1
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Lin YS, Lange D, Baur DM, Foerges A, Chu C, Li C, Elmenhorst EM, Neumaier B, Bauer A, Aeschbach D, Landolt HP, Elmenhorst D. Repeated caffeine intake suppresses cerebral grey matter responses to chronic sleep restriction in an A 1 adenosine receptor-dependent manner: a double-blind randomized controlled study with PET-MRI. Sci Rep 2024; 14:12724. [PMID: 38830861 PMCID: PMC11148136 DOI: 10.1038/s41598-024-61421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Evidence has shown that both sleep loss and daily caffeine intake can induce changes in grey matter (GM). Caffeine is frequently used to combat sleepiness and impaired performance caused by insufficient sleep. It is unclear (1) whether daily use of caffeine could prevent or exacerbate the GM alterations induced by 5-day sleep restriction (i.e. chronic sleep restriction, CSR), and (2) whether the potential impact on GM plasticity depends on individual differences in the availability of adenosine receptors, which are involved in mediating effects of caffeine on sleep and waking function. Thirty-six healthy adults participated in this double-blind, randomized, controlled study (age = 28.9 ± 5.2 y/; F:M = 15:21; habitual level of caffeine intake < 450 mg; 29 homozygous C/C allele carriers of rs5751876 of ADORA2A, an A2A adenosine receptor gene variant). Each participant underwent a 9-day laboratory visit consisting of one adaptation day, 2 baseline days (BL), 5-day sleep restriction (5 h time-in-bed), and a recovery day (REC) after an 8-h sleep opportunity. Nineteen participants received 300 mg caffeine in coffee through the 5 days of CSR (CAFF group), while 17 matched participants received decaffeinated coffee (DECAF group). We examined GM changes on the 2nd BL Day, 5th CSR Day, and REC Day using magnetic resonance imaging and voxel-based morphometry. Moreover, we used positron emission tomography with [18F]-CPFPX to quantify the baseline availability of A1 adenosine receptors (A1R) and its relation to the GM plasticity. The results from the voxel-wise multimodal whole-brain analysis on the Jacobian-modulated T1-weighted images controlled for variances of cerebral blood flow indicated a significant interaction effect between caffeine and CSR in four brain regions: (a) right temporal-occipital region, (b) right dorsomedial prefrontal cortex (DmPFC), (c) left dorsolateral prefrontal cortex (DLPFC), and (d) right thalamus. The post-hoc analyses on the signal intensity of these GM clusters indicated that, compared to BL, GM on the CSR day was increased in the DECAF group in all clusters but decreased in the thalamus, DmPFC, and DLPFC in the CAFF group. Furthermore, lower baseline subcortical A1R availability predicted a larger GM reduction in the CAFF group after CSR of all brain regions except for the thalamus. In conclusion, our data suggest an adaptive GM upregulation after 5-day CSR, while concomitant use of caffeine instead leads to a GM reduction. The lack of consistent association with individual A1R availability may suggest that CSR and caffeine affect thalamic GM plasticity predominantly by a different mechanism. Future studies on the role of adenosine A2A receptors in CSR-induced GM plasticity are warranted.
Collapse
Affiliation(s)
- Yu-Shiuan Lin
- Centre for Chronobiology, University Psychiatric Clinics Basel, Wilhelm Kleinstr. 27, 4002, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Athinoula. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachussetts General Hospital, Harvard Medical School, Boston, USA.
| | - Denise Lange
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Diego Manuel Baur
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Anna Foerges
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
- Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, Aachen, Germany
| | - Congying Chu
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Changhong Li
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute for Occupational, Social, and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine, INM-5, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Daniel Aeschbach
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - David Elmenhorst
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany.
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Ding C, Yang D, Feldmeyer D. Adenosinergic Modulation of Layer 6 Microcircuitry in the Medial Prefrontal Cortex Is Specific to Presynaptic Cell Type. J Neurosci 2024; 44:e1606232023. [PMID: 38429106 PMCID: PMC11007316 DOI: 10.1523/jneurosci.1606-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/03/2024] Open
Abstract
Adenosinergic modulation in the PFC is recognized for its involvement in various behavioral aspects including sleep homoeostasis, decision-making, spatial working memory and anxiety. While the principal cells of layer 6 (L6) exhibit a significant morphological diversity, the detailed cell-specific regulatory mechanisms of adenosine in L6 remain unexplored. Here, we quantitatively analyzed the morphological and electrophysiological parameters of L6 neurons in the rat medial prefrontal cortex (mPFC) using whole-cell recordings combined with morphological reconstructions. We were able to identify two different morphological categories of excitatory neurons in the mPFC of both juvenile and young adult rats with both sexes. These categories were characterized by a leading dendrite that was oriented either upright (toward the pial surface) or inverted (toward the white matter). These two excitatory neuron subtypes exhibited different electrophysiological and synaptic properties. Adenosine at a concentration of 30 µM indiscriminately suppressed connections with either an upright or an inverted presynaptic excitatory neuron. However, using lower concentrations of adenosine (10 µM) revealed that synapses originating from L6 upright neurons have a higher sensitivity to adenosine-induced inhibition of synaptic release. Adenosine receptor activation causes a reduction in the probability of presynaptic neurotransmitter release that could be abolished by specifically blocking A1 adenosine receptors (A1ARs) using 8-cyclopentyltheophylline (CPT). Our results demonstrate a differential expression level of A1ARs at presynaptic sites of two functionally and morphologically distinct subpopulations of L6 principal neurons, suggesting the intricate functional role of adenosine in neuronal signaling in the brain.
Collapse
Affiliation(s)
- Chao Ding
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich 52425, Germany
| | - Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich 52425, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich 52425, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen 52074, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen 52074, Germany
| |
Collapse
|
5
|
Yang B, Zhang H, Jiang T, Yu S. Natural brain state change with E/I balance shifting toward inhibition is associated with vigilance impairment. iScience 2023; 26:107963. [PMID: 37822500 PMCID: PMC10562778 DOI: 10.1016/j.isci.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
The delicate balance between cortical excitation and inhibition (E/I) plays a pivotal role in brain state changes. While previous studies have associated cortical hyperexcitability with brain state changes induced by sleep deprivation, whether cortical hypoexcitability is also linked to brain state changes and, if so, how it could affect cognitive performance remain unknown. Here, we address these questions by examining the brain state change occurring after meals, i.e., postprandial somnolence, and comparing it with that induced by sleep deprivation. By analyzing features representing network excitability based on electroencephalogram (EEG) signals, we confirmed cortical hyperexcitability under sleep deprivation but revealed hypoexcitability under postprandial somnolence. In addition, we found that both sleep deprivation and postprandial somnolence adversely affected the level of vigilance. These results indicate that cortical E/I balance toward inhibition is associated with brain state changes, and deviation from the balanced state, regardless of its direction, could impair cognitive performance.
