1
|
Zeng C, Wei M, Li H, Yu L, Wang C, Mu Z, Huang Z, Ke Y, Li LY, Xiao Y, Wu M, Chen MK. Identification of IL-34 and Slc7al as potential key regulators in MASLD progression through epigenomic profiling. Epigenomics 2025:1-15. [PMID: 39956835 DOI: 10.1080/17501911.2025.2467028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
OBJECTIVE Epigenetic alterations are critical regulators in the progression of metabolic dysfunction-associated steatotic liver disease (MASLD); however, the dynamic epigenomic landscapes are not well defined. Our previous study found that H3K27ac and H3K9me3 play important roles in regulating lipid metabolic pathways in the early stages of MASLD. However, the epigenomic status in the inflammation stages still needs to be determined. METHOD C57BL/6 male mice were fed with the methionine- and choline-deficient (MCD) or normal diet, and their serum and liver samples were collected after 6 weeks. Serum alanine aminotransferase (ALT), aspartate amino transferase (AST), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured. Chromatin immunoprecipitation sequencing (ChIP-Seq) for H3K27ac and H3K9me3 was performed together with RNA sequencing (RNA-seq) and key regulators were analyzed. RESULTS The target genes of enhancers with increased H3K27ac and decreased H3K9me3 signals are enriched in lipid metabolism and immuno-inflammatory pathways. Il-34 and Slc7al are identified as potential regulators in MASLD. CONCLUSION Our study reveals that active enhancers and heterochromatin associated with metabolic and inflammatory genes are extensively reprogrammed in MCD-diet mice, and Il-34 and Slc7al are potentially key genes regulating the progression of MASLD.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Mingliang Wei
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Linxin Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Chuang Wang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Mu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yujia Ke
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yong Xiao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ming-Kai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
3
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
4
|
Bernardi N, Bianconi E, Vecchi A, Ameri P. Noncoding RNAs in Pulmonary Arterial Hypertension. Heart Fail Clin 2023; 19:137-152. [DOI: 10.1016/j.hfc.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
MicroRNAs as messengers of liver diseases: has the message finally been decrypted? Clin Sci (Lond) 2022; 136:323-328. [PMID: 35234251 DOI: 10.1042/cs20211177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs), which are regarded as crucial regulators of gene expression and diverse aspects of cell biology, can be present in various body fluids as highly stable molecules. It is also known that miRNAs exert tissue-specific regulation of gene transcription. Large amount of clinical and experimental evidence provided the rationale for raising the intriguing question of whether miRNAs can mediate cell-cell communication. For those reasons, miRNAs have been considered as the 'Holy Grail' of biomarkers allowing non-invasive diagnostic screening and early detection of a variety of diseases, including solid and non-solid cancers. In a study published in Clin. Sci. (Lond.) (2011) 120(5):183-193 (https://doi.org/10.1042/CS20100297), Gui et al. investigated the hypothesis that circulating miRNAs could be used to identify patients with liver pathologies. Specifically, the authors profiled circulating miRNAs in patients with hepatocellular carcinoma (HCC), liver cirrhosis (LC), and healthy controls and found that serum miR-885-5p levels were significantly higher in samples of patients with HCC (6.5-fold increase) and LC (8.8-fold increase). In this commentary, we highlight biological aspects associated with mir-122-the 'liver-specific' miRNA, which has been associated with a diverse range of liver pathologies. In addition, we discuss the relevance of mir-885-5p as potential biomarker for detecting human cancers. Finally, we provide some clues about how presumably unrelated miRNAs such as miR-122 and miR-885-5p may act in similar biological processes (BPs), making the miRNA regulatory networks more complex than anticipated.
Collapse
|
6
|
Horvath S, Zoller JA, Haghani A, Lu AT, Raj K, Jasinska AJ, Mattison JA, Salmon AB. DNA methylation age analysis of rapamycin in common marmosets. GeroScience 2021; 43:2413-2425. [PMID: 34482522 PMCID: PMC8599537 DOI: 10.1007/s11357-021-00438-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Human DNA methylation data have previously been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Dickerson, MD USA
| | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX USA
| |
Collapse
|
7
|
Epigenetic clock and methylation studies in vervet monkeys. GeroScience 2021; 44:699-717. [PMID: 34591235 PMCID: PMC9135907 DOI: 10.1007/s11357-021-00466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.
Collapse
|
8
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
9
|
Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells 2021; 10:314. [PMID: 33546399 PMCID: PMC7913585 DOI: 10.3390/cells10020314] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for 90-95% cases of diabetes, is characterized by chronic inflammation. The mechanisms that control inflammation activation in T2DM are largely unexplored. Inflammasomes represent significant sensors mediating innate immune responses. The aim of this work is to present a review of links between the NLRP3 inflammasome, endothelial dysfunction, and T2DM. The NLRP3 inflammasome activates caspase-1, which leads to the maturation of pro-inflammatory cytokines interleukin 1β and interleukin 18. In this review, we characterize the structure and functions of NLRP3 inflammasome as well as the most important mechanisms and molecules engaged in its activation. We present evidence of the importance of the endothelial dysfunction as the first key step to activating the inflammasome, which suggests that suppressing the NLRP3 inflammasome could be a new approach in depletion hyperglycemic toxicity and in averting the onset of vascular complications in T2DM. We also demonstrate reports showing that the expression of a few microRNAs that are also known to be involved in either NLRP3 inflammasome activation or endothelial dysfunction is deregulated in T2DM. Collectively, this evidence suggests that T2DM is an inflammatory disease stimulated by pro-inflammatory cytokines. Finally, studies revealing the role of glucose concentration in the activation of NLRP3 inflammasome are analyzed. The more that is known about inflammasomes, the higher the chances to create new, effective therapies for patients suffering from inflammatory diseases. This may offer potential novel therapeutic perspectives in T2DM prevention and treatment.
Collapse
Affiliation(s)
- Ilona M. Gora
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (A.C.); (P.L.)
| | | | | |
Collapse
|
10
|
Population-scale genetic control of alternative polyadenylation and its association with human diseases. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
La Sala L, Crestani M, Garavelli S, de Candia P, Pontiroli AE. Does microRNA Perturbation Control the Mechanisms Linking Obesity and Diabetes? Implications for Cardiovascular Risk. Int J Mol Sci 2020; 22:ijms22010143. [PMID: 33375647 PMCID: PMC7795227 DOI: 10.3390/ijms22010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders such as obesity and type 2 diabetes (T2D) are considered the major risk factors for the development of cardiovascular diseases (CVD). Although the pathological mechanisms underlying the mutual development of obesity and T2D are difficult to define, a better understanding of the molecular aspects is of utmost importance to identify novel therapeutic targets. Recently, a class of non-coding RNAs, called microRNAs (miRNAs), are emerging as key modulators of metabolic abnormalities. There is increasing evidence supporting the role of intra- and extracellular miRNAs as determinants of the crosstalk between adipose tissues, liver, skeletal muscle and other organs, triggering the paracrine communication among different tissues. miRNAs may be considered as risk factors for CVD due to their correlation with cardiovascular events, and in particular, may be related to the most prominent risk factors. In this review, we describe the associations observed between miRNAs expression levels and the most common cardiovascular risk factors. Furthermore, we sought to depict the molecular aspect of the interplay between obesity and diabetes, investigating the role of microRNAs in the interorgan crosstalk. Finally, we discussed the fascinating hypothesis of the loss of protective factors, such as antioxidant defense systems regulated by such miRNAs.
