1
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Reid HMO, Trepanier O, Gross A, Poberezhnyk P, Snowden T, Conway K, Breit KR, Rodriguez C, Thomas JD, Christie BR. Prenatal ethanol and cannabis exposure have sex- and region-specific effects on somatostatin and neuropeptide Y interneurons in the rat hippocampus. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1289-1301. [PMID: 38789401 PMCID: PMC11236510 DOI: 10.1111/acer.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Cannabis is increasingly being legalized and socially accepted around the world and is often used with alcohol in social settings. We recently showed that in utero exposure to both substances can alter the density of parvalbumin-expressing interneurons in the hippocampus. Here we investigate the effects of in utero alcohol and cannabis exposure, alone or in combination, on somatostatin- and neuropeptide Y-positive (NPY) interneurons. These are separate classes of interneurons important for network synchrony and inhibition in the hippocampus. METHODS A 2 (Ethanol, Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either ethanol or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry for somatostatin- and NPY-positive interneurons was performed in 50 μm tissue sections obtained at postnatal day 70. RESULTS Exposure to THC in utero had region-specific and sex-specific effects on the density of somatostatin-positive interneurons in the adult rat hippocampus. A female-specific decrease in NPY interneuron cell density was observed in the CA1 region following THC exposure. Combined exposure to alcohol and THC reduced NPY neurons selectively in the ventral dentate gyrus hippocampal subfield. However, overall, co-exposure to alcohol and cannabis had neither additive nor synergistic effects on interneuron populations in other areas of the hippocampus. CONCLUSIONS These results illustrate how alcohol and cannabis exposure in utero may affect hippocampal function by altering inhibitory processes in a sex-specific manner.
Collapse
Affiliation(s)
- Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Owen Trepanier
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| | - Allyson Gross
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Polina Poberezhnyk
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Taylor Snowden
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
| | - Kate Conway
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| | - Kristen R Breit
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
- Department of Psychology, West Chester University of Pennsylvania, West Chester, Pennsylvania, USA
| | - Cristina Rodriguez
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
| | - Jennifer D Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Canada, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
- Center for Behavioral Teratology, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Valeri J, O’Donovan SM, Wang W, Sinclair D, Bollavarapu R, Gisabella B, Platt D, Stockmeier C, Pantazopoulos H. Altered expression of somatostatin signaling molecules and clock genes in the hippocampus of subjects with substance use disorder. Front Neurosci 2022; 16:903941. [PMID: 36161151 PMCID: PMC9489843 DOI: 10.3389/fnins.2022.903941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders are a debilitating group of psychiatric disorders with a high degree of comorbidity with major depressive disorder. Sleep and circadian rhythm disturbances are commonly reported in people with substance use disorder and major depression and associated with increased risk of relapse. Hippocampal somatostatin signaling is involved in encoding and consolidation of contextual memories which contribute to relapse in substance use disorder. Somatostatin and clock genes also have been implicated in depression, suggesting that these molecules may represent key converging pathways involved in contextual memory processing in substance use and major depression. We used hippocampal tissue from a cohort of subjects with substance use disorder (n = 20), subjects with major depression (n = 20), subjects with comorbid substance use disorder and major depression (n = 24) and psychiatrically normal control subjects (n = 20) to test the hypothesis that expression of genes involved in somatostatin signaling and clock genes is altered in subjects with substance use disorder. We identified decreased expression of somatostatin in subjects with substance use disorder and in subjects with major depression. We also observed increased somatostatin receptor 2 expression in subjects with substance