1
|
Singh S, Becker S, Trappenberg T, Nunes A. Granule cells perform frequency-dependent pattern separation in a computational model of the dentate gyrus. Hippocampus 2024; 34:14-28. [PMID: 37950569 DOI: 10.1002/hipo.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Mnemonic discrimination (MD) may be dependent on oscillatory perforant path input frequencies to the hippocampus in a "U"-shaped fashion, where some studies show that slow and fast input frequencies support MD, while other studies show that intermediate frequencies disrupt MD. We hypothesize that pattern separation (PS) underlies frequency-dependent MD performance. We aim to study, in a computational model of the hippocampal dentate gyrus (DG), the network and cellular mechanisms governing this putative "U"-shaped PS relationship. We implemented a biophysical model of the DG that produces the hypothesized "U"-shaped input frequency-PS relationship, and its associated oscillatory electrophysiological signatures. We subsequently evaluated the network's PS ability using an adapted spatiotemporal task. We undertook systematic lesion studies to identify the network-level mechanisms driving the "U"-shaped input frequency-PS relationship. A minimal circuit of a single granule cell (GC) stimulated with oscillatory inputs was also used to study potential cellular-level mechanisms. Lesioning synapses onto GCs did not impact the "U"-shaped input frequency-PS relationship. Furthermore, GC inhibition limits PS performance for fast frequency inputs, while enhancing PS for slow frequency inputs. GC interspike interval was found to be input frequency dependent in a "U"-shaped fashion, paralleling frequency-dependent PS observed at the network level. Additionally, GCs showed an attenuated firing response for fast frequency inputs. We conclude that independent of network-level inhibition, GCs may intrinsically be capable of producing a "U"-shaped input frequency-PS relationship. GCs may preferentially decorrelate slow and fast inputs via spike timing reorganization and high frequency filtering.
Collapse
Affiliation(s)
- Selena Singh
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abraham Nunes
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Degro CE, Bolduan F, Vida I, Booker SA. Interneuron diversity in the rat dentate gyrus: An unbiased in vitro classification. Hippocampus 2022; 32:310-331. [PMID: 35171512 PMCID: PMC9306941 DOI: 10.1002/hipo.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022]
Abstract
Information processing in cortical circuits, including the hippocampus, relies on the dynamic control of neuronal activity by GABAergic interneurons (INs). INs form a heterogenous population with defined types displaying distinct morphological, molecular, and physiological characteristics. In the major input region of the hippocampus, the dentate gyrus (DG), a number of IN types have been described which provide synaptic inhibition to distinct compartments of excitatory principal cells (PrCs) and other INs. In this study, we perform an unbiased classification of GABAergic INs in the DG by combining in vitro whole-cell patch-clamp recordings, intracellular labeling, morphological analysis, and supervised cluster analysis to better define IN type diversity in this region. This analysis reveals that DG INs divide into at least 13 distinct morpho-physiological types which reflect the complexity of the local IN network and serve as a basis for further network analyses.
Collapse
Affiliation(s)
- Claudius E Degro
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Felix Bolduan
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Sam A Booker
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE. Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer's disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis 2021; 152:105274. [PMID: 33484828 DOI: 10.1016/j.nbd.2021.105274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
It has been reported that hyperexcitability occurs in a subset of patients with Alzheimer's disease (AD) and hyperexcitability could contribute to the disease. Several studies have suggested that the hippocampal dentate gyrus (DG) may be an important area where hyperexcitability occurs. Therefore, we tested the hypothesis that the principal DG cell type, granule cells (GCs), would exhibit changes at the single-cell level which would be consistent with hyperexcitability and might help explain it. We used the Tg2576 mouse, where it has been shown that hyperexcitability is robust at 2-3 months of age. GCs from 2 to 3-month-old Tg2576 mice were compared to age-matched wild type (WT) mice. Effects of muscarinic cholinergic antagonism were tested because previously we found that Tg2576 mice exhibited hyperexcitability in vivo that was reduced by the muscarinic cholinergic antagonist atropine, counter to the dogma that in AD one needs to boost cholinergic function. The results showed that GCs from Tg2576 mice exhibited increased frequency of spontaneous excitatory postsynaptic potentials/currents (sEPSP/Cs) and reduced frequency of spontaneous inhibitory synaptic events (sIPSCs) relative to WT, increasing the excitation:inhibition (E:I) ratio. There was an inward NMDA receptor-dependent current that we defined here as a novel synaptic current (nsC) in Tg2576 mice because it was very weak in WT mice. Intrinsic properties were distinct in Tg2576 GCs relative to WT. In summary, GCs of the Tg2576 mouse exhibit early electrophysiological alterations that are consistent with increased synaptic excitation, reduced inhibition, and muscarinic cholinergic dysregulation. The data support previous suggestions that the DG contributes to hyperexcitability and there is cholinergic dysfunction early in life in AD mouse models.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Elissavet Chartampila
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Chiara Criscuolo
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Helen E Scharfman
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY 10016, USA; Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
4
|
Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, Leary P, Scharfman HE. An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep 2020; 29:2875-2889.e6. [PMID: 31775052 PMCID: PMC6905501 DOI: 10.1016/j.celrep.2019.10.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.
Collapse
Affiliation(s)
- Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Yi-Ling Lu
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Hannah L Bernstein
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
5
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
6
|
Bernstein HL, Lu YL, Botterill JJ, Scharfman HE. Novelty and Novel Objects Increase c-Fos Immunoreactivity in Mossy Cells in the Mouse Dentate Gyrus. Neural Plast 2019; 2019:1815371. [PMID: 31534449 PMCID: PMC6732597 DOI: 10.1155/2019/1815371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
The dentate gyrus (DG) and its primary cell type, the granule cell (GC), are thought to be critical to many cognitive functions. A major neuronal subtype of the DG is the hilar mossy cell (MC). MCs have been considered to play an important role in cognition, but in vivo studies to understand the activity of MCs during cognitive tasks are challenging because the experiments usually involve trauma to the overlying hippocampus or DG, which kills hilar neurons. In addition, restraint typically occurs, and MC activity is reduced by brief restraint stress. Social isolation often occurs and is potentially confounding. Therefore, we used c-fos protein expression to understand when MCs are active in vivo in socially housed adult C57BL/6 mice in their home cage. We focused on c-fos protein expression after animals explored novel objects, based on previous work which showed that MCs express c-fos protein readily in response to a novel housing location. Also, MCs are required for the training component of the novel object location task and novelty-encoding during a food-related task. GluR2/3 was used as a marker of MCs. The results showed that MC c-fos protein is greatly increased after exposure to novel objects, especially in ventral DG. We also found that novel objects produced higher c-fos levels than familiar objects. Interestingly, a small subset of neurons that did not express GluR2/3 also increased c-fos protein after novel object exposure. In contrast, GCs appeared relatively insensitive. The results support a growing appreciation of the role of the DG in novelty detection and novel object recognition, where hilar neurons and especially MCs are very sensitive.
Collapse
Affiliation(s)
- Hannah L. Bernstein
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Yi-Ling Lu
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Justin J. Botterill
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Helen E. Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| |
Collapse
|
7
|
Abstract
This review describes developments in epilepsy research during the last 3 to 4 decades that focused on the dentate gyrus (DG) and its role in temporal lobe epilepsy (TLE). The emphasis is on basic research in laboratory animals and is chronological, starting with hypotheses that attracted a lot of attention in the 1980s. Then experiments are described that addressed the questions, as well as new methods that often made the experiments possible. In addition, where new questions arose and the implications for clinical epilepsy are discussed.
