1
|
Tang F, Xiao Y, Zhou C, Zhang H, Wang J, Zeng Y. NGS-based targeted sequencing identified six novel variants in patients with Duchenne/Becker muscular dystrophy from southwestern China. BMC Med Genomics 2023; 16:121. [PMID: 37254189 DOI: 10.1186/s12920-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND At present, Multiplex ligation-dependent probe amplification (MLPA) and exome sequencing are common gene detection methods in patients with Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD), but they can not cover the whole-genome sequence of the DMD gene. In this study, the whole genome capture of the DMD gene and next-generation sequencing (NGS) technology were used to detect the patients with DMD/BMD in Southwest China, to clarify the application value of this technology and further study the gene variant spectrum. METHODS From 2017 to 2020, 51 unrelated patients with DMD/BMD in southwestern China were clinically diagnosed at West China Second University Hospital of Sichuan University (Chengdu, China). The whole-genome of the DMD gene was captured from the peripheral blood of all patients, and next-generation sequencing was performed. Large copy number variants (CNVs) in the exon regions of the DMD gene were verified through MLPA, and small variations (such as single nucleotide variation and < 50 bp fragment insertions/deletions) were validated using Sanger sequencing. RESULTS Among the 51 patients, 49 (96.1% [49/51]) had pathogenic or likely pathogenic variants in the DMD gene. Among the 49 positive samples, 17 patients (34.7% [17/49]) had CNVs in the exon regions and 32 patients (65.3% [32/49]) had small variations. A total of six novel variants were identified: c.10916_10917del, c.1790T>A, c.1842del, c.5015del, c.5791_5792insCA, and exons 38-50 duplication. CONCLUSIONS Pathogenic or likely pathogenic variants of the DMD gene were detected in 49 patients (96.1% [49/51]), of which 6 variants (12.2% [6/49]) had not been previously reported. This study confirmed the value of NGS-based targeted sequencing for the DMD gene expanding the spectrum of variants in DMD, which may provide effective genetic counseling and prenatal diagnosis for families.
Collapse
Affiliation(s)
- Feng Tang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuanyuan Xiao
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cong Zhou
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haixia Zhang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jing Wang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Zeng
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Younger DS. On the path to evidence-based therapy in neuromuscular disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:315-358. [PMID: 37562877 DOI: 10.1016/b978-0-323-98818-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuromuscular disorders encompass a diverse group of acquired and genetic diseases characterized by loss of motor functionality. Although cure is the goal, many therapeutic strategies have been envisioned and are being studied in randomized clinical trials and entered clinical practice. As in all scientific endeavors, the successful clinical translation depends on the quality and translatability of preclinical findings and on the predictive value and feasibility of the clinical models. This chapter focuses on five exemplary diseases: childhood spinal muscular atrophy (SMA), Charcot-Marie-Tooth (CMT) disorders, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), acquired autoimmune myasthenia gravis (MG), and Duchenne muscular dystrophy (DMD), to illustrate the progress made on the path to evidenced-based therapy.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
3
|
Younger DS. Childhood muscular dystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:461-496. [PMID: 37562882 DOI: 10.1016/b978-0-323-98818-6.00024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Infancy- and childhood-onset muscular dystrophies are associated with a characteristic distribution and progression of motor dysfunction. The underlying causes of progressive childhood muscular dystrophies are heterogeneous involving diverse genetic pathways and genes that encode proteins of the plasma membrane, extracellular matrix, sarcomere, and nuclear membrane components. The prototypical clinicopathological features in an affected child may be adequate to fully distinguish it from other likely diagnoses based on four common features: (1) weakness and wasting of pelvic-femoral and scapular muscles with involvement of heart muscle; (2) elevation of serum muscle enzymes in particular serum creatine kinase; (3) necrosis and regeneration of myofibers; and (4) molecular neurogenetic assessment particularly utilizing next-generation sequencing of the genome of the likeliest candidates genes in an index case or family proband. A number of different animal models of therapeutic strategies have been developed for gene transfer therapy, but so far these techniques have not yet entered clinical practice. Treatment remains for the most part symptomatic with the goal of ameliorating locomotor and cardiorespiratory manifestations of the disease.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
4
|
Nagabushana D, Polavarapu K, Bardhan M, Arunachal G, Gunasekaran S, Preethish-Kumar V, Anjanappa RM, Thomas P, Sadasivan A, Vengalil S, Nashi S, Chawla T, Warrier M, Keerthipriya M, Raju S, Mohan D, Nalini A. Comparison of The Carrier Frequency of Pathogenic Variants of DMD Gene in an Indian Cohort. J Neuromuscul Dis 2021; 8:525-535. [PMID: 33843695 DOI: 10.3233/jnd-210658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked disorder caused due to large deletions, duplications,and small pathogenic variants. This article compares the carrier frequency of different pathogenic variants in the DMD gene for the first time in an Indian cohort. METHODS Ninety-one mothers of genetically confirmed DMD probands are included in this study. Pathogenic variants in the DMD gene in probands were detected by multiplex ligation-dependent probe amplification (MLPA) or next-generation sequencing (NGS). Maternal blood samples were evaluated either by MLPA or Sanger sequencing. The demographic and clinical details for screening of muscle weakness and cardiomyopathy were collected from the confirmed carriers. RESULTS Out of 91 probands, large deletions and duplications were identified in 46 and 6 respectively, while 39 had small variants. Among the small variants, substitutions predicted to cause nonsense mutations were the most common (61.5%), followed by frameshift causing small insertion/deletions (25.6%) and splice affecting intronic variants (12.8%). Notably, 19 novel small variants predicted to be disease-causing were identified. Of the 91 mothers, 53 (58.7%) were confirmed to be carriers. Exonic deletions had a significantly lower carrier frequency of 47.8% as compared to small variants (64.1%). The mean age of the carriers at evaluation was 30 years. Among the carriers, two were symptomatic with onset in the 4th decade, manifesting with progressive proximal muscle weakness and dilated cardiomyopathy. CONCLUSION Carrier frequency of small pathogenic variants differs significantly from large deletions. Small pathogenic variants are more commonly inherited, whereas large deletions arise de novo.
Collapse
Affiliation(s)
- Divya Nagabushana
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.,Children's Hospital of Eastern Ontario Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, ON, Canada
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Swetha Gunasekaran
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Ram Murthy Anjanappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - PriyaTreesa Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun Sadasivan
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Tanushree Chawla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Manjusha Warrier
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Muddasu Keerthipriya
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Dhaarini Mohan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
5
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
6
|
Kim J, Lee DW, Jang JH, Kim M, Yim J, Jang DH. Case Report: Co-occurrence of Duchenne Muscular Dystrophy and Frontometaphyseal Dysplasia 1. Front Pediatr 2021; 9:628190. [PMID: 33718301 PMCID: PMC7952453 DOI: 10.3389/fped.2021.628190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
Herein, we present a rare case of co-occurring Duchenne muscular dystrophy (DMD) and frontometaphyseal dysplasia 1 (FMD1), two different X-linked diseases, in a 7-year-old boy. He presented with proximal muscle weakness and elevated creatine phosphokinase levels. A multiplex ligation-dependent probe amplification study of DMD revealed the de novo duplications of exons 2-37, thereby confirming the diagnosis of DMD. Initial evaluation revealed atypical features, such as facial dysmorphism, multiple joint contractures, and severe scoliosis, at an early age. However, these were overlooked and were assumed to be atypical manifestations of DMD. Then, the patient's maternal cousin was diagnosed with FMD1 with pathogenic missense variant in FLNA (NM_001110556.2: c.3557C>T/p.Ser1186Leu). A family genetic test revealed that the patient and his mother had the same pathogenic variant in FLNA. The patient's atypical manifestations were considered symptoms of FMD1. Therefore, if one disease does not fully explain the patient's clinical features, an expanded genetic study is needed to detect coincidental disease.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Rehabilitation Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Dong-Woo Lee
- Department of Rehabilitation Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jisook Yim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
7
|
Rodgers BD, Bishaw Y, Kagel D, Ramos JN, Maricelli JW. Micro-dystrophin Gene Therapy Partially Enhances Exercise Capacity in Older Adult mdx Mice. Mol Ther Methods Clin Dev 2020; 17:122-132. [PMID: 31909085 PMCID: PMC6939027 DOI: 10.1016/j.omtm.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
Abstract
Micro-dystrophin (μDys) gene therapeutics can improve striated muscle structure and function in different animal models of Duchenne muscular dystrophy. Most studies, however, used young mdx mice that lack a pronounced dystrophic phenotype, short treatment periods, and limited muscle function tests. We, therefore, determined the relative efficacy of two previously described μDys gene therapeutics (rAAV6:μDysH3 and rAAV6:μDys5) in 6-month-old mdx mice using a 6-month treatment regimen and forced exercise. Forelimb and hindlimb grip strength, metabolic rate (VO2 max), running efficiency (energy expenditure), and serum creatine kinase levels similarly improved in mdx mice treated with either vector. Both vectors produced nearly identical dose-responses in all assays. They also partially prevented the degenerative effects of repeated high-intensity exercise on muscle histology, although none of the metrics examined was restored to normal wild-type levels. Moreover, neither vector had any consistent effect on respiration while exercising. These data together suggest that, although μDys gene therapy can improve isolated and systemic muscle function, it may be only partially effective when dystrophinopathies are advanced or when muscle structure is significantly challenged, as with high-intensity exercise. This further suggests that restoring muscle function to near-normal levels will likely require ancillary or combinatorial treatments capable of enhancing muscle strength.