use disorder with alcohol in the blood at death and decreased expression in subjects with major depression. Expression of the clock genes Arntl, Nr1d1, Per2 and Cry2 was increased in subjects with substance use disorder. Arntl and Nr1d1 expression in comparison was decreased in subjects with major depression. We observed decreased expression of Gsk3β in subjects with substance use disorder. Subjects with comorbid substance use disorder and major depression displayed minimal changes across all outcome measures. Furthermore, we observed a significant increase in history of sleep disturbances in subjects with substance use disorder. Our findings represent the first evidence for altered somatostatin and clock gene expression in the hippocampus of subjects with substance use disorder and subjects with major depression. Altered expression of these molecules may impact memory consolidation and contribute to relapse risk.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sinead M. O’Donovan
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Wei Wang
- Department of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - David Sinclair
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Craig Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Harry Pantazopoulos,
| |
Collapse
|
4
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, Carito V, Tirassa P, Chaldakov GN, Messina MP, Ceccanti M, Fiore M. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 19:45-60. [PMID: 32348226 PMCID: PMC7903493 DOI: 10.2174/1570159x18666200429003239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
5
|
Bird CW, Taylor DH, Pinkowski NJ, Chavez GJ, Valenzuela CF. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure. Neuroscience 2018; 383:60-73. [PMID: 29753864 PMCID: PMC5994377 DOI: 10.1016/j.neuroscience.2018.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Devin H Taylor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Natalie J Pinkowski
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - G Jill Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Pereira PA, Rocha JP, Cardoso A, Vilela M, Sousa S, Madeira MD. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus. Neurotoxicology 2016; 54:153-160. [DOI: 10.1016/j.neuro.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/16/2016] [Accepted: 04/08/2016] [Indexed: 02/02/2023]
|
7
|
Jupp B, Krstew E, Dezsi G, Lawrence AJ. Discrete cue-conditioned alcohol-seeking after protracted abstinence: pattern of neural activation and involvement of orexin₁ receptors. Br J Pharmacol 2011; 162:880-9. [PMID: 20973776 DOI: 10.1111/j.1476-5381.2010.01088.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The enduring propensity for alcoholics to relapse even following years of abstinence presents a major hurdle for treatment. Here we report a model of relapse following protracted abstinence and investigate the pattern of neuronal activation following cue-induced reinstatement and administration of the orexin₁ receptor antagonist SB-334867 in inbred alcohol-preferring rats. EXPERIMENTAL APPROACH Rats were trained to self-administer alcohol under operant conditions and divided into two groups: immediate (reinstated immediately following extinction) and delayed (extinguished and then housed for 5 months before reinstatement). Prior to reinstatement, animals were treated with vehicle (immediate n= 11, delayed n= 11) or SB-334867 (20 mg·kg⁻¹ i.p.; immediate n= 6, delayed n= 11). Fos expression was compared between each group and to animals that underwent extinction only. KEY RESULTS SB-334867 significantly attenuated cue-induced reinstatement in both groups. Immediate reinstatement increased Fos expression in the nucleus accumbens (NAc), infra-limbic (IL), pre-limbic (PrL), orbitofrontal (OFC) and piriform cortices, the lateral and dorsomedial hypothalamus, central amygdala and basolateral amygdala (BLA), and the bed nucleus of the stria terminalis. Following delayed reinstatement, Fos expression was further elevated in cortical structures. Concurrent with preventing reinstatement, SB-334867 decreased Fos in NAc core, PrL and OFC following immediate reinstatement. Following protracted abstinence, SB-334867 treatment decreased reinstatement-induced Fos in the PrL, OFC and piriform cortices. CONCLUSIONS AND IMPLICATIONS Cue-induced alcohol seeking can be triggered following protracted abstinence in rats. The effects of SB-334867 on both behaviour and Fos expression suggest that the orexin system is implicated in cue-induced reinstatement, although some loci may shift following protracted abstinence.
