1
|
van der Laan L, Silva A, Kleinendorst L, Rooney K, Haghshenas S, Lauffer P, Alanay Y, Bhai P, Brusco A, de Munnik S, de Vries BBA, Vega AD, Engelen M, Herkert JC, Hochstenbach R, Hopman S, Kant SG, Kira R, Kato M, Keren B, Kroes HY, Levy MA, Lock-Hock N, Maas SM, Mancini GMS, Marcelis C, Matsumoto N, Mizuguchi T, Mussa A, Mignot C, Närhi A, Nordgren A, Pfundt R, Polstra AM, Trajkova S, van Bever Y, José van den Boogaard M, van der Smagt JJ, Barakat TS, Alders M, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. CUL3-related neurodevelopmental disorder: Clinical phenotype of 20 new individuals and identification of a potential phenotype-associated episignature. HGG ADVANCES 2024; 6:100380. [PMID: 39501558 PMCID: PMC11617854 DOI: 10.1016/j.xhgg.2024.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Neurodevelopmental disorder with or without autism or seizures (NEDAUS) is a neurodevelopmental disorder characterized by global developmental delay, speech delay, seizures, autistic features, and/or behavior abnormalities. It is caused by CUL3 (Cullin-3 ubiquitin ligase) haploinsufficiency. We collected clinical and molecular data from 26 individuals carrying pathogenic variants and variants of uncertain significance (VUS) in the CUL3 gene, including 20 previously unreported cases. By comparing their DNA methylation (DNAm) classifiers with those of healthy controls and other neurodevelopmental disorders characterized by established episignatures, we aimed to create a diagnostic biomarker (episignature) and gain more knowledge of the molecular pathophysiology. We discovered a sensitive and specific DNAm episignature for patients with pathogenic variants in CUL3 and utilized it to reclassify patients carrying a VUS in the CUL3 gene. Comparative epigenomic analysis revealed similarities between NEDAUS and several other rare genetic neurodevelopmental disorders with previously identified episignatures, highlighting the broader implication of our findings. In addition, we performed genotype-phenotype correlation studies to explain the variety in clinical presentation between the cases. We discovered a highly accurate DNAm episignature serving as a robust diagnostic biomarker for NEDAUS. Furthermore, we broadened the phenotypic spectrum by identifying 20 new individuals and confirming five previously reported cases of NEDAUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Lotte Kleinendorst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Peter Lauffer
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey; Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Angelica Delgado Vega
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Department of Molecular Medicine, Karolinska Undiagnosed Disease Program, Karolinska Institutet, Stockholm, Sweden
| | - Marc Engelen
- Department of Pediatric Neurology/Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron Hochstenbach
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Boris Keren
- Assistance Publique-Hopitaux de Paris, Sorbonne Université, Departement de Génétique, Groupe Hospitalier Pitie-Salpetriere et Hopital Trousseau, Paris, France
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Ngu Lock-Hock
- Genetics Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carlo Marcelis
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, Pediatric Clinical Genetics, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Cyril Mignot
- Assistance Publique-Hopitaux de Paris, Sorbonne Université, Departement de Génétique, Groupe Hospitalier Pitie-Salpetriere et Hopital Trousseau, Paris, France
| | - Anu Närhi
- Department of Clinical Genetics, Helsinki University Hospital, Helenski, Finland
| | - Ann Nordgren
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Department of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Rolph Pfundt
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Abeltje M Polstra
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
van der Laan L, Karimi K, Rooney K, Lauffer P, McConkey H, Caro P, Relator R, Levy MA, Bhai P, Mignot C, Keren B, Briuglia S, Sobering AK, Li D, Vissers LELM, Dingemans AJM, Valenzuela I, Verberne EA, Misra-Isrie M, Zwijnenburg PJG, Waisfisz Q, Alders M, Sailer S, Schaaf CP, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. DNA methylation episignature, extension of the clinical features, and comparative epigenomic profiling of Hao-Fountain syndrome caused by variants in USP7. Genet Med 2024; 26:101050. [PMID: 38126281 DOI: 10.1016/j.gim.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Hôpital Armand Trousseau, Paris, France AND Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Andrew K Sobering
- AU/UGA Medical Partnership Campus of the Medical College of Georgia, Athens, Georgia; Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada; St. George's University School of Medicine, Department of Biochemistry, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman school of Medicine, Philadelphia, PA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Irene Valenzuela
- Àrea de Genètica Clínica i Malalties Minoritàries, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eline A Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra J G Zwijnenburg
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastian Sailer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Tam B, Qin Z, Zhao B, Sinha S, Lei CL, Wang SM. Classification of MLH1 Missense VUS Using Protein Structure-Based Deep Learning-Ramachandran Plot-Molecular Dynamics Simulations Method. Int J Mol Sci 2024; 25:850. [PMID: 38255924 PMCID: PMC10815254 DOI: 10.3390/ijms25020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pathogenic variation in DNA mismatch repair (MMR) gene MLH1 is associated with Lynch syndrome (LS), an autosomal dominant hereditary cancer. Of the 3798 MLH1 germline variants collected in the ClinVar database, 38.7% (1469) were missense variants, of which 81.6% (1199) were classified as Variants of Uncertain Significance (VUS) due to the lack of functional evidence. Further determination of the impact of VUS on MLH1 function is important for the VUS carriers to take preventive action. We recently developed a protein structure-based method named "Deep Learning-Ramachandran Plot-Molecular Dynamics Simulation (DL-RP-MDS)" to evaluate the deleteriousness of MLH1 missense VUS. The method extracts protein structural information by using the Ramachandran plot-molecular dynamics simulation (RP-MDS) method, then combines the variation data with an unsupervised learning model composed of auto-encoder and neural network classifier to identify the variants causing significant change in protein structure. In this report, we applied the method to classify 447 MLH1 missense VUS. We predicted 126/447 (28.2%) MLH1 missense VUS were deleterious. Our study demonstrates that DL-RP-MDS is able to classify the missense VUS based solely on their impact on protein structure.
Collapse
Affiliation(s)
- Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zixin Qin
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chon Lok Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
4
|
Jiménez-Avalos G, Soto-Obando A, Solis M, Gilman RH, Cama V, Gonzalez AE, García HH, Sheen P, Requena D, Zimic M. Assembly and phylogeographical analysis of novel Taenia solium mitochondrial genomes suggest stratification within the African-American genotype. Parasit Vectors 2023; 16:349. [PMID: 37803424 PMCID: PMC10559519 DOI: 10.1186/s13071-023-05958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Taenia solium is a parasite of public health concern, causing human taeniasis and cysticercosis. Two main genotypes have been identified: Asian and African-American. Although characterizing T. solium genotypes is crucial to understanding the genetic epidemiology of its diseases, not much is known about the differences between T. solium mitochondrial genomes from different genotypes. Also, little is known about whether genotypes are further subdivided. Therefore, this study aimed to identify a set of point mutations distributed throughout the T. solium mitochondrial genome that differentiate the African-American from the Asian genotype. Another objective was to identify whether T. solium main genotypes are further stratified. METHODS One Mexican and two Peruvian T. solium mitochondrial genomes were assembled using reads available in the NCBI Sequence Read Archive and the reference genome from China as a template. Mutations with respect to the Chinese reference were identified by multiple genome alignment. Jensen-Shannon and Grantham scores were computed for mutations in protein-coding genes to evaluate whether they affected protein function. Phylogenies by Bayesian inference and haplotype networks were constructed using cytochrome c oxidase subunit 1 and cytochrome b from these genomes and other isolates to infer phylogeographical relationships. RESULTS A set of 31 novel non-synonymous point mutations present in all genomes of the African-American genotype were identified. These mutations were distributed across the mitochondrial genome, differentiating the African-American from the Asian genotype. All occurred in non-conserved protein positions. Furthermore, the analysis suggested a stratification of the African-American genotypes into an East African and a West African sublineage. CONCLUSIONS A novel set of 31 non-synonymous mutations differentiating the main T. solium genotypes was identified. None of these seem to be causing differences in mitochondrial protein function between parasites of the two genotypes. Furthermore, two sublineages within the African-American genotype are proposed for the first time. The presence of the East African sublineage in the Americas suggests an underestimated connection between East African and Latin American countries that might have arisen in the major slave trade between Portuguese Mozambique and the Americas. The results obtained here help to complete the molecular epidemiology of the parasite.
Collapse
Affiliation(s)
- Gabriel Jiménez-Avalos
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Alina Soto-Obando
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Maria Solis
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Vitaliano Cama
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Armando E Gonzalez
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Hector H García
- Departamento de Microbiología, Universidad Peruana Cayetano Heredia, Lima, Perú
- Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Perú
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - David Requena
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú.
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, USA.
- Bioinformatics Group in Multi-Omics and Immunology, New York, NY, 10065, USA.
