1
|
Constantin S, Quignon C, Pizano K, Shostak DM, Wray S. Vasoactive intestinal peptide excites GnRH neurons via KCa3.1, a potential player in the slow afterhyperpolarization current. Front Cell Neurosci 2024; 18:1354095. [PMID: 38633445 PMCID: PMC11021707 DOI: 10.3389/fncel.2024.1354095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
Vasoactive intestinal peptide (VIP) is an important component of the suprachiasmatic nucleus (SCN) which relays circadian information to neuronal populations, including GnRH neurons. Human and animal studies have shown an impact of disrupted daily rhythms (chronic shift work, temporal food restriction, clock gene disruption) on both male and female reproduction and fertility. To date, how VIP modulates GnRH neurons remains unknown. Calcium imaging and electrophysiology on primary GnRH neurons in explants and adult mouse brain slice, respectively, were used to address this question. We found VIP excites GnRH neurons via the VIP receptor, VPAC2. The downstream signaling pathway uses both Gs protein/adenylyl cyclase/protein kinase A (PKA) and phospholipase C/phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. Furthermore, we identified a UCL2077-sensitive target, likely contributing to the slow afterhyperpolarization current (IAHP), as the PKA and PIP2 depletion target, and the KCa3.1 channel as a specific target. Thus, VIP/VPAC2 provides an example of Gs protein-coupled receptor-triggered excitation in GnRH neurons, modulating GnRH neurons likely via the slow IAHP. The possible identification of KCa3.1 in the GnRH neuron slow IAHP may provide a new therapeutical target for fertility treatments.
Collapse
Affiliation(s)
| | | | | | | | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Davenport CM, Teubner BJW, Han SB, Patton MH, Eom TY, Garic D, Lansdell BJ, Shirinifard A, Chang TC, Klein J, Pruett-Miller SM, Blundon JA, Zakharenko SS. Innate frequency-discrimination hyperacuity in Williams-Beuren syndrome mice. Cell 2022; 185:3877-3895.e21. [PMID: 36152627 PMCID: PMC9588278 DOI: 10.1016/j.cell.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.
Collapse
Affiliation(s)
- Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dusan Garic
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin J Lansdell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Gilmartin MR, Ferrara NC. Pituitary Adenylate Cyclase-Activating Polypeptide in Learning and Memory. Front Cell Neurosci 2021; 15:663418. [PMID: 34239418 PMCID: PMC8258392 DOI: 10.3389/fncel.2021.663418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/02/2021] [Indexed: 02/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved neuropeptide that regulates neuronal physiology and transcription through Gs/Gq-coupled receptors. Its actions within hypothalamic, limbic, and mnemonic systems underlie its roles in stress regulation, affective processing, neuroprotection, and cognition. Recently, elevated PACAP levels and genetic disruption of PAC1 receptor signaling in humans has been linked to maladaptive threat learning and pathological stress and fear in post-traumatic stress disorder (PTSD). PACAP is positioned to integrate stress and memory in PTSD for which memory of the traumatic experience is central to the disorder. However, PACAP's role in memory has received comparatively less attention than its role in stress. In this review, we consider the evidence for PACAP-PAC1 receptor signaling in learning and plasticity, discuss emerging data on sex differences in PACAP signaling, and raise key questions for further study toward elucidating the contribution of PACAP to adaptive and maladaptive fear learning.
