1
|
Gul G, Ceyhan M, Ince D, Olgun N, Ozer E. Expression Profile of Selected Antitumor Immune Response Genes in Pediatric Classic Hodgkin Lymphoma. Appl Immunohistochem Mol Morphol 2022; 30:358-365. [PMID: 35293362 DOI: 10.1097/pai.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Classic Hodgkin lymphoma (cHL) is one of the most common pediatric solid tumors and is responsible for cancer-related deaths in children. Therefore, to modulate the active antitumor T-cell immune response in cHL can be a treatment strategy. In the present study, we aimed to investigate the expression profiles of selected antitumor immune response genes in pediatric cHL and their relationships with clinical and prognostic parameters to determine their significance in precision medicine. Thirty-nine pediatric nodal cHL patients were enrolled in the study. We analyzed mRNA expression of selected immune response regulatory genes such as PD-L1, CSF2, CTLA4, CXCL5, IDO1, CXCL8, MIF, NOS2, PDCD1, PTGS2, and TGFβ1 using real-time quantitative polymerase chain reaction. Only PD-L1 overexpression was statistically related to bulky disease, advanced tumor stage, and high-risk disease category and seen significantly in Epstein-Barr virus-negative pediatric cHL. No expression profiles were correlated with relapse or survival. We conclude that PD-L1 overexpression in pediatric cHL cases is a strong predictor of high-risk categorization. In addition to being a prognostic biomarker, PD-L1 blockade is also a druggable marker for the targeted therapy in Epstein-Barr virus-negative pediatric Hodgkin lymphoma.
Collapse
Affiliation(s)
| | | | - Dilek Ince
- Clinical Oncology, Dokuz Eylul University Institute of Oncology
| | - Nur Olgun
- Clinical Oncology, Dokuz Eylul University Institute of Oncology
| | - Erdener Ozer
- Division of Tumor Pathology, Department of Clinical Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Turkey
| |
Collapse
|
2
|
Mortensen JB, Monrad I, Enemark MB, Ludvigsen M, Kamper P, Bjerre M, d'Amore F. Soluble programmed cell death protein 1 (sPD-1) and the soluble programmed cell death ligands 1 and 2 (sPD-L1 and sPD-L2) in lymphoid malignancies. Eur J Haematol 2021; 107:81-91. [PMID: 33721375 DOI: 10.1111/ejh.13621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The programmed cell death protein 1 (PD-1) and its ligand 1 and 2 (PD-L1/PD-L2) regulate the immune system, and the checkpoint pathway can be exploited by malignant cells to evade anti-tumor immune response. Soluble forms (sPD-1/sPD-L1/sPD-L2) exist in the peripheral blood, but their biological and clinical significance is unclear. METHOD Time-resolved immunofluorometric assay (TRIFMA) and enzyme-linked immunosorbent assay (ELISA) were used to measure sPD-1, sPD-L1, and sPD-L2 levels in serum from 131 lymphoma patients and 22 healthy individuals. RESULTS Patients had higher sPD-1 and sPD-L2 levels than healthy individuals. In diffuse large B-cell lymphoma, patients with high International Prognostic Index score had higher sPD-1 levels and sPD-L2 levels correlated with subtype according to cell of origin. Compared to other lymphoma types, follicular lymphoma displayed higher sPD-1 and lower sPD-L1 levels along with lower ligand/receptor ratios. CONCLUSION This is the first study to simultaneously characterize pretherapeutic sPD-1, sPD-L1, and sPD-L2 in a variety of lymphoma subtypes. The relation between higher sPD-1 levels and adverse prognostic factors suggests a possible biological role and potential clinical usefulness of sPD-1. Moreover, the reverse expression pattern in follicular lymphoma and T-cell lymphoma/leukemia may reflect biological information relevant for immunotherapy targeting the PD-1 pathway.