Collapse
Affiliation(s)
- Lucia La Sala
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
- Correspondence:
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy;
| | - Paola de Candia
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Antonio E. Pontiroli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
12
|
Transport of L-Arginine Related Cardiovascular Risk Markers. J Clin Med 2020; 9:jcm9123975. [PMID: 33302555 PMCID: PMC7764698 DOI: 10.3390/jcm9123975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular outcomes and various metabolic and functional pathways such as NO-mediated endothelial function. Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far, but the number of transporters shown to mediate the transport of L-arginine and its derivatives is constantly increasing. In the present review we assess the growing body of evidence regarding the function, expression, and clinical relevance of these transporters and their possible relation to cardiovascular diseases.
Collapse
|
13
|
Wang M, Li B, Liao Z, Jia Y, Fu Y. A novel phenotype of 13q12.3 microdeletion characterized by epilepsy in an Asian child: a case report. BMC Med Genomics 2020; 13:144. [PMID: 33023587 PMCID: PMC7539513 DOI: 10.1186/s12920-020-00801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background The microdeletion of chromosome 13 has been rarely reported. Here, we report a 14-year old Asian female with a de novo microdeletion on 13q12.3. Case presentation The child suffered mainly from two types of epileptic seizures: partial onset seizures and myoclonic seizures, accompanied with intellectual disability, developmental delay and minor dysmorphic features. The electroencephalogram disclosed slow waves in bilateral temporal, together with generalized spike-and-slow waves, multiple-spike-and-slow waves and slow waves in bilateral occipitotemporal regions. The exome sequencing showed no pathogenic genetic variation in the patient’s DNA sample. While the single nucleotide polymorphism (SNP) array analysis revealed a de novo microdeletion spanning 2.324 Mb, within the cytogenetic band 13q12.3. Conclusions The epilepsy may be associated with the mutation of KATNAL1 gene or the deletion unmasking a recessive mutation on the other allele, and our findings could provide a phenotypic expansion.
Collapse
Affiliation(s)
- Mina Wang
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bin Li
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden
| | - Yu Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Fu
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China.
| |
Collapse
|
14
|
Wang L, Wang J, Li G, Xiao J. Non-coding RNAs in Physiological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:149-161. [PMID: 32285410 DOI: 10.1007/978-981-15-1671-9_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Non-coding RNA (ncRNA) is a class of RNAs that are not act as translational protein templates. They are involved in the regulation of gene transcription, RNA maturation and protein translation, participating in a variety of physiological and physiological processes. NcRNAs have important functions, and are recently one of the hotspots in biomedical research. Cardiac hypertrophy is classified into physiological cardiac hypertrophy and pathological cardiac hypertrophy. Different from pathological cardiac hypertrophy, physiological cardiac hypertrophy usually developed during exercise, pregnancy, normal postnatal growth, accompanied with preservation or improvement of systolic function, while no cardiac fibrosis. In this chapter, we will briefly introduce the definition, characteristics, and functions of ncRNAs, including miRNAs, lncRNAs, and circRNAs, as well as a summary of the existing bioinformatics online databases which commonly used in the study of ncRNAs. Specially, this chapter will be focused on the characteristics and the underlying mechanisms about physiological cardiac hypertrophy. Furthermore, the regulatory mechanism of ncRNAs in physiological hypertrophy and the latest research progress will be summarized. Taken together, exploring physiologic cardiac hypertrophy-specific ncRNAs might be a unique research perspective that provides new point of view for interventions in heart failure and other cardiovascular diseases.
Collapse
Affiliation(s)
- Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
15
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
16
|
The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension. Hypertens Res 2020; 43:511-517. [PMID: 32042143 DOI: 10.1038/s41440-020-0405-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
MicroRNAs are key molecules involved in the regulation of endothelial function. They are important risk factors and biomarkers for the development of hypertension related to endothelial dysfunction. However, the gene expression patterns associated with hypertension development related to endothelial dysfunction have not been fully elucidated. We conducted a case-control study of 65 patients with essential hypertension (EH) and 61 controls without EH. Plasma levels of miR-122 and its target protein high-affinity cationic amino acid transporter 1 (CAT-1) were measured by qRT-PCR and ELISA, respectively. miR-122 expression in plasma of patients with EH was significantly higher than that of the control group (p = 0.001), while CAT-1 expression in patients with EH was significantly lower than that in the control group (p = 0.018). miR-122 expression in plasma of young patients with EH was significantly higher than that in young people without EH (p = 0.0004), and CAT-1 expression in plasma of young patients with EH was also significantly lower than that of the control group (p = 0.002). CAT-1 expression in the plasma of young participants was significantly higher than that of individuals aged ≥40 years (p = 0.003), whereas miR-122 expression was significantly lower (p = 0.001). We showed that among patients with EH, the high expression of miR-122 contributed to endothelial dysfunction by suppressing the expression of the CAT-1 protein, which led to a decrease in CAT-1 expression in plasma. Therefore, high expression of miR-122 appears to be a risk factor for endothelial dysfunction in EH, especially in younger patients.
Collapse
|
17
|
Abstract
Hypertension, a multifactorial disorder resulting from the interplay between genetic predisposition and environmental risk factors, affects ≈30% of adults. Emerging evidence has shown that nonalcoholic fatty liver disease (NAFLD), as an underestimated metabolic abnormality, is strongly associated with an increased risk of incident prehypertension and hypertension. However, the role of NAFLD in the development of hypertension is still obscure and is highly overlooked by the general public. Herein, we highlight the epidemiological evidence and putative mechanisms focusing on the emerging roles of NAFLD in hypertension, with the purpose of reinforcing the notion that NAFLD may serve as an independent risk factor and an important driving force in the development and progression of hypertension. Finally, we also briefly summarize the current potential treatments for NAFLD that might also be beneficial approaches against hypertension.