Collapse
Affiliation(s)
- Buel D. Rodgers
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Yemeserach Bishaw
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Denali Kagel
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Julian N. Ramos
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph W. Maricelli
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Yang YM, Yan K, Liu B, Chen M, Wang LY, Huang YZ, Qian YQ, Sun YX, Li HG, Dong MY. Comprehensive genetic diagnosis of patients with Duchenne/Becker muscular dystrophy (DMD/BMD) and pathogenicity analysis of splice site variants in the DMD gene. J Zhejiang Univ Sci B 2020; 20:753-765. [PMID: 31379145 DOI: 10.1631/jzus.b1800541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the DMD gene. The aim of this study is to identify pathogenic DMD variants in probands and reduce the risk of recurrence of the disease in affected families. Variations in 100 unrelated DMD/BMD patients were detected by multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS). Pathogenic variants in DMD were successfully identified in all cases, and 11 of them were novel. The most common mutations were intragenic deletions (69%), with two hotspots located in the 5' end (exons 2-19) and the central of the DMD gene (exons 45-55), while point mutations were observed in 22% patients. Further, c.1149+1G>A and c.1150-2A>G were confirmed by hybrid minigene splicing assay (HMSA). This two splice site mutations would lead to two aberrant DMD isoforms which give rise to severely truncated protein. Therefore, the clinical use of MLPA, NGS, and HMSA is an effective strategy to identify variants. Importantly, eight embryos were terminated pregnancies according to prenatal diagnosis and a healthy boy was successfully delivered by preimplantation genetic diagnosis (PGD). Early and accurate genetic diagnosis is essential for prenatal diagnosis/PGD to reduce the risk of recurrence of DMD in affected families.
Collapse
Affiliation(s)
- Yan-Mei Yang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Kai Yan
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Bei Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Min Chen
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Li-Ya Wang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Ying-Zhi Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Ye-Qing Qian
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Yi-Xi Sun
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Hong-Ge Li
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Min-Yue Dong
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| |
Collapse
|
9
|
Gibbs EM, Barthélémy F, Douine ED, Hardiman NC, Shieh PB, Khanlou N, Crosbie RH, Nelson SF, Miceli MC. Large in-frame 5' deletions in DMD associated with mild Duchenne muscular dystrophy: Two case reports and a review of the literature. Neuromuscul Disord 2019; 29:863-873. [PMID: 31672265 PMCID: PMC7092699 DOI: 10.1016/j.nmd.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin-encoding DMD gene. While Duchenne is most commonly caused by large intragenic deletions that cause frameshift and complete loss of dystrophin expression, in-frame deletions in DMD can result in the expression of internally truncated dystrophin proteins and may be associated with a milder phenotype. In this study, we describe two individuals with large in-frame 5' deletions (exon 3-23 and exon 3-28) that remove the majority of the N-terminal region, including part of the actin binding and central rod domains. Both patients had progressive muscle weakness during childhood but are observed to have a relatively mild disease course compared to typical Duchenne. We show that in muscle biopsies from both patients, truncated dystrophin is expressed at the sarcolemma. We have additionally developed a patient-specific fibroblast-derived cell model, which can be inducibly reprogrammed to form myotubes that largely recapitulate biopsy findings for the patient with the exon 3-23 deletion, providing a culture model for future investigation of this unusual case. We discuss these mutations in the context of previously reported 5' in-frame DMD deletions and relevant animal models, and review the spectrum of phenotypes associated with these deletions.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Emilie D Douine
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie C Hardiman
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Perry B Shieh
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Negar Khanlou
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - M Carrie Miceli
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Cordova G, Negroni E, Cabello-Verrugio C, Mouly V, Trollet C. Combined Therapies for Duchenne Muscular Dystrophy to Optimize Treatment Efficacy. Front Genet 2018; 9:114. [PMID: 29692797 PMCID: PMC5902687 DOI: 10.3389/fgene.2018.00114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
Duchene Muscular Dystrophy (DMD) is the most frequent muscular dystrophy and one of the most severe due to the absence of the dystrophin protein. Typical pathological features include muscle weakness, muscle wasting, degeneration, and inflammation. At advanced stages DMD muscles present exacerbated extracellular matrix and fat accumulation. Recent progress in therapeutic approaches has allowed new strategies to be investigated, including pharmacological, gene-based and cell-based therapies. Gene and cell-based therapies are still limited by poor targeting and low efficiency in fibrotic dystrophic muscle, therefore it is increasingly evident that future treatments will have to include “combined therapies” to reach maximal efficiency. The scope of this mini-review is to provide an overview of the current literature on such combined therapies for DMD. By “combined therapies” we mean those that include both a therapy to correct the genetic defect and an additional one to address one of the secondary pathological features of the disease. In this mini-review, we will not provide a comprehensive view of the literature on therapies for DMD, since many such reviews already exist, but we will focus on the characteristics, efficiency, and potential of such combined therapeutic strategies that have been described so far for DMD.
Collapse
Affiliation(s)
- Gonzalo Cordova
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Claudio Cabello-Verrugio
- Laboratorio de Patologías Musculares, Fragilidad y Envejecimiento, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Vincent Mouly
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| |
Collapse
|
11
|
Rehwaldt JD, Rodgers BD, Lin DC. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i. J Appl Physiol (1985) 2017; 123:1698-1707. [PMID: 28860175 DOI: 10.1152/japplphysiol.00744.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle contractile properties are significantly compromised in a recently developed model for limb-girdle muscular dystrophy 2i, the P448L mouse. It further identifies novel pathological markers of muscle function that are suitable for developing therapeutics and for better understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Jordan D Rehwaldt
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington.,Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|
12
|
Maricelli JW, Kagel DR, Bishaw YM, Nelson OL, Lin DC, Rodgers BD. Sexually dimorphic skeletal muscle and cardiac dysfunction in a mouse model of limb girdle muscular dystrophy 2i. J Appl Physiol (1985) 2017; 123:1126-1138. [PMID: 28663375 DOI: 10.1152/japplphysiol.00287.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
The fukutin-related protein P448L mutant mouse replicates many pathologies common to limb girdle muscular dystrophy 2i (LGMD2i) and is a potentially strong candidate for relevant drug screening studies. Because striated muscle function remains relatively uncharacterized in this mouse, we sought to identify metabolic, functional and histological metrics of exercise and cardiac performance. This was accomplished by quantifying voluntary exercise on running wheels, forced exercise on respiratory treadmills and cardiac output with echocardiography and isoproterenol stress tests. Voluntary exercise revealed few differences between wild-type and P448L mice. By contrast, peak oxygen consumption (VO2peak) was either lower in P448L mice or reduced with repeated low intensity treadmill exercise while it increased in wild-type mice. P448L mice fatigued quicker and ran shorter distances while expending 2-fold more calories/meter. They also received over 6-fold more motivational shocks with repeated exercise. Differences in VO2peak and resting metabolic rate were consistent with left ventricle dysfunction, which often develops in human LGMD2i patients and was more evident in female P448L mice, as indicated by lower fractional shortening and ejection fraction values and higher left ventricle systolic volumes. Several traditional markers of dystrophinopathies were expressed in P448L mice and were exacerbated by exercise, some in a muscle-dependent manner. These include elevated serum creatine kinase and muscle central nucleation, smaller muscle fiber cross-sectional area and more striated muscle fibrosis. These studies together identified several markers of disease pathology that are shared between P448L mice and human subjects with LGMD2i. They also identified novel metrics of exercise and cardiac performance that could prove invaluable in preclinical drug trials.NEW & NOTEWORTHY Limb-girdle muscular dystrophy 2i is a rare dystroglycanopathy that until recently lacked an appropriate animal model. Studies with the FKRP P448L mutant mouse began assessing muscle structure and function as well as running gait. Our studies further characterize systemic muscle function using exercise and cardiac performance. They identified many markers of respiratory, cardiac and skeletal muscle function that could prove invaluable to better understanding the disease and more importantly, to preclinical drug trials.