Collapse
Affiliation(s)
- Helen E. Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience &
Physiology, and Psychiatry, New York University Langone Health, New York, NY, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric
Research, Orangeburg, NY, USA
| |
Collapse
|
8
|
Scharfman HE. Advances in understanding hilar mossy cells of the dentate gyrus. Cell Tissue Res 2018; 373:643-652. [PMID: 29222692 PMCID: PMC5993616 DOI: 10.1007/s00441-017-2750-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023]
Abstract
Hilar mossy cells (MCs) of the dentate gyrus (DG) distinguish the DG from other hippocampal subfields (CA1-3) because there are two glutamatergic cell types in the DG rather than one. Thus, in the DG, the main cell types include glutamatergic granule cells (GCs) and MCs, whereas in CA1-3, the only glutamatergic cell type is the pyramidal cell. In contrast to GCs, MCs are different in morphology, intrinsic electrophysiological properties, afferent input and axonal projections, so their function is likely to be very different from GCs. Why are MCs necessary to the DG? In past studies, the answer has been unclear because MCs not only excite GCs directly but also inhibit them disynaptically, by exciting GABAergic neurons that project to GCs. Results of new studies are discussed that shed light on this issue. These studies take advantage of recently available transgenic mice with Cre recombinase expression mostly in MCs and techniques such as optogenetics and DREADDs (designer receptors exclusively activated by designer drugs). The recent studies also address in vivo behavioral functions of MCs. Some of the results support past hypotheses whereas others suggest new conceptualizations of how the MCs contribute to DG circuitry and function. While substantial progess has been made, additional research is still needed to clarify the characteristics and functions of these unique cells.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, Psychiatry, and the New York University Neuroscience Institute, New York University Langone Medical Center, One Park Avenue, 7th floor, New York, NY, 10016, USA.
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Building 39, Orangeburg, NY, 10962, USA.
| |
Collapse
|
9
|
Unal G, Crump MG, Viney TJ, Éltes T, Katona L, Klausberger T, Somogyi P. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain Struct Funct 2018; 223:2409-2432. [PMID: 29500537 PMCID: PMC5968071 DOI: 10.1007/s00429-018-1626-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
Abstract
Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.
Collapse
Affiliation(s)
- Gunes Unal
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK.
- Department of Psychology, Bogazici University, 34342, Istanbul, Turkey.
| | - Michael G Crump
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Tim J Viney
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Tímea Éltes
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary
| | - Linda Katona
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Thomas Klausberger
- Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Somogyi
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK.
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary.
| |
Collapse
|
10
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
11
|
Abstract
Mossy cells comprise a large fraction of the cells in the hippocampal dentate gyrus, suggesting that their function in this region is important. They are vulnerable to ischaemia, traumatic brain injury and seizures, and their loss could contribute to dentate gyrus dysfunction in such conditions. Mossy cell function has been unclear because these cells innervate both glutamatergic and GABAergic neurons within the dentate gyrus, contributing to a complex circuitry. It has also been difficult to directly and selectively manipulate mossy cells to study their function. In light of the new data generated using methods to preferentially eliminate or activate mossy cells in mice, it is timely to ask whether mossy cells have become any less enigmatic than they were in the past.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York 10016, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
12
|
Drew LJ, Kheirbek MA, Luna VM, Denny CA, Cloidt MA, Wu MV, Jain S, Scharfman HE, Hen R. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 2016; 26:763-78. [PMID: 26662922 PMCID: PMC4867135 DOI: 10.1002/hipo.22557] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Robust incorporation of new principal cells into pre-existing circuitry in the adult mammalian brain is unique to the hippocampal dentate gyrus (DG). We asked if adult-born granule cells (GCs) might act to regulate processing within the DG by modulating the substantially more abundant mature GCs. Optogenetic stimulation of a cohort of young adult-born GCs (0 to 7 weeks post-mitosis) revealed that these cells activate local GABAergic interneurons to evoke strong inhibitory input to mature GCs. Natural manipulation of neurogenesis by aging-to decrease it-and housing in an enriched environment-to increase it-strongly affected the levels of inhibition. We also demonstrated that elevating activity in adult-born GCs in awake behaving animals reduced the overall number of mature GCs activated by exploration. These data suggest that inhibitory modulation of mature GCs may be an important function of adult-born hippocampal neurons. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liam J. Drew
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mazen A. Kheirbek
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Victor M. Luna
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christine A. Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Megan A. Cloidt
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Melody V. Wu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Swati Jain
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
| | - Helen E. Scharfman
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
13
|
Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I, Jonas P, Bartos M. Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 2014; 24:189-203. [PMID: 24108530 PMCID: PMC4165310 DOI: 10.1002/hipo.22214] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/13/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022]
Abstract
GABAergic inhibitory interneurons control fundamental aspects of neuronal network function. Their functional roles are assumed to be defined by the identity of their input synapses, the architecture of their dendritic tree, the passive and active membrane properties and finally the nature of their postsynaptic targets. Indeed, interneurons display a high degree of morphological and physiological heterogeneity. However, whether their morphological and physiological characteristics are correlated and whether interneuron diversity can be described by a continuum of GABAergic cell types or by distinct classes has remained unclear. Here we perform a detailed morphological and physiological characterization of GABAergic cells in the dentate gyrus, the input region of the hippocampus. To achieve an unbiased and efficient sampling and classification we used knock-in mice expressing the enhanced green fluorescent protein (eGFP) in glutamate decarboxylase 67 (GAD67)-positive neurons and performed cluster analysis. We identified five interneuron classes, each of them characterized by a distinct set of anatomical and physiological parameters. Cross-correlation analysis further revealed a direct relation between morphological and physiological properties indicating that dentate gyrus interneurons fall into functionally distinct classes which may differentially control neuronal network activity.
Collapse
Affiliation(s)
- Jonas A Hosp
- Institute for Physiology I, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 779104, Freiburg, Germany
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich8091, Zurich, Switzerland
| | - Michael Strüber
- Institute for Physiology I, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 779104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM) and Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg79104, Freiburg, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University3-39-22, Showa-Machi, Japan
| | - Kunihiko Obata
- Laboratory of Neurochemistry, National Institute for Physiological Sciences444-8585, Myodaiji, Okazaki, Japan
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité Berlin, Phillipstraße 1210115, Berlin, Germany
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 13400, Klosterneuburg, Austria
| | - Marlene Bartos
- Institute for Physiology I, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 779104, Freiburg, Germany
- *Correspondence to: Prof. Dr. M. Bartos, Institut für Physiologie I, Universität Freiburg, Hermann-Herder Strasse 7, D-79108 Freiburg, Germany. E-mail:
| |
Collapse
|
14
|
Scharfman HE, Brooks-Kayal AR. Is plasticity of GABAergic mechanisms relevant to epileptogenesis? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:133-50. [PMID: 25012373 DOI: 10.1007/978-94-017-8914-1_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Numerous changes in GABAergic neurons, receptors, and inhibitory mechanisms have been described in temporal lobe epilepsy (TLE), either in humans or in animal models. Nevertheless, there remains a common assumption that epilepsy can be explained by simply an insufficiency of GABAergic inhibition. Alternatively, investigators have suggested that there is hyperinhibition that masks an underlying hyperexcitability. Here we examine the status epilepticus (SE) models of TLE and focus on the dentate gyrus of the hippocampus, where a great deal of data have been collected. The types of GABAergic neurons and GABAA receptors are summarized under normal conditions and after SE. The role of GABA in development and in adult neurogenesis is discussed. We suggest that instead of "too little or too much" GABA there is a complexity of changes after SE that makes the emergence of chronic seizures (epileptogenesis) difficult to understand mechanistically, and difficult to treat. We also suggest that this complexity arises, at least in part, because of the remarkable plasticity of GABAergic neurons and GABAA receptors in response to insult or injury.
Collapse
Affiliation(s)
- Helen E Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA,
| | | |
Collapse
|
15
|
The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 2013; 8:e68208. [PMID: 23840835 PMCID: PMC3695928 DOI: 10.1371/journal.pone.0068208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX-/- mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX-/- mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to “backprojections” of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function.
Collapse
|
16
|
Scharfman HE, Myers CE. Hilar mossy cells of the dentate gyrus: a historical perspective. Front Neural Circuits 2013; 6:106. [PMID: 23420672 PMCID: PMC3572871 DOI: 10.3389/fncir.2012.00106] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/02/2012] [Indexed: 11/24/2022] Open
Abstract
The circuitry of the dentate gyrus (DG) of the hippocampus is unique compared to other hippocampal subfields because there are two glutamatergic principal cells instead of one: granule cells, which are the vast majority of the cells in the DG, and the so-called “mossy cells.” The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the DG network, reasons for their vulnerability and their implications for disease.