Collapse
Affiliation(s)
- B Jupp
- Florey Neuroscience Institutes, The University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
8
|
Carneiro A, Assuncao M, Freitas VD, Paula-Barbosa MM, Andrade JP. Red Wine, but not Port Wine, Protects Rat Hippocampal Dentate Gyrus Against Ethanol-Induced Neuronal Damage--Relevance of the Sugar Content. Alcohol Alcohol 2008; 43:408-15. [DOI: 10.1093/alcalc/agn024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Abstract
The neuropeptide somatostatin (SST) is expressed in a discrete population of interneurons in the dentate gyrus. These interneurons have their soma in the hilus and project to the outer molecular layer onto dendrites of dentate granule cells, adjacent to perforant path input. SST-containing interneurons are very sensitive to excitotoxicty, and thus are vulnerable to a variety of neurological diseases and insults, including epilepsy, Alzheimer's disease, traumatic brain injury, and ischemia. The SST gene contains a prototypical cyclic AMP response element (CRE) site. Such a regulatory site confers activity-dependence to the gene, such that it is turned on when neuronal activity is high. Thus SST expression is increased by pathological conditions such as seizures and by natural stimulation such as environmental enrichment. SST may play an important role in cognition by modulating the response of neurons to synaptic input. In the dentate, SST and the related peptide cortistatin (CST) reduce the likelihood of generating long-term potentiation, a cellular process involved in learning and memory. Thus these neuropeptides would increase the threshold of input required for acquisition of new memories, increasing "signal to noise" to filter out irrelevant environmental cues. The major mechanism through which SST inhibits LTP is likely through inhibition of voltage-gated Ca(2+) channels on dentate granule cell dendrites. Transgenic overexpression of CST in the dentate leads to profound deficits in spatial learning and memory, validating its role in cognitive processing. A reduction of synaptic potentiation by SST and CST in dentate may also contribute to the well-characterized antiepileptic properties of these neuropeptides. Thus SST and CST are important neuromodulators in the dentate gyrus, and disruption of this signaling system may have major impact on hippocampal function.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA.
| |
Collapse
|
10
|
Tupala E, Tiihonen J. Striatal dopamine D1 receptors in type 1 and 2 alcoholics measured with human whole hemisphere autoradiography. Brain Res 2005; 1031:20-9. [PMID: 15621009 DOI: 10.1016/j.brainres.2004.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/21/2022]
Abstract
A considerable number of human and animal studies have implied the importance of dopamine system and alterations in dopamine receptors in the context of alcoholism. However, it has remained unclear if the alcohol-abuse related dopaminergic deficit is specifically associated with certain receptor subtype. The aim of this study was to compare putative alterations of dopamine D(1) receptors in caudate and putamen of nine type 1 alcoholics, eight type 2 alcoholics and 10 healthy controls by using [(3)H]SCH 23390 as a radioligand in postmortem human whole hemisphere autoradiography. In addition, we compared the present results to our earlier studies on dopamine transporters and dopamine D(2) receptors in these same subjects and evaluated the putative correlations of dopamine D(1) receptor densities between the nucleus accumbens and the above-mentioned structures. Our results show that alcoholics do not have significantly different striatal dopamine D(1) receptor densities compared to controls. Neither were there any significant correlations between the dopamine D(1) receptors and the two other dopamine binding sites. However, the correlations of the dopamine D(1) receptors between nucleus accumbens and dorsal striatal structures were consistently and mostly statistically significantly positive in alcoholics, but not in controls, which may suggest some pathology related to addiction. In addition, considering the facts that dopamine D(1) receptors were more abundant in the mesolimbic nucleus accumbens than in the caudate or putamen and that there was a strong tendency towards lower binding among type 1 alcoholics may suggest the importance of dopamine D(1) receptors in reward and/or alcoholism.
Collapse
Affiliation(s)
- Erkki Tupala
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, FI-70240 Kuopio, Finland.
| | | |
Collapse
|
11
|
Tupala E, Tiihonen J. Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:1221-47. [PMID: 15588749 DOI: 10.1016/j.pnpbp.2004.06.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2004] [Indexed: 01/06/2023]
Abstract
The role of the dopamine (DA) system in brain reward mechanisms and the development of substance abuse has been well established. We review earlier animal and human studies on DA and alcoholism with some relevant issues relating to those studies. The present animal and human data suggest several alterations in the DA system in the context of alcoholism. Receptor studies imply that DA D(2) receptor density and function are lower at least among type 1 alcoholics, which suggests that they could benefit from drugs that enhance DAergic activity, such as partial DA agonists. These drugs could help to restore suboptimal levels of DAergic activity by reducing both the craving for alcohol in abstinence and the euphoria subsequent to alcohol's release of DA in the nucleus accumbens (NAC), thus providing negative reinforcement for relapse.
