for detecting incipient cognitive impairment related to reduced MTL integrity in nonclinical populations.
Collapse
Affiliation(s)
- Helena M Gellersen
- Department of Psychology, University of Cambridge, Cambridge, UK; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | | | - Gillian Coughlan
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Saana M Korkki
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Stark CEL, Noche JA, Ebersberger JR, Mayer L, Stark SM. Optimizing the mnemonic similarity task for efficient, widespread use. Front Behav Neurosci 2023; 17:1080366. [PMID: 36778130 PMCID: PMC9909607 DOI: 10.3389/fnbeh.2023.1080366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: The Mnemonic Similarity Task (MST) has become a popular test of memory and, in particular, of hippocampal function. It has been heavily used in research settings and is currently included as an alternate outcome measure on a number of clinical trials. However, as it typically requires ~15 min to administer and benefits substantially from an experienced test administrator to ensure the instructions are well-understood, its use in trials and in other settings is somewhat restricted. Several different variants of the MST are in common use that alter the task format (study-test vs. continuous) and the response prompt given to participants (old/similar/new vs. old/new). Methods: In eight online experiments, we sought to address three main goals: (1) To determine whether a robust version of the task could be created that could be conducted in half the traditional time; (2) To determine whether the test format or response prompt choice significantly impacted the MST's results; and (3) To determine how robust the MST is to repeat testing. In Experiments 1-7, participants received both the traditional and alternate forms of the MST to determine how well the alternate version captured the traditional task's performance. In Experiment 8, participants were given the MST four times over approximately 4 weeks. Results: In Experiments 1-7, we found that test format had no effect on the reliability of the MST, but that shifting to the two-choice response format significantly reduced its ability to reflect the traditional MST's score. We also found that the full running time could be cut it half or less without appreciable reduction in reliability. We confirmed the efficacy of this reduced task in older adults as well. Here, and in Experiment 8, we found that while there often are no effects of repeat-testing, small effects are possible, but appear limited to the initial testing session. Discussion: The optimized version of the task developed here (oMST) is freely available for web-based experiment delivery and provides an accurate estimate of the same memory ability as the classic MST in less than half the time.
Collapse
Affiliation(s)
- Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, United States
| | - Jessica A. Noche
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| | - Jarrett R. Ebersberger
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, United States
| | - Lizabeth Mayer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| | - Shauna M. Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
18
|
Ji-An L, Stefanini F, Benna MK, Fusi S, La Porta CA. Face familiarity detection with complex synapses. iScience 2022; 26:105856. [PMID: 36636347 PMCID: PMC9829748 DOI: 10.1016/j.isci.2022.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Synaptic plasticity is a complex phenomenon involving multiple biochemical processes that operate on different timescales. Complexity can greatly increase memory capacity when the variables characterizing the synaptic dynamics have limited precision, as shown in simple memory retrieval problems involving random patterns. Here we turn to a real-world problem, face familiarity detection, and we show that synaptic complexity can be harnessed to store in memory a large number of faces that can be recognized at a later time. The number of recognizable faces grows almost linearly with the number of synapses and quadratically with the number of neurons. Complex synapses outperform simple ones characterized by a single variable, even when the total number of dynamical variables is matched. Complex and simple synapses have distinct signatures that are testable in experiments. Our results indicate that a system with complex synapses can be used in real-world tasks such as face familiarity detection.
Collapse
Affiliation(s)
- Li Ji-An
- Zuckerman Institute, Columbia University, New York, NY 10027, USA,Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Fabio Stefanini
- Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Marcus K. Benna
- Zuckerman Institute, Columbia University, New York, NY 10027, USA,Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA,Corresponding author
| | - Stefano Fusi
- Zuckerman Institute, Columbia University, New York, NY 10027, USA,Corresponding author
| | | |
Collapse
|
19
|
Augereau K, Migues PV, Hardt O. Infusing zeta inhibitory peptide into the perirhinal cortex of rats abolishes long-term object recognition memory without affecting novel object location recognition. Front Behav Neurosci 2022; 16:1007748. [PMID: 36560931 PMCID: PMC9763881 DOI: 10.3389/fnbeh.2022.1007748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Infusing the amnesic agent zeta inhibitory peptide (ZIP) into the dorsal hippocampus disrupts established long-term object location recognition memory without affecting object identity recognition, which likely depends on the perirhinal cortex. Here, we tested whether infusing ZIP into the perirhinal cortex can abolish long-term memory supporting object identity recognition, leaving long-term object location recognition memory intact. We infused ZIP into the perirhinal cortex of rats either 1 day or 6 days after exposing them to two identical objects in an open field arena. One day after ZIP infusion, that is, 2 or 7 days after object exposure, we either assessed whether the animals recognized that now one of the two objects was novel or whether they recognized that one of the two familiar objects was at a new location. Our results show for both retention intervals, infusions of ZIP into the perirhinal cortex impaired novel object recognition but spared novel object location recognition. Rats that received a scrambled version of ZIP had no deficit in either test at both retention intervals and expressed stronger novel object recognition compared to rats infused with ZIP. These findings support the view that object recognition depends on dissociable memory representations distributed across different brain areas, with perirhinal cortex maintaining long-term memory for what objects had been encountered, and hippocampus supporting memory for where these objects had been placed.
Collapse
Affiliation(s)
| | | | - Oliver Hardt
- Department of Psychology, McGill University, Montréal, QC, Canada
| |
Collapse
|
20
|
Bartos M, Gumilar F, Baier CJ, Dominguez S, Bras C, Cancela LM, Minetti A, Gallegos CE. Rat developmental fluoride exposure affects retention memory, leads to a depressive-like behavior, and induces biochemical changes in offspring rat brains. Neurotoxicology 2022; 93:222-232. [DOI: 10.1016/j.neuro.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
21
|
Outram AR, Brown MW, Warburton EC, Barker GRI. A critical role for long-term potentiation mechanisms in the maintenance of object recognition memory in perirhinal cortex revealed by the infusion of zeta inhibitory pseudosubstrate. Front Behav Neurosci 2022; 16:970291. [PMID: 36263298 PMCID: PMC9574039 DOI: 10.3389/fnbeh.2022.970291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
Object recognition, the ability to discriminate between a novel and a familiar stimulus, is critically dependent upon the perirhinal cortex. Neural response reductions upon repetition of a stimulus, have been hypothesized to be the mechanism within perirhinal cortex that supports recognition memory function. Thus, investigations into the mechanisms of long-term depression (LTD) in perirhinal cortex has provided insight into the mechanism of object recognition memory formation, but the contribution of long-term potentiation (LTP) to object recognition memory formation has been less studied. Inhibition of atypical PKC activity by Zeta Inhibitory Pseudosubstrate (ZIP) impairs the maintenance of LTP but not LTD, thus here infusion of ZIP into the perirhinal cortex allowed us to investigate the contribution of LTP-like mechanisms to object recognition memory maintenance. Infusion of ZIP into the perirhinal cortex of rats 24 h after the sample phase impaired performance in an object recognition but not an object location task, in contrast infusion of ZIP into the hippocampus impaired performance in an object location but not an object recognition task. The impairment in object recognition by ZIP was prevented by administration of the peptide GluA23y, which blocks the endocytosis of GluA2 containing AMPA receptors. Finally, performance in a perceptual oddity task, which requires perirhinal cortex function, was not disrupted by ZIP. Together these results demonstrate the importance of LTP-like mechanisms to the maintenance of object recognition memory in the perirhinal cortex.
