1
|
Dey R, Chattarji S. The same stress elicits different effects on anxiety-like behavior in rat models of Fmr1 and Pten. Behav Brain Res 2022; 428:113892. [DOI: 10.1016/j.bbr.2022.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
|
2
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
3
|
Saxena K, Chakraborty P, Chattarji S. The same stress has divergent effects on social versus asocial manifestations of anxiety-like behavior over time. Stress 2021; 24:474-480. [PMID: 33238791 DOI: 10.1080/10253890.2020.1855421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stress may lead to augmented anxiety, which may, with time culminate in some form of anxiety disorder. Behavioral alterations related to increased anxiety can be broadly classified into two types-social, affecting interactions between individuals, and self-oriented, affecting the anxious individual only. While a growing body of literature now exists describing the effects of stress-induced anxiety on self-oriented behavior in animal models of anxiety disorders, the effects of such aberrant anxiety on social behavior has largely remained uncharacterized in these models. This study aims to fill this gap in our understanding by examining changes in social behavior following a single 2-hour episode of immobilization stress, which has been shown to cause delayed structural and functional changes in the amygdala. To this end, we examined social behavior, measured as active social interactions, anogenital sniffing, nose-to-nose contacts, allogrooming, actively following and crawling under, as well as self-oriented asocial behavior, manifested as self-grooming and rearing, in adult male rats. Stressed animals showed reduced social interaction 1 day after immobilization stress and this decrease was persistent for at least 10 days after stress. In contrast, individualistic behaviors were impaired only 10 days, but not 1 day later. Together, these results not only show that the same single episode of stress can elicit divergent effects on social and asocial measures of anxiety in the same animal, but also suggest that enhanced social anxiety soon after stress may also serve as an early indicator of its delayed behavioral effects.
Collapse
Affiliation(s)
- Kapil Saxena
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Sumantra Chattarji
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- National Centre for Biological Sciences, Bangalore, India
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
4
|
Szczepankiewicz D, Celichowski P, Kołodziejski PA, Pruszyńska-Oszmałek E, Sassek M, Zakowicz P, Banach E, Langwiński W, Sakrajda K, Nowakowska J, Socha M, Bukowska-Olech E, Pawlak J, Twarowska-Hauser J, Nogowski L, Rybakowski JK, Szczepankiewicz A. Transcriptome Changes in Three Brain Regions during Chronic Lithium Administration in the Rat Models of Mania and Depression. Int J Mol Sci 2021; 22:1148. [PMID: 33498969 PMCID: PMC7865310 DOI: 10.3390/ijms22031148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Lithium has been the most important mood stabilizer used for the treatment of bipolar disorder and prophylaxis of manic and depressive episodes. Despite long use in clinical practice, the exact molecular mechanisms of lithium are still not well identified. Previous experimental studies produced inconsistent results due to different duration of lithium treatment and using animals without manic-like or depressive-like symptoms. Therefore, we aimed to analyze the gene expression profile in three brain regions (amygdala, frontal cortex and hippocampus) in the rat model of mania and depression during chronic lithium administration (2 and 4 weeks). Behavioral changes were verified by the forced swim test, open field test and elevated maze test. After the experiment, nucleic acid was extracted from the frontal cortex, hippocampus and amygdala. Gene expression profile was done using SurePrint G3 Rat Gene Expression whole transcriptome microarrays. Data were analyzed using Gene Spring 14.9 software. We found that chronic lithium treatment significantly influenced gene expression profile in both mania and depression models. In manic rats, chronic lithium treatment significantly influenced the expression of the genes enriched in olfactory and taste transduction pathway and long non-coding RNAs in all three brain regions. We report here for the first time that genes regulating olfactory and taste receptor pathways and long non-coding RNAs may be targeted by chronic lithium treatment in the animal model of mania.
Collapse
Affiliation(s)
- Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Przemysław Zakowicz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (P.Z.); (J.P.); (J.T.-H.)
| | - Ewa Banach
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Poland;
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| | - Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| | - Magdalena Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.S.); (E.B.-O.)
| | - Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.S.); (E.B.-O.)