Collapse
Affiliation(s)
- Julie B Mortensen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Ida Monrad
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Marie B Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Kamper
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Bjerre
- Medical/SDCA Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Veldman J, Alsada ZND, van den Berg A, Plattel WJ, Diepstra A, Visser L. Soluble PD-L1 is a promising disease biomarker but does not reflect tissue expression in classic Hodgkin lymphoma. Br J Haematol 2021; 193:506-514. [PMID: 33620088 PMCID: PMC8247981 DOI: 10.1111/bjh.17362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Individually, tissue and soluble markers involved in the programmed cell death protein 1/programmed death-ligand (PD-1/PD-L) axis have been described as biomarkers with clinical value in classical Hodgkin lymphoma (cHL). In the context of the success of immune checkpoint blockade therapy in cHL, it is interesting to discover whether plasma levels of proteins in the PD-1/PD-L axis are a reflection of expression by the corresponding tissue. Paired tissue and plasma samples of cHL patients were collected and analysed for PD-1, PD-L1 and PD-L2 levels. In addition, vascular endothelial growth factor (VEGF) and CD83, molecules regarded to influence the expression of PD-1, PD-L1 and/or PD-L2, were included. PD-L1 was upregulated in the plasma of cHL patients compared to healthy controls and correlated well with several clinical parameters. Strong PD-L1 expression in the tumour microenvironment contributed to high soluble (s)PD-L1 levels, although there was no direct correlation between plasma PD-L1 levels and total expression of PD-L1 in corresponding cHL tissue. Interestingly, we observed a positive correlation between VEGF and PD-1 levels in both tissue and plasma. In conclusion, although PD-L1 is a promising soluble biomarker in cHL, its levels do not reflect the total tissue expression. Future studies focusing on PD-L1 as a predictor for immune checkpoint treatment response, should include both biopsy and plasma samples.
Collapse
Affiliation(s)
- Johanna Veldman
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zainab N D Alsada
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wouter J Plattel
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Soluble PD-1 but Not PD-L1 Levels Predict Poor Outcome in Patients with High-Risk Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13030398. [PMID: 33499013 PMCID: PMC7865236 DOI: 10.3390/cancers13030398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Soluble forms of checkpoint protein PD-1 and its ligand PD-L1 can be measured from circulation, but their source, function, and clinical impact in cancer remain incompletely understood. In this study, we used serum samples collected during a conduction of a prospective immunochemotherapy trial in patients with high-risk diffuse large B-cell lymphoma (DLBCL) and assessed their clinical significance. Our results demonstrate that sPD-1 levels in the peripheral blood at the time of diagnosis correlate with the quantities of tumor infiltrating PD1+ T cells and translate to inferior survival. To our knowledge, this is the first study to identify sPD-1 as a prognostic factor, providing interesting perspectives on future clinical trials in DLBCL, including patients’ stratification associated with checkpoint blockade. Abstract Interaction of checkpoint receptor programmed death 1 (PD-1) with its ligand 1 (PD-L1) downregulates T cell effector functions and thereby leads to tumor immune escape. Here, we aimed to determine the clinical significance of soluble PD-1 (sPD-1) and soluble PD-L1 (sPD-L1) in patients with diffuse large B-cell lymphoma (DLBCL). We included 121 high-risk DLBCL patients treated in the Nordic NLG-LBC-05 trial with dose-dense immunochemotherapy. sPD-1 and sPD-L1 levels were measured from serum samples collected prior to treatment, after three immunochemotherapy courses, and at the end of therapy. sPD-1 and sPD-L1 levels were the highest in pretreatment samples, declining after three courses, and remaining low post-treatment. Pretreatment sPD-1 levels correlated with the quantities of PD1+ T cells in tumor tissue and translated to inferior survival, while no correlation was observed between sPD-L1 levels and outcome. The relative risk of death was 2.9-fold (95% CI 1.12–7.75, p = 0.028) and the risk of progression was 2.8-fold (95% CI 1.16–6.56, p = 0.021) in patients with high pretreatment sPD-1 levels compared to those with low levels. In conclusion, pretreatment sPD-1 level is a predictor of poor outcome after dose-dense immunochemotherapy and may be helpful in further improving molecular risk profiles in DLBCL.