Collapse
Affiliation(s)
- Joseph W Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Denali R Kagel
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Yemeserach M Bishaw
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - O Lynne Nelson
- Veterinary Clinical Sciences, Washington State University, Pullman, Washington
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| | - Buel D Rodgers
- School of Molecular Biosciences, Washington State University, Pullman, Washington; .,Department of Animal Sciences; Washington Center for Muscle Biology, Washington State University, Pullman, Washington
| |
Collapse
|
13
|
Bornert O, Kühl T, Bremer J, van den Akker PC, Pasmooij AM, Nyström A. Analysis of the functional consequences of targeted exon deletion in COL7A1 reveals prospects for dystrophic epidermolysis bullosa therapy. Mol Ther 2016; 24:1302-11. [PMID: 27157667 DOI: 10.1038/mt.2016.92] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB)-a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therapeutic potential of this approach is critically dependent on gene, protein, and disease intrinsic factors. Naturally occurring exon skipping in COL7A1, translating collagen VII, suggests that skipping of exons containing disease-causing mutations may be feasible for the treatment of DEB. However, despite a primarily in-frame arrangement of exons in the COL7A1 gene, no general conclusion of the aptitude of exon skipping for DEB can be drawn, since regulation of collagen VII functionality is complex involving folding, intra- and intermolecular interactions. To directly address this, we deleted two conceptually important exons located at both ends of COL7A1, exon 13, containing recurrent mutations, and exon 105, predicted to impact folding. The resulting recombinantly expressed proteins showed conserved functionality in biochemical and in vitro assays. Injected into DEB mice, the proteins promoted skin stability. By demonstrating functionality of internally deleted collagen VII variants, our study provides support of targeted exon deletion or skipping as a potential therapy to treat a large number of individuals with DEB.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Kühl
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter C van den Akker
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Mg Pasmooij
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Zhao Y, Shapiro SS, Eto M. F-actin clustering and cell dysmotility induced by the pathological W148R missense mutation of filamin B at the actin-binding domain. Am J Physiol Cell Physiol 2015; 310:C89-98. [PMID: 26491051 DOI: 10.1152/ajpcell.00274.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
Filamin B (FLNB) is a dimeric actin-binding protein that orchestrates the reorganization of the actin cytoskeleton. Congenital mutations of FLNB at the actin-binding domain (ABD) are known to cause abnormalities of skeletal development, such as atelosteogenesis types I and III and Larsen's syndrome, although the underlying mechanisms are poorly understood. Here, using fluorescence microscopy, we characterized the reorganization of the actin cytoskeleton in cells expressing each of six pathological FLNB mutants that have been linked to skeletal abnormalities. The subfractionation assay showed a greater accumulation of the FLNB ABD mutants W148R and E227K than the wild-type protein to the cytoskeleton. Ectopic expression of FLNB-W148R and, to a lesser extent, FLNB-E227K induced prominent F-actin accumulations and the consequent rearrangement of focal adhesions, myosin II, and septin filaments and results in a delayed directional migration of the cells. The W148R protein-induced cytoskeletal rearrangement was partially attenuated by the inhibition of myosin II, p21-activated protein kinase, or Rho-associated protein kinase. The expression of a single-head ABD fragment with the mutations partially mimicked the rearrangement induced by the dimer. The F-actin clustering through the interaction with the mutant FLNB ABD may limit the cytoskeletal reorganization, preventing normal skeletal development.
Collapse
Affiliation(s)
- Yongtong Zhao
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, and Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Sandor S Shapiro
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, and Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, and Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
MLPA based detection of mutations in the dystrophin gene of 180 Polish families with Duchenne/Becker muscular dystrophy. Neurol Neurochir Pol 2014; 48:416-22. [DOI: 10.1016/j.pjnns.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/03/2014] [Accepted: 10/15/2014] [Indexed: 11/17/2022]
|
16
|
Ordered disorder of the astrocytic dystrophin-associated protein complex in the norm and pathology. PLoS One 2013; 8:e73476. [PMID: 24014171 PMCID: PMC3754965 DOI: 10.1371/journal.pone.0073476] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022] Open
Abstract
The abundance and potential functional roles of intrinsically disordered regions in aquaporin-4, Kir4.1, a dystrophin isoforms Dp71, α-1 syntrophin, and α-dystrobrevin; i.e., proteins constituting the functional core of the astrocytic dystrophin-associated protein complex (DAPC), are analyzed by a wealth of computational tools. The correlation between protein intrinsic disorder, single nucleotide polymorphisms (SNPs) and protein function is also studied together with the peculiarities of structural and functional conservation of these proteins. Our study revealed that the DAPC members are typical hybrid proteins that contain both ordered and intrinsically disordered regions. Both ordered and disordered regions are important for the stabilization of this complex. Many disordered binding regions of these five proteins are highly conserved among vertebrates. Conserved eukaryotic linear motifs and molecular recognition features found in the disordered regions of five protein constituting DAPC likely enhance protein-protein interactions that are required for the cellular functions of this complex. Curiously, the disorder-based binding regions are rarely affected by SNPs suggesting that these regions are crucial for the biological functions of their corresponding proteins.
Collapse
|
17
|
Fletcher S, Meloni PL, Johnsen RD, Wong BL, Muntoni F, Wilton SD. Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol Genet Genomic Med 2013; 1:162-73. [PMID: 24498612 PMCID: PMC3865583 DOI: 10.1002/mgg3.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/02/2022] Open
Abstract
We describe two donor splice site mutations, affecting dystrophin exons 16 and 45 that led to Duchenne muscular dystrophy (DMD), through catastrophic inactivation of the mRNA. These gene lesions unexpectedly resulted in the retention of the downstream introns, thereby increasing the length of the dystrophin mRNA by 20.2 and 36 kb, respectively. Splice-switching antisense oligomers targeted to exon 16 excised this in-frame exon and the following intron from the patient dystrophin transcript very efficiently in vitro, thereby restoring the reading frame and allowing synthesis of near-normal levels of a putatively functional dystrophin isoform. In contrast, targeting splice-switching oligomers to exon 45 in patient cells promoted only modest levels of an out-of-frame dystrophin transcript after transfection at high oligomer concentrations, whereas dual targeting of exons 44 and 45 or 45 and 46 resulted in more efficient exon skipping, with concomitant removal of intron 45. The splice site mutations reported here appear highly amenable to antisense oligomer intervention. We suggest that other splice site mutations may need to be evaluated for oligomer interventions on a case-by-case basis.
Collapse
Affiliation(s)
- Sue Fletcher
- Centre for Comparative Genomics, Murdoch University South St, 6150, Perth, Western Australia, Australia ; Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Penny L Meloni
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Russell D Johnsen
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Brenda L Wong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Centre and University of Cincinnati College of Medicine Cincinnati, 45229-3039, Ohio
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London London, WC1N 1EH, United Kingdom
| | - Stephen D Wilton
- Centre for Comparative Genomics, Murdoch University South St, 6150, Perth, Western Australia, Australia ; Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| |
Collapse
|
18
|
The medical genetics of dystrophinopathies: Molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord 2013; 23:4-14. [DOI: 10.1016/j.nmd.2012.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 01/01/2023]
|
19
|
Singh SM, Molas JF, Kongari N, Bandi S, Armstrong GS, Winder SJ, Mallela KM. Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin. Proteins 2012; 80:1377-92. [PMID: 22275054 PMCID: PMC3439503 DOI: 10.1002/prot.24033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/21/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-β aggregates, indicating a possible role for utrophin mutations in disease mechanisms.