Collapse
Affiliation(s)
- Yan-Ci Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Guo-Jun Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Ze Chen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Basic Medical School (Z.-G.S., H.L.), Wuhan University, P.R. China
- Medical Research Institute, School of Medicine (Z.-G.S.), Wuhan University, P.R. China
| | - Jingjing Cai
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China (J.C.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Basic Medical School (Z.-G.S., H.L.), Wuhan University, P.R. China
| |
Collapse
|
18
|
Ji L, Hou H, Zhu K, Liu X, Liu Y, Wang Q, Li J, Liu H, Zhang Q, Lv J, Alexander R, Wang W, Li D. NOTCH1 Gene MicroRNA Target Variation and Ventricular Septal Defect Risk. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:28-35. [PMID: 30629480 DOI: 10.1089/omi.2018.0171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Birth defects, the ventricular septal defect (VSD) in particular, have major public health significance. There is evidence that genetic factors play a role in VSD risk. We report here our findings on the relationship between VSD and microRNA (miRNA)-3691-3p target sequence single-nucleotide polymorphisms (SNPs) in the 3' untranslated region of the NOTCH1 gene. Functional SNPs in NOTCH1 target sequence were screened from the SNP database. A case-control study in a large Chinese Han population sample of 350 children with VSD and 430 healthy controls examined the association between rs6563 SNPs and VSD. NOTCH1 wild and mutant recombinant expression vectors were constructed by the luciferase reporter gene system. The effects of miRNA on gene regulatory effects were also analyzed. The allelic distributions at the locus rs6563 showed statistically significant susceptibility to VSD (odds ratio [OR] = 1.502, 95% confidence interval [CI] = 1.209-1.866, p < 0.001). Compared with the subjects with G/G genotype, individuals with G/A genotype or A/A genotype showed ORs 1.414 (95% CI = 1.047-1.908, p = 0.020) and 2.366 (95% CI = 1.430-3.914, p < 0.001), respectively. The miRNA-3691-3p reduced luciferase activity of the A allele. The rs6563G > A genetic variation appears to be associated with congenital VSD through gene regulatory effects of miR-3691-3p on the NOTCH1 gene. Further studies in other population samples are called for diagnostics and public health innovation in relation to birth defects.
Collapse
Affiliation(s)
- Long Ji
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Haifeng Hou
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China.,2 School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Kai Zhu
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Xuezhen Liu
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Yizhi Liu
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Qian Wang
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Jindong Li
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Huamin Liu
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Qianqian Zhang
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Jian Lv
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| | - Rachel Alexander
- 2 School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Wei Wang
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China.,2 School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Dong Li
- 1 School of Public Health, Taishan Medical University, Tai'an, P.R. China
| |
Collapse
|
19
|
Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. J Hypertens 2018; 36:2226-2236. [DOI: 10.1097/hjh.0000000000001770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Affiliation(s)
- Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Pedro A. Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology.The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
21
|
Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, Yu XB. Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sci 2018; 213:258-268. [PMID: 30342074 DOI: 10.1016/j.lfs.2018.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelium acts as a barrier between the blood flow and the inner lining of the vessel wall, and it functions as a filtering machinery to filter out any unwanted transfer of materials from both sides (i.e. the blood and the surrounding tissues). It is evident that diseases such as diabetes, obesity, and hypertension disturb the normal endothelial functions in humans and lead to endothelial dysfunction, which may further precede to the development of atherosclerosis. Long non-coding RNAs and micro RNAs both are types of non-coding RNAs which, in the recent years, have increasingly been studied in the pathophysiology of many diseases including diabetes, obesity, cardiovascular diseases, neurological diseases, and others. Recent findings have pointed out important aspects on their relevance to endothelial function as well as dysfunction of the system which may arise from presence of diseases such as diabetes and hypertension. Diabetes or hypertension-mediated endothelial dysfunction show characteristics such as reduced nitric oxide synthesis through suppression of endothelial nitric oxide synthase activity in endothelial cells, reduced sensitivity of nitric oxide in smooth muscle cells, and inflammation - all of which have been either shown to be directly caused by gene regulatory mechanisms of non-coding RNAs or shown to be having a correlation with them. In this review, we aim to discuss such findings on the role of these non-coding RNAs in diabetes or hypertension-associated endothelial dysfunction and the related mechanisms that may pave the way for alleviating endothelial dysfunction and its related complications such as atherosclerosis.
Collapse
Affiliation(s)
- Hai-Na Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Qiao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Martin Omondi Alfred
- Institute of Primate Research, Nairobi, Kenya; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Manas Chakraborty
- Department of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Arunima Ghosh
- Department of Medical Coding Analysis - Emblem Health, Cognizant Technology Solutions India Pvt Ltd., Bangalore, India
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
22
|
Zhou X, Wang J, Fa Y, Ye H. Signature microRNA expression profile is associated with spontaneous hypertension in African green monkey. Clin Exp Hypertens 2018; 41:287-291. [PMID: 29787292 DOI: 10.1080/10641963.2018.1469646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chlorocebus aethiops sabaeus, the African Green monkey (AGM), has been proved to exhibit renal vascular remodeling and spontaneous hypertension. However, little is known about the roles of microRNAs (miRNAs) in this process.Using small RNA deep sequencing, we compared the plasma miRNA expression patterns between hypertensive (HT) AGMs and normotensive (NT) AGMs. Expression of miRNAs (miR-122, miR-339, miR-296-5p) was validated independently in plasma samples from 10 HT AGMs and 10 NT AGMs (fold changes are 2.0, 1.6, 2.7 respectively; all P< 0.001). Potential BP (blood pressure)-regulating mRNA targets were predicted by TargetScan and confirmed in the Vero cells. We report for the first time a circulating miRNA profile for AGM. miRNAs, such as miR-122, miR-339, miR-296-5p, may be involved in renal pathologies and spontaneous hypertension of AGM.
Collapse
Affiliation(s)
- Xiaojun Zhou
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| | - Jin Wang
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| | - Yunzhi Fa
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| | - Huahu Ye
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| |
Collapse
|
23
|
Li C, Dinu V. miR2Pathway: A novel analytical method to discover MicroRNA-mediated dysregulated pathways involved in hepatocellular carcinoma. J Biomed Inform 2018; 81:31-40. [PMID: 29578099 DOI: 10.1016/j.jbi.2018.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC.
Collapse
Affiliation(s)
- Chaoxing Li
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Valentin Dinu
- Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85255, USA.
| |
Collapse
|
24
|
Leimena C, Qiu H. Non-Coding RNA in the Pathogenesis, Progression and Treatment of Hypertension. Int J Mol Sci 2018; 19:E927. [PMID: 29561765 PMCID: PMC5979335 DOI: 10.3390/ijms19040927] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Hypertension is a complex, multifactorial disease that involves the coexistence of multiple risk factors, environmental factors and physiological systems. The complexities extend to the treatment and management of hypertension, which are still the pursuit of many researchers. In the last two decades, various genes have emerged as possible biomarkers and have become the target for investigations of specialized drug design based on its risk factors and the primary cause. Owing to the growing technology of microarrays and next-generation sequencing, the non-protein-coding RNAs (ncRNAs) have increasingly gained attention, and their status of redundancy has flipped to importance in normal cellular processes, as well as in disease progression. The ncRNA molecules make up a significant portion of the human genome, and their role in diseases continues to be uncovered. Specifically, the cellular role of these ncRNAs has played a part in the pathogenesis of hypertension and its progression to heart failure. This review explores the function of the ncRNAs, their types and biology, the current update of their association with hypertension pathology and the potential new therapeutic regime for hypertension.