Collapse
|
5
|
Saulite I, Ignatova D, Chang YT, Fassnacht C, Dimitriou F, Varypataki E, Anzengruber F, Nägeli M, Cozzio A, Dummer R, Scarisbrick J, Pascolo S, Hoetzenecker W, Bobrowicz M, Guenova E. Blockade of programmed cell death protein 1 (PD-1) in Sézary syndrome reduces Th2 phenotype of non-tumoral T lymphocytes but may enhance tumor proliferation. Oncoimmunology 2020; 9:1738797. [PMID: 32760603 PMCID: PMC7386859 DOI: 10.1080/2162402x.2020.1738797] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphoma (L-CTCL) that arises from malignant clonally derived skin-homing CD4+ T cells. Based on advancements in our understanding of the mechanisms underlying L-CTCL, boosting the suppressed immune response emerges as a promising strategy in SS management. Immune checkpoint inhibitory molecules have already demonstrated efficacy in a wide spectrum of malignancies. Currently, agents targeting the programmed death-1 (PD-1) axis are under evaluation in L-CTCL. Here we investigated the expression of PD-1 and its ligands, PD-L1 and PD-L2 in blood and skin from patients with L-CTCL. We demonstrate that PD-1 expression is markedly increased on tumor T cells compared to non-tumor CD4+ T cells from SS patients and to CD4+ cells from healthy individuals. In contrast, PD-L1 shows decreased expression on tumor T cells, while PD-L2 expression is low without significant differences between these groups. Functional PD-1 blockade in vitro resulted in reduced Th2 phenotype of non-tumor T lymphocytes, but enhanced the proliferation of tumor T cells from SS patients. Our study sheds some light on the PD-1 axis in both peripheral blood and skin compartments in SS patients, which may be relevant for the treatment of L-CTCL with immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Ieva Saulite
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Dermatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yun-Tsan Chang
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christina Fassnacht
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eleni Varypataki
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florian Anzengruber
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mirjam Nägeli
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonio Cozzio
- Department of Dermatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julia Scarisbrick
- Department of Dermatology, University Hospitals Birmingham, Birmingham, UK
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Dermatology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Cho I, Lee H, Yoon SE, Ryu KJ, Ko YH, Kim WS, Kim SJ. Serum levels of soluble programmed death-ligand 1 (sPD-L1) in patients with primary central nervous system diffuse large B-cell lymphoma. BMC Cancer 2020; 20:120. [PMID: 32054467 PMCID: PMC7020571 DOI: 10.1186/s12885-020-6612-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 02/07/2020] [Indexed: 01/16/2023] Open
Abstract
Background The interaction of programmed death-1 protein (PD-1) and programmed death-1 ligand (PD-L1) produces immunosuppressive activity, protecting tumor cells from anti-tumor immunity and possibly releasing soluble PD-L1 (sPD-L1) from PD-L1 expressing tumor cells. Therefore, we measured serum levels of sPD-L1 in patients with primary central nervous system lymphoma (PCNSL) and explored its clinical implications. Methods Sixty-eight patients with newly diagnosed PCNSL had diffuse large B-cell lymphoma and were treated with high-dose methotrexate-containing chemotherapy. The measurement of sPD-L1 and cytokines was performed using serum samples archived at diagnosis, and the tissue expression of PD-L1 was also analyzed from archived paraffin-embedded tissue blocks. Disease relapse, progression-free survival (PFS), and overall survival (OS) were analyzed according to the extent of sPD-L1 in serum and PD-L1 in tissue. Results The median level of serum sPD-L1 (0.429 ng/mL) was higher than in healthy control patients (0.364 ng/mL). The occurrence of relapse was more frequent in the high sPD-L1 (78%) than the low sPD-L1 group (50%), though the groups did not have different clinical or pathological characteristics at diagnosis. As a result, the OS and PFS for the high sPD-L1 group were significantly lower than those in the low group. PD-L1-positive tumor cells were found in 35 patients (67%), and the extent of PD-L1-postive tumor cells was positively associated with serum sPD-L1 levels (r = 0.299, P = 0.031). Among the 34 cytokines analyzed, only the serum level of IL-7 correlated with the serum level of sPD-L1 (r = 0.521, P < 0.001). Conclusions Serum levels of sPD-L1 could reflect the expression of PD-L1 in PCNSL tumor cells and predict patient survival outcomes. Therefore, sPD-L1 in serum could be a feasible biomarker for determining a risk-adapted treatment strategy for PCNSL patients. Trial registration The study population was patients who were diagnosed with PCNSL between January 2009 and February 2017 and registered for our prospective cohort studies after providing written informed consent (ClinicalTrials.gov: NCT00822731 [date of registration - January 14, 2009] and NCT01877109 [date of registration - June 13, 2013]).
