1
|
Gardner RS, Ambalavanar MT, Gold PE, Korol DL. Enhancement of response learning in male rats with intrastriatal infusions of a BDNF - TrkB agonist, 7,8-dihydroxyflavone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606692. [PMID: 39211174 PMCID: PMC11360987 DOI: 10.1101/2024.08.08.606692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enhancement of learning and memory by cognitive and physical exercise may be mediated by brain-derived neurotrophic factor (BDNF) acting at tropomyosin receptor kinase B (TrkB). Upregulation of BDNF and systemic administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), enhance learning of several hippocampus-sensitive tasks in rodents. Although BDNF and 7,8-DHF enhance functions of other brain areas too, these effects have mainly targeted non-cognitive functions. One goal of the present study was to determine whether 7,8-DHF would act beyond the hippocampus to enhance cognitive functions sensitive to manipulations of the striatum. Here, we examined the effects of intrastriatal infusions of 7,8-DHF on learning a striatum-sensitive response maze and on phosphorylation of TrkB receptors in 3-month-old male Sprague Dawley rats. Most prior studies of BDNF and 7,8-DHF effects on learning and memory have administered the drugs for days to months before assessing effects on cognition. A second goal of the present study was to determine whether a single drug treatment near the time of training would effectively enhance learning. Moreover, 7,8-DHF is often tested for its ability to reverse impairments in learning and memory rather than to enhance these functions in the absence of impairments. Thus, a third goal of this experiment was to evaluate the efficacy of 7,8-DHF in enhancing learning in unimpaired rats. In untrained rats, intrastriatal infusions of 7,8-DHF resulted in phosphorylation of TrkB receptors, suggesting that 7,8-DHF acted as a TrkB agonist and BDNF mimic. The findings that a single, intra-striatal infusion of 7,8-DHF 20 min before training enhanced response learning in rats suggest that, in addition to its trophic effects, BDNF modulates learning and memory through receptor mediated cell signaling events.
Collapse
|
2
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
3
|
Lee Y, Park JY, Lee JJ, Gim J, Do AR, Jo J, Park J, Kim K, Park K, Jin H, Choi KY, Kang S, Kim H, Kim S, Moon SH, Farrer LA, Lee KH, Won S. Heritability of cognitive abilities and regional brain structures in middle-aged to elderly East Asians. Cereb Cortex 2023; 33:6051-6062. [PMID: 36642501 PMCID: PMC10183741 DOI: 10.1093/cercor/bhac483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/17/2023] Open
Abstract
This study examined the single-nucleotide polymorphism heritability and genetic correlations of cognitive abilities and brain structural measures (regional subcortical volume and cortical thickness) in middle-aged and elderly East Asians (Korean) from the Gwangju Alzheimer's and Related Dementias cohort study. Significant heritability was found in memory function, caudate volume, thickness of the entorhinal cortices, pars opercularis, superior frontal gyri, and transverse temporal gyri. There were 3 significant genetic correlations between (i) the caudate volume and the thickness of the entorhinal cortices, (ii) the thickness of the superior frontal gyri and pars opercularis, and (iii) the thickness of the superior frontal and transverse temporal gyri. This is the first study to describe the heritability and genetic correlations of cognitive and neuroanatomical traits in middle-aged to elderly East Asians. Our results support the previous findings showing that genetic factors play a substantial role in the cognitive and neuroanatomical traits in middle to advanced age. Moreover, by demonstrating shared genetic effects on different brain regions, it gives us a genetic insight into understanding cognitive and brain changes with age, such as aging-related cognitive decline, cortical atrophy, and neural compensation.