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú.
| |
Collapse
|
5
|
Tam B, Qin Z, Zhao B, Wang SM, Lei CL. Integration of deep learning with Ramachandran plot molecular dynamics simulation for genetic variant classification. iScience 2023; 26:106122. [PMID: 36879825 PMCID: PMC9984559 DOI: 10.1016/j.isci.2023.106122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Functional classification of genetic variants is a key for their clinical applications in patient care. However, abundant variant data generated by the next-generation DNA sequencing technologies limit the use of experimental methods for their classification. Here, we developed a protein structure and deep learning (DL)-based system for genetic variant classification, DL-RP-MDS, which comprises two principles: 1) Extracting protein structural and thermodynamics information using the Ramachandran plot-molecular dynamics simulation (RP-MDS) method, 2) combining those data with an unsupervised learning model of auto-encoder and a neural network classifier to identify the statistical significance patterns of the structural changes. We observed that DL-RP-MDS provided higher specificity than over 20 widely used in silico methods in classifying the variants of three DNA damage repair genes: TP53, MLH1, and MSH2. DL-RP-MDS offers a powerful platform for high-throughput genetic variant classification. The software and online application are available at https://genemutation.fhs.um.edu.mo/DL-RP-MDS/.
Collapse
Affiliation(s)
- Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zixin Qin
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chon Lok Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
6
|
González-Prendes R, Derks MFL, Groenen MAM, Quintanilla R, Amills M. Assessing the relationship between the in silico predicted consequences of 97 missense mutations mapping to 68 genes related to lipid metabolism and their association with porcine fatness traits. Genomics 2023; 115:110589. [PMID: 36842749 DOI: 10.1016/j.ygeno.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In general, the relationship between the predicted functional consequences of missense mutations mapping to genes known to be involved in human diseases and the severity of disease manifestations is weak. In this study, we tested in pigs whether missense single nucleotide polymorphisms (SNPs), predicted to have consequences on the function of genes related to lipid metabolism are associated with lipid phenotypes. Association analysis demonstrated that nine out of 72 nominally associated SNPs were classified as "highly" or "very highly consistent" in silico-predicted functional mutations and did not show association with lipid traits expected to be affected by inactivation of the corresponding gene. Although the lack of endophenotypes and the limited sample size of certain genotypic classes might have limited to some extent the reach of the current study, our data indicate that present-day bioinformatic tools have a modest ability to predict the impact of missense mutations on complex phenotypes.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Chiorean A, Farncombe KM, Delong S, Andric V, Ansar S, Chan C, Clark K, Danos AM, Gao Y, Giles RH, Goldenberg A, Jani P, Krysiak K, Kujan L, Macpherson S, Maher ER, McCoy LG, Salama Y, Saliba J, Sheta L, Griffith M, Griffith OL, Erdman L, Ramani A, Kim RH. Large scale genotype- and phenotype-driven machine learning in Von Hippel-Lindau disease. Hum Mutat 2022; 43:1268-1285. [PMID: 35475554 PMCID: PMC9356987 DOI: 10.1002/humu.24392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022]
Abstract
Von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome where individuals are predisposed to tumor development in the brain, adrenal gland, kidney, and other organs. It is caused by pathogenic variants in the VHL tumor suppressor gene. Standardized disease information has been difficult to collect due to the rarity and diversity of VHL patients. Over 4100 unique articles published until October 2019 were screened for germline genotype-phenotype data. Patient data were translated into standardized descriptions using Human Genome Variation Society gene variant nomenclature and Human Phenotype Ontology terms and has been manually curated into an open-access knowledgebase called Clinical Interpretation of Variants in Cancer. In total, 634 unique VHL variants, 2882 patients, and 1991 families from 427 papers were captured. We identified relationship trends between phenotype and genotype data using classic statistical methods and spectral clustering unsupervised learning. Our analyses reveal earlier onset of pheochromocytoma/paraganglioma and retinal angiomas, phenotype co-occurrences and genotype-phenotype correlations including hotspots. It confirms existing VHL associations and can be used to identify new patterns and associations in VHL disease. Our database serves as an aggregate knowledge translation tool to facilitate sharing information about the pathogenicity of VHL variants.
Collapse
Affiliation(s)
- Andreea Chiorean
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Kirsten M. Farncombe
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Sean Delong
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Veronica Andric
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Safa Ansar
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Clarissa Chan
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Kaitlin Clark
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Arpad M. Danos
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Yizhuo Gao
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Rachel H. Giles
- International Kidney Cancer Coalition, Duivendrecht‐AmsterdamDuivendrechtThe Netherlands
| | - Anna Goldenberg
- Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Payal Jani
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Lynzey Kujan
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Samantha Macpherson
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Eamonn R. Maher
- Department of Medical GeneticsUniversity of CambridgeCambridgeUK,NIHR Cambridge Biomedical Research CentreCambridge Biomedical CampusCambridgeUK
| | - Liam G. McCoy
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Yasser Salama
- Department of Medicine, Division of Medical OncologyUniversity Health NetworkTorontoOntarioCanada
| | - Jason Saliba
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Lana Sheta
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of MedicineWashington UniversitySt. LouisMissouriUSA,McDonnell Genome InstituteWashington University School of MedicineMissouriSt. LouisUSA
| | - Lauren Erdman
- Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Arun Ramani
- Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Raymond H. Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity Health Network and Sinai Health SystemTorontoOntarioCanada,Division of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenTorontoOntarioCanada,Ontario Institute for Cancer ResearchTorontoOntarioCanada,Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
8
|
Kee PS, Maggo SDS, Kennedy MA, Barclay ML, Miller AL, Lehnert K, Curtis MA, Faull RLM, Parker R, Chin PKL. Omeprazole Treatment Failure in Gastroesophageal Reflux Disease and Genetic Variation at the CYP2C Locus. Front Genet 2022; 13:869160. [PMID: 35664313 PMCID: PMC9160307 DOI: 10.3389/fgene.2022.869160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Omeprazole is extensively used to manage gastroesophageal reflux disease (GERD). It is primarily metabolized by CYP2C19. The CYP2C19*17 (rs12248560) allele and the recently described CYP2C:TG haplotype (rs11188059 and rs2860840) are associated with increased enzymatic activity, and may reduce omeprazole exposure. This observational study aimed to investigate the association between these genetic variants and omeprazole treatment failure in GERD. We recruited predominantly New Zealand European GERD patients who either did not respond to omeprazole or experienced breakthrough heartburn symptoms despite at least 8 weeks of omeprazole (≥40 mg/day). The GerdQ score was used to gauge symptomatic severity. A total of 55 cases were recruited with a median age (range) of 56 years (19–82) and GerdQ score of 11 (5–17). Of these, 19 (34.5%) were CYP2C19*17 heterozygotes and two (3.6%) were CYP2C19*17 homozygotes. A total of 30 (27.3%) CYP2C:TG haplotypes was identified in our cohort, with seven (12.7%) CYP2C:TG homozygotes, and 16 (29%) CYP2C:TG heterozygotes. No significant differences were observed for overall CYP2C19*17 alleles, CYP2C19*17/*17, overall CYP2C:TG haplotypes, and CYP2C:TG heterozygotes (p > 0.05 for all comparisons). Gastroscopy and 24-h esophageal pH/impedance tests demonstrated objective evidence of GERD in a subgroup of 39 (71%) cases, in which the CYP2C:TG/TG was significantly enriched (p = 0.03) when compared with the haplotype frequencies in a predominantly (91%) New Zealand European reference population, but not the CYP2C19*17/*17 (p > 0.99), when compared with the allele frequencies for the non-Finnish European subset of gnomAD. We conclude that omeprazole treatment failure in GERD is associated with CYP2C:TG/TG, but not CYP2C19*17.
Collapse
Affiliation(s)
- Ping Siu Kee
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Martin A. Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Murray L. Barclay
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand
| | - Allison L. Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Klaus Lehnert
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Maurice A. Curtis
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Remai Parker
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Paul K. L. Chin
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand
- *Correspondence: Paul K. L. Chin,
| |
Collapse
|
9
|
Artificial Selection Drives SNPs of Olfactory Receptor Genes into Different Working Traits in Labrador Retrievers. Genet Res (Camb) 2022; 2022:8319396. [PMID: 35185392 PMCID: PMC8828343 DOI: 10.1155/2022/8319396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Labs as guide dogs or sniffer dogs in usage have been introduced into China for more than 20 years. These two types of working dogs own blunt or acute olfactory senses, which have been obtained by artificial selection in relatively closed populations. In order to attain stable olfactory attributes and meet use-oriented demands, Chinese breeders keep doing the same artificial selection. Though olfactory behavior is canine genetic behavior, genotypes of OR genes formed by breeding schemes are largely unknown. Here, we characterized 26 SNPs, 2 deletions, and 2 insertions of 7 OR genes between sniffer dogs and guide dogs in order to find out the candidate alleles associated with working specific traits. The results showed that there were candidate functional SNP alleles in one locus that had statistically severely significant differences between the two subpopulations. Furthermore, the levels of polymorphism were not high in all loci and linkage disequilibrium only happened within one OR gene. Hardy–Weinberg equilibrium (HWE) tests showed that there was a higher ratio not in HWE and lower FST within the two working dog populations. We conclude that artificial selection in working capacities has acted on SNP alleles of OR genes in a dog breed and driven the evolution in compliance with people's intentions though the changes are limited in decades of strategic breeding.