Collapse
Affiliation(s)
| | - Nicole C Ferrara
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
4
|
Johnson GC, Parsons R, May V, Hammack SE. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signaling in the Hippocampal Dentate Gyrus. Front Cell Neurosci 2020; 14:111. [PMID: 32425759 PMCID: PMC7203336 DOI: 10.3389/fncel.2020.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) dysregulation has been associated with multiple stress-related psychopathologies that may be related to altered hippocampal function. In coherence, PACAP- and PAC1 receptor (ADCYAP1R1)-null mice demonstrate changes in hippocampal-dependent behavioral responses, implicating the PACAPergic system function in this structure. Within the hippocampus, the dentate gyrus (DG) may play an important role in discerning the differences between similar contexts, and DG granule cells appear to both highly express PAC1 receptors and receive inputs from PACAP-expressing terminals. Here, we review the evidence from our laboratories and others that PACAP is an important regulator of activity within hippocampal circuits, particularly within the DG. These data are consistent with an increasing literature implicating PACAP circuits in stress-related pathologies such as post-traumatic stress disorder (PTSD) and implicate the hippocampus, and in particular the DG, as a critical site in which PACAP dysregulation can alter stress-related behaviors.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, College of Arts and Sciences, University of Vermont, Burlington, VT, United States
| | - Rodney Parsons
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, College of Arts and Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
5
|
Johnson GC, Parsons RL, May V, Hammack SE. Pituitary adenylate cyclase-activating polypeptide-induced PAC1 receptor internalization and recruitment of MEK/ERK signaling enhance excitability of dentate gyrus granule cells. Am J Physiol Cell Physiol 2020; 318:C870-C878. [PMID: 32186931 DOI: 10.1152/ajpcell.00065.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP; ADCYAP1) is a pleiotropic neuropeptide widely distributed in both the peripheral and central nervous systems. PACAP and its specific cognate PAC1 receptor (ADCYAP1R1) play critical roles in the homeostatic maintenance of multiple physiological and behavioral systems. Notably, maladaptations in the PACAPergic system have been associated with several psychopathologies related to fear and anxiety. PAC1 receptor transcripts are highly expressed in granule cells of the dentate gyrus (DG). Here, we examined the direct effects of PACAP on DG granule cells in brain slices using whole cell patch recordings in current clamp mode. PACAP significantly increased the intrinsic excitability of DG granule cells via PAC1 receptor activation. This increased excitability was not mediated by adenylyl cyclase/cAMP or phospholipase C/PKC activation, but instead via activation of an extracellular signal-regulated kinase (ERK) signaling pathway initiated through PAC1 receptor endocytosis/endosomal signaling. PACAP failed to increase excitability in DG granule cells pretreated with the persistent sodium current blocker riluzole, suggesting that the observed PACAP effects required this component of the inward sodium current.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Rodney L Parsons
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| |
Collapse
|
6
|
Ciranna L, Costa L. Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Hippocampal Synaptic Transmission and Plasticity: New Therapeutic Suggestions for Fragile X Syndrome. Front Cell Neurosci 2019; 13:524. [PMID: 31827422 PMCID: PMC6890831 DOI: 10.3389/fncel.2019.00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic synaptic transmission and plasticity in the hippocampus, a brain area with a key role in learning and memory. In agreement, several studies have demonstrated that PACAP modulates learning in physiological conditions. Recent publications show reduced PACAP levels and/or alterations in PACAP receptor expression in different conditions associated with cognitive disability. It is noteworthy that PACAP administration rescued impaired synaptic plasticity and learning in animal models of aging, Alzheimer's disease, Parkinson's disease, and Huntington's chorea. In this context, results from our laboratory demonstrate that PACAP rescued metabotropic glutamate receptor-mediated synaptic plasticity in the hippocampus of a mouse model of fragile X syndrome (FXS), a genetic form of intellectual disability. PACAP is actively transported through the blood-brain barrier and reaches the brain following intranasal or intravenous administration. Besides, new studies have identified synthetic PACAP analog peptides with improved selectivity and pharmacokinetic properties with respect to the native peptide. Our review supports the shared idea that pharmacological activation of PACAP receptors might be beneficial for brain pathologies with cognitive disability. In addition, we suggest that the effects of PACAP treatment might be further studied as a possible therapy in FXS.
Collapse
Affiliation(s)
- Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Dunn AR, Kaczorowski CC. Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity. Neurobiol Learn Mem 2019; 164:107069. [PMID: 31442579 DOI: 10.1016/j.nlm.2019.107069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 12/28/2022]
Abstract
Plasticity of intrinsic neuronal excitability facilitates learning and memory across multiple species, with aberrant modulation of this process being linked to the development of neurological symptoms in models of cognitive aging and Alzheimer's disease. Learning-related increases in intrinsic excitability of neurons occurs in a variety of brain regions, and is generally thought to promote information processing and storage through enhancement of synaptic throughput and induction of synaptic plasticity. Experience-dependent changes in intrinsic neuronal excitability rely on activity-dependent gene expression patterns, which can be influenced by genetic and environmental factors, aging, and disease. Reductions in baseline intrinsic excitability, as well as aberrant plasticity of intrinsic neuronal excitability and in some cases pathological hyperexcitability, have been associated with cognitive deficits in animal models of both normal cognitive aging and Alzheimer's disease. Genetic factors that modulate plasticity of intrinsic excitability likely underlie individual differences in cognitive function and susceptibility to cognitive decline. Thus, targeting molecular mediators that either control baseline intrinsic neuronal excitability, subserve learning-related intrinsic neuronal plasticity, and/or promote resilience may be a promising therapeutic strategy for maintaining cognitive function in aging and disease. In this review, we discuss the complementary relationship between intrinsic excitability and learning, with a particular focus on how this relationship varies as a function of age, disease state, and genetic make-up, and how targeting these factors may help to further elucidate our understanding of the role of intrinsic excitability in cognitive function and cognitive decline.