Collapse
Affiliation(s)
- Helen E Scharfman
- New York University Langone Medical Center New York, NY, USA ; Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research Orangeburg, NY, USA
| | | |
Collapse
|
17
|
Abstract
The dentate gyrus (DG) occupies a key position in information flow through the hippocampus. Its principal cell, the granule cell, has spatially selective place fields. However, the behavioral correlates of cells located in the hilus of the rat dentate gyrus are unknown. We report here that cells below the granule layer show spatially selective firing that consists of multiple subfields. Other cells recorded from the DG had single place fields. Compared with cells with multiple fields, cells with single fields fired at lower rates during sleep were less bursty, and were more likely to be recorded simultaneously with large populations of neurons that were active during sleep and silent during behavior. We propose that cells with single fields are likely to be mature granule cells that use sparse encoding to potentially disambiguate input patterns. Furthermore, we hypothesize that cells with multiple fields might be cells of the hilus or newborn granule cells. These data are the first demonstration, based on physiological criteria, that single- and multiple-field cells constitute at least two distinct cell classes in the DG. Because of the heterogeneity of firing correlates and cell types in the DG, understanding which cell types correspond to which firing patterns, and how these correlates change with behavioral state and between different environments, are critical questions for testing long-standing computational theories that the DG performs a pattern separation function using a very sparse coding strategy.
Collapse
|
18
|
Pierce JP, McCloskey DP, Scharfman HE. Morphometry of hilar ectopic granule cells in the rat. J Comp Neurol 2011; 519:1196-218. [PMID: 21344409 DOI: 10.1002/cne.22568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Granule cell (GC) neurogenesis in the dentate gyrus (DG) does not always proceed normally. After severe seizures (e.g., status epilepticus [SE]) and some other conditions, newborn GCs appear in the hilus. Hilar ectopic GCs (EGCs) can potentially provide insight into the effects of abnormal location and seizures on GC development. Additionally, hilar EGCs that develop after SE may contribute to epileptogenesis and cognitive impairments that follow SE. Thus, it is critical to understand how EGCs differ from normal GCs. Relatively little morphometric information is available on EGCs, especially those restricted to the hilus. This study quantitatively analyzed the structural morphology of hilar EGCs from adult male rats several months after pilocarpine-induced SE, when they are considered to have chronic epilepsy. Hilar EGCs were physiologically identified in slices, intracellularly labeled, processed for light microscopic reconstruction, and compared to GC layer GCs, from both the same post-SE tissue and the NeuroMorpho database (normal GCs). Consistently, hilar EGC and GC layer GCs had similar dendritic lengths and field sizes, and identifiable apical dendrites. However, hilar EGC dendrites were topologically more complex, with more branch points and tortuous dendritic paths. Three-dimensional analysis revealed that, remarkably, hilar EGC dendrites often extended along the longitudinal DG axis, suggesting increased capacity for septotemporal integration. Axonal reconstruction demonstrated that hilar EGCs contributed to mossy fiber sprouting. This combination of preserved and aberrant morphological features, potentially supporting convergent afferent input to EGCs and broad, divergent efferent output, could help explain why the hilar EGC population could impair DG function.
Collapse
Affiliation(s)
- Joseph P Pierce
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | |
Collapse
|
19
|
Ledri M, Sørensen AT, Erdelyi F, Szabo G, Kokaia M. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y. Hippocampus 2011; 21:198-211. [DOI: 10.1002/hipo.20740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Addictive nicotine alters local circuit inhibition during the induction of in vivo hippocampal synaptic potentiation. J Neurosci 2010; 30:6443-53. [PMID: 20445070 DOI: 10.1523/jneurosci.0458-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The drug addiction process shares many commonalities with normal learning and memory. Addictive drugs subvert normal synaptic plasticity mechanisms, and the consequent synaptic changes underlie long-lasting modifications in behavior that accrue during the progression from drug use to addiction. Supporting this hypothesis, it was recently shown that nicotine administered to freely moving mice induces long-term synaptic potentiation of the perforant path connection to granule cells of the dentate gyrus. The perforant path carries place and spatial information that links the environment to drug taking. An example of that association is the nicotine-induced synaptic potentiation of the perforant path that was found to underlie nicotine-conditioned place preference. The present study examines the influence of nicotine over local GABAergic inhibition within the dentate gyrus during the drug-induced synaptic potentiation. In vivo recordings from freely moving mice suggested that both feedforward and feedback inhibition onto granules cells were diminished by nicotine during the induction of synaptic potentiation. In vitro brain slice studies indicated that nicotine altered local circuit inhibition within the dentate gyrus leading to disinhibition of granule cells. These changes in local inhibition contributed to nicotine-induced in vivo synaptic potentiation, thus, likely contributed to drug-associated memories. Through this learning process, environmental features become cues that motivate conditioned drug-seeking and drug-taking behaviors.
Collapse
|
21
|
Kowalski J, Geuting M, Paul S, Dieni S, Laurens J, Zhao S, Drakew A, Haas CA, Frotscher M, Vida I. Proper layering is important for precisely timed activation of hippocampal mossy cells. ACTA ACUST UNITED AC 2010; 20:2043-54. [PMID: 20053714 DOI: 10.1093/cercor/bhp267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mammalian cortex exhibits a laminated structure that may underlie optimal synaptic connectivity and support temporally precise activation of neurons. In 'reeler' mice, the lack of the extracellular matrix protein Reelin leads to abnormal positioning of cortical neurons and disrupted layering. To address how these structural changes impact neuronal function, we combined electrophysiological and neuroanatomical techniques to investigate the synaptic activation of hippocampal mossy cells (MCs), the cell type that integrates the output of dentate gyrus granule cells (GCs). While somatodendritic domains of wild-type (WT) MCs were confined to the hilus, the somata and dendrites of reeler MCs were often found in the molecular layer, where the perforant path (PP) terminates. Most reeler MCs received aberrant monosynaptic excitatory input from the PP, whereas the disynaptic input to MCs via GCs was decreased and inhibition was increased. In contrast to the uniform disynaptic discharge of WT MCs, many reeler cells discharged with short, monosynaptic latencies, while others fired with long latencies over a broad temporal window in response to PP activation. Thus, disturbed lamination results in aberrant synaptic connectivity and altered timing of action potential generation. These results highlight the importance of a layered cortical structure for information processing.
Collapse
Affiliation(s)
- Janina Kowalski
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Feed-forward inhibition as a buffer of the neuronal input-output relation. Proc Natl Acad Sci U S A 2009; 106:18004-9. [PMID: 19815518 DOI: 10.1073/pnas.0904784106] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal processing depends on the input-output (I/O) relation between the frequency of synaptic stimulation and the resultant axonal firing rate. The all-or-none properties of spike generation and active membrane mechanisms can make the neuronal I/O relation very steep. The ensuing nearly bimodal behavior may severely limit information coding, as minimal input fluctuations within the expected natural variability could cause neuronal output to jump between quiescence and maximum firing rate. Here, using biophysically and anatomically realistic computational models of individual neurons, we demonstrate that feed-forward inhibition, a ubiquitous mechanism in which inhibitory interneurons and their target cells are activated by the same excitatory input, can change a steeply sigmoid I/O curve into a double-sigmoid typical of buffer systems. The addition of an intermediate plateau stabilizes the spiking response over a broad dynamic range of input frequency, ensuring robust integration of noisy synaptic signals. Both the buffered firing rate and its input firing range can be independently and extensively modulated by biologically plausible changes in the weight and number of excitatory synapses on the feed-forward interneuron. By providing a soft switch between essentially digital and analog rate-code, this continuous control of the circuit I/O could dramatically increase the computational power of neuronal integration.