Collapse
Affiliation(s)
- Binghao Yang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haoran Zhang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianzi Jiang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 101408, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Shan Yu
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
Lopes CR, Silva AC, Silva HB, Canas PM, Agostinho P, Cunha RA, Lopes JP. Adenosine A 2A Receptor Up-Regulation Pre-Dates Deficits of Synaptic Plasticity and of Memory in Mice Exposed to Aβ 1-42 to Model Early Alzheimer's Disease. Biomolecules 2023; 13:1173. [PMID: 37627238 PMCID: PMC10452250 DOI: 10.3390/biom13081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The intracerebroventricular (icv) injection of amyloid peptides (Aβ) models Alzheimer's disease (AD) in mice, as typified by the onset within 15 days of deficits of memory and of hippocampal long-term potentiation (LTP) that are prevented by the blockade of adenosine A2A receptors (A2AR). Since A2AR overfunction is sufficient to trigger memory deficits, we tested if A2AR were upregulated in hippocampal synapses before the onset of memory deficits to support the hypothesis that A2AR overfunction could be a trigger of AD. Six to eight days after Aβ-icv injection, mice displayed no alterations of hippocampal dependent memory; however, they presented an increased excitability of hippocampal synapses, a slight increase in LTP magnitude in Schaffer fiber-CA1 pyramid synapses and an increased density of A2AR in hippocampal synapses. A2AR blockade with SCH58261 (50 nM) normalized excitability and LTP in hippocampal slices from mice sacrificed 7-8 days after Aβ-icv injection. Fifteen days after Aβ-icv injection, mice displayed evident deficits of hippocampal-dependent memory deterioration, with reduced hippocampal CA1 LTP but no hyperexcitability and a sustained increase in synaptic A2AR, which blockade restored LTP magnitude. This shows that the upregulation of synaptic A2AR precedes the onset of deterioration of memory and of hippocampal synaptic plasticity, supporting the hypothesis that the overfunction of synaptic A2AR could be a trigger of memory deterioration in AD.
Collapse
Affiliation(s)
- Cátia R. Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - António C. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Henrique B. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| |
Collapse
|
7
|
Sebastião AM, Ribeiro JA. Adjusting the brakes to adjust neuronal activity: Adenosinergic modulation of GABAergic transmission. Neuropharmacology 2023; 236:109600. [PMID: 37225084 DOI: 10.1016/j.neuropharm.2023.109600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
About 50 years elapsed from the publication of the first full paper on the neuromodulatory action of adenosine at a 'simple' synapse model, the neuromuscular junction (Ginsborg and Hirst, 1972). In that study adenosine was used as a tool to increase cyclic AMP and for the great surprise, it decreased rather than increased neurotransmitter release, and for a further surprise, its action was prevented by theophylline, at the time only known as inhibitor of phosphodiesterases. These intriguing observations opened the curiosity for immediate studies relating the action of adenine nucleotides, known to be released together with neurotransmitters, to that of adenosine (Ribeiro and Walker, 1973, 1975). Our understanding on the ways adenosine uses to modulate synapses, circuits, and brain activity, vastly expanded since then. However, except for A2A receptors, whose actions upon GABAergic neurons of the striatum are well known, most of the attention given to the neuromodulatory action of adenosine has been focusing upon excitatory synapses. Evidence is growing that GABAergic transmission is also a target for adenosinergic neuromodulation through A1 and A2A receptors. Some o these actions have specific time windows during brain development, and others are selective for specific GABAergic neurons. Both tonic and phasic GABAergic transmission can be affected, and either neurons or astrocytes can be targeted. In some cases, those effects result from a concerted action with other neuromodulators. Implications of these actions in the control of neuronal function/dysfunction will be the focus of this review.
Collapse
Affiliation(s)
- Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
8
|
Wang M, Li P, Li Z, da Silva BS, Zheng W, Xiang Z, He Y, Xu T, Cordeiro C, Deng L, Dai Y, Ye M, Lin Z, Zhou J, Zhou X, Ye F, Cunha RA, Chen J, Guo W. Lateral septum adenosine A 2A receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat Commun 2023; 14:1880. [PMID: 37019936 PMCID: PMC10076302 DOI: 10.1038/s41467-023-37601-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Major depressive disorder ranks as a major burden of disease worldwide, yet the current antidepressant medications are limited by frequent non-responsiveness and significant side effects. The lateral septum (LS) is thought to control of depression, however, the cellular and circuit substrates are largely unknown. Here, we identified a subpopulation of LS GABAergic adenosine A2A receptors (A2AR)-positive neurons mediating depressive symptoms via direct projects to the lateral habenula (LHb) and the dorsomedial hypothalamus (DMH). Activation of A2AR in the LS augmented the spiking frequency of A2AR-positive neurons leading to a decreased activation of surrounding neurons and the bi-directional manipulation of LS-A2AR activity demonstrated that LS-A2ARs are necessary and sufficient to trigger depressive phenotypes. Thus, the optogenetic modulation (stimulation or inhibition) of LS-A2AR-positive neuronal activity or LS-A2AR-positive neurons projection terminals to the LHb or DMH, phenocopied depressive behaviors. Moreover, A2AR are upregulated in the LS in two male mouse models of repeated stress-induced depression. This identification that aberrantly increased A2AR signaling in the LS is a critical upstream regulator of repeated stress-induced depressive-like behaviors provides a neurophysiological and circuit-based justification of the antidepressant potential of A2AR antagonists, prompting their clinical translation.