Collapse
Affiliation(s)
- Surinder M. Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Justine F. Molas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Narsimulu Kongari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Geoffrey S. Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
20
|
Duff R, Tay V, Hackman P, Ravenscroft G, McLean C, Kennedy P, Steinbach A, Schöffler W, van der Ven P, Fürst D, Song J, Djinović-Carugo K, Penttilä S, Raheem O, Reardon K, Malandrini A, Gambelli S, Villanova M, Nowak K, Williams D, Landers J, Brown R, Udd B, Laing N. Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. Am J Hum Genet 2011; 88:729-740. [PMID: 21620354 DOI: 10.1016/j.ajhg.2011.04.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/24/2011] [Accepted: 04/29/2011] [Indexed: 12/12/2022] Open
Abstract
Linkage analysis of the dominant distal myopathy we previously identified in a large Australian family demonstrated one significant linkage region located on chromosome 7 and encompassing 18.6 Mbp and 151 genes. The strongest candidate gene was FLNC because filamin C, the encoded protein, is muscle-specific and associated with myofibrillar myopathy. Sequencing of FLNC cDNA identified a c.752T>C (p.Met251Thr) mutation in the N-terminal actin-binding domain (ABD); this mutation segregated with the disease and was absent in 200 controls. We identified an Italian family with the same phenotype and found a c.577G>A (p.Ala193Thr) filamin C ABD mutation that segregated with the disease. Filamin C ABD mutations have not been described, although filamin A and filamin B ABD mutations cause multiple musculoskeletal disorders. The distal myopathy phenotype and muscle pathology in the two families differ from myofibrillar myopathies caused by filamin C rod and dimerization domain mutations because of the distinct involvement of hand muscles and lack of pathological protein aggregation. Thus, like the position of FLNA and B mutations, the position of the FLNC mutation determines disease phenotype. The two filamin C ABD mutations increase actin-binding affinity in a manner similar to filamin A and filamin B ABD mutations. Cell-culture expression of the c.752T>C (p.Met251)Thr mutant filamin C ABD demonstrated reduced nuclear localization as did mutant filamin A and filamin B ABDs. Expression of both filamin C ABD mutants as full-length proteins induced increased aggregation of filamin. We conclude filamin C ABD mutations cause a recognizable distal myopathy, most likely through increased actin affinity, similar to the pathological mechanism of filamin A and filamin B ABD mutations.
Collapse
|
21
|
Abstract
The lifetime prevalence of panic disorder (PD) is up to 4% worldwide and there is substantial evidence that genetic factors contribute to the development of PD. Single-nucleotide polymorphisms (SNPs) in TMEM132D, identified in a whole-genome association study (GWAS), were found to be associated with PD in three independent samples, with a two-SNP haplotype associated in each of three samples in the same direction, and with a P-value of 1.2e-7 in the combined sample (909 cases and 915 controls). Independent SNPs in this gene were also associated with the severity of anxiety symptoms in patients affected by PD or panic attacks as well as in patients suffering from unipolar depression. Risk genotypes for PD were associated with higher TMEM132D mRNA expression levels in the frontal cortex. In parallel, using a mouse model of extremes in trait anxiety, we could further show that anxiety-related behavior was positively correlated with Tmem132d mRNA expression in the anterior cingulate cortex, central to the processing of anxiety/fear-related stimuli, and that in this animal model a Tmem132d SNP is associated with anxiety-related behavior in an F2 panel. TMEM132D may thus be an important new candidate gene for PD as well as more generally for anxiety-related behavior.
Collapse
|
22
|
Magri F, Del Bo R, D'Angelo MG, Govoni A, Ghezzi S, Gandossini S, Sciacco M, Ciscato P, Bordoni A, Tedeschi S, Fortunato F, Lucchini V, Cereda M, Corti S, Moggio M, Bresolin N, Comi GP. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing. BMC MEDICAL GENETICS 2011; 12:37. [PMID: 21396098 PMCID: PMC3061890 DOI: 10.1186/1471-2350-12-37] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/11/2011] [Indexed: 01/13/2023]
Abstract
Background Duchenne and Becker Muscular dystrophies (DMD/BMD) are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements. Methods We selected 47 patients (41 families; 35 DMD, 6 BMD) without deletions and duplications in DMD gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis). This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis. Results We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients), followed by TAG (n = 7) and TAA (n = 4). We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the DMD gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65. Conclusion The analysis of our patients' sample, carrying point mutations or complex rearrangements in DMD gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects and dystrophin functional domains. These data can have a prognostic relevance and can be useful in directing new therapeutic approaches, which rely on a precise definition of the genetic defects as well as their molecular consequences.
Collapse
Affiliation(s)
- Francesca Magri
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun R, Zhu Y, Feng J, Tian Z, Kuang W, Liu Y, Zhang H, Li S. Polymorphisms of three new microsatellite sites of the dystrophin gene. GENETICS AND MOLECULAR RESEARCH 2011; 10:744-51. [DOI: 10.4238/vol10-2gmr962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Morris G, Man NT, Sewry CA. Monitoring duchenne muscular dystrophy gene therapy with epitope-specific monoclonal antibodies. Methods Mol Biol 2011; 709:39-61. [PMID: 21194020 DOI: 10.1007/978-1-61737-982-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several molecular approaches to Duchenne muscular dystrophy (DMD) therapy are at or near the point of clinical trial and usually involve attempts to replace the missing dystrophin protein. Although improved muscle function is the ultimate measure of success, assessment of dystrophin levels after therapy is essential to determine whether any improved function is a direct consequence of the treatment or, in the absence of improved function, to determine whether new dystrophin is present, though ineffective. The choice of a monoclonal antibody (mAb) to distinguish successful therapy from naturally occurring "revertant" fibres depends on which dystrophin exons are deleted in the DMD patient. Over the past 20 years, we have produced over 150 "exon-specific" mAbs, mapped them to different regions of dystrophin and made them available through the MDA Monoclonal Antibody Resource for research and for clinical trials tailored to individual patients. In this protocol, we describe the use of these mAb to monitor DMD gene therapy.
Collapse
Affiliation(s)
- Glenn Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK.
| | | | | |
Collapse
|
25
|
Missense mutations in dystrophin that trigger muscular dystrophy decrease protein stability and lead to cross-beta aggregates. Proc Natl Acad Sci U S A 2010; 107:15069-74. [PMID: 20696926 DOI: 10.1073/pnas.1008818107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A deficiency of functional dystrophin protein in muscle cells causes muscular dystrophy (MD). More than 50% of missense mutations that trigger the disease occur in the N-terminal actin binding domain (N-ABD or ABD1). We examined the effect of four disease-causing mutations--L54R, A168D, A171P, and Y231N--on the structural and biophysical properties of isolated N-ABD. Our results indicate that N-ABD is a monomeric, well-folded alpha-helical protein in solution, as is evident from its alpha-helical circular dichroism spectrum, blue shift of the native state tryptophan fluorescence, well-dispersed amide crosspeaks in 2D NMR (15)N-(1)H HSQC fingerprint region, and rotational correlation time calculated from NMR longitudinal (T(1)) and transverse (T(2)) relaxation experiments. Compared to WT, three mutants--L54R, A168D, and A171P--show a decreased alpha-helicity and do not show a cooperative sigmoidal melt with temperature, indicating that these mutations exist in a wide range of conformations or in a "molten globule" state. In contrast, Y231N has an alpha-helical content similar to WT and shows a cooperative sigmoidal temperature melt but with a decreased stability. All four mutants experience serious misfolding and aggregation. FT-IR, circular dichroism, increase in thioflavin T fluorescence, and the congo red spectral shift and birefringence show that these aggregates contain intermolecular cross-beta structure similar to that found in amyloid diseases. These results indicate that disease-causing mutants affect N-ABD structure by decreasing its thermodynamic stability and increasing its misfolding, thereby decreasing the net functional dystrophin concentration.