Collapse
|
22
|
Wawrzyniak A, Balawender K, Lalak R, Golan MP, Wróbel K, Boroń D, Staszkiewicz R, Grabarek BO. Distribution and Morphological Characteristics of Oligodendrocytes in Selected Areas of the Brain of Male and Female Red Kangaroos (Macropus rufus). Brain Sci 2022; 12:brainsci12081035. [PMID: 36009098 PMCID: PMC9405871 DOI: 10.3390/brainsci12081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
This study was carried out on six adult red kangaroos of both sexes. To determine the location of the oligodendrocytes (OLGs) of the hippocampus (Hip) and corpus callosum (CC), the method of impregnation of the neuroglia with silver salts was applied. The iron distribution in the OLGs was determined by the histochemical method. The Nissl method was used to determine the location of the brain structure and to analyze the number of OLGs. In the Hip, these cells are located one beside another, mainly in blood vessels and neurons; in the neocortex (NC), they are located in layers I–VI; and in the CC, they are arranged in characteristic rows and accompany both nerve fibers and blood vessels. The analysis of the results obtained by the chosen methods in the Hip, NC, and CC in males and females did not show statistically significant differences in the distribution and location of the red kangaroo OLGs. The involvement of these cells is a physiological process that proceeds in a similar manner throughout the life of individuals and actively influences the metabolism of neurons and myelin.
Collapse
Affiliation(s)
- Agata Wawrzyniak
- Department of Morphological Sciences, College of Medical Sciences, Institute of Medical Sciences, University of Rzeszow, 35-315 Rzeszow, Poland
| | - Krzysztof Balawender
- Department of Morphological Sciences, College of Medical Sciences, Institute of Medical Sciences, University of Rzeszow, 35-315 Rzeszow, Poland
- Correspondence:
| | - Roman Lalak
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-400 Lublin, Poland
| | - Maciej Przemysław Golan
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine in Warsaw, 04-141 Warsaw, Poland
| | - Konrad Wróbel
- Department of Morphological Sciences, College of Medical Sciences, Institute of Medical Sciences, University of Rzeszow, 35-315 Rzeszow, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| |
Collapse
|
23
|
Paraskevoudi N, SanMiguel I. Sensory suppression and increased neuromodulation during actions disrupt memory encoding of unpredictable self-initiated stimuli. Psychophysiology 2022; 60:e14156. [PMID: 35918912 PMCID: PMC10078310 DOI: 10.1111/psyp.14156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Actions modulate sensory processing by attenuating responses to self- compared to externally generated inputs, which is traditionally attributed to stimulus-specific motor predictions. Yet, suppression has been also found for stimuli merely coinciding with actions, pointing to unspecific processes that may be driven by neuromodulatory systems. Meanwhile, the differential processing for self-generated stimuli raises the possibility of producing effects also on memory for these stimuli; however, evidence remains mixed as to the direction of the effects. Here, we assessed the effects of actions on sensory processing and memory encoding of concomitant, but unpredictable sounds, using a combination of self-generation and memory recognition task concurrently with EEG and pupil recordings. At encoding, subjects performed button presses that half of the time generated a sound (motor-auditory; MA) and listened to passively presented sounds (auditory-only; A). At retrieval, two sounds were presented and participants had to respond which one was present before. We measured memory bias and memory performance by having sequences where either both or only one of the test sounds were presented at encoding, respectively. Results showed worse memory performance - but no differences in memory bias -, attenuated responses, and larger pupil diameter for MA compared to A sounds. Critically, the larger the sensory attenuation and pupil diameter, the worse the memory performance for MA sounds. Nevertheless, sensory attenuation did not correlate with pupil dilation. Collectively, our findings suggest that sensory attenuation and neuromodulatory processes coexist during actions, and both relate to disrupted memory for concurrent, albeit unpredictable sounds.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
24
|
Eom K, Lee HR. Measuring Pattern Separation in Hippocampus by in Situ Hybridization. Curr Protoc 2022; 2:e522. [PMID: 35980141 DOI: 10.1002/cpz1.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Distinguishing different contexts is thought to involve a form of pattern separation that minimizes overlap between neural ensembles representing similar experiences. Theoretical models suggest that the dentate gyrus (DG) segregates cortical input patterns before relaying its discriminated output patterns to the CA3 hippocampal field. This suggests that the evaluation of neural ensembles in DG and CA3 could be an important means to investigate the process of pattern separation. In the past, measurement of entorhinal cortex (EC), DG, and CA3 ensembles was largely dependent upon in vivo electrophysiological recording, which is technically difficult. This protocol provides a method to instead measure pattern separation by a molecular method that provides direct spatial resolution at the cellular level. © 2022 Wiley Periodicals LLC. Basic Protocol: Measuring pattern separation by molecular methods.
Collapse
Affiliation(s)
- Kisang Eom
- Department of Physiology, Keimyung University, School of Medicine, Daegu, Republic of Korea
| | - Hyoung-Ro Lee
- Cell Physiology Lab., Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Cue overlap supports preretrieval selection in episodic memory: ERP evidence. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 22:492-508. [PMID: 34966982 PMCID: PMC9090896 DOI: 10.3758/s13415-021-00971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/08/2022]
Abstract
AbstractPeople often want to recall events of a particular kind, but this selective remembering is not always possible. We contrasted two candidate mechanisms: the overlap between retrieval cues and stored memory traces, and the ease of recollection. In two preregistered experiments (Ns = 28), we used event-related potentials (ERPs) to quantify selection occurring before retrieval and the goal states — retrieval orientations — thought to achieve this selection. Participants viewed object pictures or heard object names, and one of these sources was designated as targets in each memory test. We manipulated cue overlap by probing memory with visual names (Experiment 1) or line drawings (Experiment 2). Results revealed that regardless of which source was targeted, the left parietal ERP effect indexing recollection was selective when test cues overlapped more with the targeted than non-targeted information, despite consistently better memory for pictures. ERPs for unstudied items also were more positive-going when cue overlap was high, suggesting that engagement of retrieval orientations reflected availability of external cues matching the targeted source. The data support the view that selection can act before recollection if there is sufficient overlap between retrieval cues and targeted versus competing memory traces.