Collapse
Affiliation(s)
- Erkki Tupala
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, FIN-70240 Kuopio, Finland.
| | | |
Collapse
|
12
|
Brandão F, Ribeiro-da-Silva A, Cadete-Leite A. GM1 and piracetam do not revert the alcohol-induced depletion of cholinergic fibers in the hippocampal formation of the rat. Alcohol 1999; 19:65-74. [PMID: 10487390 DOI: 10.1016/s0741-8329(99)00026-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic alcohol consumption causes a depletion of the cholinergic fiber network in the rat hippocampal formation, which is not ameliorated by alcohol withdrawal. Following withdrawal from alcohol, there is a further loss of intrinsic hippocampal cholinergic neurons. In this study, we investigated whether treatment with putative neuroprotective agents during the entire withdrawal period would have beneficial effects upon the hippocampal cholinergic innervation. Adult male rats were alcohol-fed for 6 months and subsequently withdrawn from alcohol for 6 months. Some animals were treated with either ganglioside GM1 (35 mg/kg body weight s.c.), vehicle (saline s.c.), or piracetam (800 mg/kg body weight p.o.) for the entire withdrawal period. Choline acetyltransferase (ChAT) immunoreactive (IR) fibers and neurons were analyzed quantitatively in all four animal groups. There were no significant differences in the density of the ChAT-IR hippocampal fiber network when the pure withdrawal and withdrawal + vehicle groups were compared to the withdrawal + GM1 or withdrawal + piracetam groups. In contrast, the number of ChAT-IR interneurons in the hippocampal formation was higher in the withdrawal + GM1 or withdrawal + piracetam groups than in the pure withdrawal and withdrawal + vehicle groups. These results indicate that, in the doses used, neither neuroprotective agent had an effect upon the extrinsic cholinergic innervation, but they had a beneficial effect upon the hippocampal intrinsic cholinergic system.
Collapse
Affiliation(s)
- F Brandão
- Department of Anatomy, Porto Medical School, Alameda do Prof. Hernâni Monteiro, Portugal
| | | | | |
Collapse
|
13
|
Lukoyanov NV, Madeira MD, Paula-Barbosa MM. Behavioral and neuroanatomical consequences of chronic ethanol intake and withdrawal. Physiol Behav 1999; 66:337-46. [PMID: 10336163 DOI: 10.1016/s0031-9384(98)00301-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have examined if long-term (13 months) alcohol consumption and the same treatment followed by a 6-week withdrawal period cause different neuropathological changes in rats. Spatial reference and working memory of alcohol-consuming and withdrawn rats were evaluated by comparison of their performance with age-matched controls in the Morris water maze. In the reference memory task we did not observe significant cognitive deficits in rats continuously exposed to ethanol, whereas withdrawn animals showed an obvious impairment of their overall performance. The reference memory deficit in withdrawn rats was evident in the spatial probe trial; these animals required significantly longer swimming distances to approach the former position of the platform when compared with controls and alcohol-consuming animals. In contrast, working memory was not significantly altered in either experimental group. Stereological methods were applied to compare the neurodegenerative changes produced by alcohol intake and withdrawal in the hippocampal formation. In the alcohol-consuming animals there was a significant cell loss in CA1 (18%) and CA3 (19%) hippocampal regions. Moreover, in withdrawn rats there was a further decay in the total number of pyramidal neurons, which amounted to 15% relative to nonwithdrawn animals. In the granular layer of the dentate gyrus there was a trend in the same direction, but it did not reach significance. Thus, our findings indicate that withdrawn rats are cognitively impaired relative to animals submitted to continuous alcohol consumption and to age-matched controls, which fits the morphological data showing that withdrawal aggravates ethanol-induced degenerative processes in the hippocampal formation.
