1
|
Ragavendran C, Govindaraj A, Kamaraj C, Natarajan D, Malafaia G, Alrefaei AF, Almutairi MH. Fusarium begoniae metabolites: a promising larvicidal, pupicidal potential, histopathological alterations and detoxifications enzyme profiles of medically important mosquito vector Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. 3 Biotech 2024; 14:226. [PMID: 39263325 PMCID: PMC11384672 DOI: 10.1007/s13205-024-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Endophytic fungal molecules have the potential to be a cost-effective chemical source for developing eco-friendly disease-controlling pharmaceuticals that target mosquito-borne illnesses. The primary aims of the study were to identify the fungus Fusarium begoniae larvicidal ability against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. The ethyl acetate extract demonstrated lethal concentrations that kill 50% of exposed larvae (LC50) and 90% of exposed larvae (LC90) for the 1st to 4th instar larvae of An. stephensi (LC50 = 54.821, 66.525, 68.250, and 73.614; LC90 = 104.56, 138.205, 150.415, and 159.466 μg/mL), Cx. quinquefasciatus (LC50 = 64.981, 36.505, 42.230, and 36.514; LC90 = 180.46, 157.105, 140.318, and 153.366 μg/ mL), and Ae. aegypti (LC50 = 74.890, 33.607, 52.173, and 26.974; LC90 = 202.56, 162.205, 130.518, and 163.286 μg/mL). Mycelium metabolites were evaluated for their pupicidal activity towards Ae. aegypti (LC50 = 80.669, LC90 = 119.904), Cx. quinquefasciatus (LC50 = 70.569, LC90 = 109.840), and An. stephensi (LC50 = 73.269, LC90 = 110.590 μg/mL). The highest larvicidal activity was recorded at 300 µg/mL, with 100% mortality against first and second-instar larvae of Cx. quinquefasciatus. Metabolite exposure to larvae exhibited several abnormal behavioral changes. The exposure to F. begoniae metabolite, key esterases such as acetylcholinesterase, α-and-β-carboxylesterase, and acid and alkaline phosphatase activity significantly decreased compared to control larvae. The outcomes of the histology analysis revealed that the mycelium metabolites-treated targeted larvae had a disorganized abdominal mid and hindgut epithelial cells. The is first-hand information on study of ethyl-acetate-derived metabolites from F. begoniae tested against larvae and pupae of Ae. aegypti, Cx. quinquefasciatus and An. stephensi. Bio-indicator toxicity findings demonstrate that A. nauplii displayed no mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04061-z.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077 Tamil Nadu India
| | - Annadurai Govindaraj
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Tamil Nadu, Kattankulathur, Chennai 603203 India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG Brazil
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO Brazil
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Wei SS, Lai JY, Chen C, Zhang YJ, Nong XM, Qiu KD, Duan FF, Zou ZX, Tan HB. Sesquiterpenes and α-pyrones from an endophytic fungus Xylaria curta YSJ-5. PHYTOCHEMISTRY 2024; 220:114011. [PMID: 38367793 DOI: 10.1016/j.phytochem.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Chemical investigation of the culture extract of an endophyte Xylaria curta YSJ-5 from Alpinia zerumbet (Pers.) Burtt. et Smith resulted in the isolation of eight previously undescribed compounds including five eremophilane sesquiterpenes xylarcurenes A-E, one norsesquiterpene xylarcurene F, and two α-pyrone derivatives xylarpyrones A-B together with eight known related derivatives. Their chemical structures were extensively established based on the 1D- and 2D-NMR spectroscopic analysis, modified Mosher's method, electronic circular dichroism calculations, single-crystal X-ray diffraction experiments, and the comparison with previous literature data. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, 6-pentyl-4-methoxy-pyran-2-one was disclosed to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with minimal inhibitory concentration value of 6.3 μg/mL.