Collapse
|
10
|
Hong YA, Park KC, Kim BK, Lee J, Sun WY, Sul HJ, Hwang KA, Choi WJ, Chang YK, Kim SY, Shin S, Park J. Analyzing Genetic Differences Between Sporadic Primary and Secondary/Tertiary Hyperparathyroidism by Targeted Next-Generation Panel Sequencing. Endocr Pathol 2021; 32:501-512. [PMID: 34215996 DOI: 10.1007/s12022-021-09686-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
Secondary hyperparathyroidism (SHPT) is characterized by excessive serum parathyroid hormone levels in response to decreasing kidney function, and tertiary hyperparathyroidism (THPT) is often the result of a long-standing SHPT. To date, several genes have been associated with the pathogenesis of primary hyperparathyroidism (PHPT). However, the molecular genetic mechanisms of uremic hyperparathyroidism (HPT) remain uncharacterized. To elucidate the differences in genetic alterations between PHPT and SHPT/THPT, the targeted next-generation sequencing of genes associated with HPT was performed using DNA extracted from parathyroid tissues. As a result, 26 variants in 19 PHPT or SHPT/THPT appeared as candidate pathogenic mutations, which corresponded to 9 (35%) nonsense, 8 (31%) frameshift, 6 (23%) missense, and 3 (11%) splice site mutations. The MEN1 (23%, 6/26), ASXL3 (15%, 4/26), EZH2 (12%, 3/26), and MTOR (8%, 2/26) genes were frequently mutated. Sixteen of 25 patients with PHPT (64%) had one or more mutations, whereas 3 (21%) of 21 patients with SHPT/THPT had only 1 mutation (p = 0.001). Sixteen of 28 patients (57%) with parathyroid adenoma (PA) had one or more mutations, whereas 3 of 18 patients (17%) with parathyroid hyperplasia (PH) had just one mutation (p = 0.003). Known driver mutations associated with parathyroid tumorigenesis such as CCND1/PRAD1, CDC73/HRPT2, and MEN1 were identified only in PA (44%, 7/16 with mutations). Our results suggest that molecular genetic abnormalities in SHPT/THPT are distinct from those in PHPT. These findings may help in analyzing the molecular pathogenesis underlying uremic HPT development.
Collapse
Affiliation(s)
- Yu Ah Hong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Cheol Park
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Bong Kyun Kim
- Division of Breast and Thyroid Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jina Lee
- Division of Breast and Thyroid Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Young Sun
- Division of Breast and Thyroid Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Joung Sul
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ah Hwang
- Department of Research and Development, SML Genetree, Seoul, Republic of Korea
| | - Won Jung Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon-Kyung Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soyoung Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
11
|
Smol T, Frénois F, Manouvrier-Hanu S, Petit F, Ghoumid J. Performance of meta-predictors for the classification of MED13L missense variations, implication of raw parameters. Eur J Med Genet 2021; 65:104398. [PMID: 34798324 DOI: 10.1016/j.ejmg.2021.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
MED13L syndrome is a rare congenital disorder comprising moderate intellectual disability, hypotonia and facial dysmorphism. Whole exome or genome sequencing in patients with non-specific neurodevelopmental disorders leads to identification of an increasing number of MED13L missense variations of unknown signification. The aim of our study was to identify relevant annotation parameters enhancing discrimination between candidate pathogenic or neutral missense variations, and to assess the performance of seven meta-predictor algorithms: BayesDel, CADD, DANN, FATHMM-XF, M-CAP, MISTIC and REVEL for the classification of MED13L missense variants. Significant differences were identified for five parameters: global conservation through verPhyloP and verPhCons scores; physico-chemical difference between amino acids estimated by Grantham scores; conservation of residues between MED13L and MED13 protein; proximity to phosphorylation sites for pathogenic variations. Among the seven selected in-silico tools, BayesDel, REVEL, and MISTIC provided the most interesting performances to discriminate pathogenic from neutral missense variations. Individual gene parameter studies with MED13L have provided expertise on elements of annotation improving meta-predictor choices. The in-silico approach allows us to make valuable hypotheses to predict the involvement of these amino acids in MED13L pathogenic missense variations.
Collapse
Affiliation(s)
- Thomas Smol
- Université de Lille, ULR7364 RADEME, F-59000, Lille, France; CHU Lille, Institut de Génétique Médicale, F-59000, Lille, France
| | - Frédéric Frénois
- Université de Lille, ULR7364 RADEME, F-59000, Lille, France; CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000, Lille, France
| | - Sylvie Manouvrier-Hanu
- Université de Lille, ULR7364 RADEME, F-59000, Lille, France; CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000, Lille, France
| | - Florence Petit
- Université de Lille, ULR7364 RADEME, F-59000, Lille, France; CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000, Lille, France
| | - Jamal Ghoumid
- Université de Lille, ULR7364 RADEME, F-59000, Lille, France; CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000, Lille, France.
| |
Collapse
|
12
|
Loong L, Cubuk C, Choi S, Allen S, Torr B, Garrett A, Loveday C, Durkie M, Callaway A, Burghel GJ, Drummond J, Robinson R, Berry IR, Wallace A, Eccles DM, Tischkowitz M, Ellard S, Ware JS, Hanson H, Turnbull C. Quantifying prediction of pathogenicity for within-codon concordance (PM5) using 7541 functional classifications of BRCA1 and MSH2 missense variants. Genet Med 2021; 24:552-563. [PMID: 34906453 PMCID: PMC8896276 DOI: 10.1016/j.gim.2021.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Conditions and thresholds applied for evidence weighting of within-codon concordance (PM5) for pathogenicity vary widely between laboratories and expert groups. Because of the sparseness of available clinical classifications, there is little evidence for variation in practice. METHODS We used as a truthset 7541 dichotomous functional classifications of BRCA1 and MSH2, spanning 311 codons of BRCA1 and 918 codons of MSH2, generated from large-scale functional assays that have been shown to correlate excellently with clinical classifications. We assessed PM5 at 5 stringencies with incorporation of 8 in silico tools. For each analysis, we quantified a positive likelihood ratio (pLR, true positive rate/false positive rate), the predictive value of PM5-lookup in ClinVar compared with the functional truthset. RESULTS pLR was 16.3 (10.6-24.9) for variants for which there was exactly 1 additional colocated deleterious variant on ClinVar, and the variant under examination was equally or more damaging when analyzed using BLOSUM62. pLR was 71.5 (37.8-135.3) for variants for which there were 2 or more colocated deleterious ClinVar variants, and the variant under examination was equally or more damaging than at least 1 colocated variant when analyzed using BLOSUM62. CONCLUSION These analyses support the graded use of PM5, with potential to use it at higher evidence weighting where more stringent criteria are met.
Collapse
Affiliation(s)
- Lucy Loong
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Cankut Cubuk
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Subin Choi
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Sophie Allen
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Beth Torr
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Alice Garrett
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, NHS North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Alison Callaway
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, United Kingdom; Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - George J Burghel
- Manchester Centre for Genomic Medicine and North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - James Drummond
- East Genomic Laboratory Hub, Cambridge University Hospitals Genomic Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rachel Robinson
- North East and Yorkshire Genomic Laboratory Hub, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ian R Berry
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Andrew Wallace
- Manchester Centre for Genomic Medicine and North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Diana M Eccles
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - James S Ware
- National Heart and Lung Institute, Faculty of Medicine, and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Helen Hanson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom; Department of Clinical Genetics, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom; Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
13
|
Tam B, Sinha S, Qin Z, Wang SM. Comprehensive Identification of Deleterious TP53 Missense VUS Variants Based on Their Impact on TP53 Structural Stability. Int J Mol Sci 2021; 22:11345. [PMID: 34768775 PMCID: PMC8583684 DOI: 10.3390/ijms222111345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
TP53 plays critical roles in maintaining genome stability. Deleterious genetic variants damage the function of TP53, causing genome instability and increased cancer risk. Of the large quantity of genetic variants identified in TP53, however, many remain functionally unclassified as variants of unknown significance (VUS) due to the lack of evidence. This is reflected by the presence of 749 (42%) VUS of the 1785 germline variants collected in the ClinVar database. In this study, we addressed the deleteriousness of TP53 missense VUS. Utilizing the protein structure-based Ramachandran Plot-Molecular Dynamics Simulation (RPMDS) method that we developed, we measured the effects of missense VUS on TP53 structural stability. Of the 340 missense VUS tested, we observed deleterious evidence for 193 VUS, as reflected by the TP53 structural changes caused by the VUS-substituted residues. We compared the results from RPMDS with those from other in silico methods and observed higher specificity of RPMDS in classification of TP53 missense VUS than these methods. Data from our current study address a long-standing challenge in classifying the missense VUS in TP53, one of the most important tumor suppressor genes.
Collapse
Affiliation(s)
| | | | | | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (B.T.); (S.S.); (Z.Q.)
| |
Collapse
|
14
|
Shauli T, Brandes N, Linial M. Evolutionary and functional lessons from human-specific amino acid substitution matrices. NAR Genom Bioinform 2021; 3:lqab079. [PMID: 34541526 PMCID: PMC8445205 DOI: 10.1093/nargab/lqab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Human genetic variation in coding regions is fundamental to the study of protein structure and function. Most methods for interpreting missense variants consider substitution measures derived from homologous proteins across different species. In this study, we introduce human-specific amino acid (AA) substitution matrices that are based on genetic variations in the modern human population. We analyzed the frequencies of >4.8M single nucleotide variants (SNVs) at codon and AA resolution and compiled human-centric substitution matrices that are fundamentally different from classic cross-species matrices (e.g. BLOSUM, PAM). Our matrices are asymmetric, with some AA replacements showing significant directional preference. Moreover, these AA matrices are only partly predicted by nucleotide substitution rates. We further test the utility of our matrices in exposing functional signals of experimentally-validated protein annotations. A significant reduction in AA transition frequencies was observed across nine post-translational modification (PTM) types and four ion-binding sites. Our results propose a purifying selection signal in the human proteome across a diverse set of functional protein annotations and provide an empirical baseline for interpreting human genetic variation in coding regions.