Collapse
|
23
|
Abstract
Temporal lobe epilepsy is common and difficult to treat. Reduced inhibition of dentate granule cells may contribute. Basket cells are important inhibitors of granule cells. Excitatory synaptic input to basket cells and unitary IPSCs (uIPSCs) from basket cells to granule cells were evaluated in hippocampal slices from a rat model of temporal lobe epilepsy. Basket cells were identified by electrophysiological and morphological criteria. Excitatory synaptic drive to basket cells, measured by mean charge transfer and frequency of miniature EPSCs, was significantly reduced after pilocarpine-induced status epilepticus and remained low in epileptic rats, despite mossy fiber sprouting. Paired recordings revealed higher failure rates and a trend toward lower amplitude uIPSCs at basket cell-to-granule cell synapses in epileptic rats. Higher failure rates were not attributable to excessive presynaptic inhibition of GABA release by activation of muscarinic acetylcholine or GABA(B) receptors. High-frequency trains of action potentials in basket cells generated uIPSCs in granule cells to evaluate readily releasable pool (RRP) size and resupply rate of recycling vesicles. Recycling rate was similar in control and epileptic rats. However, quantal size at basket cell-to-granule cell synapses was larger and RRP size smaller in epileptic rats. Therefore, in epileptic animals, basket cells receive less excitatory synaptic drive, their pools of readily releasable vesicles are smaller, and transmission failure at basket cell-to-granule cell synapses is increased. These findings suggest dysfunction of the dentate basket cell circuit could contribute to hyperexcitability and seizures.
Collapse
|
24
|
McCloskey DP, Hintz TM, Scharfman HE. Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects. Brain Res Bull 2007; 76:36-44. [PMID: 18395608 DOI: 10.1016/j.brainresbull.2007.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 11/26/2007] [Accepted: 11/30/2007] [Indexed: 01/19/2023]
Abstract
Previous studies have shown that VEGF expression in forebrain increases after experimental manipulations that increase neuronal activity. One question is whether this also occurs in motor neurons. If so, it could be potentially advantageous from a therapeutic perspective, because VEGF prevents motor neuron degeneration. Therefore, we asked whether endogenous VEGF expression in motor neurons could be modulated. We also asked how VEGF exposure would influence motor neurons using electrophysiology. Immunocytochemistry showed that motor neuron VEGF expression increased after a stimulus that increases neuronal and motor activity, i.e., convulsive seizures. The increase in VEGF immunoreactivity occurred in all motor neuron populations that were examined 24h later. This effect was unlikely to be due to seizure-induced toxicity, because silver degeneration stain did not show the typical appearance of a dying or dead neuron. To address the effects of VEGF on motor neuron function, VEGF was applied directly to motor neurons while recording intracellularly, using a brainstem slice preparation. Exposure to exogenous VEGF (200 ng/ml) in normal conditions depressed stimulus-evoked depolarization of hypoglossal motor neurons. There was no detectable effect of VEGF on membrane properties or firing behavior. We suggest that VEGF is upregulated in neurons when they are strongly activated, and VEGF depresses neuronal excitation as a compensatory mechanism. Failure of this mechanism may contribute to diseases that involve a dysregulation of VEGF, excessive excitation of motor neurons, and motor neuron loss, such as amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Daniel P McCloskey
- The College of Staten Island-CUNY, Staten Island, NY, United States; Helen Hayes Hospital, West Haverstraw, NY, United States
| | | | | |
Collapse
|
25
|
Srinivas KV, Jain R, Saurav S, Sikdar SK. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur J Neurosci 2007; 25:3276-86. [PMID: 17552996 DOI: 10.1111/j.1460-9568.2007.05559.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal network topologies and connectivity patterns were explored in control and glutamate-injured hippocampal neuronal networks, cultured on planar multielectrode arrays. Spontaneous activity was characterized by brief episodes of synchronous firing at many sites in the array (network bursts). During such assembly activity, maximum numbers of neurons are known to interact in the network. After brief glutamate exposure followed by recovery, neuronal networks became hypersynchronous and fired network bursts at higher frequency. Connectivity maps were constructed to understand how neurons communicate during a network burst. These maps were obtained by analysing the spike trains using cross-covariance analysis and graph theory methods. Analysis of degree distribution, which is a measure of direct connections between electrodes in a neuronal network, showed exponential and Gaussian distributions in control and glutamate-injured networks, respectively. Although both the networks showed random features, small-world properties in these networks were different. These results suggest that functional two-dimensional neuronal networks in vitro are not scale-free. After brief exposure to glutamate, normal hippocampal neuronal networks became hyperexcitable and fired a larger number of network bursts with altered network topology. The small-world network property was lost and this was accompanied by a change from an exponential to a Gaussian network.
Collapse
Affiliation(s)
- Kalyan V Srinivas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-12, India
| | | | | | | |
Collapse
|
26
|
Scharfman H, Goodman J, McCloskey D. Ectopic granule cells of the rat dentate gyrus. Dev Neurosci 2007; 29:14-27. [PMID: 17148946 PMCID: PMC1934347 DOI: 10.1159/000096208] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/05/2006] [Indexed: 01/19/2023] Open
Abstract
Granule cells of the mammalian dentate gyrus normally form a discrete layer, and virtually all granule cells migrate to this location. Exceptional granule cells that are positioned incorrectly, in 'ectopic' locations, are rare. Although the characteristics of such ectopic granule cells appear similar in many respects to granule cells located in the granule cell layer, their rare occurrence has limited a full evaluation of their structure and function. More information about ectopic granule cells has been obtained by studying those that develop after experimental manipulations that increase their number. For example, after severe seizures, the number of ectopic granule cells located in the hilus increases dramatically. These experimentally-induced ectopic granule cells may not be equivalent to normal ectopic granule cells necessarily, but the vastly increased numbers have allowed much more information to be obtained. Remarkably, the granule cells that are positioned ectopically develop intrinsic properties and an axonal projection that are similar to granule cells that are located normally, i.e., in the granule cell layer. However, dendritic structure and synaptic structure/function appear to differ. These studies have provided new insight into a rare type of granule cell in the dentate gyrus, and the plastic characteristics of dentate granule cells that appear to depend on the location of the cell body.
Collapse
Affiliation(s)
- Helen Scharfman
- Department of Pharmacology, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
27
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
28
|
Selke K, Müller A, Kukley M, Schramm J, Dietrich D. Firing pattern and calbindin-D28k content of human epileptic granule cells. Brain Res 2006; 1120:191-201. [PMID: 16997289 DOI: 10.1016/j.brainres.2006.08.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 11/30/2022]
Abstract
In the hippocampus of chronic temporal lobe epilepsy, many abnormalities in structure and function have been described but their pathophysiological relevance often is poorly understood. In this study, we asked whether there may be a link between changes in the firing pattern and the loss of the calcium binding protein calbindin-D28k in epileptic hippocampal granule cells. Using the perforated patch-clamp technique, we investigated granule cells in slices prepared from human hippocampi removed for the treatment of pharmacoresistant temporal lobe epilepsy. Granule cells in hippocampi without significant signs of structural damage (lesion group) displayed a firing pattern indistinguishable from that of rodent granule cells and were strongly labeled with anti-calbindin-D28k antibodies. In contrast, half of granule cells in sclerotic hippocampi (HS group) showed an altered firing pattern and a severe loss of calbindin-D28k. While these cells show passive membrane properties comparable to cells of the rodent and lesion group, they lack the medium afterhyperpolarization and display only a weak spike frequency adaptation. On the other hand, granule cells in the HS group have an increased action potential threshold and an enlarged fast afterhyperpolarization. Applying post-recording immunohistochemistry to individual electrophysiologically characterized granule cells, we show that the loss of calbindin-D28k is not causally related to any of the changes in firing pattern. Both alterations seem to occur during the course of temporal lobe epilepsy, with the firing pattern being affected earlier than the calbindin-D28k content. In conclusion, we propose that it is the combination of the altered intrinsic excitability of granule cells with the amplified and prolonged synaptic input from perforant path fibers previously described in the epileptic dentate area which promotes tonic, non-adapting, high frequency firing of granule cells and thereby strongly augments the excitability of the hippocampus.