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (P.Z.); (J.P.); (J.T.-H.)
| | - Joanna Twarowska-Hauser
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (P.Z.); (J.P.); (J.T.-H.)
| | - Leszek Nogowski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Janusz K. Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| |
Collapse
|
5
|
Chakraborty P, Datta S, McEwen BS, Chattarji S. Corticosterone after acute stress prevents the delayed effects on the amygdala. Neuropsychopharmacology 2020; 45:2139-2146. [PMID: 32629457 PMCID: PMC7784883 DOI: 10.1038/s41386-020-0758-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Abstract
Even a single 2-hour episode of immobilization stress is known to trigger anxiety-like behavior and increase spine-density in the basolateral amygdala (BLA) of rats 10 days later. This delayed build-up of morphological and behavioral effects offers a stress-free time window of intervention after acute stress, which we used to test a protective role for glucocorticoids against stress. We observed that post-stress corticosterone, given 1 day after acute stress in drinking water, reversed enhanced anxiety-like behavior 10 days later. Quantification of spine-density on Golgi-stained BLA principal neurons showed that the same intervention also prevented the increase in spine numbers in the amygdala, at the same delayed time-point. Further, stress elevated serum corticosterone levels in rats that received vehicle in the drinking water. However, when stress was followed 24 h later by corticosterone in the drinking water, the surge in corticosterone was prevented. Together, these observations suggest that corticosterone, delivered through drinking water even 24 h after acute stress, is capable of reversing the delayed enhancing effects on BLA synaptic connectivity and anxiety-like behavior. Strikingly, although the immobilization-induced surge in corticosterone by itself has delayed detrimental effects on amygdalar structure and function, there exists a window of opportunity even after stress to mitigate its impact with a second surge of exogenously administered corticosterone. This provides a framework in the amygdala for analyzing how the initial physiological and endocrine processes triggered by traumatic stress eventually give rise to debilitating emotional symptoms, as well as the protective effects of glucocorticoids against their development.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- National Centre for Biological Sciences, Bangalore, 560065, India
- Institut de Genomique Fonctionnelle, Inserm U1191, CNRS UMR5203, University of Montpellier, Montpellier, 34090, France
| | - Siddhartha Datta
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, 560065, India.
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India.
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA.
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH89XD, UK.
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
6
|
Sun B, Jia X, Yang F, Ren G, Wu X. CREB-mediated generation and neuronal growth regulates the behavioral improvement of geniposide in diabetes-associated depression mouse model. Neurosci Res 2020; 165:38-44. [PMID: 32428538 DOI: 10.1016/j.neures.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Metabolic disorder particularly diabetes is one of the leading causes of psychiatric or other neurodegenerative diseases. Previous clinical and pre-clinical studies indicate anti-diabetic drugs such as GLP-1 analogs or GLP-1 receptor (GLP-1R) agonists could perform the neuroprotective effects with multiple molecular mechanisms. As one of natural compound to stimulate GLP-1R, geniposide was reported could improve cognitive behaviors in diabetes associated Alzheimer's disease rat model. Stimulating of GLP-1R could act the crosstalk downstream like neurotrophic factor mediated cAMP-response element binding protein (CREB) would be activated and exert cellular events including promotion of adult neurogenesis, which is one of important treatment targets in antidepressant. Here in this study, we employed HDF in combined with corticosterone (CORT) treatment to create diabetes associated depression model. Geniposide treatment could not only correct the metabolic pattern but could also improve the cognitive dysfunctions and depressive/anxiety symptoms. In consistent with its pro-neurogenic effects, geniposide also enhanced the activity of CREB in hippocampal tissue. Moreover, blocking CREB activity with 666-15 significantly compromised the effects of geniposide in promotion of neurogenesis and behavioral protective effects. In conclusion, this study expands the application of geniposide to treat diabetes associated depression subject and identified the underlying molecular mechanism for such effects.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neurology, General Hospital of TISCO, Taiyuan, China
| | - Xiayan Jia
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fei Yang
- Department of Neurology, General Hospital of TISCO, Taiyuan, China
| | - Guoyong Ren
- Department of Neurology, General Hospital of TISCO, Taiyuan, China
| | - Xuemei Wu
- Department of Neurology, General Hospital of TISCO, Taiyuan, China.