Collapse
Affiliation(s)
- Tair Shauli
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Nadav Brandes
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
15
|
Štěrbová K, Vlčková M, Hansíková H, Sebroňová V, Sedláčková L, Pavlíček P, Laššuthová P. Novel variants in the NARS2 gene as a cause of infantile-onset severe epilepsy leading to fatal refractory status epilepticus: case study and literature review. Neurogenetics 2021; 22:359-364. [PMID: 34415467 DOI: 10.1007/s10048-021-00659-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022]
Abstract
Biallelic variants in the NARS2 gene are the cause of a continuous spectrum of neurodegenerative disorders presenting with various severity-from spastic paraplegia, progressive neurodegeneration to Leigh and Alpers syndrome. Common clinical signs result from a mitochondrial dysfunction based on OXPHOS deficiency. Here, we present a patient with infantile-onset severe epilepsy leading to fatal refractory status epilepticus. Whole exome sequencing with Exomiser analysis based on HPO terms detected two novel NARS2 variants in a compound heterozygous state. To date, 18 different NARS2 disease-causing mutations have been described. Our study adds to the understanding of this mitochondrial disorder.
Collapse
Affiliation(s)
- K Štěrbová
- Department of Paediatric Neurology, Second Faculty of Medicine (2. LF UK), Charles University and University Hospital Motol, Prague, Czech Republic
| | - M Vlčková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - H Hansíková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - V Sebroňová
- Department of Paediatric Neurology, Second Faculty of Medicine (2. LF UK), Charles University and University Hospital Motol, Prague, Czech Republic
| | - L Sedláčková
- Department of Paediatric Neurology, Second Faculty of Medicine (2. LF UK), Charles University and University Hospital Motol, Prague, Czech Republic
| | - P Pavlíček
- Department of Anaesthesiology and Resuscitation, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Petra Laššuthová
- Department of Paediatric Neurology, Second Faculty of Medicine (2. LF UK), Charles University and University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
16
|
Clinical likelihood ratios and balanced accuracy for 44 in silico tools against multiple large-scale functional assays of cancer susceptibility genes. Genet Med 2021; 23:2096-2104. [PMID: 34230640 PMCID: PMC8553612 DOI: 10.1038/s41436-021-01265-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Where multiple in silico tools are concordant, the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) framework affords supporting evidence toward pathogenicity or benignity, equivalent to a likelihood ratio of ~2. However, limited availability of “clinical truth sets” and prior use in tool training limits their utility for evaluation of tool performance. Methods We created a truth set of 9,436 missense variants classified as deleterious or tolerated in clinically validated high-throughput functional assays for BRCA1, BRCA2, MSH2, PTEN, and TP53 to evaluate predictive performance for 44 recommended/commonly used in silico tools. Results Over two-thirds of the tool–threshold combinations examined had specificity of <50%, thus substantially overcalling deleteriousness. REVEL scores of 0.8–1.0 had a Positive Likelihood Ratio (PLR) of 6.74 (5.24–8.82) compared to scores <0.7 and scores of 0–0.4 had a Negative Likelihood Ratio (NLR) of 34.3 (31.5–37.3) compared to scores of >0.7. For Meta-SNP, the equivalent PLR = 42.9 (14.4–406) and NLR = 19.4 (15.6–24.9). Conclusion Against these clinically validated “functional truth sets," there was wide variation in the predictive performance of commonly used in silico tools. Overall, REVEL and Meta-SNP had best balanced accuracy and might potentially be used at stronger evidence weighting than current ACMG/AMP prescription, in particular for predictions of benignity.
Collapse
|
17
|
Kwon HM, Kim HS, Kim SB, Park JH, Nam DE, Lee AJ, Nam SH, Hwang S, Chung KW, Choi BO. Clinical and Neuroimaging Features in Charcot-Marie-Tooth Patients with GNB4 Mutations. Life (Basel) 2021; 11:life11060494. [PMID: 34071515 PMCID: PMC8227704 DOI: 10.3390/life11060494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023] Open
Abstract
Charcot–Marie–Tooth disease (CMT) is the most common inherited peripheral neuropathy. Mutations in the GNB4 gene cause dominant intermediate CMT type F (CMTDIF). The aim of this study is to investigate phenotypic heterogeneities and characteristics of CMT patients with GNB4 mutations. We enrolled 1143 Korean CMT families and excluded 344 families with a PMP22 duplication. We further analyzed the 799 remaining families to find their GNB4 mutations using whole-exome sequencing (WES). We identified two mutations (p.Gly77Arg and p.Lys89Glu) in three families, among which a heterozygous p.Gly77Arg mutation was novel. In addition, a significant uncertain variant (p.Thr177Asn) was observed in one family. The frequency of the GNB4 mutation in the Korean population is 0.38% in PMP22 duplication-negative families. All three families showed de novo mutation. Electrophysiological findings regarding the p.Lys89Glu mutation showed that the motor nerve conduction velocity (MNCV) of the median nerve was markedly reduced, indicating demyelinating neuropathy, and sural nerve biopsy revealed severe loss of myelinated axons with onion bulb formation. Lower extremity Magnetic Resonance Imaging (MRI) demonstrated relatively more severe intramuscular fat infiltrations in demyelinating type (p.Lys89Glu mutation) patients compared to intermediate type (p.Gly77Arg mutation) patients. The anterolateral and superficial posterior compartment muscles of the distal calf were preferentially affected in demyelinating type patients. Therefore, it seems that the investigated GNB4 mutations do cause not only the known intermediate type but also demyelinating-type neuropathy. We first presented three Korean families with GNB4 mutations and found phenotypic heterogeneities of both intermediate and demyelinating neuropathy. We suggest that those findings are useful for the differential diagnosis of CMT patients with unknown GNB4 variants.
Collapse
Affiliation(s)
- Hye Mi Kwon
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.M.K.); (J.H.P.)
| | - Hyun Su Kim
- Departments of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 06351, Korea;
| | - Jae Hong Park
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.M.K.); (J.H.P.)
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (D.E.N.); (A.J.L.)
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (D.E.N.); (A.J.L.)
| | - Soo Hyun Nam
- Institute of Stem Cell and Regenerative Medicine, Samsung Medical Center, Seoul 06351, Korea;
| | - Soohyun Hwang
- Department of Pathology and Translational Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (D.E.N.); (A.J.L.)
- Correspondence: (K.W.C.); (B.-O.C.); Tel.: +82-41-850-8506 (K.W.C.); +82-2-3410-1296 (B.-O.C.); Fax: +82-41-850-0957 (K.W.C.); +82-2-3410-0052 (B.-O.C.)
| | - Byung-Ok Choi
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.M.K.); (J.H.P.)
- Institute of Stem Cell and Regenerative Medicine, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (K.W.C.); (B.-O.C.); Tel.: +82-41-850-8506 (K.W.C.); +82-2-3410-1296 (B.-O.C.); Fax: +82-41-850-0957 (K.W.C.); +82-2-3410-0052 (B.-O.C.)
| |
Collapse
|
18
|
Sullivan T, Thirthagiri E, Chong CE, Stauffer S, Reid S, Southon E, Hassan T, Ravichandran A, Wijaya E, Lim J, Taib NAM, Fadzli F, Yip CH, Hartman M, Li J, van Dam RM, North SL, Das R, Easton DF, Biswas K, Teo SH, Sharan SK. Epidemiological and ES cell-based functional evaluation of BRCA2 variants identified in families with breast cancer. Hum Mutat 2021; 42:200-212. [PMID: 33314489 PMCID: PMC7919386 DOI: 10.1002/humu.24154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/29/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
The discovery of high-risk breast cancer susceptibility genes, such as Breast cancer associated gene 1 (BRCA1) and Breast cancer associated gene 2 (BRCA2) has led to accurate identification of individuals for risk management and targeted therapy. The rapid decline in sequencing costs has tremendously increased the number of individuals who are undergoing genetic testing world-wide. However, given the significant differences in population-specific variants, interpreting the results of these tests can be challenging especially for novel genetic variants in understudied populations. Here we report the characterization of novel variants in the Malaysian and Singaporean population that consist of different ethnic groups (Malays, Chinese, Indian, and other indigenous groups). We have evaluated the functional significance of 14 BRCA2 variants of uncertain clinical significance by using multiple in silico prediction tools and examined their frequency in a cohort of 7840 breast cancer cases and 7928 healthy controls. In addition, we have used a mouse embryonic stem cell (mESC)-based functional assay to assess the impact of these variants on BRCA2 function. We found these variants to be functionally indistinguishable from wild-type BRCA2. These variants could fully rescue the lethality of Brca2-null mESCs and exhibited no sensitivity to six different DNA damaging agents including a poly ADP ribose polymerase inhibitor. Our findings strongly suggest that all 14 evaluated variants are functionally neutral. Our findings should be valuable in risk assessment of individuals carrying these variants.