Collapse
Affiliation(s)
- K Selke
- Department of Neurosurgery, NCH U1 R035, Experimental Neurophysiology, University Clinic Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
29
|
McCloskey DP, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2006; 25:8889-97. [PMID: 16192378 PMCID: PMC1415170 DOI: 10.1523/jneurosci.2577-05.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In addition to its potent effects on vasculature, it has become clear that vascular endothelial growth factor (VEGF) has effects on both neurons and glia, and recent studies suggest that it can be neuroprotective. To determine potential mechanisms underlying this neuroprotection, recombinant human VEGF was bath applied to adult rat hippocampal slices, and both extracellular and intracellular recordings were used to examine intrinsic properties and synaptic responses of hippocampal principal neurons. Initial studies in area CA1 showed that VEGF significantly reduced the amplitude of responses elicited by Schaffer collateral stimulation, without influencing membrane properties. Similar effects occurred in CA3 pyramidal cells and dentate gyrus granule cells when their major glutamatergic afferents were stimulated. Because VEGF expression is increased after seizures, effects of VEGF were also examined in rats with recurrent spontaneous seizures. VEGF reduced spontaneous discharges in slices from these rats but had surprisingly little effect on epileptiform discharges produced by disinhibition of slices from control rats. These results demonstrate a previously unknown effect of VEGF on neuronal activity and also demonstrate a remarkable potency in the epileptic brain. Based on this, we suggest that VEGF or VEGF-related targets could provide useful endpoints to direct novel therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Daniel P McCloskey
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, New York 10993, USA.
| | | | | |
Collapse
|
30
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
31
|
Scharfman HE, Sollas AE, Berger RE, Goodman JH, Pierce JP. Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neuroscience 2004; 121:1017-29. [PMID: 14580952 DOI: 10.1016/s0306-4522(03)00481-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Granule cells in the dentate gyrus are born throughout life, and various stimuli can affect their development in the adult brain. Following seizures, for instance, neurogenesis increases greatly, and some new cells migrate to abnormal (ectopic) locations, such as the hilus. Previous electrophysiological studies of this population have shown that they have intrinsic properties that are similar to normal granule cells, but differ in other characteristics, consistent with abnormal integration into host circuitry. To characterize the response of ectopic hilar granule cells to perforant path stimulation, intracellular recordings were made in hippocampal slices from rats that had pilocarpine-induced status epilepticus and subsequent spontaneous recurrent seizures. Comparisons were made with granule cells located in the granule cell layer of both pilocarpine- and saline-treated animals. In addition, a few ectopic hilar granule cells were sampled from saline-treated rats. Remarkably, hilar granule cells displayed robust responses, even when their dendrites were not present within the molecular layer, where perforant path axons normally terminate. The evoked responses of hilar granule cells were similar in several ways to those of normally positioned granule cells, but there were some differences. For example, there was an unusually long latency to onset of responses evoked in many hilar granule cells, especially those without molecular layer dendrites. Presumably this is due to polysynaptic activation by the perforant path. These results indicate that synaptic reorganization after seizures can lead to robust activation of newly born hilar granule cells by the perforant path, even when their dendrites are not in the terminal field of the perforant path. Additionally, the fact that these cells can be found in normal tissue and develop similar synaptic responses, suggests that seizures, while not necessary for their formation, strongly promote their generation and the development of associated circuits, potentially contributing to a lowered seizure threshold.
Collapse
Affiliation(s)
- H E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, Route 9W, West Haverstraw, NY 10993-1195, USA.
| | | | | | | | | |
Collapse
|
32
|
Scharfman HE, Sollas AL, Berger RE, Goodman JH. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 2004; 90:2536-47. [PMID: 14534276 DOI: 10.1152/jn.00251.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on both spines and dendritic shafts in the inner molecular layer, which are likely to represent the dendrites of granule cells and inhibitory neurons. One of the controversies about this phenomenon is whether mossy fiber sprouting contributes to seizures by forming novel recurrent excitatory circuits among granule cells. To date, there is a great deal of indirect evidence that suggests this is the case, but there are also counterarguments. The purpose of this study was to determine whether functional monosynaptic connections exist between granule cells after mossy fiber sprouting. Using simultaneous recordings from granule cells, we obtained direct evidence that granule cells in epileptic rats have monosynaptic excitatory connections with other granule cells. Such connections were not obtained when age-matched, saline control rats were examined. The results suggest that indeed mossy fiber sprouting provides a substrate for monosynaptic recurrent excitation among granule cells in the dentate gyrus. Interestingly, the characteristics of the excitatory connections that were found indicate that the pathway is only weakly excitatory. These characteristics may contribute to the empirical observation that the sprouted dentate gyrus does not normally generate epileptiform discharges.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993-1195, USA.
| | | | | | | |
Collapse
|
33
|
Scharfman HE. Functional implications of seizure-induced neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:192-212. [PMID: 15250595 PMCID: PMC1839060 DOI: 10.1007/978-1-4757-6376-8_14] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neurobiological doctrine governing the concept of neurogenesis has undergone a revolution in the past few years. What was once considered dubious is now well accepted: new neurons are born in the adult brain. Science fiction is quickly becoming a reality as scientists discover ways to convert skin, bone, or blood cells into neurons. In the epilepsy arena, widespread interest has developed because of the evidence that neurogenesis increases after seizures, trauma, and other insults or injuries that alter seizure susceptibility. This review discusses some of the initial studies in this field, and their often surprising functional implications. The emphasis will be on the granule cells of hippocampus, because they are perhaps more relevant to epilepsy than other areas in which neurogenesis occurs throughout life, the olfactory bulb and subventricular zone. In particular, the following questions will be addressed: 1. Do granule cells that are born in the adult brain become functional, and what are the limits of their function? Do they behave homogeneously? Results from our own laboratory have focused on cells that become established outside the normal boundaries of the granule cell layer, forming a group of "ectopic" granule cells in the hilar region. 2. Is increased neurogenesis beneficial, or might it actually exacerbate seizures? Evidence is presented that supports the hypothesis that new granule cells may not necessarily act to ameliorate seizures, and might even contribute to them. Furthermore, cognitive deficits following seizures might in part be due to new circuits that develop between new cells and the host brain. 3. How do the new cells interact with the host brain? Several changes occur in the dentate gyrus after seizures, and increased neurogenesis is only one of many. What is the interdependence of this multitude of changes, if any? 4. Is neurogenesis increased after seizures in man? Research suggests that the data from human epileptics are actually inconsistent with the studies in animal models of epilepsy, because there is little evidence of increased neurogenesis in epileptic tissue resected from intractable epileptics. Yet neurogenesis has been shown to occur in humans throughout adult life. What might be the reasons for these seemingly disparate results?
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, USA
| |
Collapse
|
34
|
Romo-Parra H, Vivar C, Maqueda J, Morales MA, Gutiérrez R. Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3. J Neurophysiol 2003; 89:3155-67. [PMID: 12611945 DOI: 10.1152/jn.00985.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The granule cells of the dentate gyrus (DG) are considered to be glutamatergic, but they contain glutamic acid decarboxylase, gamma-amino butyric acid (GABA), and the vesicular GABA transporter mRNA. Their expression is regulated in an activity-dependent manner and coincides with the appearance of GABAergic transmission from the mossy fibers (MF) to pyramidal cells in area CA3. These data support the hypothesis that MF are able to release glutamate and GABA. Following the principle that a given neuron releases the same neurotransmitter(s) onto all its targets, we here demonstrate the emergence, after a generalized convulsive seizure, of MF GABAergic signaling sensitive to activation mGluR-III onto pyramidal cells and interneurons of CA3. Despite this, excitation overrides inhibition in interneurons, preventing disinhibition. Furthermore, on blockade of GABA and glutamate ionotropic receptors, an M1-cholinergic depolarizing signal is also revealed in both targets, which postsynaptically modulates the glutamatergic and GABAergic fast neurotransmission. The emergence of these nonglutamatergic signals depends on protein synthesis. In contrast to cholinergic responses evoked by associational/commissural fibers activation, cholinergic transmission evoked by DG stimulation is only observed after seizures and is strongly depressed by the activation of mGluR-II, whereas both are depressed by M2-AChR activation. With immunohistological experiments, we show that this cholinergic pathway runs parallel to the MF. Thus seizures compromise a delicate balance of excitation and inhibition, on which a complex interaction of different neurotransmitters emerges to counteract excitation at pre- and postsynaptic sites. Particularly, MF GABAergic inhibition emerges to exert an overall inhibitory action on CA3.