Collapse
|
26
|
Moore KN, Lampinen JM, Nesmith BL, Bridges AJ, Gallo DA. The effect of feedback and recollection rejection instructions on the development of memory monitoring and accuracy. J Exp Child Psychol 2022; 221:105434. [PMID: 35489136 DOI: 10.1016/j.jecp.2022.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Recollection rejection (a form of memory monitoring) involves rejecting false details on the basis of remembering true details (recall to reject), thereby increasing memory accuracy. This study examined how recollection rejection instructions and feedback affect memory accuracy and false recognition in 5-year-olds, 6- and 7-year-olds, 8- and 9-year-olds, and adults. Participants (N = 336) completed three study-test phases. Instructions and item-level feedback were manipulated during the first two phases, with the third phase including a test containing no instructions or feedback to evaluate learning effects. As predicted, in the younger children, as compared with the older children and adults, we found reduced accuracy scores (hits to studied items minus false alarms to related lures), reduced recollection rejection to related lures, and increased false recognition scores. We also found that, in the third phase, prior feedback reduced false recognition scores, potentially by improving monitoring, and typical developmental differences in false recognition were eliminated. However, there were mixed findings of instructions and feedback, and in some conditions these interventions harmed memory. These findings provide initial evidence that combining instructions and feedback with repeated task practice may improve monitoring effectiveness, but additional work is needed on how these factors improve and sometimes harm performance in young children.
Collapse
Affiliation(s)
- Kara N Moore
- Department of Psychology, Oklahoma State University, Stillwater, OK 74074, USA.
| | | | - Blake L Nesmith
- Department of Psychology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ana J Bridges
- Department of Psychology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David A Gallo
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Granger SJ, Adams JG, Kark SM, Sathishkumar MT, Chen IY, Benca RM, McMillan L, Janecek JT, Yassa MA. Latent anxiety in clinical depression is associated with worse recognition of emotional stimuli. J Affect Disord 2022; 301:368-377. [PMID: 34999127 DOI: 10.1016/j.jad.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Major Depressive Disorder, characterized by cognitive affective biases, is a considerable public health challenge. Past work has shown that higher depressive symptoms are associated with augmented memory of negative stimuli. In contrast, anxiety symptoms have been associated with overgeneralization of emotional memories. Given the high comorbidity of depression and anxiety, it is critical to understand how cognitive affective biases are differentially associated with clinical symptoms. METHOD We used continuous measures of depression (Beck Depression Inventory [BDI-II]) and anxiety (Beck Anxiety Inventory [BAI]) to evaluate an adult sample (N = 79; 18-41 years old, 58 female). Emotional memory discrimination and recognition memory were tested using an emotional discrimination task. We applied exploratory factor analysis to questions from the BAI and BDI-II to uncover latent constructs consisting of negative affect, anhedonia, somatic anxiety, and cognitive anxiety. RESULTS We report evidence that anxious symptoms were associated with impaired recognition of negative items after accounting for age and sex. Our exploratory factor analysis revealed that impaired negative item recognition is largely associated with somatic and cognitive anxiety factors. LIMITATIONS Interpretations in a mixed pathology sample, especially given collinearity among factors, may be difficult. CONCLUSIONS We provide evidence that somatic and cognitive anxiety are related to impaired recognition memory for negative stimuli. Future clinical investigations should uncover the neurobiological basis supporting the link between recognition of negative stimuli and somatic/cognitive symptoms of anxiety.
Collapse
Affiliation(s)
- Steven J Granger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Joren G Adams
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Sarah M Kark
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Mithra T Sathishkumar
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Ivy Y Chen
- Department of Psychiatry and Human Behavior, University of California, 1418 Biological Sciences 3, Irvine, CA 92697, USA
| | - Ruth M Benca
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA; Department of Psychiatry and Human Behavior, University of California, 1418 Biological Sciences 3, Irvine, CA 92697, USA
| | - Liv McMillan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - John T Janecek
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA; Department of Psychiatry and Human Behavior, University of California, 1418 Biological Sciences 3, Irvine, CA 92697, USA.
| |
Collapse
|
28
|
Eom K, Lee HR, Hyun JH, An H, Lee YS, Ho WK, Lee SH. Gradual decorrelation of CA3 ensembles associated with contextual discrimination learning is impaired by Kv1.2 insufficiency. Hippocampus 2022; 32:193-216. [PMID: 34964210 DOI: 10.1002/hipo.23400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022]
Abstract
The associative network of hippocampal CA3 is thought to contribute to rapid formation of contextual memory from one-trial learning, but the network mechanisms underlying decorrelation of neuronal ensembles in CA3 is largely unknown. Kv1.2 expressions in rodent CA3 pyramidal cells (CA3-PCs) are polarized to distal apical dendrites, and its downregulation specifically enhances dendritic responses to perforant pathway (PP) synaptic inputs. We found that haploinsufficiency of Kv1.2 (Kcna2+/-) in CA3-PCs, but not Kv1.1 (Kcna1+/-), lowers the threshold for long-term potentiation (LTP) at PP-CA3 synapses, and that the Kcna2+/- mice are normal in discrimination of distinct contexts but impaired in discrimination of similar but slightly distinct contexts. We further examined the neuronal ensembles in CA3 and dentate gyrus (DG), which represent the two similar contexts using in situ hybridization of immediate early genes, Homer1a and Arc. The size and overlap of CA3 ensembles activated by the first visit to the similar contexts were not different between wild type and Kcna2+/- mice, but these ensemble parameters diverged over training days between genotypes, suggesting that abnormal plastic changes at PP-CA3 synapses of Kcna2+/- mice is responsible for the impaired pattern separation. Unlike CA3, DG ensembles were not different between two genotype mice. The DG ensembles were already separated on the first day, and their overlap did not further evolve. Eventually, the Kcna2+/- mice exhibited larger CA3 ensemble size and overlap upon retrieval of two contexts, compared to wild type or Kcna1+/- mice. These results suggest that sparse LTP at PP-CA3 synapse probably supervised by mossy fiber inputs is essential for gradual decorrelation of CA3 ensembles.
Collapse
Affiliation(s)
- Kisang Eom
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoung Ro Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Hyun
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunhoe An
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Yong-Seok Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Kyung Ho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
29
|
Lu Q, Hasson U, Norman KA. A neural network model of when to retrieve and encode episodic memories. eLife 2022; 11:e74445. [PMID: 35142289 PMCID: PMC9000961 DOI: 10.7554/elife.74445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Recent human behavioral and neuroimaging results suggest that people are selective in when they encode and retrieve episodic memories. To explain these findings, we trained a memory-augmented neural network to use its episodic memory to support prediction of upcoming states in an environment where past situations sometimes reoccur. We found that the network learned to retrieve selectively as a function of several factors, including its uncertainty about the upcoming state. Additionally, we found that selectively encoding episodic memories at the end of an event (but not mid-event) led to better subsequent prediction performance. In all of these cases, the benefits of selective retrieval and encoding can be explained in terms of reducing the risk of retrieving irrelevant memories. Overall, these modeling results provide a resource-rational account of why episodic retrieval and encoding should be selective and lead to several testable predictions.