Collapse
Affiliation(s)
- Shan-Shan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Ying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China
| | - Yan-Jiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Miao Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kai-Di Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Fang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China.
| | - Hai-Bo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China.
| |
Collapse
|
3
|
Rungjindamai N, Jones EBG. Why Are There So Few Basidiomycota and Basal Fungi as Endophytes? A Review. J Fungi (Basel) 2024; 10:67. [PMID: 38248976 PMCID: PMC10820240 DOI: 10.3390/jof10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
A review of selected studies on fungal endophytes confirms the paucity of Basidiomycota and basal fungi, with almost 90% attributed to Ascomycota. Reasons for the low number of Basidiomycota and basal fungi, including the Chytridiomycota, Mucoromycota, and Mortierellomycota, are advanced, including isolation procedure and media, incubation period and the slow growth of basidiomycetes, the identification of non-sporulating isolates, endophyte competition, and fungus-host interactions. We compare the detection of endophytes through culture-dependent methods and culture-independent methods, the role of fungi on senescence of the host plant, and next-generation studies.
Collapse
Affiliation(s)
- Nattawut Rungjindamai
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Wei S, Chen C, Lai J, Zhang Y, Nong X, Duan F, Wu P, Wang S, Tan H. Xylarcurcosides A-C, three novel isopimarane-type diterpene glycosides from Xylaria curta YSJ-5. Carbohydr Res 2024; 535:108987. [PMID: 38048745 DOI: 10.1016/j.carres.2023.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Three previously undescribed isopimarane-type diterpene glycosides named as xylarcurcosides A-C (1-3) along with two known ones 16-α-d-mannopyranosyloxyisopimar-7-en-19-oic acid (4) and hypoxylonoid A (5) were successfully isolated from an ethyl acetate extract of the endophytic fungus Xylaria curta YSJ-5 growing in leaves of Alpinia zerumbet. The spectroscopic methods, electronic circular dichroism (ECD) calculations, and X-ray diffraction experiments were conducted to identify their absolute chemical structures. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, these novel compounds demonstrated no obvious cytotoxic and antibacterial activity.
Collapse
Affiliation(s)
- Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiaying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinmiao Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Fangfang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ping Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China.
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
5
|
Xu H, Goldfuss B, Dickschat JS. Biosynthesis of the Sesquiterpene Kitaviridene through Skeletal Rearrangement with Formation of a Methyl Group Equivalent. Org Lett 2023; 25:3330-3334. [PMID: 37122105 DOI: 10.1021/acs.orglett.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A sesquiterpene synthase from Kitasatospora viridis was discovered and shown to produce kitaviridene, a sesquiterpene hydrocarbon with an additional methyl group equivalent in comparison to a regular sesquiterpene. Isotopic labeling experiments together with DFT calculations gave detailed insights into the cyclization cascade toward kitaviridene and explained the formation of the additional methyl group equivalent.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
6
|
Chen CY, Wu MD, Cheng MJ. Xylarianolide, A New Lignanoid from Xylaria sp. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Wu MD, Chen JJ, Cheng MJ, Hsieh SY, Chang CZ, Kuo YH. Xylariaone, A New Cyclohexanone from Xylaria sp. 12F0758. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Tori M. Cumulative Data of 1H and 13C NMR Signals and Specific Rotations of Eremophilane Sesquiterpenoids. 1. Bicyclic Eremophilanes (1). Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
1H and 13C Nuclear Magnetic Resonance (NMR) signals and specific rotations of eremophilane sesquiterpenoids are cumulated as a series of review articles. In the first chapter of this review, 332 bicyclic eremophilanes, namely with no furan or lactone rings (except for epoxides), without 3-OR functionality (except for hydroxy, acetoxy, and carbonyl) are listed in tables. These data may help chemists working in the area of natural products chemistry as well as synthetic scientists.
