1
|
Glikmann-Johnston Y, Mercieca EC, Carmichael AM, Alexander B, Harding IH, Stout JC. Hippocampal and striatal volumes correlate with spatial memory impairment in Huntington's disease. J Neurosci Res 2021; 99:2948-2963. [PMID: 34516012 DOI: 10.1002/jnr.24966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023]
Abstract
Spatial memory impairments are observed in people with Huntington's disease (HD), however, the domain of spatial memory has received little focus when characterizing the cognitive phenotype of HD. Spatial memory is traditionally thought to be a hippocampal-dependent function, while the neuropathology of HD centers on the striatum. Alongside spatial memory deficits in HD, recent neurocognitive theories suggest that a larger brain network is involved, including the striatum. We examined the relationship between hippocampal and striatal volumes and spatial memory in 36 HD gene expansion carriers, including premanifest (n = 24) and early manifest HD (n = 12), and 32 matched healthy controls. We assessed spatial memory with Paired Associates Learning, Rey-Osterrieth Complex Figure Test, and the Virtual House task, which assesses three components of spatial memory: navigation, object location, and plan drawing. Caudate nucleus, putamen, and hippocampal volumes were manually segmented on T1-weighted MR images. As expected, caudate nucleus and putamen volumes were significantly smaller in the HD group compared to controls, with manifest HD having more severe atrophy than the premanifest HD group. Hippocampal volumes did not differ significantly between HD and control groups. Nonetheless, on average, the HD group performed significantly worse than controls across all spatial memory tasks. The spatial memory components of object location and recall of figural and topographical drawings were associated with striatal and hippocampal volumes in the HD cohort. We provide a case to include spatial memory impairments in the cognitive phenotype of HD, and extend the neurocognitive picture of HD beyond its primary pathology within the striatum.
Collapse
Affiliation(s)
- Yifat Glikmann-Johnston
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Emily-Clare Mercieca
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Anna M Carmichael
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Bonnie Alexander
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Neurosurgery, Royal Children's Hospital, Parkville, VIC, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Nelson AJD. The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev 2021; 126:1-11. [PMID: 33737105 PMCID: PMC8363507 DOI: 10.1016/j.neubiorev.2021.02.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Anterior thalamic nuclei important for specific classes of temporal discriminations. Anterior thalamic nuclei required for hippocampal-dependent contextual processes. Critical role for anterior thalamic nuclei in selective attention. Significance of anterior thalamic – anterior cingulate interactions.
The anterior thalamic nuclei are a vital node within hippocampal-diencephalic-cingulate circuits that support spatial learning and memory. Reflecting this interconnectivity, the overwhelming focus of research into the cognitive functions of the anterior thalamic nuclei has been spatial processing. However, there is increasing evidence that the functions of the anterior thalamic nuclei extend beyond the spatial realm. This work has highlighted how these nuclei are required for certain classes of temporal discrimination as well as their importance for processing other contextual information; revealing parallels with the non-spatial functions of the hippocampal formation. Yet further work has shown how the anterior thalamic nuclei may be important for other forms of non-spatial learning, including a critical role for these nuclei in attentional mechanisms. This evidence signals the need to reconsider the functions of the anterior thalamic within the framework of their wider connections with sites including the anterior cingulate cortex that subserve non-spatial functions.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
3
|
Barker GRI, Warburton EC. Putting objects in context: A prefrontal-hippocampal-perirhinal cortex network. Brain Neurosci Adv 2020; 4:2398212820937621. [PMID: 32954004 PMCID: PMC7479864 DOI: 10.1177/2398212820937621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/05/2020] [Indexed: 11/15/2022] Open
Abstract
When we encounter an object, we spontaneously form associations between the
object and the environment in which it was encountered. These associations can
take a number of different forms, which include location and context. A neural
circuit between the hippocampus, medial prefrontal cortex and perirhinal cortex
is critical for object-location and object-sequence associations; however, how
this neural circuit contributes to the formation of object-context associations
has not been established. Bilateral lesions were made in the hippocampus, medial
prefrontal cortex or perirhinal cortex to examine each region contribution to
object-context memory formation. Next, a disconnection lesion approach was used
to examine the necessity of functional interactions between the hippocampus and
medial prefrontal cortex or perirhinal cortex. Spontaneous tests of preferential
exploration were used to assess memory for different types of object-context
associations. Bilateral lesion in the hippocampus, medial prefrontal cortex or
perirhinal cortex impaired performance in both an object-place-context and an
object-context task. Disconnection of the hippocampus from either the medial
prefrontal cortex or perirhinal cortex impaired performance in both the
object-place-context and object-context task. Interestingly, when object
recognition memory was tested with a context switch between encoding and test,
performance in the hippocampal and medial prefrontal cortex lesion groups was
disrupted and performance in each disconnection group (i.e. hippocampus + medial
prefrontal cortex, hippocampus + perirhinal cortex) was significantly impaired.