Collapse
Affiliation(s)
- N V Lukoyanov
- Department of Anatomy, Porto Medical School, Portugal.
| | | | | |
Collapse
|
14
|
Abstract
In recent years there have been remarkable developments toward the understanding of the molecular and/or cellular changes in the neuronal second-messenger pathways during ethanol dependence. In general, it is believed that the cyclic adenosine 3',5'-monophosphate (cAMP) and the phosphoinositide (PI) signal-transduction pathways may be the intracellular targets that mediate the action of ethanol and ultimately contribute to the molecular events involved in the development of ethanol tolerance and dependence. Several laboratories have demonstrated that acute ethanol exposure increases, whereas protracted ethanol exposure decreases, agonist-stimulated adenylate cyclase activity in a variety of cell systems, including the rodent brain. Recent studies indicate that various postreceptor events of the cAMP signal transduction cascade (i.e., Gs protein, protein kinase A [PKA], and cAMP-responsive element binding protein [CREB]) in the rodent brain are also modulated by chronic ethanol exposure. The PI signal-transduction cascade represents another important second-messenger system that is modulated by both acute and chronic ethanol exposure in a variety of cell systems. It has been shown that protracted ethanol exposure significantly decreases phospholipase C (PLC) activity in the cerebral cortex of mice and rats. The decreased PLC activity during chronic ethanol exposure may be caused by a decrease in the protein levels of the PLC-beta 1 isozyme but not of PLC-delta 1 or PLC-gamma 1 isozymes in the rat cerebral cortex. Protein kinase C (PKC), which is a key step in the PI-signaling cascade, has been shown to be altered in a variety of cell systems by acute or chronic ethanol exposure. It appears from the literature that PKC plays an important role in the modulation of the function of various neurotransmitter receptors (e.g., gamma-aminobutyrate type A [GABAA], N-methyl-D-aspartate [NMDA], serotonin2A [5-HT2A], and 5-HT2C, and muscarinic [m1] receptors) resulting from ethanol exposure. The findings described in this review article indicate that neuronal-signaling proteins represent a molecular locus for the action of ethanol and are possibly involved in the neuro-adaptational mechanisms to protracted ethanol exposure. These findings support the notion that alterations in the cAMP and the PI-signaling cascades during chronic ethanol exposure could be the critical molecular events associated with the development of ethanol dependence.
Collapse
Affiliation(s)
- S C Pandey
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, USA
| |
Collapse
|
15
|
Madeira MD, Paula-Barbosa MM. Effects of alcohol on the synthesis and expression of hypothalamic peptides. Brain Res Bull 1999; 48:3-22. [PMID: 10210163 DOI: 10.1016/s0361-9230(98)00131-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies aimed at analyzing the deleterious effects of excess alcohol in the brain have revealed structural alterations that are often associated with functional and behavioral disturbances. Among the neuronal damage related to prolonged alcohol exposure, alterations in the synthesizing capabilities and levels of expression of neuroactive peptides have been increasingly reported. Actually, such changes frequently represent the sole repercussion of acute and short-term exposure to ethanol. This review gathers the existing data on the effects of ethanol exposure on the synthesis and expression of hypothalamic peptides. Amid those that can act both as neurotransmitters and neurohormones, we allude to vasopressin, corticotropin-releasing hormone, thyrotropin-releasing hormone and pro-opiomelanocortin and related peptides produced by paraventricular, supraoptic and arcuate neurons. With respect to peptides that act exclusively as neurotransmitters, we address the effects of alcohol on vasoactive intestinal polypeptide, gastrin-releasing peptide, somatostatin and vasopressin synthesized by suprachiasmatic neurons. Hypothalamic neurons that produce peptides that act as neurotransmitters are supposed to be modulated primarily by influences exerted by neuronal afferents, whereas those producing peptides that additionally act as neurohormones are also regulated by peripheral stimuli (e.g., plasma levels of circulating hormones, osmotic challenges). These peculiar features endue the hypothalamus with characteristics that are particularly propitious to enlighten the still cryptic mechanisms underlying the ethanol effects on protein synthesis.