Collapse
Affiliation(s)
- Motoo Tori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| |
Collapse
|
9
|
Li H, Tang Y, Liang KY, Zang Y, Osman EEA, Jin ZX, Li J, Xiong J, Li J, Hu JF. Phytochemical and biological studies on rare and endangered plants endemic to China. Part XXII. Structurally diverse diterpenoids from the leaves and twigs of the endangered conifer Torreya jackii and their bioactivities. PHYTOCHEMISTRY 2022; 198:113161. [PMID: 35283166 DOI: 10.1016/j.phytochem.2022.113161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A phytochemical investigation on the MeOH extract of the leaves and twigs of the endangered conifer Torreya jackii Chun led to the isolation and characterization of 21 structurally diverse diterpenoids. Among them, six are previously undescribed, including four abietane-type (torreyins A-D, resp.) and two labdane-type diterpenoids (torreyins E and F). Their structures and absolute configurations were determined by a combination of spectroscopic methods, calculated/experimental electronic circular dichroism (ECD) data, and single-crystal X-ray diffraction analyses. In particular, torreyins A-C are rare 11,12-seco-abietane type diterpenoids possessing a dilactone moiety, and their biosynthetic pathway starting from a co-occurring abietane derivative (i.e., cyrtophyllone B) was briefly proposed. Among the isolates, 7-oxo-dehydroabietic acid and 15-methoxy-7,13-abietadien-18-oic acid showed considerable inhibitory effects against acetyl-coenzyme A carboxylase 1 (ACC1) and protein tyrosine phosphatase 1 B (PTP1B), with IC50 values of 3.1 and 6.8 μM, respectively.
Collapse
Affiliation(s)
- Hao Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China; School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yu Tang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kai-Yuan Liang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China; School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Ezzat E A Osman
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Department of Biochemistry, Molecular Biology and Medicinal Chemistry, Theodor Bilharz Research Institute, P. O. Box 30 Imbaba, Giza, 12411, Egypt
| | - Ze-Xin Jin
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Junmin Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China.
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China; School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
10
|
Citreobenzofuran D–F and Phomenone A–B: Five Novel Sesquiterpenoids from the Mangrove-Derived Fungus Penicillium sp. HDN13-494. Mar Drugs 2022; 20:md20020137. [PMID: 35200666 PMCID: PMC8878823 DOI: 10.3390/md20020137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Five new sesquiterpenoids, citreobenzofuran D–F (1–3) and phomenone A–B (4–5), along with one known compound, xylarenone A (6), were isolated from the culture of the mangrove-derived fungus Penicillium sp. HDN13-494. Their structures were deduced from extensive spectroscopic data, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Furthermore, the absolute structures of 1 were determined by single-crystal X-ray diffraction analysis. Citreobenzofuran E–F (2–3) are eremophilane-type sesquiterpenoids with rare benzofuran frameworks, while phomenone A (4) contains a rare thiomethyl group, which is the first report of this kind of sesquiterpene with sulfur elements in the skeleton. All the compounds were tested for their antimicrobial and antitumor activity, and phomenone B (5) showed moderate activity against Bacillus subtilis, with an MIC value of 6.25 μM.
Collapse
|
11
|
Araújo IF, Marinho VHDS, Sena IDS, Curti JM, Ramos RDS, Ferreira RMA, Souto RNP, Ferreira IM. Larvicidal activity against Aedes aegypti and molecular docking studies of compounds extracted from the endophytic fungus Aspergillus sp. isolated from Bertholletia excelsa Humn. & Bonpl. Biotechnol Lett 2022; 44:439-459. [PMID: 35147845 DOI: 10.1007/s10529-022-03220-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/01/2022] [Indexed: 12/27/2022]
Abstract
Endophytic fungi are microorganisms capable of colonizing the interior of plant tissues without causing damage to them. The study of the secondary metabolites produced by their vast biodiversity fungal is relevant for the discovery of new products for biotechnological and agrochemical applications. In addition, extract of the endophytic fungus Aspergillus sp., isolated from the almonds of Bertholletia excelsa Humn & Bonlp collected in the Brazilian Amazon, oviposition deterrent, and larvicidal activity of against Aedes aegypti. In the oviposition deterrence test was observed that females able to lay eggs preferred the control oviposition sites (46.6%). Furthermore, the extract showed larvicidal activity with LC50 26.86 µg/mL at 24 h and 18.75 µg/mL at 48 h. Molecular docking studies showed the compound Aspergillol B a potent larvicide by to inhibit the acetylcholinesterase enzyme (- 7.74 kcal/mol). These results indicate that compounds from secondary metabolites of Aspergillus sp., isolated from almonds of B. excelsa, are useful biological potential against vectors A. aegypti.