Collapse
Affiliation(s)
- Muran Wang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
| | - Zewen Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Beatriz S da Silva
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
- Portuguese National Institute of Legal Medicine and Forensic Sciences (INMLCF, IP), Coimbra, Portugal
| | - Wu Zheng
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, Shanghai, China
| | - Yan He
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Tao Xu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Cristina Cordeiro
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
- Portuguese National Institute of Legal Medicine and Forensic Sciences (INMLCF, IP), Coimbra, Portugal
| | - Lu Deng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
| | - Yuwei Dai
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Mengqian Ye
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Zhiqing Lin
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Jianhong Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xuzhao Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Fenfen Ye
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Shen HY, Baer SB, Gesese R, Cook JM, Weltha L, Coffman SQ, Wu J, Chen JF, Gao M, Ji T. Adenosine-A 2A Receptor Signaling Plays a Crucial Role in Sudden Unexpected Death in Epilepsy. Front Pharmacol 2022; 13:910535. [PMID: 35754505 PMCID: PMC9218562 DOI: 10.3389/fphar.2022.910535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Adenosinergic activities are suggested to participate in SUDEP pathophysiology; this study aimed to evaluate the adenosine hypothesis of SUDEP and specifically the role of adenosine A2A receptor (A2AR) in the development of a SUDEP mouse model with relevant clinical features. Using a combined paradigm of intrahippocampal and intraperitoneal administration of kainic acid (KA), we developed a boosted-KA model of SUDEP in genetically modified adenosine kinase (ADK) knockdown (Adk+/-) mice, which has reduced ADK in the brain. Seizure activity was monitored using video-EEG methods, and in vivo recording of local field potential (LFP) was used to evaluate neuronal activity within the nucleus tractus solitarius (NTS). Our boosted-KA model of SUDEP was characterized by a delayed, postictal sudden death in epileptic mice. We demonstrated a higher incidence of SUDEP in Adk+/- mice (34.8%) vs. WTs (8.0%), and the ADK inhibitor, 5-Iodotubercidin, further increased SUDEP in Adk+/- mice (46.7%). We revealed that the NTS level of ADK was significantly increased in epileptic WTs, but not in epileptic Adk+/- mutants, while the A2AR level in NTS was increased in epileptic (WT and Adk+/-) mice vs. non-epileptic controls. The A2AR antagonist, SCH58261, significantly reduced SUDEP events in Adk+/- mice. LFP data showed that SCH58261 partially restored KA injection-induced suppression of gamma oscillation in the NTS of epileptic WT mice, whereas SCH58261 increased theta and beta oscillations in Adk+/- mutants after KA injection, albeit with no change in gamma oscillations. These LFP findings suggest that SCH58261 and KA induced changes in local neuronal activities in the NTS of epileptic mice. We revealed a crucial role for NTS A2AR in SUDEP pathophysiology suggesting A2AR as a potential therapeutic target for SUDEP risk prevention.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Sadie B Baer
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Raey Gesese
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - John M Cook
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Landen Weltha
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Shayla Q Coffman
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Teng Ji
- Department of Pediatric Neurology, Randall Children's Hospital, Legacy Emanuel Medical Center, Portland, OR, United States
| |
Collapse
|
10
|
A. Samara M, Oikonomou GD, Trompoukis G, Madarou G, Adamopoulou M, Papatheodoropoulos C. Septotemporal variation in modulation of synaptic transmission, paired-pulse ratio and frequency facilitation/depression by adenosine and GABA B receptors in the rat hippocampus. Brain Neurosci Adv 2022; 6:23982128221106315. [PMID: 35782711 PMCID: PMC9240614 DOI: 10.1177/23982128221106315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Short-term synaptic plasticity represents a fundamental mechanism in
neural information processing and is regulated by neuromodulators.
Here, using field recordings from the CA1 region of adult rat
hippocampal slices, we show that excitatory synaptic transmission is
suppressed by strong but not moderate activation of adenosine
A1 receptors by
2-Chloro-N6-cyclopentyladenosine (CCPA) more in the dorsal
than the ventral hippocampus; in contrast, both mild and strong
activation of GABAB receptors by baclofen (1 μM, 10 μM)
suppress synaptic transmission more in the ventral than the dorsal
hippocampus. Using a 10-pulse stimulation train of variable frequency,
we found that CCPA modulates short-term synaptic plasticity
independently of the suppression of synaptic transmission in both
segments of the hippocampus and at stimulation frequencies greater
than 10 Hz. However, specifically regarding the paired-pulse ratio
(PPR) and frequency facilitation/depression (FF/D) we found
significant drug action before but not after adjusting conditioning
responses to control levels. Activation of GABABRs by
baclofen suppressed synaptic transmission more in the ventral than the
dorsal hippocampus. Furthermore, relatively high (10 μM) but not low
(1 μM) baclofen concentration enhanced both PPR and FF in both
hippocampal segments at stimulation frequencies greater than 1 Hz,
independently of the suppression of synaptic transmission by baclofen.
These results show that A1Rs and GABABRs control
synaptic transmission more effectively in the dorsal and the ventral
hippocampus, respectively, and suggest that these receptors modulate
PPR and FF/D at different frequency bands of afferent input, in both
segments of the hippocampus.
Collapse
Affiliation(s)
- Maria A. Samara
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George D. Oikonomou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Georgia Madarou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Maria Adamopoulou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
11
|
Ribeiro FF, Ferreira F, Rodrigues RS, Soares R, Pedro DM, Duarte-Samartinho M, Aroeira RI, Ferreiro E, Valero J, Solá S, Mira H, Sebastião AM, Xapelli S. Regulation of hippocampal postnatal and adult neurogenesis by adenosine A 2A receptor: Interaction with brain-derived neurotrophic factor. Stem Cells 2021; 39:1362-1381. [PMID: 34043863 DOI: 10.1002/stem.3421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Adenosine A2A receptor (A2A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A2A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG). Here, we show that A2A R activation with CGS 21680 promoted neural stem cell self-renewal, protected committed neuronal cells from cell death and contributed to a higher density of immature and mature neuronal cells, particularly glutamatergic neurons. Moreover, A2A R endogenous activation was found to be essential for BDNF-mediated increase in cell proliferation and neuronal differentiation. Our findings contribute to further understand the role of adenosinergic signaling in the brain and may have an impact in the development of strategies for brain repair under pathological conditions.
Collapse
Affiliation(s)
- Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Pedro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Duarte-Samartinho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita I Aroeira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- University of the Basque Country EHU/UPV, Leioa, Spain
| | - Susana Solá
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Mira
- Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Szopa A, Socała K, Serefko A, Doboszewska U, Wróbel A, Poleszak E, Wlaź P. Purinergic transmission in depressive disorders. Pharmacol Ther 2021; 224:107821. [PMID: 33607148 DOI: 10.1016/j.pharmthera.2021.107821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Purinergic signaling involves the actions of purine nucleotides and nucleosides (such as adenosine) at P1 (adenosine), P2X, and P2Y receptors. Here, we present recent data contributing to a comprehensive overview of the association between purinergic signaling and depression. We start with background information on adenosine production and metabolism, followed by a detailed characterization of P1 and P2 receptors, with an emphasis on their expression and function in the brain as well as on their ligands. We provide data suggestive of altered metabolism of adenosine in depressed patients, which might be regarded as a disease biomarker. We then turn to considerable amount of preclinical/behavioral data obtained with the aid of the forced swim test, tail suspension test, learned helplessness model, or unpredictable chronic mild stress model and genetic activation/inactivation of P1 or P2 receptors as well as nonselective or selective ligands of P1 or P2 receptors. We also aimed to discuss the reason underlying discrepancies observed in such studies.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Anna Serefko
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
13
|
Adenosine Signaling and Clathrin-Mediated Endocytosis of Glutamate AMPA Receptors in Delayed Hypoxic Injury in Rat Hippocampus: Role of Casein Kinase 2. Mol Neurobiol 2021; 58:1932-1951. [PMID: 33415682 PMCID: PMC8018935 DOI: 10.1007/s12035-020-02246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2020] [Indexed: 11/20/2022]
Abstract
Chronic adenosine A1R stimulation in hypoxia leads to persistent hippocampal synaptic depression, while unopposed adenosine A2AR receptor stimulation during hypoxia/reperfusion triggers adenosine-induced post-hypoxia synaptic potentiation (APSP) and increased neuronal death. Still, the mechanisms responsible for this adenosine-mediated neuronal damage following hypoxia need to be fully elucidated. We tested the hypothesis that A1R and A2AR regulation by protein kinase casein kinase 2 (CK2) and clathrin-dependent endocytosis of AMPARs both contribute to APSPs and neuronal damage. The APSPs following a 20-min hypoxia recorded from CA1 layer of rat hippocampal slices were abolished by A1R and A2AR antagonists and by broad-spectrum AMPAR antagonists. The inhibitor of GluA2 clathrin-mediated endocytosis Tat-GluA2-3Y peptide and the dynamin-dependent endocytosis inhibitor dynasore both significantly inhibited APSPs. The CK2 antagonist DRB also inhibited APSPs and, like hypoxic treatment, caused opposite regulation of A1R and A2AR surface expression. APSPs were abolished when calcium-permeable AMPAR (CP-AMPAR) antagonist (IEM or philanthotoxin) or non-competitive AMPAR antagonist perampanel was applied 5 min after hypoxia. In contrast, perampanel, but not CP-AMPAR antagonists, abolished APSPs when applied during hypoxia/reperfusion. To test for neuronal viability after hypoxia, propidium iodide staining revealed significant neuroprotection of hippocampal CA1 pyramidal neurons when pretreated with Tat-GluA2-3Y peptide, CK2 inhibitors, dynamin inhibitor, CP-AMPAR antagonists (applied 5 min after hypoxia), and perampanel (either at 5 min hypoxia onset or during APSP). These results suggest that the A1R-CK2-A2AR signaling pathway in hypoxia/reperfusion injury model mediates increased hippocampal synaptic transmission and neuronal damage via calcium-permeable AMPARs that can be targeted by perampanel for neuroprotective stroke therapy.