| |
Collapse
|
7
|
Interventions after acute stress prevent its delayed effects on the amygdala. Neurobiol Stress 2019; 10:100168. [PMID: 31193585 PMCID: PMC6535648 DOI: 10.1016/j.ynstr.2019.100168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022] Open
Abstract
Stress is known to elicit contrasting patterns of plasticity in the amygdala and hippocampus. While chronic stress leads to neuronal atrophy in the rodent hippocampus, it has the opposite effect in the basolateral amygdala (BLA). Further, even a single episode of acute stress is known to elicit delayed effects in the amygdala. For example, 2 h of immobilisation stress has been shown to cause a delayed increase in dendritic spine density on BLA principal neurons 10 days later in young rats. This is paralleled by higher anxiety-like behaviour at the same delayed time point. This temporal build-up of morphological and behavioural effects 10 days later, in turn, provides a stress-free time window of intervention after exposure to acute stress. Here, we explore this possibility by specifically testing the efficacy of an anxiolytic drug in reversing the delayed effects of acute immobilisation stress. Oral gavage of diazepam 1 h after immobilisation stress prevented the increase in anxiety-like behaviour on the elevated plus-maze 10 days later. The same post-stress intervention also prevented delayed spinogenesis in the BLA 10 days after acute stress. Surprisingly, gavage of only the vehicle also had a protective effect on both the behavioural and synaptic effects of stress 10 days later. Vehicle gavage was found to trigger a significant rise in corticosterone levels that was comparable to that elicited by acute stress. This suggests that a surge in corticosterone levels, caused by the vehicle gavage 1 h after acute stress, was capable of reversing the delayed enhancing effects of stress on anxiety-like behaviour and BLA synaptic connectivity. These findings are consistent with clinical reports on the protective effects of glucocorticoids against the development of symptoms of post-traumatic stress disorder. Taken together, these results reveal strategies, targeted 1 h after stress, which can prevent the delayed effects of a brief exposure to a severe physical stressor. Acute immobilisation stress increases anxiety and BLA spinogenesis 10 days later. Oral gavage of diazepam 1 h after stress prevents both these delayed effects. Oral gavage of vehicle also has a similar protective effect on anxiety and spines. Vehicle-gavage administration leads to an increase in levels of corticosterone. This post-stress corticosterone surge may have prevented stress-effects 10 days later.
Collapse
|
8
|
Stress Elicits Contrasting Effects on the Structure and Number of Astrocytes in the Amygdala versus Hippocampus. eNeuro 2019; 6:eN-NWR-0338-18. [PMID: 30783612 PMCID: PMC6378323 DOI: 10.1523/eneuro.0338-18.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 01/08/2023] Open
Abstract
Stress causes divergent patterns of structural and physiological plasticity in the hippocampus versus amygdala. However, a majority of earlier studies focused primarily on neurons. Despite growing evidence for the importance of glia in health and disease, relatively little is known about how stress affects astrocytes. Further, previous work focused on hippocampal astrocytes. Hence, we examined the impact of chronic immobilization stress (2 h/d, 10 d), on the number and structure of astrocytes in the rat hippocampus and amygdala. We observed a reduction in the number of glial fibrillary acidic protein (GFAP)-positive astrocytes in the basal amygdala (BA), 1 d after the end of 10 d of chronic stress. Detailed morphometric analysis of individual dye-filled astrocytes also revealed a decrease in the neuropil volume occupied by these astrocytes in the BA, alongside a reduction in the volume fraction of fine astrocytic protrusions rather than larger dendrite-like processes. By contrast, the same chronic stress had no effect on the number or morphology of astrocytes in hippocampal area CA3. We also confirmed previous reports that chronic stress triggers dendritic hypertrophy in dye-filled BA principal neurons that were located adjacent to astrocytes that had undergone atrophy. Thus, building on earlier evidence for contrasting patterns of stress-induced plasticity in neurons across brain areas, our findings offer new evidence that the same stress can also elicit divergent morphological effects in astrocytes in the hippocampus versus the amygdala.
Collapse
|