Collapse
Affiliation(s)
- Inana F Araújo
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Victor Hugo de S Marinho
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Iracirema da S Sena
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Jhone M Curti
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Ryan da S Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, AP, 68902-280, Brazil
| | - Ricardo M A Ferreira
- Arthropod Laboratory, Collegiate of Biology, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Raimundo N P Souto
- Arthropod Laboratory, Collegiate of Biology, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Irlon M Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil.
| |
Collapse
|
12
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
13
|
Marine Terpenoids from Polar Latitudes and Their Potential Applications in Biotechnology. Mar Drugs 2020; 18:md18080401. [PMID: 32751369 PMCID: PMC7459527 DOI: 10.3390/md18080401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/03/2023] Open
Abstract
Polar marine biota have adapted to thrive under one of the ocean’s most inhospitable scenarios, where extremes of temperature, light photoperiod and ice disturbance, along with ecological interactions, have selected species with a unique suite of secondary metabolites. Organisms of Arctic and Antarctic oceans are prolific sources of natural products, exhibiting wide structural diversity and remarkable bioactivities for human applications. Chemical skeletons belonging to terpene families are the most commonly found compounds, whereas cytotoxic antimicrobial properties, the capacity to prevent infections, are the most widely reported activities from these environments. This review firstly summarizes the regulations on access and benefit sharing requirements for research in polar environments. Then it provides an overview of the natural product arsenal from Antarctic and Arctic marine organisms that displays promising uses for fighting human disease. Microbes, such as bacteria and fungi, and macroorganisms, such as sponges, macroalgae, ascidians, corals, bryozoans, echinoderms and mollusks, are the main focus of this review. The biological origin, the structure of terpenes and terpenoids, derivatives and their biotechnological potential are described. This survey aims to highlight the chemical diversity of marine polar life and the versatility of this group of biomolecules, in an effort to encourage further research in drug discovery.
Collapse
|
14
|
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 2020; 39:107462. [DOI: 10.1016/j.biotechadv.2019.107462] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
|
15
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. An Unusual Skeletal Rearrangement in the Biosynthesis of the Sesquiterpene Trichobrasilenol from Trichoderma. Angew Chem Int Ed Engl 2019; 58:15046-15050. [PMID: 31418991 PMCID: PMC7687074 DOI: 10.1002/anie.201907964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Indexed: 11/08/2022]
Abstract
The skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate precursor. This is sometimes the result of an oxidative ring-opening reaction at a terpene-cyclase-derived molecule containing the regular number of Me group equivalents, as observed for picrotoxan sesquiterpenes. In this study a sesquiterpene cyclase from Trichoderma spp. is described that can convert farnesyl diphosphate (FPP) directly via a remarkable skeletal rearrangement into trichobrasilenol, a new brasilane sesquiterpene with one additional Me group equivalent compared to FPP. A mechanistic hypothesis for the formation of the brasilane skeleton is supported by extensive isotopic labelling studies.