Overall, these experiments establish the importance of the hippocampal-medial
prefrontal-perirhinal cortex circuit for the formation of object-context
associations.
Collapse
Affiliation(s)
- G R I Barker
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - E C Warburton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Aggleton JP, Nelson AJD. Distributed interactive brain circuits for object-in-place memory: A place for time? Brain Neurosci Adv 2020; 4:2398212820933471. [PMID: 32954003 PMCID: PMC7479857 DOI: 10.1177/2398212820933471] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Rodents will spontaneously learn the location of an individual object, an
ability captured by the object-in-place test. This review considers
the network of structures supporting this behavioural test, as well as
some potential confounds that may affect interpretation. A
hierarchical approach is adopted, as we first consider those brain
regions necessary for two simpler, ‘precursor’ tests (object
recognition and object location). It is evident that performing the
object-in-place test requires an array of areas additional to those
required for object recognition or object location. These additional
areas include the rodent medial prefrontal cortex and two thalamic
nuclei (nucleus reuniens and the medial dorsal nucleus), both densely
interconnected with prefrontal areas. Consequently, despite the need
for object and location information to be integrated for the
object-in-place test, for example, via the hippocampus, other
contributions are necessary. These contributions stem from how
object-in-place is a test of associative recognition, as none of the
individual elements in the test phase are novel. Parallels between the
structures required for object-in-place and for recency
discriminations, along with a re-examination of the demands of the
object-in-place test, signal the integration of temporal information
within what is usually regarded as a spatial-object test.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
5
|
Spatial memory in Huntington’s disease: A comparative review of human and animal data. Neurosci Biobehav Rev 2019; 98:194-207. [DOI: 10.1016/j.neubiorev.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022]
|
6
|
Age-Induced Spatial Memory Deficits in Rats Are Correlated with Specific Brain Region Alterations in Microglial Morphology and Gene Expression. J Neuroimmune Pharmacol 2018; 14:251-262. [DOI: 10.1007/s11481-018-9817-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
7
|
Liu X, Liu L, Hou F, Zhou Z, Wu Q, Li H. Altered gray matter volume and functional connectivity of the motor network in young divers. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:XST17305. [PMID: 28697581 DOI: 10.3233/xst-17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Motor learning and professional sports training can induce plastic changes in brain structures that are associated with distinct training demands. OBJECTIVE To testify the hypothesis of that regional gray matter structures in the motor-related cortex and its functional connectivity (FC) are altered in young divers. METHODS We undertook T1-voxel-based morphometry (VBM) structural and resting-state functional magnetic resonance imaging in groups of diving athletes (DAs) and demographically-matched healthy controls. RESULTS Gray matter volume was lower in some regions in Das. By selecting the five most reduced regions, i.e. superior frontal gyrus, orbitofrontal cortex (OFC), insula, hippocampus, and cerebellum posterior lobe, as regions of interest (ROIs) for FC analysis, results showed that DAs had greater FC between the inferior temporal gyrus and superior frontal gyrus, OFC and cerebellum posterior lobe. Conversely, the divers had lesser FC between OFC and putamen, superior frontal gyrus and caudate. CONCLUSIONS VBM differences suggest that diving training entails more effective synaptic and/or neuronal pruning processes in motor structures. Indeed, cortical volumetric decreases in the DAs group are associated with increased FC among certain motor-related regions. We conclude that motor learning in adolescence alters brain structure in association with changes in FC between the relevant cortical and subcortical regions.