Collapse
Affiliation(s)
- Qihong Lu
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Uri Hasson
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Kenneth A Norman
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
30
|
Korkki SM, Richter FR, Simons JS. Hippocampal-Cortical Encoding Activity Predicts the Precision of Episodic Memory. J Cogn Neurosci 2021; 33:2328-2341. [PMID: 34407192 DOI: 10.1162/jocn_a_01770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Our recollections of past experiences can vary in both the number of specific event details accessible from memory and the precision with which such details are reconstructed. Prior neuroimaging evidence suggests the success and precision of episodic recollection to rely on distinct neural substrates during memory retrieval. In contrast, the specific encoding mechanisms supporting later memory precision, and whether they differ from those underlying successful memory formation in general, are currently unknown. Here, we combined continuous measures of memory retrieval with model-based analyses of behavioral and neuroimaging data to tease apart the encoding correlates of successful memory formation and mnemonic precision. In the MRI scanner, participants encoded object-scene displays and later reconstructed features of studied objects using a continuous scale. We observed overlapping encoding activity in inferior prefrontal and posterior perceptual regions to predict both which object features were later remembered versus forgotten and the precision with which they were reconstructed from memory. In contrast, hippocampal encoding activity significantly predicted the precision, but not overall success, of subsequent memory retrieval. The current results align with theoretical accounts proposing the hippocampus to be critical for representation of high-fidelity associative information and suggest a contribution of shared cortical encoding mechanisms to the formation of both accessible and precise memory representations.
Collapse
|
31
|
Kazanovich Y, Borisyuk R. A computational model of familiarity detection for natural pictures, abstract images, and random patterns: Combination of deep learning and anti-Hebbian training. Neural Netw 2021; 143:628-637. [PMID: 34343776 DOI: 10.1016/j.neunet.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022]
Abstract
We present a neural network model for familiarity recognition of different types of images in the perirhinal cortex (the FaRe model). The model is designed as a two-stage system. At the first stage, the parameters of an image are extracted by a pretrained deep learning convolutional neural network. At the second stage, a two-layer feed forward neural network with anti-Hebbian learning is used to make the decision about the familiarity of the image. FaRe model simulations demonstrate high capacity of familiarity recognition memory for natural pictures and low capacity for both abstract images and random patterns. These findings are in agreement with psychological experiments.
Collapse
Affiliation(s)
- Yakov Kazanovich
- Institute of Mathematical Problems of Biology, the Branch of M.V. Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| | - Roman Borisyuk
- Institute of Mathematical Problems of Biology, the Branch of M.V. Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia; University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter, UK.
| |
Collapse
|
32
|
McMakin DL, Kimbler A, Tustison NJ, Pettit JW, Mattfeld AT. Negative Overgeneralization is Associated with Anxiety and Mechanisms of Pattern Completion in Peripubertal Youth. Soc Cogn Affect Neurosci 2021; 17:231-240. [PMID: 34270763 PMCID: PMC8847909 DOI: 10.1093/scan/nsab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/01/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
This study examines neural mechanisms of negative overgeneralization, the increased likelihood of generalizing negative information, in peri-puberty. Theories suggest that weak pattern separation (overlapping representations are made distinct, indexed by DG/CA3 hippocampal subfield activation) underlies negative overgeneralization. We alternatively propose that neuro-maturational changes that favor pattern completion (cues reinstate stored representations, indexed by CA1 activation) are modulated by circuitry involved in emotional responding (amygdala, medial prefrontal cortices [mPFC]) to drive negative overgeneralization. Youth (N=34, 9-14 years) recruited from community and clinic settings participated in an emotional mnemonic similarity task while undergoing MRI. At Study, participants indicated the valence of images; at Test, participants made recognition memory judgments. Critical lure stimuli, that were similar to images at Study, were presented at Test, and errors ("false alarms") to negative relative to neutral stimuli reflected negative overgeneralization. Negative overgeneralization was related to greater and more similar patterns of activation in CA1 and both dorsal and ventral mPFC for negative relative to neutral stimuli. At Study, amygdala exhibited greater functional coupling with CA1 and dorsal mPFC during negative items that were later generalized. Negative overgeneralization is rooted in amygdala and mPFC modulation at encoding and pattern completion at retrieval.
Collapse
Affiliation(s)
- Dana L McMakin
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199 USA.,Clinical Science Program, Department of Psychology, Center for Children and Families, Florida International University, Miami, FL 33199 USA.,Center for Children and Families, Florida International University, Miami, FL 33199 USA
| | - Adam Kimbler
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199 USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903 USA
| | - Jeremy W Pettit
- Clinical Science Program, Department of Psychology, Center for Children and Families, Florida International University, Miami, FL 33199 USA.,Center for Children and Families, Florida International University, Miami, FL 33199 USA
| | - Aaron T Mattfeld
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199 USA.,Center for Children and Families, Florida International University, Miami, FL 33199 USA
| |
Collapse
|
33
|
Pixel-Wise Classification in Hippocampus Histological Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6663977. [PMID: 34093725 PMCID: PMC8163535 DOI: 10.1155/2021/6663977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
This paper presents a method for pixel-wise classification applied for the first time on hippocampus histological images. The goal is achieved by representing pixels in a 14-D vector, composed of grey-level information and moment invariants. Then, several popular machine learning models are used to categorize them, and multiple metrics are computed to evaluate the performance of the different models. The multilayer perceptron, random forest, support vector machine, and radial basis function networks were compared, achieving the multilayer perceptron model the highest result on accuracy metric, AUC, and F 1 score with highly satisfactory results for substituting a manual classification task, due to an expert opinion in the hippocampus histological images.
Collapse
|
34
|
Abstract
AbstractTo improve the understanding of cognitive processing stages, we combined two prominent traditions in cognitive science: evidence accumulation models and stage discovery methods. While evidence accumulation models have been applied to a wide variety of tasks, they are limited to tasks in which decision-making effects can be attributed to a single processing stage. Here, we propose a new method that first uses machine learning to discover processing stages in EEG data and then applies evidence accumulation models to characterize the duration effects in the identified stages. To evaluate this method, we applied it to a previously published associative recognition task (Application 1) and a previously published random dot motion task with a speed-accuracy trade-off manipulation (Application 2). In both applications, the evidence accumulation models accounted better for the data when we first applied the stage-discovery method, and the resulting parameter estimates where generally in line with psychological theories. In addition, in Application 1 the results shed new light on target-foil effects in associative recognition, while in Application 2 the stage discovery method identified an additional stage in the accuracy-focused condition — challenging standard evidence accumulation accounts. We conclude that the new framework provides a powerful new tool to investigate processing stages.