Collapse
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Kazuya Teramoto
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Makoto Nishiyama
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
16
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. Eine ungewöhnliche Gerüstumlagerung in der Biosynthese des Sesquiterpens Trichobrasilenol aus Trichoderma. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Kazuya Teramoto
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Makoto Nishiyama
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
17
|
Nguyen HT, Kim S, Yu NH, Park AR, Yoon H, Bae CH, Yeo JH, Kim IS, Kim JC. Antimicrobial activities of an oxygenated cyclohexanone derivative isolated from Amphirosellinia nigrospora JS-1675 against various plant pathogenic bacteria and fungi. J Appl Microbiol 2019; 126:894-904. [PMID: 30358043 DOI: 10.1111/jam.14138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 01/17/2023]
Abstract
AIMS To evaluate the antimicrobial activities of an active compound isolated from the culture broth of Amphirosellinia nigrospora JS-1675 against various plant pathogenic bacteria and fungi. METHODS AND RESULTS While screening for bioactive secondary metabolites from endophytic fungi, we found that A. nigrospora JS-1675 showed strong in vitro antibacterial activity against Ralstonia solanacearum. One compound (1) was isolated and identified as (4S, 5S, 6S)-5,6-epoxy-4-hydroxy-3-methoxy-5-methyl-cyclohex-2-en-1-one. Growth of most of the tested phytopathogenic bacteria was inhibited by compound 1 and the ethyl acetate (EtOAc) layer except Pseudomonas syringae pv. lachrymans. Compound 1 also inhibited the mycelial growth of several plant pathogenic fungi. Both compound 1 and the EtOAc layer reduced bacterial leaf spot disease in detached peach leaves. They also suppressed the development of bacterial wilt on tomato seedlings quite effectively. CONCLUSIONS Amphirosellinia nigrospora JS-1675 showed antimicrobial activity against plant pathogenic bacteria and fungi by producing compound 1. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the occurrence of compound 1 in A. nigrospora JS-1675 and its efficacy against plant pathogenic bacteria and fungi. Their strong disease control efficacy against tomato bacterial wilt suggests that this fungus can be used as a microbial bactericide.
Collapse
Affiliation(s)
- H T Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - S Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Korea
| | - N H Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - A R Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - H Yoon
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Korea
| | - C-H Bae
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Korea
| | - J H Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Korea
| | - I S Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - J-C Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
18
|
Adnan M, Patel M, Reddy MN, Alshammari E. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Sci Rep 2018; 8:1740. [PMID: 29379181 PMCID: PMC5789059 DOI: 10.1038/s41598-018-20237-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H2O2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia.
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidhya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mandadi Narsimha Reddy
- Department of Biosciences, Bapalal Vaidhya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Eyad Alshammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
19
|
Yuyama KT, Fortkamp D, Abraham WR. Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biol Chem 2017; 399:13-28. [PMID: 28822220 DOI: 10.1515/hsz-2017-0171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 01/26/2023]
Abstract
Eremophilanes are sesquiterpenes with a rearranged carbon skeleton formed both by plants and fungi, however, almost no plant eremophilanes are found in fungi. These eremophilanes possess mainly phytotoxic, antimicrobial, anticancer and immunomodulatory properties and in this review fungal eremophilanes with bioactivities of potential medicinal applications are reviewed and discussed. A special focus is set on natural products bearing highly functionalized fatty acids at C-1 or C-3 position of the eremophilane backbone. Many of these fatty acids seem to contribute to the bioactivity of the metabolites enhancing the activity of the sesquiterpene moieties. Several approaches for optimization of these natural products for clinical needs and testing of the resulting derivatives are presented and discussed. The combination of identification of bioactive natural products with their subsequent improvement using a variety of genetical or chemical tools and the pharmacokinetic assessment of the products is presented here as a promising approach to new drugs.
Collapse
Affiliation(s)
- Kamila Tomoko Yuyama
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Diana Fortkamp
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.,Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Department of Exact Sciences, Piracicaba, SP, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
20
|
Guo K, Fang H, Gui F, Wang Y, Xu Q, Deng X. Two New RingA-Cleaved Lanostane-Type Triterpenoids and Four Known Steroids Isolated from Endophytic FungusGlomerellasp. F00244. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Guo
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
| | - Huiqin Fang
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
| | - Fu Gui
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
| | - Qinyan Xu
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products; School of Life Sciences; Xiamen University; Xiamen Fujian 361102 P. R. China
| |
Collapse
|
21
|
Stierle AA, Stierle DB. Bioactive Secondary Metabolites Produced by the Fungal Endophytes of Conifers. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This is a review of bioactive secondary metabolites isolated from conifer-associated endophytic fungi from 1990-2014. This includes compounds with antimicrobial, anti-inflammatory, anti-proliferative and cytotoxic activity towards human cancer cell lines, and activity against either plant pathogens or plant insect pests. Compounds that were originally reported without associated activity were included if other studies ascribed activity to these compounds. Compounds were not included if they were exclusively phytotoxic or if they were isolated from active extracts but were not determined to be the active component of that extract.