Collapse
Affiliation(s)
- Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eswary Thirthagiri
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.,Servier, Kuala Lumpur, Malaysia.,Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chan-Eng Chong
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tiara Hassan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Aravind Ravichandran
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India.,SASTRA University, Thirumalaisamudram, Thanjavur, Tamil Nadu, India
| | | | - Joanna Lim
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Farhana Fadzli
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | | | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Jingmei Li
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Susan L North
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.,Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | |
Collapse
|
19
|
Biswas K, Lipton GB, Stauffer S, Sullivan T, Cleveland L, Southon E, Reid S, Magidson V, Iversen ES, Sharan SK. A computational model for classification of BRCA2 variants using mouse embryonic stem cell-based functional assays. NPJ Genom Med 2020; 5:52. [PMID: 33293522 PMCID: PMC7722754 DOI: 10.1038/s41525-020-00158-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Sequencing-based genetic tests to identify individuals at increased risk of hereditary breast and ovarian cancers have resulted in the identification of more than 40,000 sequence variants of BRCA1 and BRCA2. A majority of these variants are considered to be variants of uncertain significance (VUS) because their impact on disease risk remains unknown, largely due to lack of sufficient familial linkage and epidemiological data. Several assays have been developed to examine the effect of VUS on protein function, which can be used to assess their impact on cancer susceptibility. In this study, we report the functional characterization of 88 BRCA2 variants, including several previously uncharacterized variants, using a well-established mouse embryonic stem cell (mESC)-based assay. We have examined their ability to rescue the lethality of Brca2 null mESC as well as sensitivity to six DNA damaging agents including ionizing radiation and a PARP inhibitor. We have also examined the impact of BRCA2 variants on splicing. In addition, we have developed a computational model to determine the probability of impact on function of the variants that can be used for risk assessment. In contrast to the previous VarCall models that are based on a single functional assay, we have developed a new platform to analyze the data from multiple functional assays separately and in combination. We have validated our VarCall models using 12 known pathogenic and 10 neutral variants and demonstrated their usefulness in determining the pathogenicity of BRCA2 variants that are listed as VUS or as variants with conflicting functional interpretation.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Gary B Lipton
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA.
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
20
|
Fernández-Mateos J, Pérez-García J, Seijas-Tamayo R, Mesía R, Rubió-Casadevall J, García-Girón C, Iglesias L, Carral Maseda A, Adansa Klain JC, Taberna M, Vazquez S, Gómez MA, Del Barco E, Ocana A, González-Sarmiento R, Cruz-Hernández JJ. Oncogenic driver mutations predict outcome in a cohort of head and neck squamous cell carcinoma (HNSCC) patients within a clinical trial. Sci Rep 2020; 10:16634. [PMID: 33024167 PMCID: PMC7539152 DOI: 10.1038/s41598-020-72927-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
234 diagnostic formalin-fixed paraffin-embedded (FFPE) blocks from homogeneously treated patients with locally advanced head and neck squamous cell carcinoma (HNSCC) within a multicentre phase III clinical trial were characterised. The mutational spectrum was examined by next generation sequencing in the 26 most frequent oncogenic drivers in cancer and correlated with treatment response and survival. Human papillomavirus (HPV) status was measured by p16INK4a immunohistochemistry in oropharyngeal tumours. Clinicopathological features and response to treatment were measured and compared with the sequencing results. The results indicated TP53 as the most mutated gene in locally advanced HNSCC. HPV-positive oropharyngeal tumours were less mutated than HPV-negative tumours in TP53 (p < 0.01). Mutational and HPV status influences patient survival, being mutated or HPV-negative tumours associated with poor overall survival (p < 0.05). No association was found between mutations and clinicopathological features. This study confirmed and expanded previously published genomic characterization data in HNSCC. Survival analysis showed that non-mutated HNSCC tumours associated with better prognosis and lack of mutations can be identified as an important biomarker in HNSCC. Frequent alterations in PI3K pathway in HPV-positive HNSCC could define a promising pathway for pharmacological intervention in this group of tumours.
Collapse
Affiliation(s)
- Javier Fernández-Mateos
- Medical Oncology Service, University Hospital of Salamanca-IBSAL, 37007, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007, Salamanca, Spain.,Molecular Medicine Unit-IBSAL, Department of Medicine, University of Salamanca, 37007, Salamanca, Spain.,Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007, Salamanca, Spain
| | - Jéssica Pérez-García
- Molecular Medicine Unit-IBSAL, Department of Medicine, University of Salamanca, 37007, Salamanca, Spain.,Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007, Salamanca, Spain
| | - Raquel Seijas-Tamayo
- Medical Oncology Service, University Hospital of Salamanca-IBSAL, 37007, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007, Salamanca, Spain
| | - Ricard Mesía
- Medical Oncology Department, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Universitat de Barcelona, IDIBELL, 08908, Barcelona, Spain
| | | | - Carlos García-Girón
- Medical Oncology Service, Hospital Universitario de Burgos, 09006, Burgos, Spain
| | - Lara Iglesias
- Medical Oncology Service, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | | | - Juan Carlos Adansa Klain
- Medical Oncology Service, University Hospital of Salamanca-IBSAL, 37007, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007, Salamanca, Spain
| | - Miren Taberna
- Medical Oncology Department, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Universitat de Barcelona, IDIBELL, 08908, Barcelona, Spain
| | - Silvia Vazquez
- Medical Oncology Department, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Universitat de Barcelona, IDIBELL, 08908, Barcelona, Spain
| | | | - Edel Del Barco
- Medical Oncology Service, University Hospital of Salamanca-IBSAL, 37007, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007, Salamanca, Spain
| | - Alberto Ocana
- Hospital Clínico San Carlos, IdISSC, CIBERONC, 28040, Madrid, Spain.,Centro Regional de Investigaciones Biomédicas, Universidad de Castilla La Mancha, 13071, Albacete, Spain
| | - Rogelio González-Sarmiento
- Biomedical Research Institute of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007, Salamanca, Spain. .,Molecular Medicine Unit-IBSAL, Department of Medicine, University of Salamanca, 37007, Salamanca, Spain. .,Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007, Salamanca, Spain.
| | - Juan Jesús Cruz-Hernández
- Medical Oncology Service, University Hospital of Salamanca-IBSAL, 37007, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007, Salamanca, Spain. .,Molecular Medicine Unit-IBSAL, Department of Medicine, University of Salamanca, 37007, Salamanca, Spain. .,Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007, Salamanca, Spain.
| |
Collapse
|
21
|
Curated multiple sequence alignment for the Adenomatous Polyposis Coli (APC) gene and accuracy of in silico pathogenicity predictions. PLoS One 2020; 15:e0233673. [PMID: 32750050 PMCID: PMC7402488 DOI: 10.1371/journal.pone.0233673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
Computational algorithms are often used to assess pathogenicity of Variants of Uncertain Significance (VUS) that are found in disease-associated genes. Most computational methods include analysis of protein multiple sequence alignments (PMSA), assessing interspecies variation. Careful validation of PMSA-based methods has been done for relatively few genes, partially because creation of curated PMSAs is labor-intensive. We assessed how PMSA-based computational tools predict the effects of the missense changes in the APC gene, in which pathogenic variants cause Familial Adenomatous Polyposis. Most Pathogenic or Likely Pathogenic APC variants are protein-truncating changes. However, public databases now contain thousands of variants reported as missense. We created a curated APC PMSA that contained >3 substitutions/site, which is large enough for statistically robust in silico analysis. The creation of the PMSA was not easily automated, requiring significant querying and computational analysis of protein and genome sequences. Of 1924 missense APC variants in the NCBI ClinVar database, 1800 (93.5%) are reported as VUS. All but two missense variants listed as P/LP occur at canonical splice or Exonic Splice Enhancer sites. Pathogenicity predictions by five computational tools (Align-GVGD, SIFT, PolyPhen2, MAPP, REVEL) differed widely in their predictions of Pathogenic/Likely Pathogenic (range 17.5–75.0%) and Benign/Likely Benign (range 25.0–82.5%) for APC missense variants in ClinVar. When applied to 21 missense variants reported in ClinVar and securely classified as Benign, the five methods ranged in accuracy from 76.2–100%. Computational PMSA-based methods can be an excellent classifier for variants of some hereditary cancer genes. However, there may be characteristics of the APC gene and protein that confound the results of in silico algorithms. A systematic study of these features could greatly improve the automation of alignment-based techniques and the use of predictive algorithms in hereditary cancer genes.
Collapse
|
22
|
Santana dos Santos E, Lallemand F, Petitalot A, Caputo SM, Rouleau E. HRness in Breast and Ovarian Cancers. Int J Mol Sci 2020; 21:E3850. [PMID: 32481735 PMCID: PMC7312125 DOI: 10.3390/ijms21113850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian and breast cancers are currently defined by the main pathways involved in the tumorigenesis. The majority are carcinomas, originating from epithelial cells that are in constant division and subjected to cyclical variations of the estrogen stimulus during the female hormonal cycle, therefore being vulnerable to DNA damage. A portion of breast and ovarian carcinomas arises in the context of DNA repair defects, in which genetic instability is the backdrop for cancer initiation and progression. For these tumors, DNA repair deficiency is now increasingly recognized as a target for therapeutics. In hereditary breast/ovarian cancers (HBOC), tumors with BRCA1/2 mutations present an impairment of DNA repair by homologous recombination (HR). For many years, BRCA1/2 mutations were only screened on germline DNA, but now they are also searched at the tumor level to personalize treatment. The reason of the inactivation of this pathway remains uncertain for most cases, even in the presence of a HR-deficient signature. Evidence indicates that identifying the mechanism of HR inactivation should improve both genetic counseling and therapeutic response, since they can be useful as new biomarkers of response.