Collapse
|
35
|
Gellersen HM, Trelle AN, Henson RN, Simons JS. Executive function and high ambiguity perceptual discrimination contribute to individual differences in mnemonic discrimination in older adults. Cognition 2021; 209:104556. [PMID: 33450438 PMCID: PMC8223497 DOI: 10.1016/j.cognition.2020.104556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022]
Abstract
Mnemonic discrimination deficits, or impaired ability to discriminate between similar events in memory, is a hallmark of cognitive aging, characterised by a stark age-related increase in false recognition. While individual differences in mnemonic discrimination have gained attention due to potential relevance for early detection of Alzheimer's disease, our understanding of the component processes that contribute to variability in task performance across older adults remains limited. The present investigation explores the roles of representational quality, indexed by perceptual discrimination of objects and scenes with overlapping features, and strategic retrieval ability, indexed by standardised tests of executive function, to mnemonic discrimination in a large cohort of older adults (N=124). We took an individual differences approach and characterised the contributions of these factors to performance under Forced Choice (FC) and Yes/No (YN) recognition memory formats, which place different demands on strategic retrieval. Performance in both test formats declined with age. Accounting for age, individual differences in FC memory performance were best explained by perceptual discrimination score, whereas YN memory performance was best explained by executive functions. A linear mixed model and dominance analyses confirmed the relatively greater importance of perceptual discrimination over executive functioning for FC performance, while the opposite was true for YN. These findings highlight parallels between perceptual and mnemonic discrimination in aging, the importance of considering demands on executive functions in the context of mnemonic discrimination, and the relevance of test format for modulating the impact of these factors on performance in older adults.
Collapse
Affiliation(s)
| | - Alexandra N Trelle
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychology, Stanford University, Palo Alto, USA
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, and Department of Psychiatry, University of Cambridge, UK
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Irrelevant background context decreases mnemonic discrimination and increases false memory. Sci Rep 2021; 11:6204. [PMID: 33737589 PMCID: PMC7973510 DOI: 10.1038/s41598-021-85627-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 11/08/2022] Open
Abstract
One of the greatest commonplaces in memory research is that context improves recall and enhances or leaves recognition intact. Here we present results which draw attention to the fact that the reappearance of irrelevant and unattended background contexts of encoding significantly impairs memory discrimination functions. This manuscript presents the results of two experiments in which participants made indoor/outdoor judgements for a large number of object images presented together with individual, irrelevant and presumably unattended background scenes. On a subsequent unexpected recognition test participants saw the incidentally encoded target objects, visually similar lures or new foil objects on the same or new background scenes. Our results showed that although the reappearance of the background scene raised the hit rate for target objects, it decreased mnemonic discrimination, a behavioral score for pattern separation, a hippocampal function that is affected in early dementia. Furthermore, the presence of the encoded background scene at the recognition test increased the false recognition of lure objects, even when participants were explicitly instructed to neglect the context scene. Altogether these results gave evidence that if context increases recognition hits for target memories, it does so at the cost of increasing false recognition and diminished discriminability for similar information.
Collapse
|
37
|
Tracy JI, Chaudhary K, Modi S, Crow A, Kumar A, Weinstein D, Sperling MR. Computational support, not primacy, distinguishes compensatory memory reorganization in epilepsy. Brain Commun 2021; 3:fcab025. [PMID: 34222865 PMCID: PMC8244645 DOI: 10.1093/braincomms/fcab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy is associated with impairment in episodic memory. A substantial subgroup, however, is able to maintain adequate memory despite temporal lobe pathology. Missing from prior work in cognitive reorganization is a direct comparison of temporal lobe epilepsy patients with intact status with those who are memory impaired. Little is known about the regional activations, functional connectivities and/or network reconfigurations that implement changes in primary computations or support functions that drive adaptive plasticity and compensated memory. We utilized task functional MRI on 54 unilateral temporal lobe epilepsy patients and 24 matched healthy controls during the performance of a paired-associate memory task to address three questions: (i) which regions implement paired-associate memory in temporal lobe epilepsy, and do they vary as a function of good versus poor performance, (ii) is there unique functional connectivity present during memory encoding that accounts for intact status by preservation of primary memory computations or the supportive computations that allow for intact memory responses and (iii) what features during memory encoding are most distinctive: is it the magnitude and location of regional activations, or the presence of enhanced functional connections to key structures such as the hippocampus? The study revealed non-dominant hemisphere regions (right posterior temporal regions) involving both increased regional activity and increased modulatory communication with the hippocampi as most important to intact memory in left temporal lobe epilepsy compared to impaired status. The profile involved areas that are neither contralateral homologues to left hemisphere memory areas, nor regions traditionally considered computationally primary for episodic memory. None of these areas of increased activation or functional connectivity were associated with advantaged memory in healthy controls. Our emphasis on different performance levels yielded insight into two forms of cognitive reorganization: computational primacy, where left temporal lobe epilepsy showed little change relative to healthy controls, and computational support where intact left temporal lobe epilepsy patients showed adaptive abnormalities. The analyses isolated the unique regional activations and mediating functional connectivity that implements truly compensatory reorganization in left temporal lobe epilepsy. The results provided a new perspective on memory deficits by making clear that they arise not just from the knockout of a functional hub, but from the failure to instantiate a complex set of reorganization responses. Such responses provided the computational support to ensure successful memory. We demonstrated that by keeping track of performance levels, we can increase understanding of adaptive brain responses and neuroplasticity in epilepsy.
Collapse
Affiliation(s)
- Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA,Correspondence to: Joseph I. Tracy, Department of Neurology, Thomas Jefferson University, 901 Walnut Street, Health Sciences Building, Suite 447, Philadelphia, PA 19107, USA. E-mail:
| | - Kapil Chaudhary
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shilpi Modi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Crow
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashith Kumar
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Weinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
38
|
Trelle AN, Carr VA, Wilson EN, Swarovski MS, Hunt MP, Toueg TN, Tran TT, Channappa D, Corso NK, Thieu MK, Jayakumar M, Nadiadwala A, Guo W, Tanner NJ, Bernstein JD, Litovsky CP, Guerin SA, Khazenzon AM, Harrison MB, Rutt BK, Deutsch GK, Chin FT, Davidzon GA, Hall JN, Sha SJ, Fredericks CA, Andreasson KI, Kerchner GA, Wagner AD, Mormino EC. Association of CSF Biomarkers With Hippocampal-Dependent Memory in Preclinical Alzheimer Disease. Neurology 2021; 96:e1470-e1481. [PMID: 33408146 DOI: 10.1212/wnl.0000000000011477] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine whether memory tasks with demonstrated sensitivity to hippocampal function can detect variance related to preclinical Alzheimer disease (AD) biomarkers, we examined associations between performance in 3 memory tasks and CSF β-amyloid (Aβ)42/Aβ40 and phosopho-tau181 (p-tau181) in cognitively unimpaired older adults (CU). METHODS CU enrolled in the Stanford Aging and Memory Study (n = 153; age 68.78 ± 5.81 years; 94 female) completed a lumbar puncture and memory assessments. CSF Aβ42, Aβ40, and p-tau181 were measured with the automated Lumipulse G system in a single-batch analysis. Episodic memory was assayed using a standardized delayed recall composite, paired associate (word-picture) cued recall, and a mnemonic discrimination task that involves discrimination between studied "target" objects, novel "foil" objects, and perceptually similar "lure" objects. Analyses examined cross-sectional relationships among memory performance, age, and CSF measures, controlling for sex and education. RESULTS Age and lower Aβ42/Aβ40 were independently associated with elevated p-tau181. Age, Aβ42/Aβ40, and p-tau181 were each associated with (1) poorer associative memory and (2) diminished improvement in mnemonic discrimination performance across levels of decreased task difficulty (i.e., target-lure similarity). P-tau mediated the effect of Aβ42/Aβ40 on memory. Relationships between CSF proteins and delayed recall were similar but nonsignificant. CSF Aβ42 was not significantly associated with p-tau181 or memory. CONCLUSIONS Tests designed to tax hippocampal function are sensitive to subtle individual differences in memory among CU and correlate with early AD-associated biomarker changes in CSF. These tests may offer utility for identifying CU with preclinical AD pathology.