Collapse
Affiliation(s)
- Inju Cho
- Department of Pathology, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hansang Lee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, South Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Kyung Ju Ryu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Young Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, South Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
7
|
Classical Hodgkin's Lymphoma in the Era of Immune Checkpoint Inhibition. J Clin Med 2019; 8:jcm8101596. [PMID: 31581738 PMCID: PMC6832444 DOI: 10.3390/jcm8101596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
The ligation of programmed cell death 1 (PD-1) with programmed cell death ligand PD-L activates the immune checkpoint leading to T-cell dysfunction, exhaustion, and tolerance, especially in Hodgkin lymphoma (HL) where the PD-L/ Janus kinase (Jak) signaling was frequently found altered. Anti-PD-1 or anti-PD-L1 monoclonal antibodies can reverse this immune checkpoint, releasing the brake on T-cell responses. The characterization of the mechanisms regulating both the expression of PD-1 and PD-L and their function(s) in HL is ongoing. We provide in this review the recent findings focused on this aim with special attention on the major research topics, such as adverse events and resistance to PD-1–PD-L1 inhibitor treatment, together with a part about angiogenesis, extracellular vesicles, and microbiome in HL pathogenesis.
Collapse
|
8
|
Chakrabarti R, Kapse B, Mukherjee G. Soluble immune checkpoint molecules: Serum markers for cancer diagnosis and prognosis. Cancer Rep (Hoboken) 2019; 2:e1160. [PMID: 32721130 PMCID: PMC7941475 DOI: 10.1002/cnr2.1160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND With the recent advances in the understanding of the interaction of the immune system with developing tumor, it has become imperative to consider the immunological parameters for both cancer diagnosis and disease prognosis. Additionally, in the era of emerging immunotherapeutic strategies in cancer, it is very important to follow the treatment outcome and also to predict the correct immunotherapeutic strategy in individual patients. There being enormous heterogeneity among tumors at different sites or between primary and metastatic tumors in the same individual, or interpatient heterogeneity, it is very important to study the tumor-immune interaction in the tumor microenvironment and beyond. Importantly, molecular tools and markers identified for such studies must be suitable for monitoring in a noninvasive manner. RECENT FINDINGS Recent studies have shown that the immune checkpoint molecules play a key role in the development and progression of tumors. In-depth studies of these molecules have led to the development of most of the cancer immunotherapeutic reagents that are currently either in clinical use or under different phases of clinical trials. Interestingly, many of these cell surface molecules undergo alternative splicing to produce soluble isoforms, which can be tracked in the serum of patients. CONCLUSIONS Several studies demonstrate that the serum levels of these soluble isoforms could be used as noninvasive markers for cancer diagnosis and disease prognosis or to predict patient response to specific therapeutic strategies.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
| | - Bhavya Kapse
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurIndia
| | - Gayatri Mukherjee
- School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
| |
Collapse
|
9
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
10
|
Ansell SM. Immunotherapy in Hodgkin Lymphoma: The Road Ahead. Trends Immunol 2019; 40:380-386. [PMID: 30948348 DOI: 10.1016/j.it.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/24/2022]
Abstract
An extensive infiltrate of intratumoral immune cells is a hallmark of classic Hodgkin lymphoma (cHL) but these cells do result in an effective antitumor response. Immune checkpoint therapy, which activates 'exhausted' T cells, has been found to be highly effective in cHL, but responding patients commonly relapse. Combination approaches are currently being investigated but the assessment of benefit when adding immunotherapy is challenging. The pitfalls in designing combination studies derive from response endpoints that are difficult to measure, a lack of biomarkers that predict response, and a limited understanding of tumor biology. While progress in treating patients with cHL has been exceptional so far, further progress may require a review of clinical trial endpoints and a greater understanding of cHL biology.
Collapse
Affiliation(s)
- Stephen M Ansell
- Division of Hematology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|