Collapse
|
26
|
Disease-causing missense mutations in actin binding domain 1 of dystrophin induce thermodynamic instability and protein aggregation. Proc Natl Acad Sci U S A 2010; 107:9632-7. [PMID: 20457930 DOI: 10.1073/pnas.1001517107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD) most commonly through loss of protein expression. In a small subpopulation of patients, missense mutations can cause DMD, Becker muscular dystrophy, or X-linked cardiomyopathy. Nearly one-half of disease-causing missense mutations are located in actin-binding domain 1 (ABD1) of dystrophin. To test the hypothesis that ABD1 missense mutations cause disease by impairing actin-binding activity, we engineered the K18N, L54R, D165V, A168D, L172H, and Y231N mutations into the full-length dystrophin cDNA and characterized the biochemical properties of each mutant protein. The K18N and L54R mutations are associated with the most severe diseases in humans and each caused a small but significant 4-fold decrease in actin-binding affinity, while the affinities of the other four mutant proteins were not significantly different from WT dystrophin. More interestingly, WT dystrophin was observed to unfold in a single-step, highly cooperative manner. In contrast, all six mutant proteins were significantly more prone to thermal denaturation and aggregation. Our results suggest that missense mutations in ABD1 may all cause loss of dystrophin function via protein instability and aggregation rather than through loss of ligand binding function. However, more severe disease progressions may be due to the combinatorial effects of some mutations on both protein aggregation and impaired actin-binding activity.
Collapse
|
27
|
Spitali P, Rimessi P, Fabris M, Perrone D, Falzarano S, Bovolenta M, Trabanelli C, Mari L, Bassi E, Tuffery S, Gualandi F, Maraldi NM, Sabatelli-Giraud P, Medici A, Merlini L, Ferlini A. Exon skipping-mediated dystrophin reading frame restoration for small mutations. Hum Mutat 2010; 30:1527-34. [PMID: 19760747 DOI: 10.1002/humu.21092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exon skipping using antisense oligonucleotides (AONs) has successfully been used to reframe the mRNA in various Duchenne muscular dystrophy patients carrying deletions in the DMD gene. In this study we tested the feasibility of the exon skipping approach for patients with small mutations in in-frame exons. We first identified 54 disease-causing point mutations. We selected five patients with nonsense or frameshifting mutations in exons 10, 16, 26, 33, and 34. Wild-type and mutation specific 2'OMePS AONs were tested in cell-free splicing assays and in cultured cells derived from the selected patients. The obtained results confirm cell-free splicing assay as an alternative system to test exon skipping propensity when patients' cells are unavailable. In myogenic cells, similar levels of exon skipping were observed for wild-type and mutation specific AONs for exons 16, 26, and 33, whereas for exon 10 and exon 34 the efficacy of the AONs was significantly different. Interestingly, in some cases skipping efficiencies for mutated exons were quite dissimilar when compared with previous reports on the respective wild-type exons. This behavior may be related to the effect of the mutations on exon skipping propensity, and highlights the complexity of identifying optimal AONs for skipping exons with small mutations.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Experimental and Diagnostic Medicine, Section of Medical Genetics, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Legardinier S, Legrand B, Raguénès-Nicol C, Bondon A, Hardy S, Tascon C, Le Rumeur E, Hubert JF. A Two-amino Acid Mutation Encountered in Duchenne Muscular Dystrophy Decreases Stability of the Rod Domain 23 (R23) Spectrin-like Repeat of Dystrophin. J Biol Chem 2009; 284:8822-32. [PMID: 19158079 DOI: 10.1074/jbc.m805846200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lack of functional dystrophin causes severe Duchenne muscular dystrophy. The subsarcolemmal location of dystrophin, as well as its association with both cytoskeleton and membrane, suggests a role in the mechanical regulation of muscular membrane stress. In particular, phenotype rescue in a Duchenne muscular dystrophy mice model has shown that some parts of the central rod domain of dystrophin, constituted by 24 spectrin-like repeats, are essential. In this study, we made use of rare missense pathogenic mutations in the dystrophin gene and analyzed the biochemical properties of the isolated repeat 23 bearing single or double mutations E2910V and N2912D found in muscle dystrophy with severity grading. No dramatic effect on secondary and tertiary structure of the repeat was found in mutants compared with wild type as revealed by circular dichroism and NMR. Thermal and chemical unfolding data from circular dichroism and tryptophan fluorescence show significant decrease of stability for the mutants, and stopped-flow spectroscopy shows decreased refolding rates. The most deleterious single mutation is the N2912D replacement, although we observe additive effects of the two mutations on repeat stability. Based on three-dimensional structures built by homology molecular modeling, we discuss the modifications of the mutation-induced repeat stability. We conclude that the main forces involved in repeat stability are electrostatic inter-helix interactions that are disrupted following mutations. This study represents the first analysis at the protein level of the consequences of missense mutations in the human dystrophin rod domain. Our results suggest that it may participate in mechanical weakening of dystrophin-deficient muscle.
Collapse
Affiliation(s)
- Sébastien Legardinier
- UMR CNRS 6026 Interactions Cellulaires et Moléculaires,Equipe RMN et Interactions Lipides-Protéines and UMR CNRS 6061 Génétique et Développement, Université de Rennes 1, IFR 140, FacultédeMédecine, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen Z, Feng J, Buzin CH, Sommer SS. Epidemiology of doublet/multiplet mutations in lung cancers: evidence that a subset arises by chronocoordinate events. PLoS One 2008; 3:e3714. [PMID: 19005564 PMCID: PMC2579325 DOI: 10.1371/journal.pone.0003714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/10/2008] [Indexed: 01/01/2023] Open
Abstract
Background Evidence strongly suggests that spontaneous doublet mutations in normal mouse tissues generally arise from chronocoordinate events. These chronocoordinate mutations sometimes reflect “mutation showers”, which are multiple chronocoordinate mutations spanning many kilobases. However, little is known about mutagenesis of doublet and multiplet mutations (domuplets) in human cancer. Lung cancer accounts for about 25% of all cancer deaths. Herein, we analyze the epidemiology of domuplets in the EGFR and TP53 genes in lung cancer. The EGFR gene is an oncogene in which doublets are generally driver plus driver mutations, while the TP53 gene is a tumor suppressor gene with a more typical situation in which doublets derive from a driver and passenger mutation. Methodology/Principal Findings EGFR mutations identified by sequencing were collected from 66 published papers and our updated EGFR mutation database (www.egfr.org). TP53 mutations were collected from IARC version 12 (www-p53.iarc.fr). For EGFR and TP53 doublets, no clearly significant differences in race, ethnicity, gender and smoking status were observed. Doublets in the EGFR and TP53 genes in human lung cancer are elevated about eight- and three-fold, respectively, relative to spontaneous doublets in mouse (6% and 2.3% versus 0.7%). Conclusions/Significance Although no one characteristic is definitive, the aggregate properties of doublet and multiplet mutations in lung cancer are consistent with a subset derived from chronocoordinate events in the EGFR gene: i) the eight frameshift doublets (present in 0.5% of all patients with EGFR mutations) are clustered and produce a net in-frame change; ii) about 32% of doublets are very closely spaced (≤30 nt); and iii) multiplets contain two or more closely spaced mutations. TP53 mutations in lung cancer are very closely spaced (≤30 nt) in 33% of doublets, and multiplets generally contain two or more very closely spaced mutations. Work in model systems is necessary to confirm the significance of chronocoordinate events in lung and other cancers.
Collapse
Affiliation(s)
- Zhenbin Chen
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jinong Feng
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Carolyn H. Buzin
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Steve S. Sommer
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Legardinier S, Hubert JF, Bihan OL, Tascon C, Rocher C, Raguénès-Nicol C, Bondon A, Hardy S, Rumeur EL. Sub-domains of the dystrophin rod domain display contrasting lipid-binding and stability properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:672-82. [DOI: 10.1016/j.bbapap.2007.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/12/2007] [Accepted: 12/24/2007] [Indexed: 10/22/2022]
|
31
|
Lim LE, Rando TA. Technology Insight: therapy for Duchenne muscular dystrophy—an opportunity for personalized medicine? ACTA ACUST UNITED AC 2008; 4:149-58. [DOI: 10.1038/ncpneuro0737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 11/29/2007] [Indexed: 01/16/2023]
|
32
|
Aartsma-Rus A, van Ommen GJB. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA (NEW YORK, N.Y.) 2007; 13:1609-24. [PMID: 17684229 PMCID: PMC1986821 DOI: 10.1261/rna.653607] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype. In fact, exon skipping is currently one of the most promising therapeutic tools for DMD, and a successful first-in-man trial has recently been completed. In this review the applicability of exon skipping for DMD and other diseases is described. For DMD AONs have been designed for numerous exons, which has given us insight into their mode of action, splicing in general, and splicing of the DMD gene in particular. In addition, retrospective analysis resulted in guidelines for AON design for DMD and most likely other genes as well. This knowledge allows us to optimize therapeutic exon skipping, but also opens up a range of other applications for the exon skipping approach.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- DMD genetic therapy group, Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | |
Collapse
|
33
|
Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD, Steinhaus JP, Moulton HM, Iversen PL, Wilton SD. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther 2007; 15:1587-92. [PMID: 17579573 DOI: 10.1038/sj.mt.6300245] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.