Collapse
Affiliation(s)
- Alexandra N Trelle
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA.
| | - Valerie A Carr
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Edward N Wilson
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Michelle S Swarovski
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Madison P Hunt
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Tyler N Toueg
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Tammy T Tran
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Divya Channappa
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Nicole K Corso
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Monica K Thieu
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Manasi Jayakumar
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Ayesha Nadiadwala
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Wanjia Guo
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Natalie J Tanner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Jeffrey D Bernstein
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Celia P Litovsky
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Scott A Guerin
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Anna M Khazenzon
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Marc B Harrison
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Brian K Rutt
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Gayle K Deutsch
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Frederick T Chin
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Guido A Davidzon
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Jacob N Hall
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Sharon J Sha
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Carolyn A Fredericks
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Katrin I Andreasson
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Geoffrey A Kerchner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Anthony D Wagner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Elizabeth C Mormino
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| |
Collapse
|
39
|
Pishdadian S, Hoang NV, Baker S, Moscovitch M, Rosenbaum RS. Not only memory: Investigating the sensitivity and specificity of the Mnemonic Similarity Task in older adults. Neuropsychologia 2020; 149:107670. [PMID: 33157087 DOI: 10.1016/j.neuropsychologia.2020.107670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/13/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Mnemonic discrimination, the process of distinguishing highly similar items in memory, relies on the dentate gyrus (DG) subregion of the hippocampus. The Mnemonic Similarity Task (MST) has been shown to be a sensitive behavioral measure of mnemonic discrimination that is in wide use (Liu et al., 2016). In this study, we evaluate the sensitivity and specificity of the MST in community-dwelling older adults who were administered the Montreal Cognitive Assessment (MoCA), a well-established screening measure for cognitive impairment. Using regression analyses, we tested a sample of 94 participants to determine whether MoCA overall score, MoCA score without the delayed recall subscale score, MoCA delayed recall subscale score, and MoCA status (MoCA score below or above the cut-off of 26/30) predicted MST lure discrimination performance. Regression models showed that all measures - except the MoCA delayed recall score - were significant predictors of MST lure discrimination performance. Our results support the sensitivity of the MST in detecting general cognitive decline but call into question the specificity of the MST with respect to memory and hippocampal function in a healthy older adult population.
Collapse
Affiliation(s)
- S Pishdadian
- Department of Psychology and Centre for Vision Research, 4700 Keele Street, York University, Toronto, Ontario, M3J 1P3, Canada; Rotman Research Institute, 3560 Bathurst St., Toronto, Ontario, M6A 2E1, Canada.
| | - N V Hoang
- Rotman Research Institute, 3560 Bathurst St., Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, 100 St. George St, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| | - S Baker
- Department of Psychology and Centre for Vision Research, 4700 Keele Street, York University, Toronto, Ontario, M3J 1P3, Canada; Rotman Research Institute, 3560 Bathurst St., Toronto, Ontario, M6A 2E1, Canada
| | - M Moscovitch
- Rotman Research Institute, 3560 Bathurst St., Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, 100 St. George St, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| | - R S Rosenbaum
- Department of Psychology and Centre for Vision Research, 4700 Keele Street, York University, Toronto, Ontario, M3J 1P3, Canada; Rotman Research Institute, 3560 Bathurst St., Toronto, Ontario, M6A 2E1, Canada.
| |
Collapse
|
40
|
Baxi M, Di Biase MA, Lyall AE, Cetin-Karayumak S, Seitz J, Ning L, Makris N, Rosene D, Kubicki M, Rathi Y. Quantifying Genetic and Environmental Influence on Gray Matter Microstructure Using Diffusion MRI. Cereb Cortex 2020; 30:6191-6205. [PMID: 32676671 DOI: 10.1093/cercor/bhaa174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Early neuroimaging work in twin studies focused on studying genetic and environmental influence on gray matter macrostructure. However, it is also important to understand how gray matter microstructure is influenced by genes and environment to facilitate future investigations of their influence in mental disorders. Advanced diffusion MRI (dMRI) measures allow more accurate assessment of gray matter microstructure compared with conventional diffusion tensor measures. To understand genetic and environmental influence on gray matter, we used diffusion and structural MRI data from a large twin and sibling study (N = 840) and computed advanced dMRI measures including return to origin probability (RTOP), which is heavily weighted toward intracellular and intra-axonal restricted spaces, and mean squared displacement (MSD), more heavily weighted to diffusion in extracellular space and large cell bodies in gray matter. We show that while macrostructural features like brain volume are mainly genetically influenced, RTOP and MSD can together tap into both genetic and environmental influence on microstructure.
Collapse
Affiliation(s)
- Madhura Baxi
- Graduate Program of Neuroscience, Boston University, Boston, MA 02118, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Maria A Di Biase
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Lipeng Ning
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Douglas Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA.,Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Zeithamova D, Bowman CR. Generalization and the hippocampus: More than one story? Neurobiol Learn Mem 2020; 175:107317. [PMID: 33007461 PMCID: PMC7655622 DOI: 10.1016/j.nlm.2020.107317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022]
Abstract
Memory-based cognition depends on both the ability to remember specific details of individual experiences and the ability to combine information across experiences to generalize and derive new knowledge. A hippocampal role in rapid encoding of specific events is long established. More recent research also demonstrates hippocampal contributions to generalization, but their nature is still debated. The current review provides an overview of hippocampal-based generalization in two lines of research-episodic inference and categorization-and discusses evidence for four candidate mechanisms and representational schemes that may underpin such generalization. We highlight evidence showing that the hippocampus contributes specific memories to generalization decisions, but also forms generalized representations that integrate information across experiences. Multiple views are currently plausible of how such generalized representations form and relate to specific memories. Future research that uses behavioral and neural indices of both generalization and specificity may help resolve between the candidate generalization mechanisms, with the possibility that more than one view of hippocampal-based generalization may be valid. Importantly, all views share the emphasis on the broader role of the hippocampus in cognition that goes beyond remembering the past.