Collapse
Affiliation(s)
- Héctor Romo-Parra
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México D.F. 07000
| | | | | | | | | |
Collapse
|
35
|
Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M. "Dormant basket cell" hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J Comp Neurol 2003; 459:44-76. [PMID: 12629666 DOI: 10.1002/cne.10630] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The "dormant basket cell" hypothesis suggests that postinjury hippocampal network hyperexcitability results from the loss of vulnerable neurons that normally excite insult-resistant inhibitory basket cells. We have reexamined the experimental basis of this hypothesis in light of reports that excitatory hilar mossy cells are not consistently vulnerable and inhibitory basket cells are not consistently seizure resistant. Prolonged afferent stimulation that reliably evoked granule cell discharges always produced extensive hilar neuron degeneration and immediate granule cell disinhibition. Conversely, kainic acid-induced status epilepticus in chronically implanted animals produced similarly extensive hilar cell loss and immediate granule cell disinhibition, but only when granule cells discharged continuously during status epilepticus. In both preparations, electron microscopy revealed degeneration of presynaptic terminals forming asymmetrical synapses in the mossy cell target zone, including some terminating on gamma-aminobutyric acid-immunoreactive elements, but no evidence of axosomatic or axoaxonic degeneration in the adjacent granule cell layer. Although parvalbumin immunocytochemistry and in situ hybridization revealed decreased staining, this apparently was due to altered parvalbumin expression rather than basket cell death, because substance P receptor-positive interneurons, some of which contained residual parvalbumin immunoreactivity, survived. These results confirm the inherent vulnerability of dendritically projecting hilar mossy cells and interneurons and the relative resistance of dentate inhibitory basket and chandelier cells that target granule cell somata. The variability of hippocampal cell loss after status epilepticus suggests that altered hippocampal structure and function cannot be assumed to cause the spontaneous seizures that develop in these animals and highlights the importance of confirming hippocampal pathology and pathophysiology in vivo in each case.
Collapse
Affiliation(s)
- Robert S Sloviter
- Departments of Pharmacology and Neurology, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Aradi I, Soltesz I. Modulation of network behaviour by changes in variance in interneuronal properties. J Physiol 2002; 538:227-51. [PMID: 11773331 PMCID: PMC2290026 DOI: 10.1113/jphysiol.2001.013054] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interneurones are important regulators of neuronal networks. The conventional approach to interneurones is to focus on the mean values of various parameters. Here we tested the hypothesis that changes in the variance of interneuronal properties (e.g. in the degree of scattering of parameter values of individual cells around the population mean) may modify the behaviour of networks. Biophysically based multicompartmental models of principal cells and interneurones showed that changes in the variance in the electrophysiological and anatomical properties of interneurones significantly alter the input-output functions, rhythmicity and synchrony of principal cells, even if the mean values were unchanged. In most cases, increased heterogeneity in interneurones resulted in stronger inhibition of principal cell firing; however, there were parameter ranges where increased interneuronal variance decreased the inhibition of principal cells. Electrophysiological recordings showed that the variance in the resting membrane potential of CA1 stratum oriens interneurones persistently increased following experimental complex febrile seizures in developing rats, without a change in the mean resting membrane potential, indicating that lasting alterations in interneuronal heterogeneity can take place in real neuronal systems. These computational and experimental data demonstrate that modifications in interneuronal population variance influence the behaviour of neuronal networks, and suggest a physiological role for interneuronal diversity. Furthermore, the results indicate that interneuronal heterogeneity can change in neurological diseases, and raise the possibility that neuromodulators may act by regulating the variance of key parameters in interneuronal populations.
Collapse
Affiliation(s)
- I Aradi
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
37
|
Scharfman HE, Smith KL, Goodman JH, Sollas AL. Survival of dentate hilar mossy cells after pilocarpine-induced seizures and their synchronized burst discharges with area CA3 pyramidal cells. Neuroscience 2001; 104:741-59. [PMID: 11440806 PMCID: PMC2518406 DOI: 10.1016/s0306-4522(01)00132-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clinical and basic literature suggest that hilar cells of the dentate gyrus are damaged after seizures, particularly prolonged and repetitive seizures. Of the cell types within the hilus, it appears that the mossy cell is one of the most vulnerable. Nevertheless, hilar neurons which resemble mossy cells appear in some published reports of animal models of epilepsy, and in some cases of human temporal lobe epilepsy. Therefore, mossy cells may not always be killed after severe, repeated seizures. However, mossy cell survival in these studies was not completely clear because the methods did allow discrimination between mossy cells and other hilar cell types. Furthermore, whether surviving mossy cells might have altered physiology after seizures was not examined. Therefore, intracellular recording and intracellular dye injection were used to characterize hilar cells in hippocampal slices from pilocarpine-treated rats that had status epilepticus and recurrent seizures ('epileptic' rats). For comparison, mossy cells were also recorded from age-matched, saline-injected controls, and pilocarpine-treated rats that failed to develop status epilepticus. Numerous hilar cells with the morphology, axon projection, and membrane properties of mossy cells were recorded in all three experimental groups. Thus, mossy cells can survive severe seizures, and those that survive retain many of their normal characteristics. However, mossy cells from epileptic tissue were distinct from mossy cells of control rats in that they generated spontaneous and evoked epileptiform burst discharges. Area CA3 pyramidal cells also exhibited spontaneous and evoked bursts. Simultaneous intracellular recordings from mossy cells and pyramidal cells demonstrated that their burst discharges were synchronized, with pyramidal cell discharges typically beginning first. From these data we suggest that hilar mossy cells can survive status epilepticus and chronic seizures. The fact that mossy cells have epileptiform bursts, and that they are synchronized with area CA3, suggest a previously unappreciated substrate for hyperexcitability in this animal model.
Collapse
Affiliation(s)
- H E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, NY 10993-1195, USA.
| | | | | | | |
Collapse
|
38
|
Blümcke I, Suter B, Behle K, Kuhn R, Schramm J, Elger CE, Wiestler OD. Loss of hilar mossy cells in Ammon's horn sclerosis. Epilepsia 2000; 41 Suppl 6:S174-80. [PMID: 10999540 DOI: 10.1111/j.1528-1157.2000.tb01577.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Hilar mossy cells represent an important excitatory subpopulation of the hippocampal formation. Several studies have identified this cell type as particularly vulnerable to seizure activity in rat models of limbic epilepsy. Here we have subjected hilar mossy cell loss in the hippocampus of patients with chronic temporal lobe epilepsy (TLE) to a systematic morphological and immunohistochemical analysis. METHODS Hippocampal specimens from 30 TLE patients were included; 21 patients presented with segmental neuronal cell loss [Ammon's horns clerosis (AHS)] and 8 with focal lesions (tumors, scars, malformations) not involving the hippocampus proper. In one additional TLE patient, no histopathological alteration could be observed. Surgical specimens from tumor patients without epilepsy (n = 2) and nonepileptic autopsy brains (n = 8) were used as controls. Hilar mossy cells in the human hippocampus were visualized using a novel polycloncal antiserum directed against the metabotropic glutamate receptor subtype mGluR7b or by intracellular Lucifer Yellow injection, confocal laser scanning microscopy, and three-dimensional morphological reconstruction. RESULTS Compared with controls, a significant loss of mGluR7 immunoreactive mossy cells was observed in patients with AHS (p < 0.05). In contrast, TLE patients with focal lesions but structurally intact hippocampus demonstrated only a discrete, nonsignificant reduction of this neuronal subpopulation. This observation was confirmed by analysis of 62 randomly injected hilar neurons from AHS patients, in which we were unable to detect neurons with a morphology like that of hilar mossy cells. CONCLUSION Our present data indicate significant hilar mossy cell loss in TLE patients with AHS. In contrast, hilar mossy cells appear to be less vulnerable in patients with lesion-associated TLE. Although the significance of mGluR7 immunoreactivity in mossy cells remains to be studied, loss of this cell population is compatible with alterations in hippocampal networks and regional hyperexcitability as pathogenic mechanism of AHS and TLE.