Collapse
|
14
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
15
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
16
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
17
|
Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020; 14:581075. [PMID: 33192327 PMCID: PMC7554522 DOI: 10.3389/fncel.2020.581075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
It was long thought that astrocytes, given their lack of electrical signaling, were not involved in communication with neurons. However, we now know that one astrocyte on average maintains and regulates the extracellular neurotransmitter and potassium levels of more than 140,000 synapses, both excitatory and inhibitory, within their individual domains, and form a syncytium that can propagate calcium waves to affect distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine. Neuromodulators can affect signal-to-noise and frequency transmission within cortical circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli. Moreover, synchronized “resting” and desynchronized “activated” brain states are gated by short bursts of high-frequency neuromodulatory activity, highlighting the need for neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators are released in a volume manner where degradation/uptake and the confines of the complex CNS limit diffusion distance, we ask the question—are astrocytes responsible for rapidly extending neuromodulator actions to every synapse? Neuromodulators are known to influence transitions between brain states, leading to control over plasticity, responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread state transitions demand that neuromodulators can simultaneously influence large and diverse regions in a manner that should be impossible given the limitations of simple diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator effects over large populations of synapses given that each astrocyte can: (1) ensheath a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine) known to affect inhibition; (3) regulate extracellular potassium that can affect excitability and excitation/inhibition balance; and (4) express receptors for all neuromodulators. In this review article, we explore the hypothesis that astrocytes extend and amplify neuromodulatory influences on neuronal networks via alterations in calcium dynamics, the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory networks are at the core of our sleep-wake cycle and behavioral states, and determine how we interact with our environment, this review article highlights the importance of basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Abstract
The increasing interest in manipulating neural circuits in developing brains has created a demand for reliable and accurate methods for delivering viruses to newborn mice. Here we describe a novel 3D-printed mouse neonatal stereotaxic adaptor for intracerebral viral injection that provides enhanced precision and reliability. Using this device, we injected A2a-Cre mice with a Cre-dependent hM4D-mCherry viral construct at postnatal day 1 (P1) and demonstrated selective expression in the striatal indirect pathway neurons on days P7, P11 and P25. Similarly, dopaminergic midbrain neurons were selectively targeted with a Cre-dependent green fluorescent protein virus in Dat-IRES-Cre neonates and expression examined at P25. Our open-source neonatal stereotaxic mouse adaptor facilitates neonatal neuronal targeting, which should improve the ability to label and modify neural circuits in developing mouse brains.
Collapse
|
19
|
Temido-Ferreira M, Ferreira DG, Batalha VL, Marques-Morgado I, Coelho JE, Pereira P, Gomes R, Pinto A, Carvalho S, Canas PM, Cuvelier L, Buée-Scherrer V, Faivre E, Baqi Y, Müller CE, Pimentel J, Schiffmann SN, Buée L, Bader M, Outeiro TF, Blum D, Cunha RA, Marie H, Pousinha PA, Lopes LV. Age-related shift in LTD is dependent on neuronal adenosine A 2A receptors interplay with mGluR5 and NMDA receptors. Mol Psychiatry 2020; 25:1876-1900. [PMID: 29950682 PMCID: PMC7387321 DOI: 10.1038/s41380-018-0110-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.
Collapse
Grants
- FCT - Fundação para a Ciência e Tecnologia
- Région Hauts de France (PARTNAIRR COGNADORA), ANR (ADORATAU and SPREADTAU), LECMA/Alzheimer Forschung Initiative, Programmes d’Investissements d’Avenir LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease), France Alzheimer/Fondation de France, the FHU VasCog research network (Lille, France), Fondation pour la Recherche Médicale, Fondation Plan Alzheimer, INSERM, CNRS, Université Lille 2, Lille Métropole Communauté Urbaine, FEDER, DN2M, LICEND and CoEN.
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS)
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS), by the Foundation Plan Alzheimer (Senior Innovative Grant 2010)
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-450, Porto, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Inês Marques-Morgado
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Pedro Pereira
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Sara Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Laetitia Cuvelier
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Valerie Buée-Scherrer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Emilie Faivre
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Younis Baqi
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman
| | - Christa E Müller
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Luc Buée
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Charité-University Medicine, 10117, Berlin, Germany
- Institute of Biology, University of Lübeck, 23652, Lübeck, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - David Blum
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Hélène Marie
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
20
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
21
|
Silkis IG. Role of Acetylcholine and GABAergic Inhibitory Transmission in Seizure Pattern Generation in Neural Networks Integrating the Neocortex, Hippocampus, Basal Ganglia, and Thalamus. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Rei N, Rombo DM, Ferreira MF, Baqi Y, Müller CE, Ribeiro JA, Sebastião AM, Vaz SH. Hippocampal synaptic dysfunction in the SOD1 G93A mouse model of Amyotrophic Lateral Sclerosis: Reversal by adenosine A 2AR blockade. Neuropharmacology 2020; 171:108106. [PMID: 32311420 DOI: 10.1016/j.neuropharm.2020.108106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) mostly affects motor neurons, but non-motor neural and cognitive alterations have been reported in ALS mouse models and patients. Here, we evaluated if time-dependent biphasic changes in synaptic transmission and plasticity occur in hippocampal synapses of ALS SOD1G93A mice. Recordings were performed in hippocampal slices of SOD1G93A and age-matched WT mice, in the pre-symptomatic and symptomatic stages. We found an enhancement of pre-synaptic function and increased adenosine A2A receptor levels in the hippocampus of pre-symptomatic mice. In contrast, in symptomatic mice, there was an impairment of long-term potentiation (LTP) and a decrease in NMDA receptor-mediated synaptic currents, with A2AR levels also being increased. Chronic treatment with the A2AR antagonist KW-6002, rescued LTP and A2AR values. Altogether, these findings suggest an increase in synaptic function during the pre-symptomatic stage, followed by a decrease in synaptic plasticity in the symptomatic stage, which involves over-activation of A2AR from early disease stages.