Collapse
Affiliation(s)
- Andrea A. Stierle
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, USA
| | - Donald B. Stierle
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
22
|
Hu DB, Zhang S, He JB, Dong ZJ, Li ZH, Feng T, Liu JK. Brasilane sesquiterpenoids and alkane derivatives from cultures of the basidiomycete Coltricia sideroides. Fitoterapia 2015; 104:50-4. [PMID: 25987321 DOI: 10.1016/j.fitote.2015.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/09/2015] [Accepted: 05/14/2015] [Indexed: 11/30/2022]
Abstract
Three new brasilane-type sesquiterpenoids, brasilanes A-C (1-3), together with two new alkane derivatives, colisiderin A (4) and 7(E),9(E)-undecandiene-2,4,5-triol (5), were isolated from cultures of the basidiomycete Coltricia sideroides. Their structures were elucidated by NMR and MS data analyses. The absolute configuration of 4 was determined by TDDFT ECD calculations while brasilane-type sesquiterpenoids were isolated from cultures of mushroom for the first time. Compounds 2 and 4 showed weak cytotoxicities against HL-60 and SW480, respectively.
Collapse
Affiliation(s)
- Dong-Bao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Bo He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Jun Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zheng-Hui Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Ji-Kai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
23
|
Wu SH, He J, Li XN, Huang R, Song F, Chen YW, Miao CP. Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. PHYTOCHEMISTRY 2014; 105:197-204. [PMID: 24890390 DOI: 10.1016/j.phytochem.2014.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/03/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Nine oxygenated guaiane-type sesquiterpenes and three isopimarane diterpenes were isolated from the culture broth of an endophytic fungus, Xylaria sp. YM 311647, obtained from Azadirachta indica. The structures of these compounds were elucidated by interpretation of spectroscopic data. The absolute configurations of two of these were confirmed by X-ray crystallographic analysis. All of the compounds were tested for their antifungal activities against five pathogenic fungal cells. The results showed that nine sesquiterpenes were moderately active against Candida albicans and Hormodendrum compactum with MIC values ranging from 32 to 256μg/ml, while the diterpenes were more active; One of these exhibited the most potent inhibitory activity against C. albicans and Pyricularia oryzae with MIC values of 16μg/ml.
Collapse
Affiliation(s)
- Shao-Hua Wu
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Jian He
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Rong Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Fei Song
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| | - You-Wei Chen
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Cui-Ping Miao
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
24
|
Song F, Wu SH, Zhai YZ, Xuan QC, Wang T. Secondary Metabolites from the GenusXylariaand Their Bioactivities. Chem Biodivers 2014; 11:673-94. [DOI: 10.1002/cbdv.201200286] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Indexed: 11/06/2022]
|
25
|
Sodngam S, Sawadsitang S, Suwannasai N, Mongkolthanaruk W. Chemical Constituents, and their Cytotoxicity, of the Rare Wood Decaying Fungus Xylaria humosa. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Samples of Xylaria humosa, a rare species of Xylariaceae, were collected during an investigation into the diversity of the fungus in the Phu Khieo Wildlife Sanctuary, Thailand. Nine compounds were isolated from the species and their structures elucidated by spectroscopic methods. The compounds were ergosterol (1), ergosterol peroxide (2), two meroterpenoids, chevalone B and C (3–4), together with five indole alkaloids, tryptoquivaline L (5), tryptoquivaline M (6), fiscalin A (7), epi-fiscalin A (8) and epi-fiscalin C (9). Compounds 2–9 exhibited variable cytotoxic activity against KB, NCI-H187 and MCF-7 cell lines.