Collapse
Affiliation(s)
- M D Madeira
- Department of Anatomy, Porto Medical School, Portugal.
| | | |
Collapse
|
16
|
Gilman S, Koeppe RA, Adams KM, Junck L, Kluin KJ, Johnson-Greene D, Martorello S, Heumann M, Bandekar R. Decreased striatal monoaminergic terminals in severe chronic alcoholism demonstrated with (+)[11C]dihydrotetrabenazine and positron emission tomography. Ann Neurol 1998; 44:326-33. [PMID: 9749598 DOI: 10.1002/ana.410440307] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We used (+)[11C]dihydrotetrabenazine, a new ligand for the type 2 vesicular monoamine transporter, with positron emission tomography to study striatal monoaminergic presynaptic terminals in 7 male severe chronic alcoholic subjects without Wernicke-Korsakoff disease compared with 7 male normal controls of similar ages. We found reduced specific binding in the caudate nucleus and putamen in the alcoholic group, and the difference reached significance in the putamen. Specific binding was not decreased in the thalamus, which was examined as a reference structure. We also detected deficits in blood-to-brain transfer rate, K1, in the same regions of the alcoholic group, with a significant difference in the putamen. K1 was unchanged in the thalamus. The finding of reduced striatal VMAT2 in severe chronic alcoholic patients suggests that nigrostriatal monoaminergic terminals are reduced, with or without loss of neurons from the substantia nigra. The findings suggest that the damaging effects of severe chronic alcoholism on the central nervous system are more extensive than previously considered.
Collapse
Affiliation(s)
- S Gilman
- Department of Neurology, University of Michigan, and University of Michigan Alcohol Research Center, Ann Arbor, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cadete-Leite A, Brandão F, Tajrine D, Antunes S, Ribeiro-da-Silva A, Andrade JP. Intracerebral grafts promote recovery of the cholinergic innervation of the hippocampal formation in rats withdrawn from chronic alcohol intake. An immunocytochemical study. Neuroscience 1997; 79:383-97. [PMID: 9200723 DOI: 10.1016/s0306-4522(96)00688-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously found that alcohol withdrawal aggravates the neuronal cell loss induced by chronic alcohol consumption in the rat hippocampal formation. We have also shown that intracerebral grafts of immature hippocampal tissue could reverse the progressive degeneration that occurs during this withdrawal. Furthermore, we have shown that chronic alcohol consumption reduces the areal density of choline acetyltransferase-immunoreactive neurons and the density of choline acetyltransferase-immunoreactive fibres in the hippocampal formation. Thus, we thought it would be of interest to investigate the effects of alcohol withdrawal in the hippocampal cholinergic innervation and to determine whether the intracerebral grafting of immature hippocampal tissue would have beneficial effects upon the cholinergic system in this condition. Choline acetyltransferase-immunoreactive fibres and perikarya were analysed in 14-month-old control, alcohol-fed, withdrawal and withdrawal-grafted groups of rats. The areal density of choline acetyltransferase-immunoreactive neurons was reduced in all experimental groups when compared to controls. The density of choline acetyltransferase-immunoreactive fibres was lower in the alcohol-fed and withdrawal groups than in the control and withdrawal-grafted groups. We conclude that the grafted tissue probably produced neurotrophic factors which allowed a recovery of the hippocampal cholinergic fibre network. This recovery might be of importance to reverse the cognitive dysfunction described after chronic alcohol consumption and withdrawal.