Collapse
Affiliation(s)
- N Rei
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - D M Rombo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - M F Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Y Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman
| | - C E Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany
| | - J A Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - A M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - S H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
23
|
Zavala-Tecuapetla C, Orozco-Suarez S, Manjarrez J, Cuellar-Herrera M, Vega-Garcia A, Buzoianu-Anguiano V. Activation of adenosine receptors modulates the efflux transporters in brain capillaries and restores the anticonvulsant effect of carbamazepine in carbamazepine resistant rats developed by window-pentylenetetrazole kindling. Brain Res 2019; 1726:146516. [PMID: 31634453 DOI: 10.1016/j.brainres.2019.146516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/14/2023]
Abstract
Up-regulation of efflux transporters in brain capillaries may lead to the decreased therapeutic efficacy of antiepileptic drugs in patients with Drug Resistant Epilepsy. Adenosine receptor activation in brain capillaries can modulate blood-brain barrier permeability by decreasing the protein levels and function of efflux transporters. Therefore, we aimed to investigate whether the activation of adenosine receptors improves convulsions outcome in carbamazepine (CBZ) resistant animals and modulates the protein levels of efflux transporters (P-GP, MRP1, MRP2) in brain capillaries. We employed the window-pentylenetetrazol (PTZ) kindling model to develop CBZ resistant rats by CBZ administration during the post-kindling phase, and tested if these animals displayed subsequent resistance to other antiepileptic drugs. Crucially, we investigated if the administration of a broad-spectrum adenosine agonist (NECA) improves convulsions control in CBZ resistant rats. Of potential therapeutic relevance, in CBZ resistant rats NECA restored the anticonvulsant effect of CBZ. We also evaluated how the resistance to CBZ and the activation of adenosine receptors with NECA affect protein levels of efflux transporters in brain capillaries, as quantified by western blot. While CBZ resistance was associated with the up-regulation of both P-GP/MRP2 in brain capillaries, with the administration of NECA in CBZ resistant rats, we observed a decrease of P-GP and an increase of MRP2 levels, in brain capillaries. Since the activation of adenosine receptors improves the outcome of convulsions probably through the modulation of the efflux transporters protein levels in brain capillaries, adenosine agonists could be useful as an adjunct therapy for the control of Drug Resistant Epilepsy.
Collapse
Affiliation(s)
- C Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 Mexico City, Mexico.
| | - S Orozco-Suarez
- Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center XXI Century, IMSS, Cuauhtemoc 330, Doctores, 06720 Mexico City, Mexico
| | - J Manjarrez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 Mexico City, Mexico
| | - M Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México, Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, 06720 Mexico City, Mexico
| | - A Vega-Garcia
- Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center XXI Century, IMSS, Cuauhtemoc 330, Doctores, 06720 Mexico City, Mexico; Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, C.U., 04510 Mexico City, Mexico
| | - V Buzoianu-Anguiano
- Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center XXI Century, IMSS, Cuauhtemoc 330, Doctores, 06720 Mexico City, Mexico
| |
Collapse
|
24
|
Temido-Ferreira M, Coelho JE, Pousinha PA, Lopes LV. Novel Players in the Aging Synapse: Impact on Cognition. J Caffeine Adenosine Res 2019; 9:104-127. [PMID: 31559391 PMCID: PMC6761599 DOI: 10.1089/caff.2019.0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A2A receptors (A2AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the A2AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate A2AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca2+ dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E. Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Pousinha
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne, France
| | - Luísa V. Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Mouro FM, Rombo DM, Dias RB, Ribeiro JA, Sebastião AM. Adenosine A 2A receptors facilitate synaptic NMDA currents in CA1 pyramidal neurons. Br J Pharmacol 2018; 175:4386-4397. [PMID: 30220081 PMCID: PMC6240125 DOI: 10.1111/bph.14497] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/18/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE NMDA receptors play a key role in both synaptic plasticity and neurodegeneration. Adenosine is an endogenous neuromodulator and through membrane receptors of the A2A subtype can influence both synaptic plasticity and neuronal death. The present work was designed to evaluate the influence of adenosine A2A receptors upon NMDA receptor activity in CA1 hippocampal neurons. We discriminated between modulation of synaptic versus extrasynaptic receptors, since extrasynaptic NMDA receptors are mostly associated with neurodegeneration while synaptic NMDA receptors are linked to plasticity phenomena. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were obtained to evaluate NMDA receptor actions on CA1 pyramidal neurons of young adult (5-10 weeks) male Wistar rat hippocampus. KEY RESULTS Activation of A2A receptors with CGS 21680 (30 nM) consistently facilitated chemically-evoked NMDA receptor-currents (NMDA-PSCs) and afferent-evoked NMDA-currents (NMDA-EPSCs), an action prevented by an A2A receptor antagonist (SCH58261, 100 nM) and a PKA inhibitor, H-89 (1 μM). These actions did not reflect facilitation in glutamate release since there was no change in NMDA-EPSCs paired pulse ratio. A2A receptor actions were lost in the presence of an open-channel NMDA receptor blocker, MK-801 (10 μM), but persisted in the presence of memantine, at a concentration (10 μM) known to preferentially block extrasynaptic NMDA receptors. CONCLUSION AND IMPLICATIONS These results show that A2A receptors exert a positive postsynaptic modulatory effect over synaptic, but not extrasynaptic, NMDA receptors in CA1 neurons and, therefore, under non-pathological conditions may contribute to shift the dual role of NMDA receptors towards enhancement of synaptic plasticity.