Collapse
Affiliation(s)
- Christiana Leimena
- Department of Basic Sciences, Physiological Division, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA.
| | - Hongyu Qiu
- Department of Basic Sciences, Physiological Division, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA.
| |
Collapse
|
25
|
Abstract
Purpose of Review Hypertension is either a cause or a consequence of the endothelial dysfunction and a major risk factor for cardiovascular disease (CVD). In vitro and in vivo studies established that microRNAs (miRNAs) are decisive for endothelial cell gene expression and function in various pathological conditions associated with CVD. This review provides an overview of the miRNA role in controlling the key connections between endothelial dysfunction and hypertension. Recent Findings Herein we summarize the present understanding of mechanisms underlying hypertension and its associated endothelial dysfunction as well as the miRNA role in endothelial cells with accent on the modulation of renin-angiotensin-aldosterone-system, nitric oxide, oxidative stress and on the control of vascular inflammation and angiogenesis in relation to endothelial dysfunction in hypertension. In particular, latest insights in the identification of endothelial-specific microRNAs and their targets are added to the understanding of miRNA significance in hypertension. Summary This comprehensive knowledge of the role of miRNAs in endothelial dysfunction and hypertension and of molecular mechanisms proposed for miRNA actions may offer novel diagnostic biomarkers and therapeutic targets for controlling hypertension-associated endothelial dysfunction and other cardiovascular complications.
Collapse
Affiliation(s)
- Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania
| | - Gabriela Tanko
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania.
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania.
| |
Collapse
|
26
|
Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens 2018; 31:150-165. [PMID: 29186297 DOI: 10.1093/ajh/hpx197] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNA) include a diverse range of functional RNA species-microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being most studied in pathophysiology. Cardiovascular morbidity is associated with differential expression of myriad miRNAs; miR-21, miR-155, miR-126, miR-146a/b, miR-143/145, miR-223, and miR-221 are the top 9 most reported miRNAs in hypertension and atherosclerotic disease. A single miRNA may have hundreds of messenger RNA targets, which makes a full appreciation of the physiologic ramifications of such broad-ranging effects a challenge. miR-21 is the most prominent ncRNA associated with hypertension and atherosclerotic disease due to its role as a "mechano-miR", responding to arterial shear stresses. "Immuno-miRs", such as miR-155 and miR-223, affect cardiovascular disease (CVD) via regulation of hematopoietic cell differentiation, chemotaxis, and activation in response to many pro-atherogenic stimuli. "Myo-miRs", such as miR-1 and miR-133, affect cardiac muscle plasticity and remodeling in response to mechanical overload. This in-depth review analyzes observational and experimental reports of ncRNAs in CVD, including future applications of ncRNA-based strategies in diagnosis, prediction (e.g., survival and response to small molecule therapy), and biologic therapy.
Collapse
Affiliation(s)
- Roopesh S Gangwar
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Decoding resistant hypertension signalling pathways. Clin Sci (Lond) 2017; 131:2813-2834. [PMID: 29184046 DOI: 10.1042/cs20171398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches.
Collapse
|
28
|
Liu S, Yi F, Cheng W, Qu X, Wang C. Molecular mechanisms in vascular injury induced by hypertension: Expression and role of microRNA-34a. Exp Ther Med 2017; 14:5497-5502. [PMID: 29285082 DOI: 10.3892/etm.2017.5216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 04/07/2017] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the expression and function of microRNA (miR)-34a in patients with primary hypertension. The expression of miR-34a was measured in the peripheral blood of 50 patients with primary hypertension and 28 normal controls by reverse transcription quantitative polymerase chain reaction. In addition, human umbilical vein endothelial cells (HUVECs) were transfected with an miR-34a inhibitor to suppress the expression of miR-34a, and the proliferation, migration and cell cycle distribution of HUVECs were measured by Cell Counting Kit-8, Transwell and flow cytometry assays. The target of miR-34a was also predicted by bioinformatics analysis and verified by a dual-luciferase reporter gene assay and western blot analysis. miR-34a was significantly upregulated in the peripheral blood of patients with hypertension when compared with controls (P<0.05), and upregulation of miR-34a was associated with a higher clinical stage of hypertension (phase III; P<0.05). In vitro experiments demonstrated that inhibition of miR-34a promoted the proliferation, migration and G1/S transition of HUVECs, relative to scramble-miR controls (P<0.05). Furthermore, transforming growth factor β-induced factor homeobox 2 (TIGF2) was predicted and verified to be a direct target of miR-34a. Collectively, these data suggested that miR-34a was upregulated in the peripheral blood of patients with hypertension, and that upregulated miR-34a may promote vascular endothelial injury by targeting TIGF2.
Collapse
Affiliation(s)
- Siguan Liu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250101, P.R. China.,Emergency Department, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Fanfan Yi
- Emergency Department, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Wenwei Cheng
- Emergency Department, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Xin Qu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250101, P.R. China
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250101, P.R. China
| |
Collapse
|
29
|
Wu F, Li L, Wen Q, Yang J, Chen Z, Wu P, He M, Zhang X, Wu T, Cheng L. A functional variant in ST2 gene is associated with risk of hypertension via interfering MiR-202-3p. J Cell Mol Med 2017; 21:1292-1299. [PMID: 28121058 PMCID: PMC5487927 DOI: 10.1111/jcmm.13058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023] Open
Abstract
Recent studies have suggested that interleukin 1 receptor-like 1 (ST2) plays a critical role in pathogenesis of several cardiovascular disease conditions. In this study, we examined association of 13 single nucleotide polymorphisms (SNPs) of ST2 gene with essential hypertension (EH) risk in 1151 patients with EH and 1135 controls. Our study showed that variants rs11685424, rs12999364 and rs3821204 are highly associated with an increase in risk of EH, while rs6543116 is associated with a decrease risk of EH. Notably, in silico analyses suggested the G>C change of rs3821204, which located within the 3'UTR of soluble ST2 mRNA, disrupted a putative binding site for miR202-3p. Functional analyses suggested that miR-202-3p significantly decreased soluble ST2-G mRNA stability and inhibited its endogenous expression. Furthermore, we found increased plasma-soluble ST2 (sST2) level was highly associated with CC genotype of rs3821204 in vivo. Taken together, our findings provide the first evidence that genetic variants in ST2 gene are associated with EH risk and variant rs3821204 may influence the development of EH by controlling sST2 expression.
Collapse
Affiliation(s)
- Fangqin Wu
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lu Li
- Second Affiliated HospitalShantou University Medical CollegeShantouChina
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qiang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jinhua Yang
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhuyue Chen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Peng Wu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Meian He
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaomin Zhang
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Tangchun Wu
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Longxian Cheng
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
30
|
de Lucia C, Komici K, Borghetti G, Femminella GD, Bencivenga L, Cannavo A, Corbi G, Ferrara N, Houser SR, Koch WJ, Rengo G. microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Front Med (Lausanne) 2017; 4:74. [PMID: 28660188 PMCID: PMC5466994 DOI: 10.3389/fmed.2017.00074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice.