Collapse
Affiliation(s)
- Xia Liu
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| | - Liansheng Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Fen Hou
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| | - Zhifeng Zhou
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| | - Qingying Wu
- Sports Hospital, Ersha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Hengguo Li
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Riaz S, Schumacher A, Sivagurunathan S, Van Der Meer M, Ito R. Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues. Hippocampus 2017; 27:822-836. [PMID: 28449268 DOI: 10.1002/hipo.22734] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
The hippocampus (HPC) has been widely implicated in the contextual control of appetitive and aversive conditioning. However, whole hippocampal lesions do not invariably impair all forms of contextual processing, as in the case of complex biconditional context discrimination, leading to contention over the exact nature of the contribution of the HPC in contextual processing. Moreover, the increasingly well-established functional dissociation between the dorsal (dHPC) and ventral (vHPC) subregions of the HPC has been largely overlooked in the existing literature on hippocampal-based contextual memory processing in appetitively motivated tasks. Thus, the present study sought to investigate the individual roles of the dHPC and the vHPC in contextual biconditional discrimination (CBD) performance and memory retrieval. To this end, we examined the effects of transient post-acquisition pharmacological inactivation (using a combination of GABAA and GABAB receptor agonists muscimol and baclofen) of functionally distinct subregions of the HPC (CA1/CA3 subfields of the dHPC and vHPC) on CBD memory retrieval. Additional behavioral assays including novelty preference, light-dark box and locomotor activity test were also performed to confirm that the respective sites of inactivation were functionally silent. We observed robust deficits in CBD performance and memory retrieval following inactivation of the vHPC, but not the dHPC. Our data provides novel insight into the differential roles of the ventral and dorsal HPC in reward contextual processing, under conditions in which the context is defined by proximal cues.
Collapse
Affiliation(s)
- Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Anett Schumacher
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | | | | | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Edwards CM, Kumar K, Koesarie K, Brough E, Ritter AC, Brayer SW, Thiels E, Skidmore ER, Wagner AK. Visual Priming Enhances the Effects of Nonspatial Cognitive Rehabilitation Training on Spatial Learning After Experimental Traumatic Brain Injury. Neurorehabil Neural Repair 2015; 29:897-906. [PMID: 25665829 PMCID: PMC4530101 DOI: 10.1177/1545968315570326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous work demonstrates that spatial (explicit) and nonspatial (implicit) elements of place learning in the Morris water maze (MWM) task can be dissociated and examined in the context of experimental traumatic brain injury (TBI). Providing nonspatial cognitive training (CT) after injury can improve place learning compared with untrained controls. In the present study, we hypothesized that brief exposure to extra-maze cues, in conjunction with CT, may further improve MWM performance and extra-maze cue utilization compared with CT alone. Adult male Sprague-Dawley rats (n = 66) received controlled cortical impact (CCI) injury or sham surgery. Beginning day 8 postsurgery, CCI and sham rats received 6 days of no training (NT) or CT with/without brief, noncontextualized exposure to extra-maze cues (BE and CT, respectively). Acquisition (days 14-18), visible platform (VP; day 19), carryover (CO; days 20-26), and periodic probe trials were performed. Platform latencies, peripheral and target zone time allocation, and search strategies were assessed. CCI/BE rats had shorter acquisition trial latencies than CCI/NT (P < .001) and tended to have shorter latencies than CCI/CT rats (P < .10). Both BE and CT reduced peripheral zone swimming for CCI rats versus CCI/NT. CCI/BE animals increased spatial swim strategies from day 14 to day 18 relative to CCI/CT and showed similar swim strategy selection to the Sham/NT group. These data suggest that visual priming improves initial place learning in the MWM. These results support the visual priming response as another clinically relevant experimental rehabilitation construct, to use when assessing injury and treatment effects of behavioral and pharmacological therapies on cognition after TBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edda Thiels
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
10
|
Horne JA. Human REM sleep: influence on feeding behaviour, with clinical implications. Sleep Med 2015; 16:910-6. [PMID: 26122167 DOI: 10.1016/j.sleep.2015.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
Abstract
Rapid eye movement (REM) sleep shares many underlying mechanisms with wakefulness, to a much greater extent than does non-REM, especially those relating to feeding behaviours, appetite, curiosity, exploratory (locomotor) activities, as well as aspects of emotions, particularly 'fear extinction'. REM is most evident in infancy, thereafter declining in what seems to be a dispensable manner that largely reciprocates increasing wakefulness. However, human adults retain more REM than do other mammals, where for us it is most abundant during our usual final REM period (fREMP) of the night, nearing wakefulness. The case is made that our REM is unusual, and that (i) fREMP retains this 'dispensability', acting as a proxy for wakefulness, able to be forfeited (without REM rebound) and substituted by physical activity (locomotion) when pressures of wakefulness increase; (ii) REM's atonia (inhibited motor output) may be a proxy for this locomotion; (iii) our nocturnal sleep typically develops into a physiological fast, especially during fREMP, which is also an appetite suppressant; (iv) REM may have 'anti-obesity' properties, and that the loss of fREMP may well enhance appetite and contribute to weight gain ('overeating') in habitually short sleepers; (v) as we also select foods for their hedonic (emotional) values, REM may be integral to developing food preferences and dislikes; and (vii) REM seems to have wider influences in regulating energy balance in terms of exercise 'substitution' and energy (body heat) retention. Avenues for further research are proposed, linking REM with feeding behaviours, including eating disorders, and effects of REM-suppressant medications.