Collapse
Affiliation(s)
- Sue Fletcher
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Deburgrave N, Daoud F, Llense S, Barbot JC, Récan D, Peccate C, Burghes AHM, Béroud C, Garcia L, Kaplan JC, Chelly J, Leturcq F. Protein- and mRNA-based phenotype-genotype correlations in DMD/BMD with point mutations and molecular basis for BMD with nonsense and frameshift mutations in the DMD gene. Hum Mutat 2007; 28:183-95. [PMID: 17041906 DOI: 10.1002/humu.20422] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Straightforward detectable Duchenne muscular dystrophy (DMD) gene rearrangements, such as deletions or duplications involving an entire exon or more, are involved in about 70% of dystrophinopathies. In the remaining 30% a variety of point mutations or "small" mutations are suspected. Due to their diversity and to the large size and complexity of the DMD gene, these point mutations are difficult to detect. To overcome this diagnostic issue, we developed and optimized a routine muscle biopsy-based diagnostic strategy. The mutation detection rate is almost as high as 100% and mutations were identified in all patients for whom the diagnosis of DMD and Becker muscular dystrophy (BMD) was clinically suspected and further supported by the detection on Western blot of quantitative and/or qualitative dystrophin protein abnormalities. Here we report a total of 124 small mutations including 11 nonsense and frameshift mutations detected in BMD patients. In addition to a comprehensive assessment of muscular phenotypes that takes into account consequences of mutations on the expression of the dystrophin mRNA and protein, we provide and discuss genomic, mRNA, and protein data that pinpoint molecular mechanisms underlying BMD phenotypes associated with nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Nathalie Deburgrave
- Institut Cochin, INSERM Unité 567, CNR UMR 1408, Université René Descartes Paris 5 UM3, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A. Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther 2007; 81:99-103. [PMID: 17186006 DOI: 10.1038/sj.clpt.6100012] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A third of inherited diseases result from premature termination codon mutations. Aminoglycosides have emerged as vanguard pharmacogenetic agents in treating human genetic disorders due to their unique ability to suppress gene translation termination induced by nonsense mutations. In preclinical and pilot clinical studies, this therapeutic approach shows promise in phenotype correction by promoting otherwise defective protein synthesis. The challenge ahead is to maximize efficacy while preventing interaction with normal protein production and function.
Collapse
Affiliation(s)
- L V Zingman
- Marriott Heart Disease Research Program, Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | |
Collapse
|
36
|
Hopf FW, Turner PR, Steinhardt RA. Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 2007; 45:429-464. [PMID: 18193647 DOI: 10.1007/978-1-4020-6191-2_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the exact nature of the relationship between calcium and the pathogenesis of Duchenne muscular dystrophy (DMD) is not fully understood, this is an important issue which has been addressed in several recent reviews (Alderton and Steinhardt, 2000a, Gailly, 2002, Allen et al., 2005). A key question when trying to understand the cellular basis of DMD is how the absence or low level of expression of dystrophin, a cytoskeletal protein, results in the slow but progressive necrosis of muscle fibres. Although loss of cytoskeletal and sarcolemmal integrity which results from the absence of dystrophin clearly plays a key role in the pathogenesis associated with DMD, a number of lines of evidence also establish a role for misregulation of calcium ions in the DMD pathology, particularly in the cytoplasmic space just under the sarcolemma. A number of calcium-permeable channels have been identified which can exhibit greater activity in dystrophic muscle cells, and exIsting evidence suggests that these may represent different variants of the same channel type (perhaps the transient receptor potential channel, TRPC). In addition, a prominent role for calcium-activated proteases in the DMD pathology has been established, as well as modulation of other intracellular regulatory proteins and signaling pathways. Whether dystrophin and its associated proteins have a direct role in the regulation of calcium ions, calcium channels or intracellular calcium stores, or indirectly alters calcium regulation through enhancement of membrane tearing, remains unclear. Here we focus on areas of consensus or divergence amongst the existing literature, and propose areas where future research would be especially valuable.
Collapse
Affiliation(s)
- F W Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton St., Suite 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
37
|
Wells DJ. Therapeutic restoration of dystrophin expression in Duchenne muscular dystrophy. J Muscle Res Cell Motil 2006; 27:387-98. [PMID: 16874449 DOI: 10.1007/s10974-006-9081-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/26/2006] [Indexed: 12/26/2022]
Abstract
It is 20 years since the discovery of the genetic defect causing Duchenne muscular dystrophy (DMD). This X-linked progressive and fatal myopathy is due to the absence of a functional version of a critical sub-sarcolemmal protein called dystrophin that appears to act both as a structural and as a signalling molecule in the muscle fibre. A number of molecular approaches have been developed to restore the expression of dystrophin in DMD patients. Pre-clinical experiments have demonstrated the potential of delivery of recombinant versions of the DMD gene using viral or non-viral vectors and importantly several of these systems are compatible with vascular delivery, an essential feature as all muscles are affected in this condition. Other studies have shown that antisense oligonucleotides can modify the splicing of the primary transcript to provide an internally truncated but still functional protein. Alternatively, in approximately 10-20% of cases it is possible to chemically persuade the translational machinery to read-through a pre-mature stop codon. The pre-clinical results of the last 4 years have encouraged the development of clinical trials for all of the above.
Collapse
Affiliation(s)
- Dominic J Wells
- Gene Targeting Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Charing Cross Hospital, London, W6 8RP, UK.
| |
Collapse
|
38
|
Tran VK, Takeshima Y, Zhang Z, Yagi M, Nishiyama A, Habara Y, Matsuo M. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene. J Med Genet 2006; 43:924-30. [PMID: 16738009 PMCID: PMC2563197 DOI: 10.1136/jmg.2006.042317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mutations in exonic splicing enhancer sequences are known to cause splicing errors. Although exonic splicing enhancers have been identified as a stretch of purine-rich sequences, it has been difficult to precisely pinpoint the determinant nucleotides in these sequences. This article reports that a 4-bp deletion in exon 38 of the dystrophin gene induced complete exon 38 skipping in vivo. Moreover, the third nucleotide of the deletion was shown to be determinant for the exonic splicing enhancer activity in in vivo splicing analysis of hybrid minigenes encoding mutant exons. METHOD Genomic DNA analysis of a 2-year-old boy with a raised level of serum creatine kinase yielded a 4-bp deletion 11 bp upstream of the 3' end of exon 38 of the dystrophin gene (c. 5434-5437del TTCA), disrupting a predicted SC35-binding site. RESULT Interestingly, his dystrophin mRNA was shown to completely lack exon 38 (exon 38- transcript). As the exon 38- transcript coded for a truncated dystrophin protein, this exon skipping was determined to be a modifying factor of his phenotype. In an in vivo splicing assay, a hybrid minigene encoding exon 38 with the 4-bp deletion was shown to induce complete exon 38 skipping, confirming the deleted region as a splicing enhancer sequence. Site-directed mutagenesis of the deleted sequence showed that the complete exon 38 skipping was caused by mutation of the third nucleotide position of the deletion (C5436), whereas mutations at the other three nucleotide positions induced partial exon skipping. CONCLUSION Our results underline the potential of understanding the regulation of exonic splicing enhancer sequences and exon skipping therapy for treatment of Duchenne's muscular dystrophy.