Collapse
Affiliation(s)
- I Blümcke
- Department of Neuropathology, University of Bonn Medical Center, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Perisomatic inhibitory innervation of all neuron types profoundly affects their firing characteristics and vulnerability. In this study we examined the postsynaptic targets of perisomatic inhibitory cells in the hilar region of the dentate gyrus where the proportion of potential target cells (excitatory mossy cells and inhibitory interneurons) is approximately equal. Both cholecystokinin (CCK)- and parvalbumin-immunoreactive basket cells formed multiple contacts on the somata and proximal dendrites of mossy cells. Unexpectedly, however, perisomatic inhibitory terminals arriving from these cell types largely ignored hilar GABAergic cell populations. Eighty-ninety percent of various GABAergic neurons including other CCK-containing basket cells received no input from CCK-positive terminals. Parvalbumin-containing cells sometimes innervated each other but avoided 75% of other GABAergic cells. Overall, a single mossy cell received 40 times more CCK-immunoreactive terminals and 15 times more parvalbumin-positive terminals onto its soma than the cell body of an average hilar GABAergic cell. In contrast to the pronounced target selectivity in the hilar region, CCK- and parvalbumin-positive neurons innervated each other via collaterals in stratum granulosum and moleculare. Our observations indicate that the inhibitory control in the hilar region is qualitatively different from other cortical areas at both the network level and the level of single neurons. The paucity of perisomatic innervation of hilar interneurons should have profound consequences on their action potential generation and on their ensemble behavior. These findings may help explain the unique physiological patterns observed in the hilus and the selective vulnerability of the hilar cell population in various pathophysiological conditions.
Collapse
|
40
|
Schumacher TB, Beck H, Steffens R, Blümcke I, Schramm J, Elger CE, Steinhäuser C. Modulation of calcium channels by group I and group II metabotropic glutamate receptors in dentate gyrus neurons from patients with temporal lobe epilepsy. Epilepsia 2000; 41:1249-58. [PMID: 11051119 DOI: 10.1111/j.1528-1157.2000.tb04602.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Metabotropic glutamate receptors (mGluRs) might be promising new drug targets for the treatment of epilepsy because the expression of certain mGluRs is regulated in epilepsy and because activation of mGluRs results in distinctive anti- and proconvulsant effects. Therefore, we examined how mGluR activation modulates high-voltage-activated (HVA) Ca2+ channels. METHODS Whole-cell patch-clamp recordings were obtained from granule cells and interneuron-like cells acutely isolated from the dentate gyrus of patients with pharmacoresistent temporal lobe epilepsy. RESULTS Agonists selective for either group I or group II mGluRs rapidly and reversibly reduced HVA currents in most dentate gyrus cells. These modulatory effects were inhibited by the respective group I and group II mGluR antagonists. The specific Ca2+ channel antagonists nifedipine and omega-conotoxin GVIA potently occluded the effects of group I and II mGluR agonists, respectively, indicating that group I mGluRs acted on L-type channels and group II mGluRs affected N-type channels. About two thirds of the responsive neurons were sensitive either to group I or group II mGluRs, whereas a minority of cells showed effects to agonists of both groups, indicating a variable mGluR expression pattern. CONCLUSIONS Group I and group II mGluRs are expressed in human dentate gyrus neurons and modulate L- and N-type HVA channels, respectively. The data shed light on the possible cellular sequelae of the mGluR1 upregulation observed in human epileptic dentate gyrus as well as on possible mGluR-mediated anticonvulsant mechanisms.
Collapse
|
41
|
Acsády L, Katona I, Martínez-Guijarro FJ, Buzsáki G, Freund TF. Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. J Neurosci 2000; 20:6907-19. [PMID: 10995835 PMCID: PMC6772844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2000] [Revised: 06/19/2000] [Accepted: 06/29/2000] [Indexed: 02/17/2023] Open
Abstract
Perisomatic inhibitory innervation of all neuron types profoundly affects their firing characteristics and vulnerability. In this study we examined the postsynaptic targets of perisomatic inhibitory cells in the hilar region of the dentate gyrus where the proportion of potential target cells (excitatory mossy cells and inhibitory interneurons) is approximately equal. Both cholecystokinin (CCK)- and parvalbumin-immunoreactive basket cells formed multiple contacts on the somata and proximal dendrites of mossy cells. Unexpectedly, however, perisomatic inhibitory terminals arriving from these cell types largely ignored hilar GABAergic cell populations. Eighty-ninety percent of various GABAergic neurons including other CCK-containing basket cells received no input from CCK-positive terminals. Parvalbumin-containing cells sometimes innervated each other but avoided 75% of other GABAergic cells. Overall, a single mossy cell received 40 times more CCK-immunoreactive terminals and 15 times more parvalbumin-positive terminals onto its soma than the cell body of an average hilar GABAergic cell. In contrast to the pronounced target selectivity in the hilar region, CCK- and parvalbumin-positive neurons innervated each other via collaterals in stratum granulosum and moleculare. Our observations indicate that the inhibitory control in the hilar region is qualitatively different from other cortical areas at both the network level and the level of single neurons. The paucity of perisomatic innervation of hilar interneurons should have profound consequences on their action potential generation and on their ensemble behavior. These findings may help explain the unique physiological patterns observed in the hilus and the selective vulnerability of the hilar cell population in various pathophysiological conditions.
Collapse
Affiliation(s)
- L Acsády
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | | | | | | | | |
Collapse
|
42
|
Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2000. [PMID: 10934264 DOI: 10.1523/jneurosci.20-16-06144.2000] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A group of neurons with the characteristics of dentate gyrus granule cells was found at the hilar/CA3 border several weeks after pilocarpine- or kainic acid-induced status epilepticus. Intracellular recordings from pilocarpine-treated rats showed that these "granule-like" neurons were similar to normal granule cells (i. e., those in the granule cell layer) in membrane properties, firing behavior, morphology, and their mossy fiber axon. However, in contrast to normal granule cells, they were synchronized with spontaneous, rhythmic bursts of area CA3 pyramidal cells that survived status epilepticus. Saline-treated controls lacked the population of granule-like cells at the hilar/CA3 border and CA3 bursts. In rats that were injected after status epilepticus with bromodeoxyuridine (BrdU) to label newly born cells, and also labeled for calbindin D(28K) (because it normally stains granule cells), many double-labeled neurons were located at the hilar/CA3 border. Many BrdU-labeled cells at the hilar/CA3 border also were double-labeled with a neuronal marker (NeuN). Taken together with the recent evidence that granule cells that are born after seizures can migrate into the hilus, the results suggest that some newly born granule cells migrate as far as the CA3 cell layer, where they become integrated abnormally into the CA3 network, yet they retain granule cell intrinsic properties. The results provide insight into the physiological properties of newly born granule cells in the adult brain and suggest that relatively rigid developmental programs set the membrane properties of newly born cells, but substantial plasticity is present to influence their place in pre-existing circuitry.
Collapse
|
43
|
Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2000; 20:6144-58. [PMID: 10934264 PMCID: PMC6772593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2000] [Revised: 05/05/2000] [Accepted: 05/12/2000] [Indexed: 02/17/2023] Open
Abstract
A group of neurons with the characteristics of dentate gyrus granule cells was found at the hilar/CA3 border several weeks after pilocarpine- or kainic acid-induced status epilepticus. Intracellular recordings from pilocarpine-treated rats showed that these "granule-like" neurons were similar to normal granule cells (i. e., those in the granule cell layer) in membrane properties, firing behavior, morphology, and their mossy fiber axon. However, in contrast to normal granule cells, they were synchronized with spontaneous, rhythmic bursts of area CA3 pyramidal cells that survived status epilepticus. Saline-treated controls lacked the population of granule-like cells at the hilar/CA3 border and CA3 bursts. In rats that were injected after status epilepticus with bromodeoxyuridine (BrdU) to label newly born cells, and also labeled for calbindin D(28K) (because it normally stains granule cells), many double-labeled neurons were located at the hilar/CA3 border. Many BrdU-labeled cells at the hilar/CA3 border also were double-labeled with a neuronal marker (NeuN). Taken together with the recent evidence that granule cells that are born after seizures can migrate into the hilus, the results suggest that some newly born granule cells migrate as far as the CA3 cell layer, where they become integrated abnormally into the CA3 network, yet they retain granule cell intrinsic properties. The results provide insight into the physiological properties of newly born granule cells in the adult brain and suggest that relatively rigid developmental programs set the membrane properties of newly born cells, but substantial plasticity is present to influence their place in pre-existing circuitry.