Collapse
Affiliation(s)
- Claudio de Lucia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Klara Komici
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| |
Collapse
|
31
|
Qi H, Liu Z, Liu B, Cao H, Sun W, Yan Y, Zhang L. micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension. Medicine (Baltimore) 2017; 96:e6417. [PMID: 28445253 PMCID: PMC5413218 DOI: 10.1097/md.0000000000006417] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Commonly used tests for diagnosis of salt-sensitive hypertension (SSH) are complex and time-consuming, so new methods are required. Many studies have demonstrated roles for miRNAs in hypertension; however, the diagnostic value of miRNAs has yet to be determined for human SSH. In this study, we examined miRNA expression profiles by initial high-throughput miRNA sequencing of samples from patients with salt-sensitive and salt-resistant hypertension (SSH and SRH, respectively; n = 6, both groups), followed by validation by quantitative real-time polymerase chain reaction (qRT-PCR) in a larger cohort (n = 91). We also evaluated differences in baseline characteristics (e.g., age, sex, body mass index, consumption of specific foods) between the SSH and SRH groups. Of 36 miRNAs identified as differentially expressed between SSH and SRH groups by RNA-Seq, 8 were analyzed by qRT-PCR. There were significant differences in the expression levels of hsa-miR-361-5p and hsa-miR-362-5p between the 2 groups (P = .023 and.049, respectively). In addition, there were significant differences in sauce and poultry consumption between the 2 groups (P = .004 and.001, respectively). The areas under the curve (AUC) determined by receptor operating characteristic (ROC) analysis for hsa-miR-361-5p and all 8 miRNAs were 0.793 (95% CI, 0.698-0.888; sensitivity = 73.9%, specificity = 74.4%; P < .001) and 0.836 (95% CI, 0.749-0.922; sensitivity = 80.4%, specificity = 81.4%; P < .001), respectively, when sauce and poultry consumption were included in the models. Assay feasibility and economic considerations make hsa-miR-361-5p combined with the dietary factors the preferred markers for diagnosis of SSH.
Collapse
Affiliation(s)
- Han Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Zheng Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Bin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Han Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Weiping Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuxiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Ling Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| |
Collapse
|
32
|
Tong J, McKinley LA, Cummins TDR, Johnson B, Matthews N, Vance A, Heussler H, Gill M, Kent L, Bellgrove MA, Hawi Z. Identification and functional characterisation of a novel dopamine beta hydroxylase gene variant associated with attention deficit hyperactivity disorder. World J Biol Psychiatry 2016; 16:610-8. [PMID: 25975715 DOI: 10.3109/15622975.2015.1036771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Dysregulation in neurotransmitter signalling has been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Polymorphisms of the gene encoding dopamine beta hydroxylase (DBH) have been reported to be associated with ADHD; however, small sample sizes have led to inconsistency. METHODS We conducted transmission disequilibrium test analysis in 794 nuclear families to examine the relationship between DBH and ADHD. The effects of the ADHD-associated polymorphisms on gene expression were assessed by luciferase reporter assays in a human neuroblastoma cell line, SH-SY5Y. RESULTS A SNP within the 3' untranslated region of DBH rs129882 showed a significant association with ADHD (χ(2) = 9.71, p = 0.0018, OR = 1.37). This association remained significant after Bonferroni correction for multiple testing (p = 0.02). Further, allelic variation in rs129882 significantly impacted luciferase expression. Specifically, the C allele of the ADHD-associated rs129882 SNP produced a 2-fold decrease (p < 0.001) in luciferase activity. CONCLUSIONS These data demonstrate for the first time that a DBH gene variant, rs129882, which confers risk to ADHD is also associated with reduced in vitro gene expression. Reduced DBH expression would be consistent with decreased conversion of dopamine to noradrenaline and thus with a relative hypo-noradrenergic state in ADHD.
Collapse
Affiliation(s)
- Janette Tong
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Leigh-Anne McKinley
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Tarrant D R Cummins
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Beth Johnson
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Natasha Matthews
- b Queensland Brain Institute, University of Queensland , Brisbane , Australia
| | - Alasdair Vance
- c Academic Child Psychiatry Unit, Department of Paediatrics , University of Melbourne, Royal Children's Hospital, Murdoch Children's Research Institute , Parkville, Vic , Australia
| | - Helen Heussler
- d Department of Respiratory and Sleep Medicine , Mater Children's Hospital, Mater Health Services , South Brisbane , Australia
| | - Michael Gill
- e Department of Psychiatry , Trinity College , Dublin , Ireland
| | - Lindsey Kent
- f School of Medicine, University of St Andrews, St Andrews , Scotland , UK
| | - Mark A Bellgrove
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Ziarih Hawi
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| |
Collapse
|
33
|
Pirola CJ, Gianotti TF, Castaño GO, Mallardi P, Martino JS, Ledesma MMGL, Flichman D, Mirshahi F, Sanyal AJ, Sookoian S. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 2015; 64:800-12. [PMID: 24973316 PMCID: PMC4277726 DOI: 10.1136/gutjnl-2014-306996] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We used a screening strategy of global serum microRNA (miRNA) profiling, followed by a second stage of independent replication and exploration of liver expression of selected miRNAs to study: (1) the circulating miRNA signature associated with non-alcoholic fatty liver disease (NAFLD) progression and predictive power, (2) the role of miRNAs in disease biology and (3) the association between circulating miRNAs and features of the metabolic syndrome. METHODS The study used a case-control design and included patients with NAFLD proven through biopsy and healthy controls. RESULTS Among 84 circulating miRNAs analysed, miR-122, miR-192, miR-19a and miR-19b, miR-125b, and miR-375 were upregulated >2-fold (p<0.05) either in simple steatosis (SS) or non-alcoholic steatohepatitis (NASH). The most dramatic and significant fold changes were observed in the serum levels of miR-122 (7.2-fold change in NASH vs controls and 3.1-fold change in NASH vs SS) and miR-192 (4.4-fold change in NASH vs controls); these results were replicated in the validation set. The majority of serum miR-122 circulate in argonaute2-free forms. Circulating miR-19a/b and miR-125b were correlated with biomarkers of atherosclerosis. Liver miR-122 expression was 10-fold (p<0.03) downregulated in NASH compared with SS and was preferentially expressed at the edge of lipid-laden hepatocytes. In vitro exploration showed that overexpression of miR-122 enhances alanine aminotransferase activity. CONCLUSIONS miR-122 plays a role of physiological significance in the biology of NAFLD; circulating miRNAs mirror the histological and molecular events occurring in the liver. NAFLD has a distinguishing circulating miRNA profile associated with a global dysmetabolic disease state and cardiovascular risk.
Collapse
Affiliation(s)
- Carlos J Pirola
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomas Fernández Gianotti
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo O Castaño
- Liver Unit, Medicine and Surgery Department, Hospital Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Mallardi
- Pathology Department, Hospital Diego Thompson, San Martin, Buenos Aires, Argentina
| | - Julio San Martino
- Pathology Department, Hospital Diego Thompson, San Martin, Buenos Aires, Argentina
| | | | - Diego Flichman
- Department of Virology, School of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Faridodin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Silvia Sookoian
- Liver Unit, Medicine and Surgery Department, Hospital Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Argentina,Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires- National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
34
|
Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C, Yavuzer H, Kirat E, Karter Y, Ozen M. Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore) 2015; 94:e693. [PMID: 25837765 PMCID: PMC4554020 DOI: 10.1097/md.0000000000000693] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
White coat hypertension (WCH) is a high cardiovascular risk condition, and a fundamental understanding of the cause and pathophysiology of the disorder is still lacking. Recent studies demonstrated that microRNAs (miRNAs) are involved in hypertension; however, the roles of miRNAs in WCH are not known. The expressions of selected 10 miRNAs were investigated independently in plasma samples from 30 hypertension (HT) patients, 30 WCH patients, and 30 normotensive (NT) subjects. MiR-21, miR-122, miR-637, and let-7e expression levels were significantly upregulated in the HT group compared with the NT groups (P = 0.017, P = 0.022, P = 0.048, and P = 0.013, respectively). MiR-122 and miR-637 expressions were also significantly upregulated in the WCH group compared with the NT group (P = 0.048 and P = 0.039, respectively). MiR-296-5p expression level was significantly downregulated in HT patients and upregulated in the WCH patients compared with the NT group (P = 0.049 and P = 0.039, respectively). Additionally, the ambulatory 24-hour and daytime systolic and diastolic blood pressures were negatively correlated with miR-296-5p. MiR-296 and miR-637 had area under the curve (AUC) values of 0.778 and 0.774, respectively, which demonstrates their sufficiency to distinguish WCH from NT individuals. MiR-296 and miR-637 had AUC values of 0.868 and 0.680, respectively, which shows their potential to distinguish WCH from HT individuals. We report for the first time a plasma miRNA profile for WCH patients and demonstrate a novel link between miRNA and WCH. These findings may reveal crucial insights into the development of WCH.