Collapse
Affiliation(s)
| | - Caitlin R Bowman
- University of Oregon, United States; University of Wisconsin-Milwaukee, United States
| |
Collapse
|
42
|
Mini Pinyin: A modified miniature language for studying language learning and incremental sentence processing. Behav Res Methods 2020; 53:1218-1239. [PMID: 33021699 DOI: 10.3758/s13428-020-01473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Artificial grammar learning (AGL) paradigms are used extensively to characterise (neuro)cognitive bases of language learning. However, despite their effectiveness in characterising the capacity to learn complex structured sequences, AGL paradigms lack ecological validity and typically do not account for cross-linguistic differences in sentence comprehension. Here, we describe a new modified miniature language paradigm - Mini Pinyin - that mimics natural language as it is based on an existing language (Mandarin Chinese) and includes both structure and meaning. Mini Pinyin contains a number of cross-linguistic elements, including varying word orders and classifier-noun rules. To evaluate the effectiveness of Mini Pinyin, 76 (mean age = 24.9; 26 female) monolingual native English speakers completed a learning phase followed by a sentence acceptability judgement task. Generalised mixed effects modelling revealed that participants attained a moderate degree of accuracy on the judgement task, with performance scores ranging from 25% to 100% accuracy depending on the word order of the sentence. Further, sentences compatible with the canonical English word order were learned more efficiently than non-canonical word orders. We controlled for inter-individual differences in statistical learning ability, which accounted for ~20% of the variance in performance on the sentence judgement task. We provide stimuli and statistical analysis scripts as open-source resources and discuss how future research can utilise this paradigm to study the neurobiological basis of language learning. Mini Pinyin affords a convenient tool for improving the future of language learning research by building on the parameters of traditional AGL or existing miniature language paradigms.
Collapse
|
43
|
Davidson PSR, Vidjen P, Trincao-Batra S, Collin CA. Older Adults' Lure Discrimination Difficulties on the Mnemonic Similarity Task Are Significantly Correlated With Their Visual Perception. J Gerontol B Psychol Sci Soc Sci 2020; 74:1298-1307. [PMID: 30407604 DOI: 10.1093/geronb/gby130] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Pattern separation in memory encoding entails creating and storing distinct, detailed representations to facilitate storage and retrieval. The Mnemonic Similarity Task (MST; Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. [2013]. A task to assess behavioral pattern separation [BPS] in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51, 2442-2449) has been used to argue that normal aging leads to pattern separation decline. We sought to replicate previous reports of age-related difficulty on this behavioral pattern separation estimate and to examine its neuropsychological correlates, specifically long-term memory function, executive function, and visual perception. METHODS We administered an object version of the MST to 31 young adults and 38 older adults. It involved a single-probe recognition memory test in which some of the originally studied objects had been replaced with perceptually similar lures, and participants had to identify each as old, a lure, or new. RESULTS Despite their corrected item recognition scores being superior to those of the young adults, the older adults had significantly greater difficulty than the young in discriminating the similar-looking lures from the original items. Interestingly, this lure discrimination difficulty was significantly correlated with visual perception rather than with long-term memory or executive function. DISCUSSION These results suggest that although adult age differences on the MST are reliable, care should be taken to separate perceptual from memory discrimination difficulties as the reason.
Collapse
Affiliation(s)
- Patrick S R Davidson
- School of Psychology, University of Ottawa, Ontario, Canada.,Bruyère Research Institute, University of Ottawa, Ontario, Canada.,Canadian Partnership for Stroke Recovery, University of Ottawa, Ontario, Canada
| | - Petar Vidjen
- School of Psychology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
44
|
Wang N, White LE, Qi Y, Cofer G, Johnson GA. Cytoarchitecture of the mouse brain by high resolution diffusion magnetic resonance imaging. Neuroimage 2020; 216:116876. [PMID: 32344062 DOI: 10.1016/j.neuroimage.2020.116876] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
MRI has been widely used to probe the neuroanatomy of the mouse brain, directly correlating MRI findings to histology is still challenging due to the limited spatial resolution and various image contrasts derived from water relaxation or diffusion properties. Magnetic resonance histology has the potential to become an indispensable research tool to mitigate such challenges. In the present study, we acquired high spatial resolution MRI datasets, including diffusion MRI (dMRI) at 25 μm isotropic resolution and quantitative susceptibility mapping (QSM) at 21.5 μm isotropic resolution to validate with conventional mouse brain histology. Diffusion weighted images (DWIs) show better delineation of cortical layers and glomeruli in the olfactory bulb than fractional anisotropy (FA) maps. However, among all the image contrasts, including quantitative susceptibility mapping (QSM), T1/T2∗ images and DTI metrics, FA maps highlight unique laminar architecture in sub-regions of the hippocampus, including the strata of the dentate gyrus and CA fields of the hippocampus. The mean diffusivity (MD) and axial diffusivity (AD) yield higher correlation with DAPI (0.62 and 0.71) and NeuN (0.78 and 0.74) than with NF-160 (-0.34 and -0.49). The correlations between FA and DAPI, NeuN, and NF-160 are 0.31, -0.01, and -0.49, respectively. Our findings demonstrate that MRI at microscopic resolution deliver a three-dimensional, non-invasive and non-destructive platform for characterization of fine structural detail in both gray matter and white matter of the mouse brain.
Collapse
Affiliation(s)
- Nian Wang
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Leonard E White
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gary Cofer
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Li H, Xue X, Li Z, Pan B, Hao Y, Niu Q. Aluminium-induced synaptic plasticity injury via the PHF8-H3K9me2-BDNF signalling pathway. CHEMOSPHERE 2020; 244:125445. [PMID: 31835052 DOI: 10.1016/j.chemosphere.2019.125445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Aluminium is an environmental neurotoxin that comes extensively in contact with human being. The molecular mechanism of aluminium toxicity remains unclear. A number of studies have indicated that exposure to aluminium can impair learning and memory function. The purpose of this study was to investigate the mechanism of long-term potentiation(LTP) injury and the related signalling pathway activated by aluminium exposure. The results showed that aluminium treatment produced dose-dependent inhibition of LTP and reduced the activity of Histone H3K9 demethylation (H3K9me2) demethylase and the expression of the PHD (plant homeodomain) finger protein 8 (PHF8). Interestingly, there was no statistically significant difference in the expression of the PHF8 gene, suggesting that aluminium exposure only affects the translation process. Decrease in brain-derived neurotrophic factor (BDNF) expression may be related to the effect of aluminium. With correlation analysis between the hippocampal standardised field excitatory postsynaptic potential (fEPSP) amplitude and the expression of various proteins in the aluminium-exposed rat, the hippocampal standardised fEPSP amplitude was positively correlated with the expression of hippocampal PHF8 and BDNF proteins, and negatively correlated with the expression of hippocampal H3K9me2 protein. The correlation between H3K9me2 and BDNF was also considered negative. The results suggest that changes in synaptic plasticity might be related to changes in these proteins, which were induced by aluminium exposure. In conclusion, chronic aluminium exposure may inhibit PHF8 and prevent it from functioning as a demethylase. This may block H3K9me2 demethylation, decrease BDNF protein expression, and lead to LTP impairment.