Collapse
Affiliation(s)
- Younghwa Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jun Young Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jang Jae Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Ah Ra Do
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Jinyeon Jo
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Juhong Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kangjin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Sarang Kang
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Hoowon Kim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
| | - Lindsay A Farrer
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- RexSoft Inc., Seoul, Korea
| |
Collapse
|
4
|
Nyberg L, Andersson M, Lundquist A, Baaré WFC, Bartrés-Faz D, Bertram L, Boraxbekk CJ, Brandmaier AM, Demnitz N, Drevon CA, Duezel S, Ebmeier KP, Ghisletta P, Henson R, Jensen DEA, Kievit RA, Knights E, Kühn S, Lindenberger U, Plachti A, Pudas S, Roe JM, Madsen KS, Solé-Padullés C, Sommerer Y, Suri S, Zsoldos E, Fjell AM, Walhovd KB. Individual differences in brain aging: heterogeneity in cortico-hippocampal but not caudate atrophy rates. Cereb Cortex 2023; 33:5075-5081. [PMID: 36197324 PMCID: PMC10151879 DOI: 10.1093/cercor/bhac400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
It is well documented that some brain regions, such as association cortices, caudate, and hippocampus, are particularly prone to age-related atrophy, but it has been hypothesized that there are individual differences in atrophy profiles. Here, we document heterogeneity in regional-atrophy patterns using latent-profile analysis of 1,482 longitudinal magnetic resonance imaging observations. The results supported a 2-group solution reflecting differences in atrophy rates in cortical regions and hippocampus along with comparable caudate atrophy. The higher-atrophy group had the most marked atrophy in hippocampus and also lower episodic memory, and their normal caudate atrophy rate was accompanied by larger baseline volumes. Our findings support and refine models of heterogeneity in brain aging and suggest distinct mechanisms of atrophy in striatal versus hippocampal-cortical systems.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences (Radiology), Umeå University, 901 87 Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Department of Statistics, USBE, Umeå University, Umeå S-90187, Sweden
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, 2650 Copenhagen, Denmark
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institut de Neurociències, Universitat de Barcelona, and Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Lars Bertram
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences (Radiology), Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, 2650 Copenhagen, Denmark
- Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, 2400 Copenhagen, Denmark
- Department of Neurology, Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- MSB Medical School Berlin, 14197 Berlin, Germany
- Max Plank UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany, and London, UK
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, 2650 Copenhagen, Denmark
| | - Christian A Drevon
- Vitas AS, Science Park, 0349 Oslo, Norway
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo Norway
| | - Sandra Duezel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, OX3 7JX Oxford, UK
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, 1204 Geneva, Switzerland
- UniDistance Suisse, 3900 Brig, Switzerland
- Swiss National Centre of Competence in Research LIVES, University of Geneva, 1204 Geneva, Switzerland
| | - Richard Henson
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, England
| | - Daria E A Jensen
- Department of Psychiatry, University of Oxford, OX3 7JX Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, University of Oxford, OX3 9DU Oxford, UK
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Ethan Knights
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, England
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development & Clinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Max Plank UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany, and London, UK
| | - Anna Plachti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, 2650 Copenhagen, Denmark
| | - Sara Pudas
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, 2650 Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, 2200 Copenhagen N, Denmark
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institut de Neurociències, Universitat de Barcelona, and Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
| | - Sana Suri
- Department of Psychiatry, University of Oxford, OX3 7JX Oxford, UK
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, OX3 7JX Oxford, UK
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Center for Computational Radiology and Artificial Intelligence, Oslo University Hospital, 0373 Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Center for Computational Radiology and Artificial Intelligence, Oslo University Hospital, 0373 Oslo, Norway
| |
Collapse
|
5
|
West GL, Patai ZE, Coutrot A, Hornberger M, Bohbot VD, Spiers HJ. Landmark-dependent Navigation Strategy Declines across the Human Life-Span: Evidence from Over 37,000 Participants. J Cogn Neurosci 2023; 35:452-467. [PMID: 36603038 DOI: 10.1162/jocn_a_01956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humans show a remarkable capacity to navigate various environments using different navigation strategies, and we know that strategy changes across the life span. However, this observation has been based on studies of small sample sizes. To this end, we used a mobile app-based video game (Sea Hero Quest) to test virtual navigation strategies and memory performance within a distinct radial arm maze level in over 37,000 participants. Players were presented with six pathways (three open and three closed) and were required to navigate to the three open pathways to collect a target. Next, all six pathways were made available and the player was required to visit the pathways that were previously unavailable. Both reference memory and working memory errors were calculated. Crucially, at the end of the level, the player was asked a multiple-choice question about how they found the targets (i.e., a counting-dependent strategy vs. a landmark-dependent strategy). As predicted from previous laboratory studies, we found the use of landmarks declined linearly with age. Those using landmark-based strategies also performed better on reference memory than those using a counting-based strategy. These results extend previous observations in the laboratory showing a decreased use of landmark-dependent strategies with age.