Collapse
Affiliation(s)
- Amy R Dunn
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
8
|
Johnson GC, May V, Parsons RL, Hammack SE. Parallel signaling pathways of pituitary adenylate cyclase activating polypeptide (PACAP) regulate several intrinsic ion channels. Ann N Y Acad Sci 2019; 1455:105-112. [PMID: 31162688 DOI: 10.1111/nyas.14116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP), acting through its cognate receptors PAC1, VPAC1, and VPAC2, is a pleiotropic signaling neuropeptide of the vasoactive intestinal peptide/secretin/glucagon family. PACAP has known functions in neuronal growth, development, and repair, and central PACAP signaling has acute behavioral consequences. One of the ways in which PACAP may affect neuronal function is through the modulation of intrinsic membrane currents to control neuronal excitability. Here, we review the evidence of PACAP-dependent modulation of calcium- and voltage-gated potassium currents, hyperpolarization-activated cation currents, calcium currents, and voltage-gated sodium currents. Interestingly, PACAP signaling pathways diverge into parallel pathways to target different ionic currents for modulation, though single pathways are not limited to modulating just one target ionic current. Despite the various targets of modulation, the weight of the evidence suggests that PACAP signaling most commonly leads to a net increase in neuronal excitability. We discuss possible mechanisms by which PACAP signaling leads to the modulation of intrinsic membrane currents that may contribute to changes in behavior.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Victor May
- Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Rodney L Parsons
- Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| |
Collapse
|
9
|
Pecoraro V, Sardone LM, Chisari M, Licata F, Li Volsi G, Perciavalle V, Ciranna L, Costa L. A subnanomolar concentration of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) pre-synaptically modulates glutamatergic transmission in the rat hippocampus acting through acetylcholine. Neuroscience 2016; 340:551-562. [PMID: 27816700 DOI: 10.1016/j.neuroscience.2016.10.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
The neuropeptide PACAP modulates synaptic transmission in the hippocampus exerting multiple effects through different receptor subtypes: the underlying mechanisms have not yet been completely elucidated. The neurotransmitter acetylcholine (ACh) also exerts a well-documented modulation of hippocampal synaptic transmission and plasticity. Since PACAP was shown to stimulate ACh release in the hippocampus, we tested whether PACAP acting through ACh might indirectly modulate glutamate-mediated synaptic transmission at a pre- and/or at a post-synaptic level. Using patch clamp on rat hippocampal slices, we tested PACAP effects on stimulation-evoked AMPA receptor-mediated excitatory post-synaptic currents (EPSCsAMPA) in the CA3-CA1 synapse and on spontaneous miniature EPSCs (mEPSCs) in CA1 pyramidal neurons. A subnanomolar dose of PACAP (0.5nM) decreased EPSCsAMPA amplitude, enhanced EPSC paired-pulse facilitation (PPF) and reduced mEPSC frequency, indicating a pre-synaptic decrease of glutamate release probability: these effects were abolished by simultaneous blockade of muscarinic and nicotinic ACh receptors, indicating the involvement of endogenous ACh. The effect of subnanomolar PACAP was abolished by a PAC1 receptor antagonist but not by a VPAC receptor blocker. At a higher concentration (10nM), PACAP inhibited EPSCsAMPA: this effect persisted in the presence of ACh receptor antagonists and did not involve any change in PPF or in mEPSC frequency, thus was not mediated by ACh and was exerted post- synaptically on CA1 pyramidal neurons. We suggest that a high-affinity PAC1 receptor pre-synaptically modulates hippocampal glutamatergic transmission acting through ACh. Therefore, administration of PACAP at very low doses might be envisaged in cognitive diseases with reduced cholinergic transmission.
Collapse
Affiliation(s)
- Valeria Pecoraro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, San Juan de Alicante, Spain
| | - Lara Maria Sardone
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Flora Licata
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Guido Li Volsi
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Vincenzo Perciavalle
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy.