Collapse
Affiliation(s)
- Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Zhaoyang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yanxia Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
46
|
Nadeau SE. Neural Population Dynamics and Cognitive Function. Front Hum Neurosci 2020; 14:50. [PMID: 32226366 PMCID: PMC7080985 DOI: 10.3389/fnhum.2020.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022] Open
Abstract
Representations in the brain are encoded as patterns of activity of large populations of neurons. The science of population encoded representations, also known as parallel distributed processing (PDP), achieves neurological verisimilitude and has been able to account for a large number of cognitive phenomena in normal people, including reaction times (and reading latencies), stimulus recognition, the effect of stimulus salience on attention, perceptual invariance, simultaneous egocentric and allocentric visual processing, top-down/bottom-up processing, language errors, the effect of statistical regularities of experience, frequency, and age of acquisition, instantiation of rules and symbols, content addressable memory and the capacity for pattern completion, preservation of function in the face of noisy or distorted input, inference, parallel constraint satisfaction, the binding problem and gamma coherence, principles of hippocampal function, the location of knowledge in the brain, limitations in the scope and depth of knowledge acquired through experience, and Piagetian stages of cognitive development. PDP studies have been able to provide a coherent account for impairment in a variety of language functions resulting from stroke or dementia in a large number of languages and the phenomenon of graceful degradation observed in such studies. They have also made important contributions to our understanding of attention (including hemispatial neglect), emotional function, executive function, motor planning, visual processing, decision making, and neuroeconomics. The relationship of neural network population dynamics to electroencephalographic rhythms is starting to emerge. Nevertheless, PDP approaches have scarcely penetrated major areas of study of cognition, including neuropsychology and cognitive neuropsychology, as well as much of cognitive psychology. This article attempts to provide an overview of PDP principles and applications that addresses a broader audience.
Collapse
Affiliation(s)
- Stephen E. Nadeau
- Research Service and the Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
47
|
Klippenstein JL, Stark SM, Stark CEL, Bennett IJ. Neural substrates of mnemonic discrimination: A whole-brain fMRI investigation. Brain Behav 2020; 10:e01560. [PMID: 32017430 PMCID: PMC7066353 DOI: 10.1002/brb3.1560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION A fundamental component of episodic memory is the ability to differentiate new and highly similar events from previously encountered events. Numerous functional magnetic resonance imaging (fMRI) studies have identified hippocampal involvement in this type of mnemonic discrimination (MD), but few studies have assessed MD-related activity in regions beyond the hippocampus. Therefore, the current fMRI study examined whole-brain activity in healthy young adults during successful discrimination of the test phase of the Mnemonic Similarity Task. METHOD In the study phase, participants made "indoor"/"outdoor" judgments to a series of objects. In the test phase, they made "old"/"new" judgments to a series of probe objects that were either repetitions from the memory set (targets), similar to objects in the memory set (lures), or novel. We assessed hippocampal and whole-brain activity consistent with MD using a step function to identify where activity to targets differed from activity to lures with varying degrees of similarity to targets (high, low), responding to them as if they were novel. RESULTS Results revealed that the hippocampus and occipital cortex exhibited differential activity to repeated stimuli relative to even highly similar stimuli, but only hippocampal activity predicted discrimination performance. CONCLUSIONS These findings are consistent with the notion that successful MD is supported by the hippocampus, with auxiliary processes supported by cortex (e.g., perceptual discrimination).
Collapse
Affiliation(s)
| | - Shauna M. Stark
- Department of Neurobiology & BehaviorUniversity of CaliforniaIrvineCalifornia
| | - Craig E. L. Stark
- Department of Neurobiology & BehaviorUniversity of CaliforniaIrvineCalifornia
| | - Ilana J. Bennett
- Department of PsychologyUniversity of CaliforniaRiversideCalifornia
| |
Collapse
|
48
|
Abstract
Stimulus selection is a critical part of experimental designs in the cognitive sciences. Quantifying and controlling item similarity using a unified scale provides researchers with the tools to eliminate item-dependent effects and improve reproducibility. Here we present a novel Similar Object and Lure Image Database (SOLID) that includes 201 categories of grayscale objects, with approximately 17 exemplars per set. Unlike existing databases, SOLID offers both a large number of stimuli and a considerable range of similarity levels. A common scale of dissimilarity was obtained by using the spatial-arrangement method (Exps. 1a and 1b) as well as a pairwise rating procedure to standardize the distances (Exp. 2). These dissimilarity distances were then validated in a recognition memory task, showing better performance and decreased response times as dissimilarity increased. These methods were used to produce a large stimulus database (3,498 images) with a wide range of comparable similarities, which will be useful for improving experimental control in fields such as memory, perception, and attention. Enabling this degree of control over similarity is critical for high-level studies of memory and cognition, and combining this strength with the option to use it across many trials will allow research questions to be addressed using neuroimaging techniques.
Collapse
Affiliation(s)
- Darya Frank
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Oliver Gray
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Daniela Montaldi
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
49
|
Tarder-Stoll H, Jayakumar M, Dimsdale-Zucker HR, Günseli E, Aly M. Dynamic internal states shape memory retrieval. Neuropsychologia 2020; 138:107328. [DOI: 10.1016/j.neuropsychologia.2019.107328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022]
|
50
|
Renoult L, Rugg MD. An historical perspective on Endel Tulving's episodic-semantic distinction. Neuropsychologia 2020; 139:107366. [PMID: 32007511 DOI: 10.1016/j.neuropsychologia.2020.107366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
The distinction between episodic and semantic memory, proposed by Endel Tulving in 1972, remains a key concept in contemporary Cognitive Neuroscience. Here we review how this distinction evolved in Tulving's writings over the years. Crucially, from 1972 onward, he argued that the two forms of memory were inter-dependent and that their interaction was an essential feature of normal episodic memory function. Moreover, later elaborations of the theory clearly proposed that these interactions formed the basis of normal declarative memory functioning. A later but crucial aspect of Tulving's contribution was his stress on the importance of subjective experience, which, according to him, "should be the ultimate object of interest, the central aspect of remembering that is to be explained and understood". We relate these and his numerous other ideas to current perspectives about the organization and function of human memory.
Collapse
Affiliation(s)
- Louis Renoult
- School of Psychology, University of East Anglia, Norwich, UK.
| | - Michael D Rugg
- School of Psychology, University of East Anglia, Norwich, UK; Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| |
Collapse
|