Collapse
Affiliation(s)
- Mahir Cengiz
- From the Department of Internal Medicine (MC, SY, CA, HY, YK), Cerrahpasa Medical School, Istanbul University; Department of Medical Genetics (OFK, E Koparir, E Kirat, MO), Istanbul University Cerrahpasa Medical School, Istanbul; Molecular Biology and Genetics Department (OFK), Erzurum Technical University, Erzurum, Turkey; Department of Pathology & Immunology (MO), Baylor College of Medicine, Houston, Texas; and Department of Molecular Biology and Genetics (MO), Biruni University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Marques FZ, Charchar FJ. microRNAs in Essential Hypertension and Blood Pressure Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:215-35. [PMID: 26663185 DOI: 10.1007/978-3-319-22671-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unravelling the complete genetic predisposition to high blood pressure (BP) has proven to be challenging. This puzzle and the fact that coding regions of the genome account for less than 2 % of the entire human DNA support the hypothesis that mechanisms besides coding genes are likely to contribute to BP regulation. Non-coding RNAs, especially microRNAs, are emerging as key players of transcription regulation in both health and disease states. They control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct involvement with BP regulation is highly probable. Here we review the literature about microRNAs associated with regulation of BP and hypertension, highlighting investigations, methodology and difficulties arising in the field. These molecules are being studied for exploitation in diagnostics, prognostics and therapeutics in many diseases. There have been some studies that examined biological fluid microRNAs as biomarkers for hypertension, but most remain inconclusive due to the small sample sizes and differences in methodological standardisation. Fewer studies have analysed tissue microRNA levels in vascular smooth muscle cells and the kidney. Others focused on the interaction between single nucleotide polymorphisms and microRNA binding sites. Studies in animals have shown that angiotensin II, high-salt diet and exercise change microRNA levels in hypertension. Treatment of spontaneously hypertensive rats with a miR-22 inhibitor and treatment of hypertensive Schlager BPH/2J mice with a miR-181a mimic decreased their BP. This supports the use of microRNAs as therapeutic targets in hypertension, and future studies should test the use of other microRNAs found in human association studies. In conclusion, there is a clear need of increased pace of human, animal and functional studies to help us understand the multifaceted roles of microRNAs as critical regulators of the development and physiology of BP.
Collapse
Affiliation(s)
- Francine Z Marques
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia.,Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Fadi J Charchar
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia.
| |
Collapse
|
36
|
The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens 2014; 29:459-67. [PMID: 25391760 DOI: 10.1038/jhh.2014.99] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/19/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022]
Abstract
Unravelling the complete genetic predisposition to high blood pressure (BP) has proven to be challenging. This puzzle and the fact that coding regions of the genome account for less than 2% of the entire human DNA support the hypothesis that genetic mechanism besides coding genes are likely to contribute to BP regulation. Non-coding RNAs (ncRNAs) are emerging as key players of transcription regulation in both health and disease states. They control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct involvement with BP regulation is highly probable. Here, we review the literature about ncRNAs associated with human BP and essential hypertension, highlighting investigations, methodology and difficulties arising in the field. The most investigated ncRNAs so far are microRNAs (miRNAs), small ncRNAs that modulate gene expression by posttranscriptional mechanisms. We discuss studies that have examined miRNAs associated with BP in biological fluids, such as blood and urine, and tissues, such as vascular smooth muscle cells and the kidney. Furthermore, we review the interaction between miRNA binding sites and single nucleotide polymorphisms in genes associated with BP. In conclusion, there is a clear need for more human and functional studies to help elucidate the multifaceted roles of ncRNAs, in particular mid- and long ncRNAs in BP regulation.
Collapse
|
37
|
Lin H, Yin X, Lunetta KL, Dupuis J, McManus DD, Lubitz SA, Magnani JW, Joehanes R, Munson PJ, Larson MG, Levy D, Ellinor PT, Benjamin EJ. Whole blood gene expression and atrial fibrillation: the Framingham Heart Study. PLoS One 2014; 9:e96794. [PMID: 24805109 PMCID: PMC4013062 DOI: 10.1371/journal.pone.0096794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) involves substantial electrophysiological, structural and contractile remodeling. We hypothesize that characterizing gene expression might uncover important pathways related to AF. METHODS AND RESULTS We performed genome-wide whole blood transcriptomic profiling (Affymetrix Human Exon 1.0 ST Array) of 2446 participants (mean age 66 ± 9 years, 55% women) from the Offspring cohort of Framingham Heart Study. The study included 177 participants with prevalent AF, 143 with incident AF during up to 7 years follow up, and 2126 participants with no AF. We identified seven genes statistically significantly up-regulated with prevalent AF. The most significant gene, PBX1 (P = 2.8 × 10(-7)), plays an important role in cardiovascular development. We integrated differential gene expression with gene-gene interaction information to identify several signaling pathways possibly involved in AF-related transcriptional regulation. We did not detect any statistically significant transcriptomic associations with incident AF. CONCLUSION We examined associations of gene expression with AF in a large community-based cohort. Our study revealed several genes and signaling pathways that are potentially involved in AF-related transcriptional regulation.