Collapse
Affiliation(s)
| | - Zita Eva Patai
- University College London, United Kingdom.,King's College London, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Jiang J, Sheng C, Chen G, Liu C, Jin S, Li L, Jiang X, Han Y. Glucose metabolism patterns: A potential index to characterize brain ageing and predict high conversion risk into cognitive impairment. GeroScience 2022; 44:2319-2336. [PMID: 35581512 PMCID: PMC9616982 DOI: 10.1007/s11357-022-00588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/28/2022] Open
Abstract
Exploring individual hallmarks of brain ageing is important. Here, we propose the age-related glucose metabolism pattern (ARGMP) as a potential index to characterize brain ageing in cognitively normal (CN) elderly people. We collected 18F-fluorodeoxyglucose (18F-FDG) PET brain images from two independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 127) and the Xuanwu Hospital of Capital Medical University, Beijing, China (N = 84). During follow-up (mean 80.60 months), 23 participants in the ADNI cohort converted to cognitive impairment. ARGMPs were identified using the scaled subprofile model/principal component analysis method, and cross-validations were conducted in both independent cohorts. A survival analysis was further conducted to calculate the predictive effect of conversion risk by using ARGMPs. The results showed that ARGMPs were characterized by hypometabolism with increasing age primarily in the bilateral medial superior frontal gyrus, anterior cingulate and paracingulate gyri, caudate nucleus, and left supplementary motor area and hypermetabolism in part of the left inferior cerebellum. The expression network scores of ARGMPs were significantly associated with chronological age (R = 0.808, p < 0.001), which was validated in both the ADNI and Xuanwu cohorts. Individuals with higher network scores exhibited a better predictive effect (HR: 0.30, 95% CI: 0.1340 ~ 0.6904, p = 0.0068). These findings indicate that ARGMPs derived from CN participants may represent a novel index for characterizing brain ageing and predicting high conversion risk into cognitive impairment.
Collapse
Affiliation(s)
- Jiehui Jiang
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China.
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Guanqun Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chunhua Liu
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Shichen Jin
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Lanlan Li
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueyan Jiang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- German Centre for Neurodegenerative Disease, Clinical Research Group, Venusberg Campus 1, 53121, Bonn, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Centre of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Clinical Research Centre for Geriatric Disorders, Beijing, 100053, China.
| |
Collapse
|
7
|
Aguilar-Latorre A, Romera-Nicolás V, Gimeno E, Chamizo VD. Previous Experience Seems Crucial to Eliminate the Sex Gap in Geometry Learning When Solving a Navigation Task in Rats (Rattus norvegicus). Front Psychol 2022; 13:838407. [PMID: 35615166 PMCID: PMC9125034 DOI: 10.3389/fpsyg.2022.838407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
There is much evidence, both in humans and rodents, that while navigating males tend to use geometric information whereas females rely more on landmarks. The present work attempts to alter the geometry bias in female rats. In Experiment 1 three groups of female rats were trained in a triangular-shaped pool to find a hidden platform, whose location was defined in terms of two sources of information, a landmark outside the pool and a particular corner of the pool. On a subsequent test trial with the triangular pool and no landmark, females with prior experience with two other pool shapes–with a kite-shaped pool and with a rectangular-shaped pool (Group Long Previous Experience, LPE), were significantly more accurate than control rats without such prior experience (Group No Previous Experience, NPE). Rats with a short previous experience–with the rectangular-shaped pool only (Group Short Previous Experience, SPE) did not differ from Group NPE. These results suggest that the previous experience with different shaped-pools could counteract the geometry bias in female rats. Then, Experiment 2A directly compared the performance of LPE males and females of Experiment 1, although conducting several test trials (i.e., shape, landmark, and preference). The differences between males and females disappeared in the three tests. Moreover, in a final test trial both males and females could identify the correct corner in an incomplete pool by its local, instead of global, properties. Finally, Experiment 2B compared the performance of NPE rats, males and females, of Experiment 1. On the test trial with the triangular pool and no landmark, males were significantly more accurate than females. The results are explained in the framework of selective attention.
Collapse
Affiliation(s)
- Alejandra Aguilar-Latorre
- Departament de Cognició, Desenvolupament i Psicologia de l’Educació, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Romera-Nicolás
- Departament de Cognició, Desenvolupament i Psicologia de l’Educació, Universitat de Barcelona, Barcelona, Spain
| | - Elisabet Gimeno
- Departament de Cognició, Desenvolupament i Psicologia de l’Educació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - V. D. Chamizo
- Departament de Cognició, Desenvolupament i Psicologia de l’Educació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: V. D. Chamizo,
| |
Collapse
|
8
|
Application of Real and Virtual Radial Arm Maze Task in Human. Brain Sci 2022; 12:brainsci12040468. [PMID: 35447999 PMCID: PMC9027137 DOI: 10.3390/brainsci12040468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Virtual Reality (VR) emerges as a promising technology capable of creating different scenarios in which the body, environment, and brain are closely related, proving enhancements in the diagnosis and treatment of several spatial memory deficits. In recent years, human spatial navigation has increasingly been studied in interactive virtual environments. However, navigational tasks are still not completely adapted in immersive 3D VR systems. We stipulate that an immersive Radial Arm Maze (RAM) is an excellent instrument, allowing the participants to be physically active within the maze exactly as in the walking RAM version in reality modality. RAM is a behavioral ecological task that allows the analyses of different facets of spatial memory, distinguishing declarative components from procedural ones. In addition to describing the characteristics of RAM, we will also analyze studies in which RAM has been used in virtual modality to provide suggestions into RAM building in immersive modality.
Collapse
|