Collapse
Affiliation(s)
- Elizabeth Santana dos Santos
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-010, Brazil
| | - François Lallemand
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
| |
Collapse
|
23
|
Rautengarten C, Quarrell OW, Stals K, Caswell RC, De Franco E, Baple E, Burgess N, Jokhi R, Heazlewood JL, Offiah AC, Ebert B, Ellard S. A hypomorphic allele of SLC35D1 results in Schneckenbecken-like dysplasia. Hum Mol Genet 2020; 28:3543-3551. [PMID: 31423530 PMCID: PMC6927460 DOI: 10.1093/hmg/ddz200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a ‘Schneckenbecken-like dysplasia.’ The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Oliver W Quarrell
- Department of Clinical Genetics, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Richard C Caswell
- University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| | - Elisa De Franco
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma Baple
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| | - Nadia Burgess
- Department of Histology, Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield UK. S10 2TH, UK
| | - Roobin Jokhi
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals, Jessop Wing Tree Root Walk, Sheffield S10 2SF, UK
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Amaka C Offiah
- University of Sheffield, Academic Unit of Child Health, Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield S10 2TH, UK
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| |
Collapse
|
24
|
|
25
|
Mesman RLS, Calléja FMGR, de la Hoya M, Devilee P, van Asperen CJ, Vrieling H, Vreeswijk MPG. Alternative mRNA splicing can attenuate the pathogenicity of presumed loss-of-function variants in BRCA2. Genet Med 2020; 22:1355-1365. [PMID: 32398771 PMCID: PMC7394881 DOI: 10.1038/s41436-020-0814-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 11/11/2022] Open
Abstract
Purpose Current interpretation guidelines for germline variants in high-risk
cancer susceptibility genes consider predicted loss-of-function (LoF) variants,
such as nonsense variants and variants in the canonical splice site sequences ofBRCA2, to be associated with high cancer
risk. However, some variant alleles produce alternative transcripts that encode
(partially) functional protein isoforms leading to possible incorrect risk
estimations. For accurate classification of variants it is therefore essential
that alternative transcripts are identified and functionally
characterized. Methods We systematically evaluated a large panel of human BRCA2 variants for the production of alternative
transcripts and assessed their capacity to exert BRCA2 protein functionality.
Evaluated variants included all single-exon deletions, various multiple-exon
deletions, intronic variants at the canonical splice donor and acceptor
sequences, and variants that previously have been shown to affect messenger RNA
(mRNA) splicing in carriers. Results Multiple alternative transcripts encoding (partially) functional
protein isoforms were identified (e.g., ∆[E4–E7], ∆[E6–E7], ∆E[6q39_E8], ∆[E10],
∆[E12], ∆E[12–14]). Expression of these transcripts did attenuate the impact of
predicted LoF variants such as the canonical splice site variants c.631+2T>G,
c.517-2A>G, c.6842-2A>G, c.6937+1G>A, and nonsense variants
c.491T>A, c.581G>A, and c.6901G>T. Conclusion These results allow refinement of variant interpretation guidelines
for BRCA2 by providing insight into the
functional consequences of naturally occurring and variant-related alternative
splicing events.
Collapse
Affiliation(s)
- Romy L S Mesman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Instituto de Investigacion Sanitaria San Carlos, Hospital Clinico San Carlos, Madrid, Spain
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
26
|
Rubio S, Pacheco-Orozco RA, Gómez AM, Perdomo S, García-Robles R. Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. ACTA ACUST UNITED AC 2020. [DOI: 10.11144/javeriana.umed61-2.sngs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introducción: el término secuenciación de nueva generación (NGS) hace referencia a las tecnologías diseñadas para analizar gran cantidad de ADN de forma masiva y paralela. Abordamos en esta revisión los conceptos básicos de estas tecnologías, las consideraciones de su uso clínico actual y perspectivas a futuro. Desarrollo: las pruebas basadas en NGS han revolucionado el estudio de los genomas pues permiten la lectura de millones de secuencias de ADN de forma masiva y paralela en un menor lapso de tiempo y a menor costo por base. Estas pruebas incluyen la secuenciación de panel de genes, la secuenciación completa del exoma y la secuenciación completa del genoma. El análisis de sus resultados es complejo y requiere de un proceso bioinformático y clínico exhaustivo para su adecuada interpretación. Las limitaciones de las pruebas NGS incluyen aspectos técnicos como la cobertura, profundidad y longitud de las secuencias, las cuales se pueden solventar implementando buenas prácticas de laboratorio. Conclusiones: las pruebas basadas en la secuenciación por NGS son herramientas diagnósticas que deben partir de una aproximación clínica adecuada para su uso razonado, correcta interpretación y toma de decisiones acertadas. Es de gran trascendencia que los médicos tengan la información básica para poder solicitar e interpretar estas pruebas dada su relevancia clínica actual.
Collapse
|
27
|
Monteiro AN, Bouwman P, Kousholt AN, Eccles DM, Millot GA, Masson JY, Schmidt MK, Sharan SK, Scully R, Wiesmüller L, Couch F, Vreeswijk MPG. Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. J Med Genet 2020; 57:509-518. [PMID: 32152249 DOI: 10.1136/jmedgenet-2019-106368] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alvaro N Monteiro
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Peter Bouwman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arne N Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Diana M Eccles
- Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Gael A Millot
- Hub-DBC, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shyam K Sharan
- National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Ralph Scully
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
28
|
Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:46. [PMID: 32127026 PMCID: PMC7055088 DOI: 10.1186/s13046-020-01554-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The promising expectations about personalized medicine have opened the path to routine large-scale sequencing and increased the importance of genetic counseling for hereditary cancers, among which hereditary breast and ovary cancers (HBOC) have a major impact. High-throughput sequencing, or Next-Generation Sequencing (NGS), has improved cancer patient management, ameliorating diagnosis and treatment decisions. In addition to its undeniable clinical utility, NGS is also unveiling a large number of variants that we are still not able to clearly define and classify, the variants of uncertain significance (VUS), which account for about 40% of total variants. At present, VUS use in the clinical context is challenging. Medical reports may omit this kind of data and, even when included, they limit the clinical utility of genetic information. This has prompted the scientific community to seek easily applicable tests to accurately classify VUS and increase the amount of usable information from NGS data. In this review, we will focus on NGS and classification systems for VUS investigation, with particular attention on HBOC-related genes and in vitro functional tests developed for ameliorating and accelerating variant classification in cancer.
Collapse
|
29
|
Pagin A, Bergougnoux A, Girodon E, Reboul MP, Willoquaux C, Kesteloot M, Raynal C, Bienvenu T, Humbert M, Lalau G, Bieth E. Novel ADGRG2 truncating variants in patients with X-linked congenital absence of vas deferens. Andrology 2019; 8:618-624. [PMID: 31845523 DOI: 10.1111/andr.12744] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Congenital absence of vas deferens (CAVD) represents a major cause of obstructive azoospermia and is mainly related to biallelic alteration of the CFTR gene, also involved in cystic fibrosis. Using whole exome sequencing, we recently identified hemizygous loss-of-function mutations in the Adhesion G Protein-coupled Receptor G2 gene (ADGRG2) as responsible of isolated CAVD in the absence of associated unilateral renal agenesis. OBJECTIVES The objective of this study was to retrospectively perform ADGRG2 sequencing on a large cohort of patients with CAVD, and 0 or only 1 CFTR defective allele identified after comprehensive testing in order to (a) define more precisely the spectrum and the frequency of ADGRG2 mutations within Caucasian population (b) explore the possibility of co-occurrence of CFTR and ADGRG2 mutations. MATERIALS AND METHODS We collected 53 DNA samples from CAVD patients with 0 (n = 23) or 1 (n = 30) alteration identified after comprehensive CFTR testing in order to perform ADGRG2 sequencing. Twenty patients had normal ultrasonographic renal examination, and renal status was not documented for 33 patients. RESULTS We identified six new truncating ADGRG2 mutations in 8 patients including two twin brothers: c.251C > G (p.Ser84*), c.1013delC (p.Pro338Hisfs*4), c.1460delG (p.Gly487Alafs*9), c.2096dupT (p.Phe700Ilefs*29), c.2473C > T (p.Arg825*), and c.1731_1839 + 373del (p.Asn578Thrfs*12), which is a 596 base pair deletion affecting the last five bases of exon 21 and the whole exon 22. Five of the eight patients also harbored an heterozygous CFTR mutation which we consider as incidental regarding the high penetrance expected for ADGRG2 truncating variants. The frequency of ADGRG2 truncating mutation was 26% (5/19 unrelated patients) when presence of both kidneys was attested by ultrasonography and 6.1% (2/33) among patients with unknown renal status. DISCUSSION & CONCLUSION Our results confirm the interest of ADGRG2 sequencing in patients with CAVD not formerly related to CFTR dysfunction, especially in the absence of associated unilateral renal agenesis.