Collapse
Affiliation(s)
- James A Horne
- Sleep Research Centre, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
11
|
Moving beyond standard procedures to assess spontaneous recognition memory. Neurosci Biobehav Rev 2015; 53:37-51. [PMID: 25842032 DOI: 10.1016/j.neubiorev.2015.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 11/23/2022]
Abstract
This review will consider how spontaneous tasks have been applied alongside neuroscientific techniques to test complex forms of recognition memory for objects and their environmental features, e.g. the spatial location of an object or the context in which it is presented. We discuss studies that investigate the roles of the perirhinal cortex and the hippocampus in recognition memory using standard testing paradigms, and consider how these findings contribute to the ongoing debate about whether recognition memory is a single unitary process or multiple processes that can be dissociated anatomically and functionally. Due to the wide use of spontaneous tasks, the need for improved procedures that reduce animal use is acknowledged, with multiple trial paradigms discussed as a novel way of reducing variability and animal numbers in these tasks. The importance of improving translation of animal models to humans is highlighted, with emphasis on a shift away from relying on the phenomenological experience of human subjects.
Collapse
|
12
|
Baeuchl C, Meyer P, Hoppstädter M, Diener C, Flor H. Contextual fear conditioning in humans using feature-identical contexts. Neurobiol Learn Mem 2015; 121:1-11. [PMID: 25792231 DOI: 10.1016/j.nlm.2015.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/19/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
Abstract
Contextual fear conditioning studies in animals and humans found an involvement of the hippocampus and amygdala during fear learning. To exclude a focus on elements of the context we employed a paradigm, which uses two feature-identical contexts that only differ in the arrangement of the features and requires configural processing. We employed functional magnetic resonance imaging to determine the role of the hippocampus and neocortical areas during the acquisition of contextual fear in humans. For contextual fear acquisition, we paired one context (CS+) with an aversive electrical stimulus, whereas the other (CS-) was never followed by aversive stimulation. Blood oxygen level dependent activation to the CS+ was present in the insula, inferior frontal gyrus, inferior parietal lobule, superior medial gyrus and caudate nucleus. Furthermore, the amygdala and hippocampus were involved in a time-dependent manner. Psychophysiological interaction analyses revealed functional connectivity of a more posterior hippocampal seed region with the anterior hippocampus, posterior cingulate cortex and superior parietal lobule. The anterior hippocampus was functionally coupled with the amygdala and postcentral gyrus. This study complements previous findings in contextual fear conditioning in humans and provides a paradigm which might be useful for studying patients with hippocampal impairment.
Collapse
Affiliation(s)
- Christian Baeuchl
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.
| | - Patric Meyer
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany
| | - Michael Hoppstädter
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany
| | - Carsten Diener
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany
| |
Collapse
|
13
|
Dumont JR, Amin E, Wright NF, Dillingham CM, Aggleton JP. The impact of fornix lesions in rats on spatial learning tasks sensitive to anterior thalamic and hippocampal damage. Behav Brain Res 2014; 278:360-74. [PMID: 25453745 PMCID: PMC4274319 DOI: 10.1016/j.bbr.2014.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 11/26/2022]
Abstract
Fornix damage mildly impair spatial biconditional and passive place learning tasks. Fornix lesions impair spatial go/no-go and alternation problems. Fornix lesions impair tests making flexible demands on spatial memory. Fornix connections are not always required for learning fixed spatial responses.