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raquel B Dias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Dias RB, Rodrigues TM, Rombo DM, Ribeiro FF, Rodrigues J, McGarvey J, Orcinha C, Henley JM, Sebastião AM. Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cereb Cortex 2018; 28:2795-2809. [PMID: 29053799 PMCID: PMC6117472 DOI: 10.1093/cercor/bhx159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/30/2023] Open
Abstract
The cytokine erythropoietin (EPO) is the master regulator of erythropoiesis. Intriguingly, many studies have shown that the cognitive performance of patients receiving EPO for its hematopoietic effects is enhanced, which prompted the growing interest in the use of EPO-based strategies to treat neuropsychiatric disorders. EPO plays key roles in brain development and maturation, but also modulates synaptic transmission. However, the mechanisms underlying the latter have remained elusive. Here, we show that acute (40-60 min) exposure to EPO presynaptically downregulates spontaneous and afferent-evoked excitatory transmission, without affecting basal firing of action potentials. Conversely, prolonged (3 h) exposure to EPO, if followed by a recovery period (1 h), is able to elicit a homeostatic increase in excitatory spontaneous, but not in evoked, synaptic transmission. These data lend support to the emerging view that segregated pathways underlie spontaneous and evoked neurotransmitter release. Furthermore, we show that prolonged exposure to EPO facilitates a form of hippocampal long-term potentiation that requires noncanonical recruitment of calcium-permeable AMPA receptors for its maintenance. These findings provide important new insight into the mechanisms by which EPO enhances neuronal function, learning, and memory.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Tiago M Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Diogo M Rombo
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Joana Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Jennifer McGarvey
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Catarina Orcinha
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| |
Collapse
|
27
|
Hughes B, Herron CE. Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer's Disease. Neurochem Res 2018; 44:703-713. [PMID: 29574668 DOI: 10.1007/s11064-018-2513-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
Here we demonstrate for the first time that cannabidiol (CBD) acts to protect synaptic plasticity in an in vitro model of Alzheimer's disease (AD). The non-psycho active component of Cannabis sativa, CBD has previously been shown to protect against the neurotoxic effects of beta amyloid peptide (Aβ) in cell culture and cognitive behavioural models of neurodegeneration. Hippocampal long-term potentiation (LTP) is an activity dependent increase in synaptic efficacy often used to study cellular mechanisms related to memory. Here we show that acute application of soluble oligomeric beta amyloid peptide (Aβ1-42) associated with AD, attenuates LTP in the CA1 region of hippocampal slices from C57Bl/6 mice. Application of CBD alone did not alter LTP, however pre-treatment of slices with CBD rescued the Aβ1-42 mediated deficit in LTP. We found that the neuroprotective effects of CBD were not reversed by WAY100635, ZM241385 or AM251, demonstrating a lack of involvement of 5HT1A, adenosine (A2A) or Cannabinoid type 1 (CB1) receptors respectively. However in the presence of the PPARγ antagonist GW9662 the neuroprotective effect of CBD was prevented. Our data suggests that this major component of Cannabis sativa, which lacks psychoactivity may have therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Blathnaid Hughes
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Caroline E Herron
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
28
|
Kerkhofs A, Canas PM, Timmerman AJ, Heistek TS, Real JI, Xavier C, Cunha RA, Mansvelder HD, Ferreira SG. Adenosine A 2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex. Front Pharmacol 2018; 9:133. [PMID: 29615897 PMCID: PMC5869254 DOI: 10.3389/fphar.2018.00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
Adenosine A2A receptors (A2AR) are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC)-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC). To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP) of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS) interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.
Collapse
Affiliation(s)
- Amber Kerkhofs
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A J Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Joana I Real
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carolina Xavier
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Samira G Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Rajasundaram S. Adenosine A2A Receptor Signaling in the Immunopathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:402. [PMID: 29559972 PMCID: PMC5845642 DOI: 10.3389/fimmu.2018.00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
Our increasing appreciation of adenosine as an endogenous signaling molecule that terminates inflammation has generated excitement regarding the potential to target adenosine receptors (ARs) in the treatment of multiple sclerosis (MS), a disease of chronic neuroinflammation. Of the four G protein-coupled ARs, A2ARs are the principal mediator of adenosine’s anti-inflammatory effects and accordingly, there is a growing body of evidence surrounding the role of A2ARs in experimental autoimmune encephalomyelitis (EAE), the dominant animal model of MS. Such evidence points to a complex, often paradoxical role for A2ARs in the immunopathogenesis of EAE, where they have the ability to both exacerbate and alleviate disease severity. This review seeks to interpret these paradoxical findings and evaluate the therapeutic promise of A2ARs. In essence, the complexities of A2AR signaling arise from two properties. Firstly, A2AR signaling downregulates the inflammatory potential of TH lymphocytes whilst simultaneously facilitating the recruitment of these cells into the CNS. Secondly, A2AR expression by myeloid cells – infiltrating macrophages and CNS-resident microglia – has the capacity to promote both tissue injury and repair in chronic neuroinflammation. Consequently, the therapeutic potential of targeting A2ARs is greatly undermined by the risk of collateral tissue damage in the periphery and/or CNS.
Collapse
|
30
|
Kotzadimitriou D, Nissen W, Paizs M, Newton K, Harrison PJ, Paulsen O, Lamsa K. Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor-Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK. eNeuro 2018; 5:ENEURO.0418-17.2018. [PMID: 29740596 PMCID: PMC5938717 DOI: 10.1523/eneuro.0418-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/21/2022] Open
Abstract
Hypofunction of N-methyl-d-aspartate receptors (NMDARs) in inhibitory GABAergic interneurons is implicated in the pathophysiology of schizophrenia (SZ), a heritable disorder with many susceptibility genes. However, it is still unclear how SZ risk genes interfere with NMDAR-mediated synaptic transmission in diverse inhibitory interneuron populations. One putative risk gene is neuregulin 1 (NRG1), which signals via the receptor tyrosine kinase ErbB4, itself a schizophrenia risk gene. The type I isoform of NRG1 shows increased expression in the brain of SZ patients, and ErbB4 is enriched in GABAergic interneurons expressing parvalbumin (PV) or cholecystokinin (CCK). Here, we investigated ErbB4 expression and synaptic transmission in interneuronal populations of the hippocampus of transgenic mice overexpressing NRG1 type I (NRG1tg-type-I mice). Immunohistochemical analyses confirmed that ErbB4 was coexpressed with either PV or CCK in hippocampal interneurons, but we observed a reduced number of ErbB4-immunopositive interneurons in the NRG1tg-type-I mice. NMDAR-mediated currents in interneurons expressing PV (including PV+ basket cells) or CCK were reduced in NRG1tg-type-I mice compared to their littermate controls. We found no difference in AMPA receptor-mediated currents. Optogenetic activation (5 pulses at 20 Hz) of local glutamatergic fibers revealed a decreased NMDAR-mediated contribution to disynaptic GABAergic inhibition of pyramidal cells in the NRG1tg-type-I mice. GABAergic synaptic transmission from either PV+ or CCK+ interneurons, and glutamatergic transmission onto pyramidal cells, did not significantly differ between genotypes. The results indicate that synaptic NMDAR-mediated signaling in hippocampal interneurons is sensitive to chronically elevated NGR1 type I levels. This may contribute to the pathophysiological consequences of increased NRG1 expression in SZ.
Collapse
Affiliation(s)
| | - Wiebke Nissen
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Melinda Paizs
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, 6720, Hungary
| | - Kathryn Newton
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Paul J. Harrison
- Department of Psychiatry, University of Oxford, and Oxford Health NHS Foundation Trust, Oxford, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Karri Lamsa
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, 6720, Hungary
| |
Collapse
|
31
|
Schulz K, Rotermund N, Grzelka K, Benz J, Lohr C, Hirnet D. Adenosine A 1 Receptor-Mediated Attenuation of Reciprocal Dendro-Dendritic Inhibition in the Mouse Olfactory Bulb. Front Cell Neurosci 2018; 11:435. [PMID: 29379418 PMCID: PMC5775233 DOI: 10.3389/fncel.2017.00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022] Open
Abstract
It is well described that A1 adenosine receptors inhibit synaptic transmission at excitatory synapses in the brain, but the effect of adenosine on reciprocal synapses has not been studied so far. In the olfactory bulb, the majority of synapses are reciprocal dendro-dendritic synapses mediating recurrent inhibition. We studied the effect of A1 receptor activation on recurrent dendro-dendritic inhibition in mitral cells using whole-cell patch-clamp recordings. Adenosine reduced dendro-dendritic inhibition in wild-type, but not in A1 receptor knock-out mice. Both NMDA receptor-mediated and AMPA receptor-mediated dendro-dendritic inhibition were attenuated by adenosine, indicating that reciprocal synapses between mitral cells and granule cells as well as parvalbumin interneurons were targeted by A1 receptors. Adenosine reduced glutamatergic self-excitation and inhibited N-type and P/Q-type calcium currents, but not L-type calcium currents in mitral cells. Attenuated glutamate release, due to A1 receptor-mediated calcium channel inhibition, resulted in impaired dendro-dendritic inhibition. In behavioral tests we tested the ability of wild-type and A1 receptor knock-out mice to find a hidden piece of food. Knock-out mice were significantly faster in locating the food. Our results indicate that A1 adenosine receptors attenuates dendro-dendritic reciprocal inhibition and suggest that they affect odor information processing.