Collapse
Affiliation(s)
- Adrien Pagin
- CHU Lille, Service de Toxicologie et Génopathies, Lille, France
| | - Anne Bergougnoux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, EA7402 Laboratoire de Génétique de Maladies Rares, Université de Montpellier, Montpellier, France
| | - Emmanuelle Girodon
- Service de Génétique et Biologie Moléculaires, AP-HP.5, Groupe Hospitalier HUPC, Paris, France
| | - Marie-Pierre Reboul
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire, Bordeaux, France
| | | | | | - Caroline Raynal
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, EA7402 Laboratoire de Génétique de Maladies Rares, Université de Montpellier, Montpellier, France
| | - Thierry Bienvenu
- Service de Génétique et Biologie Moléculaires, AP-HP.5, Groupe Hospitalier HUPC, Paris, France
| | - Mathilde Humbert
- Service de Biologie de la Reproduction, Centre Hospitalier Régional Universitaire, Bordeaux, France
| | - Guy Lalau
- CHU Lille, Service de Toxicologie et Génopathies, Lille, France
| | - Eric Bieth
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Toulouse, France
| |
Collapse
|
30
|
Michels M, Matte U, Fraga LR, Mancuso ACB, Ligabue-Braun R, Berneira EFR, Siebert M, Sanseverino MTV. Determining the pathogenicity of CFTR missense variants: Multiple comparisons of in silico predictors and variant annotation databases. Genet Mol Biol 2019; 42:560-570. [PMID: 31808782 PMCID: PMC6905453 DOI: 10.1590/1678-4685-gmb-2018-0148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023] Open
Abstract
Pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator
gene (CFTR) are responsible for cystic fibrosis (CF), the
commonest monogenic autosomal recessive disease, and
CFTR-related disorders in infants and youth. Diagnosis of such
diseases relies on clinical, functional, and molecular studies. To date, over
2,000 variants have been described on CFTR (~40% missense).
Since few of them have confirmed pathogenicity, in silico
analysis could help molecular diagnosis and genetic counseling. Here, the
pathogenicity of 779 CFTR missense variants was predicted by
consensus predictor PredictSNP and compared to annotations on CFTR2 and ClinVar.
Sensitivity and specificity analysis was divided into modeling and validation
phases using just variants annotated on CFTR2 and/or ClinVar that were not in
the validation datasets of the analyzed predictors. After validation phase, MAPP
and PhDSNP achieved maximum specificity but low sensitivity. Otherwise, SNAP had
maximum sensitivity but null specificity. PredictSNP, PolyPhen-1, PolyPhen-2,
SIFT, nsSNPAnalyzer had either low sensitivity or specificity, or both. Results
showed that most predictors were not reliable when analyzing
CFTR missense variants, ratifying the importance of
clinical information when asserting the pathogenicity of CFTR
missense variants. Our results should contribute to clarify decision making when
classifying the pathogenicity of CFTR missense variants.
Collapse
Affiliation(s)
- Marcus Michels
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lucas Rosa Fraga
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Rodrigo Ligabue-Braun
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Marina Siebert
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Teresa Vieira Sanseverino
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Boursier G, Rittore C, Georgin-Lavialle S, Belot A, Galeotti C, Hachulla E, Hentgen V, Rossi-Semerano L, Sarrabay G, Touitou I. Positive Impact of Expert Reference Center Validation on Performance of Next-Generation Sequencing for Genetic Diagnosis of Autoinflammatory Diseases. J Clin Med 2019; 8:E1729. [PMID: 31635385 PMCID: PMC6832712 DOI: 10.3390/jcm8101729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Monogenic autoinflammatory diseases (AIDs) are caused by variants in genes that regulate innate immunity. The current diagnostic performance of targeted next-generation sequencing (NGS) for AIDs is low. We assessed whether pre-analytic advice from expert clinicians could help improve NGS performance from our 4 years of experience with the sequencing of a panel of 55 AIDs genes. The study included all patients who underwent routine NGS testing between September 2014 and January 2019 at the laboratory of autoinflammatory diseases (Montpellier, France). Before March 2018, all medical requests for testing were accepted. After this time, we required validation by a reference center before NGS: the positive advice could be obtained after a face-to-face consultation with the patient or presentation of the patient's case at a multidisciplinary staff meeting. Targeted NGS resulted in an overall 7% genetic confirmation, which is consistent with recent reports. The diagnostic performance before and after implementation of the new pre-requisite increased from 6% to 10% (p = 0.021). Our study demonstrated, for the first time, the beneficial effect of a two-step strategy (clinical expert advice, then genetic testing) for AIDs diagnosis and stressed the possible usefulness of the strategy in anticipation of the development of pan-genomic analyses in routine settings.
Collapse
Affiliation(s)
- Guilaine Boursier
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, CHU Montpellier, Rare and Autoinflammatory diseases unit, Univ Montpellier, 34295 Montpellier, France.
| | - Cécile Rittore
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, CHU Montpellier, Rare and Autoinflammatory diseases unit, Univ Montpellier, 34295 Montpellier, France.
| | - Sophie Georgin-Lavialle
- Department of Internal Medicine, CEREMAIA, Tenon Hospital, AP-HP, University of Pierre et Marie Curie, 75970 Paris, France.
| | - Alexandre Belot
- Paediatric Nephrology, Rheumatology, Dermatology Unit, RAISE, HFME, HCL, Univ Lyon, 69677 Bron, France.
| | - Caroline Galeotti
- Department of Paediatric Rheumatology, CEREMAIA, Bicêtre Hospital, AP-HP, 94275 Le Kremlin-Bicêtre, France.
| | - Eric Hachulla
- Department of Internal Medicine and Clinical Immunology, CHU Lille, University of Lille, 59037 Lille, France.
| | - Véronique Hentgen
- Department of General Pediatrics, CEREMAIA, CH Versailles, 78157 Le Chesnay, France.
| | - Linda Rossi-Semerano
- Department of Paediatric Rheumatology, CEREMAIA, Bicêtre Hospital, AP-HP, 94275 Le Kremlin-Bicêtre, France.
| | - Guillaume Sarrabay
- Cellules souches, plasticité cellulaire, médecine régénératrice et immunothérapies, INSERM, University Montpellier, Department of Medical Genetics, Rare Diseases and Personalized Medicine, CEREMAIA, CHU Montpellier, 34295 Montpellier, France.
| | - Isabelle Touitou
- Cellules souches, plasticité cellulaire, médecine régénératrice et immunothérapies, INSERM, University Montpellier, Department of Medical Genetics, Rare Diseases and Personalized Medicine, CEREMAIA, CHU Montpellier, 34295 Montpellier, France.
| |
Collapse
|
32
|
Voskanian A, Katsonis P, Lichtarge O, Pejaver V, Radivojac P, Mooney SD, Capriotti E, Bromberg Y, Wang Y, Miller M, Martelli PL, Savojardo C, Babbi G, Casadio R, Cao Y, Sun Y, Shen Y, Garg A, Pal D, Yu Y, Huff CD, Tavtigian SV, Young E, Neuhausen SL, Ziv E, Pal LR, Andreoletti G, Brenner S, Kann MG. Assessing the performance of in silico methods for predicting the pathogenicity of variants in the gene CHEK2, among Hispanic females with breast cancer. Hum Mutat 2019; 40:1612-1622. [PMID: 31241222 PMCID: PMC6744287 DOI: 10.1002/humu.23849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/23/2019] [Accepted: 06/21/2019] [Indexed: 01/22/2023]
Abstract
The availability of disease-specific genomic data is critical for developing new computational methods that predict the pathogenicity of human variants and advance the field of precision medicine. However, the lack of gold standards to properly train and benchmark such methods is one of the greatest challenges in the field. In response to this challenge, the scientific community is invited to participate in the Critical Assessment for Genome Interpretation (CAGI), where unpublished disease variants are available for classification by in silico methods. As part of the CAGI-5 challenge, we evaluated the performance of 18 submissions and three additional methods in predicting the pathogenicity of single nucleotide variants (SNVs) in checkpoint kinase 2 (CHEK2) for cases of breast cancer in Hispanic females. As part of the assessment, the efficacy of the analysis method and the setup of the challenge were also considered. The results indicated that though the challenge could benefit from additional participant data, the combined generalized linear model analysis and odds of pathogenicity analysis provided a framework to evaluate the methods submitted for SNV pathogenicity identification and for comparison to other available methods. The outcome of this challenge and the approaches used can help guide further advancements in identifying SNV-disease relationships.