Collapse
|
18
|
Andrade JP, Paula-Barbosa MM. Protein malnutrition alters the cholinergic and GABAergic systems of the hippocampal formation of the adult rat: an immunocytochemical study. Neurosci Lett 1996; 211:211-5. [PMID: 8817578 DOI: 10.1016/0304-3940(96)12734-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We attempted to find out if the cholinergic and GABAergic systems that regulate the hippocampal circuitries are disturbed after long periods of protein deprivation and, in the affirmative, to investigate if the changes are reversible following nutritional rehabilitation. A group of 2 month old rats fed with a low-protein diet for 12 months was compared with age-matched controls and with nutritionally rehabilitated rats. We have evaluated the length density of the cholinergic fiber network and estimated the numerical densities of the choline acetyltransferase and GABAergic immunoreactive neurons of the hippocampal formation. Our results show that prolonged malnutrition leads to a substantial, but reversible, reduction in the cholinergic innervation of the hippocampal formation and to an irreversible loss of hippocampal cholinergic and GABAergic neurons.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, Portugal
| | | |
Collapse
|
19
|
Andrade JP, Castanheira-Vale AJ, Madeira MD. Time scale and extent of neuronal and synaptic loss in the hippocampal formation of malnourished adult rats. Brain Res 1996; 718:1-12. [PMID: 8773761 DOI: 10.1016/0006-8993(95)01544-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have demonstrated that a prolonged low-protein diet induces neuronal and synaptic loss in the hippocampal formation of the adult rat. Because 6 months of protein deprivation was the shortest period analyzed in the previous investigations, in the present study we have evaluated the length of the treatment period necessary to induce significant changes in the numbers of neurons and synapses. Groups of 2-month-old rats were analyzed: (1) and (2) malnourished for 1 and 3 months with a low-protein diet (8% casein): (3) and (4) age-matched control rats fed with a standard diet. Stereological methods were employed to estimate the total number of granule, hilar, CA3 and CA1 pyramidal cells and the volume of the respective cell layers, the volume of the mossy fiber system and the number and related quantitative features of mossy fiber-CA3 synapses. No differences in the number of cells or synapses were found between 1-month malnourished rats and the respective controls. However, in rats treated for 3 months the total number of granule cells. CA3 and CA1 pyramidal cells was reduced, as was the total number of synapses. These findings indicate that the changes induced by protein deprivation progressively increase during the early phases of treatment and that they are already evident after 3 months of protein deprivation.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, Portugal.
| | | | | |
Collapse
|
20
|
Brandão F, Paula-Barbosa MM, Cadete-Leite A. Piracetam impedes hippocampal neuronal loss during withdrawal after chronic alcohol intake. Alcohol 1995; 12:279-88. [PMID: 7639963 DOI: 10.1016/0741-8329(94)00107-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In previous studies we have demonstrated that prolonged ethanol consumption induced hippocampal neuronal loss. In addition, we have shown that withdrawal after chronic alcohol intake augmented such degenerative activity leading to increased neuronal death in all subregions of the hippocampal formation but in the CA3 field. In an attempt to reverse this situation, we tested, during the withdrawal period, the effects of piracetam (2-oxo-1-pyrrolidine acetamide), a cyclic derivative of gamma-aminobutyric acid, as there is previous evidence that it might act as a neuronoprotective agent. The total number of dentate granule, hilar, and CA3 and CA1 pyramidal cells of the hippocampal formation were estimated using unbiased stereological methods. We found out that in animals treated with piracetam the numbers of dentate granule, hilar, and CA1 pyramidal cells were significantly higher than in pure withdrawn animals, and did not differ from those of alcohol-treated rats that did not undergo withdrawal. These data suggest that piracetam treatment impedes, during withdrawal, the pursuing of neuronal degeneration.
Collapse
Affiliation(s)
- F Brandão
- Department of Anatomy, Porto Medical School, Portugal
| | | | | |
Collapse
|
21
|
Cadete-Leite A, Andrade JP, Sousa N, Ma W, Ribeiro-da-Silva A. Effects of chronic alcohol consumption on the cholinergic innervation of the rat hippocampal formation as revealed by choline acetyltransferase immunocytochemistry. Neuroscience 1995; 64:357-74. [PMID: 7700526 DOI: 10.1016/0306-4522(94)00330-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The specific aim of this study was to evaluate whether the cholingeric innervation of the hippocampal formation is affected by chronic alcohol consumption in the rat. Choline acetyltransferase-immunoreactive fibres and neurons were analysed in both alcohol-fed and control rats using a monoclonal antibody against choline acetyltransferase and quantitative methods. We found a global reduction in the cholinergic plexus, which was more pronounced in the hippocampus proper than in the dentate gyrus. The areal density of choline acetyltransferase immunoreactive neurons was also reduced. Differences from controls in neuronal number were particularly striking in the stratum lacunosum moleculare of the regio superior, which is precisely the zone of the hippocampal formation where choline acetyltransferase immunoreactive neurons are more abundant in controls. In conclusion, our results show that prolonged ethanol consumption leads to a substantial reduction in the cholinergic innervation of the hippocampal formation, as there was a loss of cholinergic fibres and also an apparent loss of hippocampal cholingeric neurons. These findings may help to explain the cognitive dysfunctions observed after chronic alcohol consumption.