Collapse
Affiliation(s)
- H E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, New York 10993-1195, USA.
| | | | | |
Collapse
|
44
|
Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsáki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 2000; 84:390-400. [PMID: 10899213 DOI: 10.1152/jn.2000.84.1.390] [Citation(s) in RCA: 571] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multichannel tetrode array recording in awake behaving animals provides a powerful method to record the activity of large numbers of neurons. The power of this method could be extended if further information concerning the intracellular state of the neurons could be extracted from the extracellularly recorded signals. Toward this end, we have simultaneously recorded intracellular and extracellular signals from hippocampal CA1 pyramidal cells and interneurons in the anesthetized rat. We found that several intracellular parameters can be deduced from extracellular spike waveforms. The width of the intracellular action potential is defined precisely by distinct points on the extracellular spike. Amplitude changes of the intracellular action potential are reflected by changes in the amplitude of the initial negative phase of the extracellular spike, and these amplitude changes are dependent on the state of the network. In addition, intracellular recordings from dendrites with simultaneous extracellular recordings from the soma indicate that, on average, action potentials are initiated in the perisomatic region and propagate to the dendrites at 1.68 m/s. Finally we determined that a tetrode in hippocampal area CA1 theoretically should be able to record electrical signals from approximately 1, 000 neurons. Of these, 60-100 neurons should generate spikes of sufficient amplitude to be detectable from the noise and to allow for their separation using current spatial clustering methods. This theoretical maximum is in contrast to the approximately six units that are usually detected per tetrode. From this, we conclude that a large percentage of hippocampal CA1 pyramidal cells are silent in any given behavioral condition.
Collapse
Affiliation(s)
- D A Henze
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Limbic seizures have often been attributed to pathology in the hippocampus, such as the well described condition termed Ammon's Horn sclerosis, in which many of the hippocampal principal cells have degenerated. However, several studies in both the clinical and basic literature indicate that the parahippocampal region may also play an important role. This region sustains a characteristic pattern of damage in most animal models of epilepsy that is similar to that identified in humans with intractable temporal lobe epilepsy. Perhaps the most striking aspect of parahippocampal pathology is the marked loss of neurons in layer III of the entorhinal cortex. The similarity of cell loss in layer III and cell loss in the hilus of the dentate gyrus is compared, as is the characteristic resistance of layer II neurons and dentate granule cells. Cellular electrophysiological results are used as a basis for the hypothesis that synaptic inhibition plays a role in the relative vulnerability of these neurons. Studies of neurogenesis in both areas is also discussed. It is proposed that this may be an additional factor that influences vulnerability in these areas.
Collapse
Affiliation(s)
- H E Scharfman
- Neurology Research Center, Helen Hayes Hospital, West Haverstraw, New York 10993-1195, USA
| |
Collapse
|
46
|
Ishida Y, Shirokawa T, Miyaishi O, Komatsu Y, Isobe K. Age-dependent changes in projections from locus coeruleus to hippocampus dentate gyrus and frontal cortex. Eur J Neurosci 2000; 12:1263-70. [PMID: 10762355 DOI: 10.1046/j.1460-9568.2000.00017.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Age-dependent changes in noradrenergic innervations of the hippocampal dentate gyrus (DG) and the frontal cortex (FC) have been studied in male F344 rats. The projections from the nucleus locus coeruleus (LC) to DG or FC with advancing age (from 7 to 27 months) in rats have been quantified by electrophysiological and immunohistochemical methods. In the electrophysiological study, we observed that the percentage of LC neurons activated antidromically by electrical stimulation (P-index) of DG or FC decreased with age. We found that the percentage of LC neurons showing multiple antidromic latencies (M-index), which suggests axonal branching of individual LC neurons, increased markedly between 15 and 17 months in DG or FC. In DG, the M-index increased steadily between 15 and 24 months. In contrast, the increased M-index in FC was maintained until 24 months. The increased M-index in both targets declined at 27 months. These results suggest that LC neurons give rise to axonal branching following the loss of projections to DG or FC with age. In the immunohistochemical study, the density of dopamine-beta-hydroxylase-positive axonal varicosities was measured in molecular, granule cell and polymorphic layers of DG. The density in the polymorphic layer significantly decreased in the earlier stage of ageing (7-19 months), whilst the density in the molecular and granule cell layers decreased in the later stage (27 months). These findings suggested that a layer-specific decline occurred with age in the noradrenergic axon terminals in DG.
Collapse
Affiliation(s)
- Y Ishida
- Department of Basic Gerontology, National Institute for Longevity Sciences, Gengo 36-3, Morioka-cho, Obu 474-0031, Japan
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- S Jones
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
48
|
Blümcke I, Beck H, Lie AA, Wiestler OD. Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res 1999; 36:205-23. [PMID: 10515166 DOI: 10.1016/s0920-1211(99)00052-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the recent progress in surgical treatment modalities, human brain tissue from patients with intractable focal epilepsies will increasingly become available for studies on the molecular pathology, electrophysiological changes and pathogenesis of human focal epilepsies. An inherent problem for studies on human temporal lobe epilepsy (TLE) is the lack of suitable controls. Strategies to alleviate this obstacle include the use of human post mortem samples, hippocampus from experimental animals and, in particular, the comparative analysis of surgical specimens from patients with Ammon's horn sclerosis (AHS) and with focal temporal lesions but anatomically preserved hippocampal structures. In this review we focus on selected aspects of the molecular neuropathology of TLE: (1) the potential impact of persisting calretinin-immunoreactive neurons with Cajal-Retzius cell morphology, (2) astrocytic tenascin-C induction and redistribution as potential regulator of aberrant axonal sprouting and (3) alterations of Ca2+ -mediated hippocampal signalling pathways. The diverse and complex changes described so far in human TLE specimens require a systematic interdisciplinary approach to distinguish primary, epileptogenic alterations and secondary, compensatory mechanisms in the pathogenesis of human temporal lobe epilepsies.
Collapse
Affiliation(s)
- I Blümcke
- Department of Neuropathology, University of Bonn Medical Center, Germany
| | | | | | | |
Collapse
|
49
|
Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. J Neurosci 1999. [PMID: 10377368 DOI: 10.1523/jneurosci.19-13-05619.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.
Collapse
|
50
|
Scharfman HE, Goodman JH, Sollas AL. Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. J Neurosci 1999; 19:5619-31. [PMID: 10377368 PMCID: PMC2504498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Brain-Derived Neurotrophic Factor/analysis
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Size/drug effects
- Epilepsy/chemically induced
- Epilepsy/metabolism
- Epilepsy/pathology
- Excitatory Postsynaptic Potentials/drug effects
- GABA Antagonists/pharmacology
- In Vitro Techniques
- Male
- Mossy Fibers, Hippocampal/chemistry
- Mossy Fibers, Hippocampal/drug effects
- Mossy Fibers, Hippocampal/pathology
- Mossy Fibers, Hippocampal/physiopathology
- Neuropeptide Y/analysis
- Pilocarpine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Ciliary Neurotrophic Factor
- Receptors, GABA/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/metabolism
- Seizures/chemically induced
- Seizures/metabolism
- Seizures/pathology
- Status Epilepticus/chemically induced
- Status Epilepticus/metabolism
- Status Epilepticus/pathology
- Synapses/drug effects
- Synapses/physiology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- H E Scharfman
- Neurology Research Center, Helen Hayes Hospital, West Haverstraw, New York 10993-1195, USA
| | | | | |
Collapse
|