Collapse
Affiliation(s)
- Kristina Schulz
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Katarzyna Grzelka
- Department of Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Jan Benz
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Kerkhofs A, Xavier AC, da Silva BS, Canas PM, Idema S, Baayen JC, Ferreira SG, Cunha RA, Mansvelder HD. Caffeine Controls Glutamatergic Synaptic Transmission and Pyramidal Neuron Excitability in Human Neocortex. Front Pharmacol 2018; 8:899. [PMID: 29354052 PMCID: PMC5758559 DOI: 10.3389/fphar.2017.00899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Caffeine is the most widely used psychoactive drug, bolstering attention and normalizing mood and cognition, all functions involving cerebral cortical circuits. Whereas studies in rodents showed that caffeine acts through the antagonism of inhibitory A1 adenosine receptors (A1R), neither the role of A1R nor the impact of caffeine on human cortical neurons is known. We here provide the first characterization of the impact of realistic concentrations of caffeine experienced by moderate coffee drinkers (50 μM) on excitability of pyramidal neurons and excitatory synaptic transmission in the human temporal cortex. Moderate concentrations of caffeine disinhibited several of the inhibitory A1R-mediated effects of adenosine, similar to previous observations in the rodent brain. Thus, caffeine restored the adenosine-induced decrease of both intrinsic membrane excitability and excitatory synaptic transmission in the human pyramidal neurons through antagonism of post-synaptic A1R. Indeed, the A1R-mediated effects of endogenous adenosine were more efficient to inhibit synaptic transmission than neuronal excitability. This was associated with a distinct affinity of caffeine for synaptic versus extra-synaptic human cortical A1R, probably resulting from a different molecular organization of A1R in human cortical synapses. These findings constitute the first neurophysiological description of the impact of caffeine on pyramidal neuron excitability and excitatory synaptic transmission in the human temporal cortex, providing adequate ground for the effects of caffeine on cognition in humans.
Collapse
Affiliation(s)
- Amber Kerkhofs
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana C Xavier
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Beatriz S da Silva
- Portuguese National Institute of Legal Medicine and Forensic Sciences, Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sander Idema
- Department of Neurosurgery, Neuroscience Amsterdam, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Neuroscience Amsterdam, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Samira G Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Evidence for astrocyte purinergic signaling in cortical sensory adaptation and serotonin-mediated neuromodulation. Mol Cell Neurosci 2017; 88:53-61. [PMID: 29277734 DOI: 10.1016/j.mcn.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022] Open
Abstract
In the somatosensory cortex, inhibitory networks are involved in low frequency sensory input adaptation/habituation that can be observed as a paired-pulse depression when using a dual stimulus electrophysiological paradigm. Given that astrocytes have been shown to regulate inhibitory interneuron activity, we hypothesized that astrocytes are involved in cortical sensory adaptation/habituation and constitute effectors of the 5HT-mediated increase in frequency transmission. Using extracellular recordings of evoked excitatory postsynaptic potentials (eEPSPs) in layer II/III of somatosensory cortex, we used various pharmacological approaches to assess the recruitment of astrocyte signaling in paired-pulse depression and serotonin-mediated increase in the paired-pulse ratio (pulse 2/pulse 1). In the absence of neuromodulators or pharmacological agents, the first eEPSP is much larger in amplitude than the second due to the recruitment of long-lasting evoked GABAA-dependent inhibitory activity from the first stimulus. Disruption of glycolysis or mGluR5 signaling resulted in a very similar loss of paired-pulse depression in field recordings. Interestingly, paired-pulse depression was similarly sensitive to disruption by ATP P2Y and adenosine A2A receptor antagonists. In addition, we show that pharmacological disruption of paired-pulse depression by mGluR5, P2Y, and glycolysis inhibition precluded serotonin effects on frequency transmission (typically increased the paired-pulse ratio). These data highlight the possibility for astrocyte involvement in cortical inhibitory activity seen in this simple cortical network and that serotonin may act on astrocytes to exert some aspects of its modulatory influence.
Collapse
|
34
|
Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA, Sebastião AM. Chronic and acute adenosine A 2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB 1 receptor activation. Neuropharmacology 2017; 117:316-327. [PMID: 28235548 DOI: 10.1016/j.neuropharm.2017.02.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/17/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022]
Abstract
Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/administration & dosage
- Animals
- Benzoxazines/pharmacology
- Calcium Channel Blockers/pharmacology
- Cannabinoid Receptor Agonists/toxicity
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory Disorders/chemically induced
- Memory Disorders/metabolism
- Memory Disorders/prevention & control
- Memory, Episodic
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Purines/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Adenosine A2A/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Triazoles/administration & dosage
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Younis Baqi
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Christa E Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
35
|
Rombo DM, Ribeiro JA, Sebastião AM. Hippocampal GABAergic transmission: a new target for adenosine control of excitability. J Neurochem 2016; 139:1056-1070. [PMID: 27778347 DOI: 10.1111/jnc.13872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023]
Abstract
Physiological network functioning in the hippocampus is dependent on a balance between glutamatergic cell excitability and the activity of diverse local circuit neurons that release the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Tuners of neuronal communication such as adenosine, an endogenous modulator of synapses, control hippocampal network operations by regulating excitability. Evidence has been recently accumulating on the influence of adenosine on different aspects of GABAergic transmission to shape hippocampal function. This review addresses how adenosine, through its high-affinity A1 (A1 R) and A2A receptors (A2A R), interferes with different GABA-mediated forms of inhibition in the hippocampus to regulate neuronal excitability. Adenosine-mediated modulation of phasic/tonic inhibitory transmission, of GABA transport mechanisms and its interference with other modulatory systems are discussed together with the putative implications for neuronal function in physiological and pathological conditions. This article is part of a mini review series: 'Synaptic Function and Dysfunction in Brain Diseases'.
Collapse
Affiliation(s)
- Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
36
|
Barros-Barbosa AR, Ferreirinha F, Oliveira Â, Mendes M, Lobo MG, Santos A, Rangel R, Pelletier J, Sévigny J, Cordeiro JM, Correia-de-Sá P. Adenosine A 2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE). Purinergic Signal 2016; 12:719-734. [PMID: 27650530 PMCID: PMC5124012 DOI: 10.1007/s11302-016-9535-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5'-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5'-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.