Collapse
Affiliation(s)
- Van Khanh Tran
- Department of Pediatrics, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Kellermayer R. Translational readthrough induction of pathogenic nonsense mutations. Eur J Med Genet 2006; 49:445-50. [PMID: 16740421 DOI: 10.1016/j.ejmg.2006.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 04/27/2006] [Indexed: 11/08/2022]
Abstract
The treatment of genetic disorders is one of the biggest challenges lying ahead of modern medicine. While major advancements have been made in gene therapy, it is still far from achieving clinical success. However, other potential methods for treating single gene related diseases have also emerged recently. One such approach is the suppression of pathogenic nonsense mutations through inducing translational readthrough of the in-frame premature stop mutation. Aminoglycosides were the first drugs that gave promising results in this respect. This report provides a brief overview on the past, present and potential future of this pharmacogenetic approach.
Collapse
Affiliation(s)
- Richard Kellermayer
- Department of Medical Genetics and Child Development, University of Pécs, József A. u. 7., 7623 Pécs, Hungary.
| |
Collapse
|
40
|
Scholzová E, Malík R, Sevcík J, Kleibl Z. RNA regulation and cancer development. Cancer Lett 2006; 246:12-23. [PMID: 16675105 DOI: 10.1016/j.canlet.2006.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/20/2006] [Accepted: 03/24/2006] [Indexed: 12/23/2022]
Abstract
Cancer is viewed as a genetic disease. According to the currently accepted model of carcinogenesis, several consequential mutations in oncogenes or tumor suppressor genes are necessary for cancer development. In this model, mutated DNA sequence is transcribed to mRNA that is finally translated into functionally aberrant protein. mRNA is viewed solely as an intermediate between DNA (with 'coding' potential) and protein (with 'executive' function). However, recent findings suggest that (m)RNA is actively regulated by a variety of processes including nonsense-mediated decay, alternative splicing, RNA editing or RNA interference. Moreover, RNA molecules can regulate a variety of cellular functions through interactions with RNA, DNA as well as protein molecules. Although, the precise contribution of RNA molecules by themselves and RNA-regulated processes on cancer development is currently unknown, recent data suggest their important role in carcinogenesis. Here, we summarize recent knowledge on RNA-related processes and discuss their potential role in cancer development.
Collapse
Affiliation(s)
- Eva Scholzová
- First Medical Faculty, Institute of Biochemistry and Experimental Oncology, Charles University, U Nemocnice 5, 128 53 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
41
|
Disset A, Bourgeois CF, Benmalek N, Claustres M, Stevenin J, Tuffery-Giraud S. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15:999-1013. [PMID: 16461336 DOI: 10.1093/hmg/ddl015] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A nonsense mutation c.4250T>A (p.Leu1417X) in the dystrophin gene of a patient with an intermediate phenotype of muscular dystrophy induces partial in-frame skipping of exon 31. On the basis of UV cross-linking assays and pull-down analysis, we present evidence that the skipping of this exon is because of the creation of an exonic splicing silencer, which acts as a highly specific binding site (UAGACA) for a known repressor protein, hnRNP A1. Recombinant hnRNP A1 represses exon inclusion both in vitro and in vivo upon transient transfection of C2C12 cells with Duchenne muscular dystrophy (DMD) minigenes carrying the c.4250T>A mutation. Furthermore, we identified a downstream splicing enhancer in the central region of exon 31. This region functions as a Tra2beta-dependent exonic splicing enhancer (ESE) in vitro when inserted into a heterologous splicing reporter, and deletion of the ESE showed that incorporation of exon 31 depends on the Tra2beta-dependent enhancer both in the wild-type and mutant context. We conclude that dystrophin exon 31 contains juxtaposed sequence motifs that collaborate to regulate exon usage. This is the first elucidation of the molecular mechanism leading to exon skipping in the dystrophin gene and allowing the occurrence of a milder phenotype than the expected DMD phenotype. The knowledge of which cis-acting sequence within an exon is important for its definition will be essential for the alternative gene therapy approaches based on modulation of splicing to bypass DMD-causing mutations in the endogenous dystrophin gene.
Collapse
Affiliation(s)
- A Disset
- Laboratoire de Génétique Moléculaire, Institut Universitaire de Recherche Clinique (IURC), CHU Montpellier F34000, France
| | | | | | | | | | | |
Collapse
|
42
|
Kulyté A, Dryselius R, Karlsson J, Good L. Gene selective suppression of nonsense termination using antisense agents. ACTA ACUST UNITED AC 2005; 1730:165-72. [PMID: 16135388 DOI: 10.1016/j.bbaexp.2005.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 07/28/2005] [Accepted: 07/29/2005] [Indexed: 11/08/2022]
Abstract
An estimated one third of all inherited genetic disorders and many forms of cancer are caused by premature (nonsense) termination codons. Aminoglycoside antibiotics are candidate drugs for a large number of such genetic diseases; however, aminoglycosides are toxic, lack specificity and show low efficacy in this application. Because translational termination is an active process, we considered that steric hindrance by antisense sequences could trigger the ribosome's "default mode" of readthrough when positioned near nonsense codons. To test this hypothesis, we performed experiments using plasmids containing a luciferase reporter with amber, ochre and opal nonsense mutations within the luxB gene in Escherichia coli. The nonspecific termination inhibitors gentamicin and paromomycin and six antisense peptide nucleic acids (PNA) spanning the termination region were tested for their potential to suppress the luxB mutation. Gentamicin and paromomycin increased luciferase activity up to 2.5- and 10-fold, respectively. Two of the PNAs increased Lux activity up to 2.5-fold over control levels, with no significant effect on cell growth or mRNA levels. Thus, it is possible to significantly suppress nonsense mutations within target genes using antisense PNAs. The mechanism of suppression likely involves enhanced readthrough, but this requires further investigation. Nonsense termination in human cells may also be susceptible to suppression by antisense agents, providing a new approach to address numerous diseases caused by nonsense mutations.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Codon, Nonsense/chemistry
- Codon, Nonsense/drug effects
- Codon, Nonsense/genetics
- Dose-Response Relationship, Drug
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Genes, Bacterial/drug effects
- Genes, Bacterial/genetics
- Genes, Reporter
- Genes, Suppressor/drug effects
- Gentamicins/pharmacology
- Luciferases/analysis
- Luciferases/genetics
- Mutation/drug effects
- Mutation/genetics
- Paromomycin/pharmacology
- Plasmids
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Agné Kulyté
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
43
|
Prior TW, Bridgeman SJ. Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J Mol Diagn 2005; 7:317-26. [PMID: 16049303 PMCID: PMC1867542 DOI: 10.1016/s1525-1578(10)60560-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the dystrophin gene result in both Duchenne and Becker muscular dystrophies (DMD and BMD). Approximately two-thirds of the affected patients have large deletions or duplications. Using the multiplex polymerase chain reaction and Southern blotting techniques, the detection of these larger mutations is relatively straightforward. Detection of the point mutations in the remaining one-third of the patients has been challenging, mainly due to the large gene size and lack of hotspots or prevalent mutations. However, with the addition of some of the newer molecular screening methods, it is becoming more feasible for clinical laboratories to test for point mutations in the larger genes like dystrophin. Here we review the clinical features, describe the mutation distributions, evaluate current molecular strategies, and illustrate how the genetic findings have impacted the current clinical diagnostics of Duchenne and Becker muscular dystrophies.
Collapse
Affiliation(s)
- Thomas W Prior
- Department of Pathology, The Ohio State University, 125 Hamilton Hall, 1645 Neil Ave., Columbus, Ohio 43210, USA.
| | | |
Collapse
|
44
|
Tuffery-Giraud S, Saquet C, Thorel D, Disset A, Rivier F, Malcolm S, Claustres M. Mutation spectrum leading to an attenuated phenotype in dystrophinopathies. Eur J Hum Genet 2005; 13:1254-60. [PMID: 16077730 DOI: 10.1038/sj.ejhg.5201478] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although Becker muscular dystrophy (BMD; MIM 300376) is mainly caused by gross deletions of the dystrophin gene, the nature of the mutations involved in the remaining cases is of importance because of the milder clinical course of Becker. We have extensively characterized the mRNA changes associated with five novel point mutations giving rise to a Becker phenotype, which confirm that Becker arises largely due to alterations in splicing. In two cases the milder phenotype arises because of exon skipping, leading to an in-frame deletion (c.1603-2A>C and c.4250T>A). In further two cases intronic mutations (c.4519-5C>G and c.961-5925A>C) result in complex splicing changes, but with some residual normal transcripts. The last case, c.10412T>A (p.Leu3471X), results in a truncated transcript missing only part of the COOH terminal of the protein, suggesting that this region is not crucial for dystrophin function. The detection of a low amount of dystrophin in this patient could be attributable to a reduced efficiency of nonsense-mediated decay. The results emphasize that mRNA analysis is important in defining Becker mutations and will be of value in assessing various gene therapy strategies.