Collapse
Affiliation(s)
- Sirirath Sodngam
- Natural Products Research Unit, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, 40002, Thailand
| | - Sasiphimol Sawadsitang
- Natural Products Research Unit, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, 40002, Thailand
| | - Nuttika Suwannasai
- Department of Biology, Faculty of Science, Srinakharinwirot University, 10110, Thailand
| | | |
Collapse
|
26
|
de Souza JJ, Vieira IJC, Rodrigues-Filho E, Braz-Filho R. Terpenoids from endophytic fungi. Molecules 2011; 16:10604-18. [PMID: 22183885 PMCID: PMC6264667 DOI: 10.3390/molecules161210604] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 12/02/2011] [Accepted: 12/12/2011] [Indexed: 11/17/2022] Open
Abstract
This work reviews the production of terpenoids by endophytic fungi and their biological activities, in period of 2006 to 2010. Sixty five sesquiterpenes, 45 diterpenes, five meroterpenes and 12 other terpenes, amounting to 127 terpenoids were isolated from endophytic fungi.
Collapse
Affiliation(s)
- Jucimar Jorgeane de Souza
- Laboratory of Chemical Science, State University of North Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Ivo José Curcino Vieira
- Laboratory of Chemical Science, State University of North Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Edson Rodrigues-Filho
- Laboratory of Biochemistry of Microorganisms Micromolecules (LaBioMMi), Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Raimundo Braz-Filho
- Visiting Researcher — Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro / State University of North Fluminense Darcy Ribeiro / Federal Rural Universty of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Li YY, Hu ZY, Shen YM. Two New Cyclopeptides and One New Nonenolide from Xylaria sp. 101. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100601214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two novel cyclopeptides, xylarotides A (1), and B (2), and one novel nonenolide, xylarolide (3), along with two known compounds, coriloxin (4), and 2-hydroxy-3-methoxy-5-methyl- p-benzoquinone (5) were isolated from the fungal strain Xylaria sp. 101. This strain was isolated from the fruiting body of Xylaria sp. collected in Gaoligong Mountain, Yunnan Province. The chemical structures were elucidated by spectroscopic analyses, including 1D- and 2D-NMR spectroscopic experiments, and on the basis of HR-Q-TOF mass spectrometry. Antibacterial assays of 1 - 3 were carried out; no effects on the growth of the tested bacteria and yeast were observed.
Collapse
Affiliation(s)
- Yao-Yao Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250000, P. R. China
| | - Zhi-Yu Hu
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yue-Mao Shen
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250000, P. R. China
| |
Collapse
|
28
|
de Oliveira CM, Silva GH, Regasini LO, Flausino O, López SN, Abissi BM, Berlinck RGDS, Sette LD, Bonugli-Santos RC, Rodrigues A, Bolzani VDS, Araujo AR. Xylarenones C-E from an endophytic fungus isolated from Alibertia macrophylla. JOURNAL OF NATURAL PRODUCTS 2011; 74:1353-1357. [PMID: 21510613 DOI: 10.1021/np1005983] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Xylarenones C-E (2-4), three new eremophilane sesquiterpenes, have been isolated from solid substrate cultures of a Camarops-like endophytic fungus isolated from Alibertia macrophylla. The structures were elucidated by analysis of spectroscopic data. Compounds were evaluated in subtilisin and pepsin protease assays, and compound 2 showed potent inhibitory activity against both proteases.
Collapse
Affiliation(s)
- Camila Martins de Oliveira
- NuBBE, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista, Rua Professor Francisco Degni s/n, Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Hu ZY, Li YY, Lu CH, Lin T, Hu P, Shen YM. Seven Novel Linear Polyketides from Xylaria sp. NCY2. Helv Chim Acta 2010. [DOI: 10.1002/hlca.200900323] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
|
32
|
Xu R, Wang MZ, Lu CH, Zheng ZH, Shen YM. Tuberculariols A - C, New Sesquiterpenes from the Mutant Strain M-741 ofTuberculariasp. TF5. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200800451] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Lin T, Lin X, Lu C, Hu Z, Huang W, Huang Y, Shen Y. Secondary Metabolites ofPhomopsissp. XZ-26, an Endophytic Fungus fromCamptothecaacuminate. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Yuan L, Lin X, Zhao PJ, Ma J, Huang YJ, Shen YM. New Polyketides from EndophyticDiaporthesp. XZ-07. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200800416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
|