Collapse
Affiliation(s)
- Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- * E-mail:
| | - Xiaoyan Yin
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Kathryn L. Lunetta
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Josée Dupuis
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - David D. McManus
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Cardiology Division, Department of Medicine, and Epidemiology Division, Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Steven A. Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Jared W. Magnani
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Roby Joehanes
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Peter J. Munson
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Martin G. Larson
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Daniel Levy
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emelia J. Benjamin
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Section of Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Ye Q, Zhao X, Xu K, Li Q, Cheng J, Gao Y, Du J, Shi H, Zhou L. Polymorphisms in lipid metabolism related miRNA binding sites and risk of metabolic syndrome. Gene 2013; 528:132-8. [DOI: 10.1016/j.gene.2013.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/15/2013] [Accepted: 07/18/2013] [Indexed: 01/28/2023]
|
39
|
Määttä K, Kunnas T, Nikkari ST. Contribution of SLC7A1 genetic variant to hypertension, the TAMRISK study. BMC MEDICAL GENETICS 2013; 14:69. [PMID: 23841815 PMCID: PMC3710090 DOI: 10.1186/1471-2350-14-69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 07/01/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND The rs41318021 polymorphism in the SLC7A1 gene affects endothelial NO production through changes in L-arginine transport. This variation could thus hypothetically cause dysfunction of endothelium and lead to hypertension. The association of rs41318021 with hypertension was therefore studied in a Finnish cohort. METHODS A total of 412 hypertensive cases and 771 non-hypertensive controls from a Finnish 50-year-old cohort were included in this study. The data was collected from the Tampere adult population cardiovascular risk study (TAMRISK). DNA was extracted from buccal swabs and amplified using PCR. A subpopulation of men and women who had available follow-up data of blood pressure measurements at the age of 35-, 40-, 45- and 50 years was also analyzed. RESULTS There was no difference between the variant frequencies of the hypertension group and normotensive group at the age of 50 years (p = 0.209). However, repeated measures analysis from the 15-year follow-up showed that subjects having gene variants CT or TT had slightly higher diastolic blood pressure than subjects having genotype CC (p = 0.047). By post-hoc analysis, this was most pronounced at the age of 35 years (p = 0.044). CONCLUSION The rs41318021 polymorphism in the SLC7A1 gene was not associated with essential hypertension in 50-year-old subjects. However, a borderline effect of this variation upon diastolic blood pressure was seen in these same subjects in a 15-year follow-up from a 35-year-old cohort to 50 years of age.
Collapse
|
40
|
Pirola CJ, Gianotti TF, Castaño GO, Sookoian S. Circulating MicroRNA-122 signature in nonalcoholic fatty liver disease and cardiovascular disease: a new endocrine system in metabolic syndrome. Hepatology 2013; 57:2545-7. [PMID: 23111985 DOI: 10.1002/hep.26116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Lin Y, Li Z, Ozsolak F, Kim SW, Arango-Argoty G, Liu TT, Tenenbaum SA, Bailey T, Monaghan AP, Milos PM, John B. An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res 2012; 40:8460-71. [PMID: 22753024 PMCID: PMC3458571 DOI: 10.1093/nar/gks637] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 12/22/2022] Open
Abstract
We present a comprehensive map of over 1 million polyadenylation sites and quantify their usage in major cancers and tumor cell lines using direct RNA sequencing. We built the Expression and Polyadenylation Database to enable the visualization of the polyadenylation maps in various cancers and to facilitate the discovery of novel genes and gene isoforms that are potentially important to tumorigenesis. Analyses of polyadenylation sites indicate that a large fraction (∼30%) of mRNAs contain alternative polyadenylation sites in their 3' untranslated regions, independent of the cell type. The shortest 3' untranslated region isoforms are preferentially upregulated in cancer tissues, genome-wide. Candidate targets of alternative polyadenylation-mediated upregulation of short isoforms include POLR2K, and signaling cascades of cell-cell and cell-extracellular matrix contact, particularly involving regulators of Rho GTPases. Polyadenylation maps also helped to improve 3' untranslated region annotations and identify candidate regulatory marks such as sequence motifs, H3K36Me3 and Pabpc1 that are isoform dependent and occur in a position-specific manner. In summary, these results highlight the need to go beyond monitoring only the cumulative transcript levels for a gene, to separately analysing the expression of its RNA isoforms.
Collapse
Affiliation(s)
- Yuefeng Lin
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Zhihua Li
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Fatih Ozsolak
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sang Woo Kim
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Gustavo Arango-Argoty
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Teresa T. Liu
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Scott A. Tenenbaum
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Timothy Bailey
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - A. Paula Monaghan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Patrice M. Milos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Bino John
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
42
|
Abstract
Hypertension is a complex, multifactorial disease, and its development is determined by a combination of genetic susceptibility and environmental factors. Several mechanisms have been implicated in the pathogenesis of hypertension: increased activity of the sympathetic nervous system, overactivation of the renin-angiotensin aldosterone system (RAAS), dysfunction of vascular endothelium, impaired platelet function, thrombogenesis, vascular smooth muscle and cardiac hypertrophy, and altered angiogenesis. MicroRNAs are short, noncoding nucleotides regulating target messenger RNAs at the post-transcriptional level. MicroRNAs are involved in virtually all biologic processes, including cellular proliferation, apoptosis, and differentiation. Thus, microRNA deregulation often results in impaired cellular function and disease development, so microRNAs have potential therapeutic relevance. Many aspects of the development of essential hypertension at the molecular level are still unknown. The elucidation of these processes regulated by microRNAs and the identification of novel microRNA targets in the pathogenesis of hypertension is a highly valuable and exciting strategy that may eventually led to the development of novel treatment approaches for hypertension. This article reviews the potential role of microRNAs in the mechanisms associated with the development and consequences of hypertension and discusses advances in microRNA-based approaches that may be important in treating hypertension.
Collapse
|
43
|
González M, Gallardo V, Rodríguez N, Salomón C, Westermeier F, Gutiérrez EG, Abarzúa F, Leiva A, Casanello P, Sobrevia L. Insulin-stimulated L-arginine transport requires SLC7A1 gene expression and is associated with human umbilical vein relaxation. J Cell Physiol 2011; 226:2916-24. [DOI: 10.1002/jcp.22635] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Sookoian S, Pirola CJ. Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep 2011; 13:149-57. [PMID: 20957457 DOI: 10.1007/s11906-010-0164-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The metabolic syndrome (MS) constitutes a combination of underlying risk factors for an adverse outcome, cardiovascular disease. Thus, the clinical behavior of the MS can be regarded as a whole. Nevertheless, from a pathogenic point of view, understanding of the underlying mechanisms of each MS intermediate phenotype is far beyond their understanding as an integrative process. Systems biology introduces a new concept for revealing the pathogenesis of human disorders and suggests the presence of common physiologic processes and molecular networks influencing the risk of a disease. This paper shows a model of this concept to explain the genetic determinants of MS-associated phenotypes. Based on the hypothesis that common physiologic processes and molecular networks may influence the risk of MS disease components, we propose two systems-biology approaches: a gene enrichment analysis and the use of a protein-protein interaction network. Our results show that a network driven by many members of the nuclear receptor superfamily of proteins, including retinoid X receptor and farnesoid X receptor (FXR), may be implicated in the pathogenesis of the MS by its interactions at multiple levels of complexity with genes associated with metabolism, cell differentiation, and oxidative stress. In addition, we review two alternative genetic mechanisms that are gaining acceptance in the physiopathology of the MS: the regulation of transcriptional and post-transcriptional gene expression by microRNAs and epigenetic modifications such as DNA methylation.