Collapse
Affiliation(s)
- Aurora R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ângela Oliveira
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Marina Mendes
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Graça Lobo
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Agostinho Santos
- Serviço de Patologia Forense, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Norte (INMLCF-DN), Porto, Portugal
| | - Rui Rangel
- Serviço de Neurocirurgia, Centro Hospitalar do Porto-Hospital Geral de Santo António (CHP-HGSA), Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, QC, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, QC, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médicine, Université Laval, QC, Québec, Canada
| | - J Miguel Cordeiro
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
37
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
38
|
Viana da Silva S, Haberl MG, Zhang P, Bethge P, Lemos C, Gonçalves N, Gorlewicz A, Malezieux M, Gonçalves FQ, Grosjean N, Blanchet C, Frick A, Nägerl UV, Cunha RA, Mulle C. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors. Nat Commun 2016; 7:11915. [PMID: 27312972 PMCID: PMC4915032 DOI: 10.1038/ncomms11915] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/12/2016] [Indexed: 01/24/2023] Open
Abstract
Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/pharmacology
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/pathology
- Dendritic Spines/drug effects
- Dendritic Spines/metabolism
- Dendritic Spines/ultrastructure
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Long-Term Potentiation
- Memory, Episodic
- Mice
- Mice, Transgenic
- Neuroprotective Agents/pharmacology
- Presenilin-1/genetics
- Presenilin-1/metabolism
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction
- Synapses/drug effects
- Synapses/metabolism
- Synapses/ultrastructure
- Triazines/pharmacology
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Silvia Viana da Silva
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
- BEB PhD program CNC Coimbra, 3004-517 Coimbra, Portugal
| | | | - Pei Zhang
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Philipp Bethge
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Adam Gorlewicz
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Meryl Malezieux
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Francisco Q. Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Noëlle Grosjean
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Christophe Blanchet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Andreas Frick
- University of Bordeaux, Neurocentre Magendie, INSERM U862, F-33000 Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
39
|
BDNF-induced presynaptic facilitation of GABAergic transmission in the hippocampus of young adults is dependent of TrkB and adenosine A2A receptors. Purinergic Signal 2016; 12:283-94. [PMID: 26897393 DOI: 10.1007/s11302-016-9502-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/10/2016] [Indexed: 01/03/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10-100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75(NTR) blockade (anti-p75(NTR) IgG, 50 μg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation.
Collapse
|
40
|
Kouvaros S, Papatheodoropoulos C. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors. Neuroscience 2016; 317:47-64. [PMID: 26762803 DOI: 10.1016/j.neuroscience.2015.12.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Abstract
Recent research points to diversification in the local neuronal circuitry between dorsal (DH) and ventral (VH) hippocampus that may be involved in the large-scale functional segregation along the long axis of the hippocampus. Here, using CA1 field recordings from rat hippocampal slices, we show that activation of N-methyl-d-aspartate receptors (NMDARs) reduced excitatory transmission more in VH than in DH, with an adenosine A1 receptor-independent mechanism, and reduced inhibition and enhanced postsynaptic excitability only in DH. Strikingly, co-activation of metabotropic glutamate receptor-5 (mGluR5) with NMDAR, by CHPG and NMDA respectively, strongly potentiated the effects of NMDAR in DH but had not any potentiating effect in VH. Furthermore, the synergistic actions in DH were occluded by blockade of adenosine A2A receptors (A2ARs) by their antagonist ZM 241385 demonstrating a tonic action of these receptors in DH. Exogenous activation of A2ARs by 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680) did not change the effects of mGluR5-NMDAR co-activation in either hippocampal pole. Importantly, blockade of cannabinoid CB1 receptors (CB1Rs) by their antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281) restricted the synergistic actions of mGluR5-NMDARs on excitatory synaptic transmission and postsynaptic excitability and abolished their effect on inhibition. Furthermore, AM 281 increased the excitatory transmission only in DH indicating that CB1Rs were tonically active in DH but not VH. Removing the magnesium ions from the perfusion medium neither stimulated the interaction between mGluR5 and NMDAR in VH nor augmented the synergy of the two receptors in DH. These findings show that the NMDAR-dependent modulation of fundamental parameters of the local neuronal network, by mGluR5, A2AR and CB1R, markedly differs between DH and VH. We propose that the higher modulatory role of A2AR and mGluR5, in combination with the role of CB1Rs, provide DH with higher functional flexibility of its NMDARs, compared with VH.
Collapse
Affiliation(s)
- S Kouvaros
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece
| | - C Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece.
| |
Collapse
|
41
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
42
|
Adenosine A2A receptor activation is determinant for BDNF actions upon GABA and glutamate release from rat hippocampal synaptosomes. Purinergic Signal 2015; 11:607-12. [PMID: 26452489 DOI: 10.1007/s11302-015-9476-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/28/2015] [Indexed: 01/07/2023] Open
Abstract
Adenosine, through A(2A) receptor (A(2A)R) activation, can act as a metamodulator, controlling the actions of other modulators, as brain-derived neurotrophic factor (BDNF). Most of the metamodulatory actions of adenosine in the hippocampus have been evaluated in excitatory synapses. However, adenosine and BDNF can also influence GABAergic transmission. We thus evaluated the role of A(2A)R on the modulatory effect of BDNF upon glutamate and GABA release from isolated hippocampal nerve terminals (synaptosomes). BDNF (30 ng/ml) enhanced K(+)-evoked [(3)H]glutamate release and inhibited the K(+)-evoked [(3)H]GABA release from synaptosomes. The effect of BDNF on both glutamate and GABA release requires tonic activation of adenosine A(2A)R since for both neurotransmitters, the BDNF action was blocked by the A(2A)R antagonist SCH 58261 (50 nM). In the presence of the A(2A)R agonist, CGS21680 (30 nM), the effect of BDNF on either glutamate or GABA release was, however, not potentiated. It is concluded that both the inhibitory actions of BDNF on GABA release as well as the facilitatory action of the neurotrophin on glutamate release are dependent on the activation of adenosine A(2A)R by endogenous adenosine. However, these actions could not be further enhanced by exogenous activation of A(2A)R.
Collapse
|
43
|
Sebastião AM, Ribeiro JA. Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Res 2014; 1621:102-13. [PMID: 25446444 DOI: 10.1016/j.brainres.2014.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023]
Abstract
Synaptic plasticity mechanisms, i.e. the sequence of events that underlies persistent changes in synaptic strength as a consequence of transient alteration in neuronal firing, are greatly influenced by the 'chemical atmosphere' of the synapses, that is to say by the presence of molecules at the synaptic cleft able to fine-tune the activity of other molecules more directly related to plasticity. One of those fine tuners is adenosine, known for a long time as an ubiquitous neuromodulator and metamodulator and recognized early as influencing synaptic plasticity. In this review we will refer to the mechanisms that adenosine can use to affect plasticity, emphasizing aspects of the neurobiology of adenosine relevant to its ability to control synaptic functioning. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|