The present study sought to understand how the hippocampus and anterior thalamic nuclei are conjointly required for spatial learning by examining the impact of cutting a major tract (the fornix) that interconnects these two sites. The initial experiments examined the consequences of fornix lesions in rats on spatial biconditional discrimination learning. The rationale arose from previous findings showing that fornix lesions spare the learning of spatial biconditional tasks, despite the same task being highly sensitive to both hippocampal and anterior thalamic nuclei lesions. In the present study, fornix lesions only delayed acquisition of the spatial biconditional task, pointing to additional contributions from non-fornical routes linking the hippocampus with the anterior thalamic nuclei. The same fornix lesions spared the learning of an analogous nonspatial biconditional task that used local contextual cues. Subsequent tests, including T-maze place alternation, place learning in a cross-maze, and a go/no-go place discrimination, highlighted the impact of fornix lesions when distal spatial information is used flexibly to guide behaviour. The final experiment examined the ability to learn incidentally the spatial features of a square water-maze that had differently patterned walls. Fornix lesions disrupted performance but did not stop the rats from distinguishing the various corners of the maze. Overall, the results indicate that interconnections between the hippocampus and anterior thalamus, via the fornix, help to resolve problems with flexible spatial and temporal cues, but the results also signal the importance of additional, non-fornical contributions to hippocampal-anterior thalamic spatial processing, particularly for problems with more stable spatial solutions.
Collapse
Affiliation(s)
- Julie R Dumont
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | - Eman Amin
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | - Nicholas F Wright
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| |
Collapse
|
14
|
In search of a recognition memory engram. Neurosci Biobehav Rev 2014; 50:12-28. [PMID: 25280908 PMCID: PMC4382520 DOI: 10.1016/j.neubiorev.2014.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
Abstract
The role of the perirhinal cortex in familiarity discrimination is reviewed. Behavioural, pharmacological and electrophysiological evidence is considered. The cortex is found to be essential for memory acquisition, retrieval and storage. The evidence indicates that perirhinal synaptic weakening is critically involved.
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening.
Collapse
|
15
|
Kinnavane L, Amin E, Horne M, Aggleton JP. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus. Eur J Neurosci 2014; 40:3720-34. [PMID: 25264133 PMCID: PMC4309468 DOI: 10.1111/ejn.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/07/2014] [Accepted: 09/01/2014] [Indexed: 12/30/2022]
Abstract
The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli.
Collapse
Affiliation(s)
- L Kinnavane
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK; Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
16
|
Dumont JR, Wright NF, Pearce JM, Aggleton JP. The impact of anterior thalamic lesions on active and passive spatial learning in stimulus controlled environments: geometric cues and pattern arrangement. Behav Neurosci 2014; 128:161-77. [PMID: 24773436 PMCID: PMC4046885 DOI: 10.1037/a0036280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 01/09/2023]
Abstract
The anterior thalamic nuclei are vital for many spatial tasks. To determine more precisely their role, the present study modified the conventional Morris watermaze task. In each of 3 experiments, rats were repeatedly placed on a submerged platform in 1 corner (the 'correct' corner) of either a rectangular pool (Experiment 1) or a square pool with walls of different appearances (Experiments 2 and 3). The rats were then released into the pool for a first test trial in the absence of the platform. In Experiment 1, normal rats distinguished the 2 sets of corners in the rectangular pool by their geometric properties, preferring the correct corner and its diagonally opposite partner. Anterior thalamic lesions severely impaired this discrimination. In Experiments 2 and 3, normal rats typically swam directly to the correct corner of the square pool on the first test trial. Rats with anterior thalamic lesions, however, often failed to initially select the correct corner, taking more time to reach that location. Nevertheless, the lesioned rats still showed a subsequent preference for the correct corner. The same lesioned rats also showed no deficits in Experiments 2 and 3 when subsequently trained to swim to the correct corner over repeated trials. The findings show how the anterior thalamic nuclei contribute to multiple aspects of spatial processing. These thalamic nuclei may be required to distinguish relative dimensions (Experiment 1) as well as translate the appearance of spatial cues when viewed for the first time from different perspectives (Experiments 2, 3).
Collapse
|
17
|
Dumont JR, Amin E, Aggleton JP. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. Eur J Neurosci 2013; 39:241-56. [PMID: 24215178 PMCID: PMC4278545 DOI: 10.1111/ejn.12409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 01/03/2023]
Abstract
To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites.
Collapse
Affiliation(s)
- Julie R Dumont
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | | |
Collapse
|