Collapse
Affiliation(s)
- Silvia Sookoian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari - IDIM, University of Buenos Aires - National Council of Scientific and Technological Research (CONICET), Av. Combatiente de Malvinas 3150, (C1427ARO), Ciudad Autonoma de Buenos Aires, Argentina.
| | | |
Collapse
|
45
|
Zhao ZZ, Croft L, Nyholt DR, Chapman B, Treloar SA, Hull ML, Montgomery GW. Evaluation of polymorphisms in predicted target sites for micro RNAs differentially expressed in endometriosis. Mol Hum Reprod 2010; 17:92-103. [PMID: 20935158 DOI: 10.1093/molehr/gaq084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous microarray analyses identified 22 microRNAs (miRNAs) differentially expressed in paired ectopic and eutopic endometrium of women with and without endometriosis. To investigate further the role of these miRNAs in women with endometriosis, we conducted an association study aiming to explore the relationship between endometriosis risk and single-nucleotide polymorphisms (SNPs) in miRNA target sites for these differentially expressed miRNAs. A panel of 102 SNPs in the predicted miRNA binding sites were evaluated for an endometriosis association study and an ingenuity pathway analysis was performed. Fourteen rare variants were identified in this study. We found SNP rs14647 in the Wolf-Hirschhorn syndrome candidate gene1 (WHSC1) 3'UTR (untranslated region) was associated with endometriosis-related infertility presenting an odds ratio of 12.2 (95% confidence interval = 2.4-60.7, P = 9.03 × 10(-5)). SNP haplotype AGG in the solute carrier family 22, member 23 (SLC22A23) 3'UTR was associated with endometriosis-related infertility and more severe disease. With the individual genotyping data, ingenuity pathways analysis identified the tumour necrosis factor and cyclin-dependant kinase inhibitor as major factors in the molecular pathways. Significant associations between WHSC1 alleles and endometriosis-related infertility and SLC22A23 haplotypes and the disease severe stage were identified. These findings may help focus future research on subphenotypes of this disease. Replication studies in independent large sample sets to confirm and characterize the involvement of the gene variation in the pathogenesis of endometriosis are needed.
Collapse
Affiliation(s)
- Zhen Zhen Zhao
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Elvira-Matelot E, Zhou XO, Farman N, Beaurain G, Henrion-Caude A, Hadchouel J, Jeunemaitre X. Regulation of WNK1 expression by miR-192 and aldosterone. J Am Soc Nephrol 2010; 21:1724-31. [PMID: 20813867 DOI: 10.1681/asn.2009111186] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
WNK1 and WNK4 encode two members of the WNK serine-threonine kinase subfamily. Greater WNK1 expression associates with higher BP. A combination of promoters, enhancers, repressors, and insulators regulate WNK1 expression, but whether microRNAs also modulate WNK1 expression is unknown. Here, computational analysis revealed the presence of a target sequence for miR-192 and miR-215 at the same site in the 3' untranslated region of the ubiquitous L- and the kidney-specific KS-WNK1. We functionally validated this target sequence by transient transfection and reporter assays. Although we observed expression of both miRs along the distal nephron, only miR-192 regulated endogenous WNK1 ex vivo. Furthermore, a potassium load, sodium depletion, and aldosterone infusion each significantly reduced miR-192 expression in the kidney. Taken together, these results suggest a miR-driven mechanism of gene regulation by aldosterone and a role for miR-192 in the regulation of sodium and potassium balance in the kidney.
Collapse
|
47
|
Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 2010; 38:140-53. [PMID: 20385095 DOI: 10.1016/j.molcel.2010.03.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/06/2010] [Accepted: 03/19/2010] [Indexed: 01/07/2023]
Abstract
MicroRNAs are emerging as important regulators of diverse biological processes and pathologies in animals and plants. Though hundreds of human microRNAs are known, only a few have known functions. Here, we predict human microRNA functions by using a new method that systematically assesses the statistical enrichment of several microRNA-targeting signatures in annotated gene sets such as signaling networks and protein complexes. Some of our top predictions are supported by published experiments, yet many are entirely new or provide mechanistic insights to known phenotypes. Our results indicate that coordinated microRNA targeting of closely connected genes is prevalent across pathways. We use the same method to infer which microRNAs regulate similar targets and provide the first genome-wide evidence of pervasive cotargeting, in which a handful of "hub" microRNAs are involved in a majority of cotargeting relationships. Our method and analyses pave the way to systematic discovery of microRNA functions.
Collapse
|
48
|
Zhang C. MicroRNAs in vascular biology and vascular disease. J Cardiovasc Transl Res 2010; 3:235-40. [PMID: 20560045 DOI: 10.1007/s12265-010-9164-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 01/13/2010] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs that negatively regulate over 30% of genes in a cell via degradation or translational inhibition of their target mRNAs. Functionally, an individual miRNA is important as a transcription factor because it is able to regulate the expression of its multiple target genes. Recent studies have identified that miRNAs are highly expressed in vasculature and their expression is deregulated in diseased vessels. miRNAs are found to be critical modulators for vascular cell functions such as cell differentiation, migration, proliferation, and apoptosis. Accordingly, miRNAs are involved in the angiogenesis and in the pathogenesis of vascular diseases. miRNAs may serve as novel biomarkers and therapeutic targets for vascular disease. This review article summarizes the research progress regarding the roles of miRNAs in vascular biology and vascular disease.
Collapse
Affiliation(s)
- Chunxiang Zhang
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, MSB-E548, Newark, NJ 07101, USA.
| |
Collapse
|
49
|
Affiliation(s)
- Blanche Schroen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht CARIM, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
50
|
Teerlink T, Luo Z, Palm F, Wilcox CS. Cellular ADMA: regulation and action. Pharmacol Res 2009; 60:448-60. [PMID: 19682580 DOI: 10.1016/j.phrs.2009.08.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 02/07/2023]
Abstract
Asymmetric (N(G),N(G)) dimethylarginine (ADMA) is present in plasma and cells. It can inhibit nitric oxide synthase (NOS) that generates nitric oxide (NO) and cationic amino acid transporters (CATs) that supply intracellular NOS with its substrate, l-arginine, from the plasma. Therefore, ADMA and its transport mechanisms are strategically placed to regulate endothelial function. This could have considerable clinical impact since endothelial dysfunction has been detected at the origin of hypertension and chronic kidney disease (CKD) in human subjects and may be a harbinger of large vessel disease and cardiovascular disease (CVD). Indeed, plasma levels of ADMA are increased in many studies of patients at risk for, or with overt CKD or CVD. However, the levels of ADMA measured in plasma of about 0.5micromol.l(-1) may be below those required to inhibit NOS whose substrate, l-arginine, is present in concentrations many fold above the Km for NOS. However, NOS activity may be partially inhibited by cellular ADMA. Therefore, the cellular production of ADMA by protein arginine methyltransferase (PRMT) and protein hydrolysis, its degradation by N(G),N(G)-dimethylarginine dimethylaminohydrolase (DDAH) and its transmembrane transport by CAT that determines intracellular levels of ADMA may also determine the state of activation of NOS. This is the focus of the review. It is concluded that cellular levels of ADMA can be 5- to 20-fold above those in plasma and in a range that could tonically inhibit NOS. The relative importance of PRMT, DDAH and CAT for determining the intracellular NOS substrate:inhibitor ratio (l-arginine:ADMA) may vary according to the pathophysiologic circumstance. An understanding of this important balance requires knowledge of these three processes that regulate the intracellular levels of ADMA and arginine.
Collapse
Affiliation(s)
- Tom Teerlink
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|