Collapse
|
22
|
Pretel S, Applegate CD, Piekut DT. Activation of somatostatin-synthesizing neurons in the hippocampal formation through kindling-induced seizures. Hippocampus 1995; 5:40-51. [PMID: 7787945 DOI: 10.1002/hipo.450050106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study was designed to determine if and to what extent somatostatin (SST) synthesizing neurons of the hippocampal formation are activated during seizures, elicited through kindling of the perforant pathway. Tissue was used and analyzed from animals which had experienced a single after discharge, or a stage 3 or stage 5 seizure. The protein expression of the oncogene c-fos in activated, depolarizing neurons was utilized to identify seizure-activated SST-synthesizing neurons. Combined immunocytochemical and in situ hybridization methods were used to identify these double-labeled, Fos protein, and SST mRNA-containing neurons. The results were quantified and compared across seizure stages. The resulting data demonstrate that at every stage of seizure development, a majority of SST-synthesizing neurons is activated, but that these activated SST mRNA-containing neurons represent only a minority of all seizure-activated, Fos-expressing neurons in the hippocampal formation. The data further reveal a numerical hierarchy in which the majority of double-labeled neurons is present in the hilus of the dentate, followed by the stratum oriens of CA1. It is concluded that SST-synthesizing neurons represent an integral component of the kindling activated neuronal network and, since the SST synthesizing neurons represent the minority of all seizure-activated neurons in the hippocampal formation, that this neuronal network is likely to be of considerable neurochemical complexity.
Collapse
Affiliation(s)
- S Pretel
- Department of Neurobiology, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|
23
|
Paula-Barbosa MM, Brandão F, Madeira MD, Cadete-Leite A. Structural changes in the hippocampal formation after long-term alcohol consumption and withdrawal in the rat. Addiction 1993; 88:237-47. [PMID: 8220061 DOI: 10.1111/j.1360-0443.1993.tb00807.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of long-term alcohol consumption and withdrawal upon the structure of the rat hippocampal formation were studied by applying morphometric methods to material processed for light and electron microscopy. The somatostatinergic neurons of the hilus were also studied. Groups of 6 rats were treated as follows: (a) given alcohol for 6, 12 and 18 months; (b) paired controls; and (c) rats switched to a normal diet in the 6 months after 6 and 12 months of alcohol intake. A progressive loss of hippocampal neurons after chronic alcohol consumption was found. The loss was aggravated during withdrawal from alcohol, with the exception of the hilar cells. The dendrites of granule cells from the alcohol-treated rats displayed signs of regrowing, but they did not do so in rats withdrawn from alcohol. The synapses between mossy fibre terminals and CA3 dendrites appear to be rather resistant to alcohol insult, and evidence of morphological plasticity was found in withdrawn rats. If an homology can be established between humans and rodents then the changes observed in alcohol-fed rats can be regarded as underpinning some of the functional and behavioural alterations depicted under these circumstances. The peculiar changes found in some nerve cell populations after withdrawal of alcohol could be related to the deficient or incomplete functional recovery often seen after abstinence from alcohol.
Collapse
Affiliation(s)
- M M Paula-Barbosa
- Department of Anatomy, Porto Medical School, Alameda Hernâni Monteiro, Portugal
| | | | | | | |
Collapse
|