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| |
Collapse
|
10
|
Gupte RP, Kadunganattil S, Shepherd AJ, Merrill R, Planer W, Bruchas MR, Strack S, Mohapatra DP. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide. Neuropharmacology 2015; 101:291-308. [PMID: 26456351 DOI: 10.1016/j.neuropharm.2015.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 12/30/2022]
Abstract
The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is secreted by both neuronal and non-neuronal cells in the brain and spinal cord, in response to pathological conditions such as stroke, seizures, chronic inflammatory and neuropathic pain. PACAP has been shown to exert various neuromodulatory and neuroprotective effects. However, direct influence of PACAP on the function of intrinsically excitable ion channels that are critical to both hyperexcitation as well as cell death, remain largely unexplored. The major dendritic K(+) channel Kv4.2 is a critical regulator of neuronal excitability, back-propagating action potentials in the dendrites, and modulation of synaptic inputs. We identified, cloned and characterized the downstream signaling originating from the activation of three PACAP receptor (PAC1) isoforms that are expressed in rodent hippocampal neurons that also exhibit abundant expression of Kv4.2 protein. Activation of PAC1 by PACAP leads to phosphorylation of Kv4.2 and downregulation of channel currents, which can be attenuated by inhibition of either PKA or ERK1/2 activity. Mechanistically, this dynamic downregulation of Kv4.2 function is a consequence of reduction in the density of surface channels, without any influence on the voltage-dependence of channel activation. Interestingly, PKA-induced effects on Kv4.2 were mediated by ERK1/2 phosphorylation of the channel at two critical residues, but not by direct channel phosphorylation by PKA, suggesting a convergent phosphomodulatory signaling cascade. Altogether, our findings suggest a novel GPCR-channel signaling crosstalk between PACAP/PAC1 and Kv4.2 channel in a manner that could lead to neuronal hyperexcitability.
Collapse
Affiliation(s)
- Raeesa P Gupte
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suraj Kadunganattil
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew J Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ronald Merrill
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Planer
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefan Strack
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Durga P Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Irwin M, Greig A, Tvrdik P, Lucero MT. PACAP modulation of calcium ion activity in developing granule cells of the neonatal mouse olfactory bulb. J Neurophysiol 2014; 113:1234-48. [PMID: 25475351 DOI: 10.1152/jn.00594.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(2+) activity in the CNS is critical for the establishment of developing neuronal circuitry prior to and during early sensory input. In developing olfactory bulb (OB), the neuromodulators that enhance network activity are largely unknown. Here we provide evidence that pituitary adenylate cyclase-activating peptide (PACAP)-specific PAC1 receptors (PAC1Rs) expressed in postnatal day (P)2-P5 mouse OB are functional and enhance network activity as measured by increases in calcium in genetically identified granule cells (GCs). We used confocal Ca(2+) imaging of OB slices from Dlx2-tdTomato mice to visualize GABAergic GCs. To address whether the PACAP-induced Ca(2+) oscillations were direct or indirect effects of PAC1R activation, we used antagonists for the GABA receptors (GABARs) and/or glutamate receptors (GluRs) in the presence and absence of PACAP. Combined block of GABARs and GluRs yielded a 66% decrease in the numbers of PACAP-responsive cells, suggesting that 34% of OB neurons are directly activated by PACAP. Similarly, immunocytochemistry using anti-PAC1 antibody showed that 34% of OB neurons express PAC1R. Blocking either GluRs or GABARs alone indirectly showed that PACAP stimulates release of both glutamate and GABA, which activate GCs. The appearance of PACAP-induced Ca(2+) activity in immature GCs suggests a role for PACAP in GC maturation. To conclude, we find that PACAP has both direct and indirect effects on neonatal OB GABAergic cells and may enhance network activity by promoting glutamate and GABA release. Furthermore, the numbers of PACAP-responsive GCs significantly increased between P2 and P5, suggesting that PACAP-induced Ca(2+) activity contributes to neonatal OB development.
Collapse
Affiliation(s)
- Mavis Irwin
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ann Greig
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Petr Tvrdik
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Mary T Lucero
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and Department of Neuroscience and Physiology, American University of the Caribbean, Cupecoy, Sint Maarten, Netherlands Antilles
| |
Collapse
|
12
|
Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI, de Koning PJH, Andersen MR, Larsson HBW, Fahrenkrug J, Olesen J, Ashina M. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain 2014; 137:779-94. [DOI: 10.1093/brain/awt369] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|