Collapse
Affiliation(s)
- Sylvie Tuffery-Giraud
- Laboratoire de Génétique Moleculaire et Chromosomique, CHU de Montpellier, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Spectrin family proteins represent an important group of actin-bundling and membrane-anchoring proteins found in diverse structures from yeast to man. Arising from a common ancestral alpha-actinin gene through duplications and rearrangements, the family has increased to include the spectrins and dystrophin/utrophin. The spectrin family is characterized by the presence of spectrin repeats, actin binding domains, and EF hands. With increasing divergence, new domains and functions have been added such that spectrin and dystrophin also contain specialized protein-protein interaction motifs and regions for interaction with membranes and phospholipids. The acquisition of new domains also increased the functional complexity of the family such that the proteins perform a range of tasks way beyond the simple bundling of actin filaments by alpha-actinin in S. pombe. We discuss the evolutionary, structural, functional, and regulatory roles of the spectrin family of proteins and describe some of the disease traits associated with loss of spectrin family protein function.
Collapse
Affiliation(s)
- M J F Broderick
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
46
|
Tuffery-Giraud S, Saquet C, Chambert S, Echenne B, Marie Cuisset J, Rivier F, Cossée M, Philippe C, Monnier N, Bieth E, Recan D, Antoinette Voelckel M, Perelman S, Lambert JC, Malcolm S, Claustres M. The role of muscle biopsy in analysis of the dystrophin gene in Duchenne muscular dystrophy: experience of a national referral centre. Neuromuscul Disord 2004; 14:650-8. [PMID: 15351422 DOI: 10.1016/j.nmd.2004.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 05/05/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Although the majority (65%) of boys with Duchenne muscular dystrophy (DMD) carry a deletion in the dystrophin gene, finding mutations in the remaining families is vital for counselling. We have provided a comprehensive mutation service as a national referral centre for France for over 10 years and we report here our experience. Mutation screening is on mRNA from a muscle biopsy. We have detected 79 mutations in 89 samples referred with a diagnosis of DMD, which is the most comprehensive survey to date of the full range of nondeletion mutations. Although some mutations were nonsense mutations, some frameshift mutations and some splicing mutations, all of them led to the generation of premature stop codons or a shortened product which could be detected using the Protein Truncation Test. We recommend a protocol which is robust and sensitive applied to the entire coding region reverse-transcribed from dystrophin transcripts from muscle biopsy.
Collapse
Affiliation(s)
- Sylvie Tuffery-Giraud
- Laboratoire de Génétique Moleculaire et Chromosomique, Institut Universitaire de Recherche Clinique (IURC), CHU de Montpellier, 641 avenue du Doyen G. Giraud, 34093 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ferrer A, Foster H, Wells KE, Dickson G, Wells DJ. Long-term expression of full-length human dystrophin in transgenic mdx mice expressing internally deleted human dystrophins. Gene Ther 2004; 11:884-93. [PMID: 14985788 DOI: 10.1038/sj.gt.3302242] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the possible therapies for Duchenne muscular dystrophy (DMD) is the introduction of a functional copy of the dystrophin gene into the patient. For this approach to be effective, therapeutic levels and long-term expression of the protein need to be achieved. However, immune responses to the newly expressed dystrophin have been predicted, particularly in DMD patients who express no dystrophin or only very truncated versions. In a previous study, we demonstrated a strong humoral and cytotoxic immune response to human dystrophin in the mdx mouse. However, the mdx mouse was tolerant to murine dystrophin, possibly due to the endogenous expression of dystrophin in revertant fibres or the other nonmuscle dystrophin isoforms. In the present study, we delivered human and murine dystrophin plasmids by electrotransfer after hyaluronidase pretreatment to increase gene transfer efficiencies. Tolerance to murine dystrophin was still seen with this improved gene delivery. Tolerance to exogenous recombinant full-length human dystrophin was seen in mdx transgenic lines expressing internally deleted versions of human dystrophin. These results suggest that the presence of revertant fibres may prevent the development of serious immune responses in patients undergoing dystrophin gene therapy.
Collapse
Affiliation(s)
- A Ferrer
- Gene Targeting Unit, Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Imperial College London, Charing Cross Hospital, London, UK
| | | | | | | | | |
Collapse
|
48
|
Bidou L, Hatin I, Perez N, Allamand V, Panthier JJ, Rousset JP. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 2004; 11:619-27. [PMID: 14973546 DOI: 10.1038/sj.gt.3302211] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The suppression levels induced by gentamicin on premature stop codons, caused by primary nonsense mutations found in muscular dystrophy patients, were assessed using a very sensitive dual reporter gene assay. Results show that: (i) the effect of gentamicin on readthrough is similar in cultured cells and in vivo in murine skeletal muscle; (ii) a wide variability of readthrough efficiency is obtained, depending on the mutation tested; (iii) due to the complexity of readthrough regulation, efficiency cannot be predicted by the nucleotide context of the stop codon; (iv) only a minority of premature stop codons found in patients show a significant level of readthrough, and would thus be amenable to this pharmacological treatment, given our present understanding of the problem. These results probably provide an explanation for the relative failure of clinical trials reported to date using gentamicin to treat diseases due to premature stop codons, and emphasize that preliminary assays in cell culture provide valuable information concerning the potential efficiency of pharmacological treatments.
Collapse
Affiliation(s)
- L Bidou
- 1CNRS UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003; 2:731-40. [PMID: 14636778 DOI: 10.1016/s1474-4422(03)00585-4] [Citation(s) in RCA: 747] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large and complex gene on the X chromosome encodes dystrophin. Many mutations have been described in this gene, most of which affect the expression of the muscle isoform, the best-known protein product of this locus. These mutations result in the Duchenne and Becker muscular dystrophies (DMD and BMD). However, there are several other tissue specific isoforms of dystrophin, some exclusively or predominantly expressed in the brain or the retina. Mutations affecting the correct expression of these tissue-specific isoforms have been associated with the CNS involvement common in DMD. Rare mutations also account for the allelic disorder X-linked dilated cardiomyopathy, in which dystrophin expression or function is affected mostly or exclusively in the heart. Genotype definition of the dystrophin gene in patients with dystrophinopathies has taught us much about functionally important domains of the protein itself and has provided insights into several regulatory mechanisms governing the gene expression profile. Here, we focus on current understanding of the genotype-phenotype relation for mutations in the dystrophin gene and their implications for gene functions.
Collapse
Affiliation(s)
- Francesco Muntoni
- Department of Paediatrics, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | | | | |
Collapse
|
50
|
Wells KE, Fletcher S, Mann CJ, Wilton SD, Wells DJ. Enhanced in vivo delivery of antisense oligonucleotides to restore dystrophin expression in adult mdx mouse muscle. FEBS Lett 2003; 552:145-9. [PMID: 14527677 DOI: 10.1016/s0014-5793(03)00904-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of antisense oligonucleotides (AOs) to induce exon skipping leading to generation of an in-frame dystrophin protein product could be of benefit in around 70% of Duchenne muscular dystrophy patients. We describe the use of hyaluronidase enhanced electrotransfer to deliver uncomplexed 2'-O-methyl modified phosphorothioate AO to adult dystrophic mouse muscle, resulting in dystrophin expression in 20-30% of fibres in tibialis anterior muscle after a single injection. Although expression was transient, many of the corrected fibres initially showed levels of dystrophin expression well above the 20% of endogenous previously shown to be necessary for phenotypic correction of the dystrophic phenotype.
Collapse
MESH Headings
- Animals
- Base Sequence
- Dystrophin/chemistry
- Dystrophin/genetics
- Dystrophin/metabolism
- Electroporation/methods
- Genetic Therapy
- Humans
- Hyaluronoglucosaminidase
- Male
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/therapy
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/chemistry
- Oligodeoxyribonucleotides, Antisense/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- K E Wells
- Department of Neuromuscular Diseases, Imperial College London, Charing Cross Hospital, W6 8RP London, UK.
| | | | | | | | | |
Collapse
|