Collapse
Affiliation(s)
- Alin Voskanian
- Department of Biological Sciences, University of Maryland, Baltimore County, MD, U.S.A
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, U.S.A
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, U.S.A
- Department of Pharmacology, Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Vikas Pejaver
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, U.S.A
- The eScience Institute, University of Washington, Seattle, Washington, U.S.A
| | - Predrag Radivojac
- Khoury College of Computer and Information Sciences, Northeastern University, Boston, Massachusetts, U.S.A
| | - Sean D. Mooney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, U.S.A
| | - Emidio Capriotti
- BioFolD Unit, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, U.S.A
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, U.S.A
- Technical University of Munich Institute for Advanced Study, (TUM-IAS), Lichtenbergstr. 2a, 85748 Garching/Munich, Germany
| | - Yanran Wang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, U.S.A
| | - Max Miller
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, U.S.A
| | - Pier Luigi Martelli
- Biocomputing Group, BiGeA/Giorgio Prodi Interdepartmental Center for Cancer Research, University of Bologna, Via F. Selmi 3, Bologna, 40126, Italy
| | - Castrense Savojardo
- Biocomputing Group, BiGeA/Giorgio Prodi Interdepartmental Center for Cancer Research, University of Bologna, Via F. Selmi 3, Bologna, 40126, Italy
| | - Giulia Babbi
- Biocomputing Group, BiGeA/Giorgio Prodi Interdepartmental Center for Cancer Research, University of Bologna, Via F. Selmi 3, Bologna, 40126, Italy
| | - Rita Casadio
- Biocomputing Group, BiGeA/Giorgio Prodi Interdepartmental Center for Cancer Research, University of Bologna, Via F. Selmi 3, Bologna, 40126, Italy
| | - Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, U.S.A
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, U.S.A
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, U.S.A
| | - Aditi Garg
- Department of Computational and Data Sciences Indian Institute of Science, Bengaluru 560 012, India
| | - Debnath Pal
- Department of Computational and Data Sciences Indian Institute of Science, Bengaluru 560 012, India
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Sean V. Tavtigian
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, U.S.A
| | - Erin Young
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, U.S.A
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010 U.S.A
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, Institute of Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA,U.S.A
| | - Lipika R. Pal
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Gaia Andreoletti
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Steven Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Maricel G. Kann
- Department of Biological Sciences, University of Maryland, Baltimore County, MD, U.S.A
| |
Collapse
|
33
|
Padilla N, Moles-Fernández A, Riera C, Montalban G, Özkan S, Ootes L, Bonache S, Díez O, Gutiérrez-Enríquez S, de la Cruz X. BRCA1- and BRCA2-specific in silico tools for variant interpretation in the CAGI 5 ENIGMA challenge. Hum Mutat 2019; 40:1593-1611. [PMID: 31112341 DOI: 10.1002/humu.23802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022]
Abstract
BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants. In this article, we present a family of in silico predictors that address this problem, using a gene-specific approach. For each protein, we have developed two tools, aimed at predicting the impact of a variant at two different levels: Functional and clinical. Testing their performance in different datasets shows that specific information compensates the small number of predictive features and the reduced training sets employed to develop our models. When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical Assessment of Genome Interpretation (CAGI 5) we find that these methods, particularly those predicting the functional impact of variants, have a good performance, identifying the large compositional bias towards neutral variants in the CAGI sample. This performance is further improved when incorporating to our prediction protocol estimates of the impact on splicing of the target variant.
Collapse
Affiliation(s)
- Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Casandra Riera
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Selen Özkan
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lars Ootes
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
34
|
López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL. PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res 2019; 45:W222-W228. [PMID: 28453649 PMCID: PMC5793831 DOI: 10.1093/nar/gkx313] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
We present here a full update of the PMut predictor, active since 2005 and with a large acceptance in the field of predicting Mendelian pathological mutations. PMut internal engine has been renewed, and converted into a fully featured standalone training and prediction engine that not only powers PMut web portal, but that can generate custom predictors with alternative training sets or validation schemas. PMut Web portal allows the user to perform pathology predictions, to access a complete repository of pre-calculated predictions, and to generate and validate new predictors. The default predictor performs with good quality scores (MCC values of 0.61 on 10-fold cross validation, and 0.42 on a blind test with SwissVar 2016 mutations). The PMut portal is freely accessible at http://mmb.irbbarcelona.org/PMut. A complete help and tutorial is available at http://mmb.irbbarcelona.org/PMut/help.
Collapse
Affiliation(s)
- Víctor López-Ferrando
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Joint Program BSC-CRG-IRB Research Program for Computational Biology, Barcelona, Spain
| | - Andrea Gazzo
- Joint Program BSC-CRG-IRB Research Program for Computational Biology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Barcelona. Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Modesto Orozco
- Joint Program BSC-CRG-IRB Research Program for Computational Biology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Barcelona. Spain.,Dept. of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Josep Ll Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Joint Program BSC-CRG-IRB Research Program for Computational Biology, Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Spurdle AB, Greville-Heygate S, Antoniou AC, Brown M, Burke L, de la Hoya M, Domchek S, Dörk T, Firth HV, Monteiro AN, Mensenkamp A, Parsons MT, Radice P, Robson M, Tischkowitz M, Tudini E, Turnbull C, Vreeswijk MP, Walker LC, Tavtigian S, Eccles DM. Towards controlled terminology for reporting germline cancer susceptibility variants: an ENIGMA report. J Med Genet 2019; 56:347-357. [PMID: 30962250 DOI: 10.1136/jmedgenet-2018-105872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
The vocabulary currently used to describe genetic variants and their consequences reflects many years of studying and discovering monogenic disease with high penetrance. With the recent rapid expansion of genetic testing brought about by wide availability of high-throughput massively parallel sequencing platforms, accurate variant interpretation has become a major issue. The vocabulary used to describe single genetic variants in silico, in vitro, in vivo and as a contributor to human disease uses terms in common, but the meaning is not necessarily shared across all these contexts. In the setting of cancer genetic tests, the added dimension of using data from genetic sequencing of tumour DNA to direct treatment is an additional source of confusion to those who are not experienced in cancer genetics. The language used to describe variants identified in cancer susceptibility genetic testing typically still reflects an outdated paradigm of Mendelian inheritance with dichotomous outcomes. Cancer is a common disease with complex genetic architecture; an improved lexicon is required to better communicate among scientists, clinicians and patients, the risks and implications of genetic variants detected. This review arises from a recognition of, and discussion about, inconsistencies in vocabulary usage by members of the ENIGMA international multidisciplinary consortium focused on variant classification in breast-ovarian cancer susceptibility genes. It sets out the vocabulary commonly used in genetic variant interpretation and reporting, and suggests a framework for a common vocabulary that may facilitate understanding and clarity in clinical reporting of germline genetic tests for cancer susceptibility.
Collapse
Affiliation(s)
- Amanda B Spurdle
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Melissa Brown
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Leslie Burke
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Miguel de la Hoya
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Susan Domchek
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Helen V Firth
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Alvaro N Monteiro
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Arjen Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael T Parsons
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Paolo Radice
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mark Robson
- Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Marc Tischkowitz
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Emma Tudini
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- William Harvey Research Institute, Queen Mary Hospital, London, UK
| | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Sean Tavtigian
- Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
36
|
Mochizuki T, Teraoka A, Akagawa H, Makabe S, Akihisa T, Sato M, Kataoka H, Mitobe M, Furukawa T, Tsuchiya K, Nitta K. Mutation analyses by next-generation sequencing and multiplex ligation-dependent probe amplification in Japanese autosomal dominant polycystic kidney disease patients. Clin Exp Nephrol 2019; 23:1022-1030. [PMID: 30989420 DOI: 10.1007/s10157-019-01736-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), one of the most common hereditary kidney diseases, causes gradual growth of cysts in the kidneys, leading to renal failure. Owing to the advanced technology of next-generation sequencing (NGS), genetic analyses of the causative genes PKD1 and PKD2 have been improved. METHODS We performed genetic analyses of 111 Japanese ADPKD patients using hybridization-based NGS and long-range (LR)-PCR-based NGS. Additionally, genetic analyses in exon 1 of PKD1 using Sanger sequencing because of an extremely low coverage of NGS and those using multiplex ligation-dependent probe amplification (MLPA) were performed. RESULTS The detection rate using NGS for 111 patients was 86.5%. One mutation in exon 1 of PKD1 and five deletions detected by MLPA were identified. When combined, the total detection rate was 91.9%. CONCLUSION Although NGS is useful, we propose the addition of Sanger sequencing for exon 1 of PKD1 and MLPA as indispensable for identifying mutations not detected by NGS.
Collapse
Affiliation(s)
- Toshio Mochizuki
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan. .,Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuko Teraoka
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan
| | - Shiho Makabe
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Taro Akihisa
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayo Sato
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Kataoka
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.,Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Michihiro Mitobe
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Toru Furukawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan.,Department of Histopathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
37
|
García-Molina E, Sabater-Molina M, López-Cuenca D, Olmo MC, Pérez I, Muñoz Esparza C, Gimeno Blanes JR. A study of the pathogenicity of variants in familial heart disease. The value of cosegregation. Am J Transl Res 2019; 11:1724-1735. [PMID: 30972196 PMCID: PMC6456527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/16/2018] [Indexed: 06/09/2023]
Abstract
With the development of deep sequencing, a significant proportion of mutations already listed in studies have inconclusive pathogenicity. We aim to establish the proportion of cases in which familial studies are possible and cosegregation analysis is informative. We also compare cosegregation analysis with in silico software and a proposed pathogenicity score. 204 consecutive positive tests were reviewed. 4 different in silico software programs were used. Spaendonck-Zwarts' pathogenicity score was also calculated. A total of 73 of the missense variants could be classified by the score as being likely or definitively pathogenic. A high percentage of nonsense variants were found in desmosomal genes and missense variants in sarcomeric genes. 36.3% of the missense variants in our cohort classified as very likely or definitively pathogenic were novel. Cosegregation analysis was positive in 19.5% and could be discarded in 15.6%. There was a significant discrepancy between the in silico tools used in the setting of inherited heart disease. Multiparametric scoring systems which include cosegregation and functional studies seem to perform better than individual prediction software.
Collapse
Affiliation(s)
- Esperanza García-Molina
- Cardiogenetics Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la ArrixacaMurcia (Spain)
- Department of Genetic and Microbiology, Murcia UniversityMurcia, Spain
| | - María Sabater-Molina
- Cardiogenetics Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la ArrixacaMurcia (Spain)
- Department of Genetic and Microbiology, Murcia UniversityMurcia, Spain
| | - David López-Cuenca
- Inherited Cardiac Disease Unit, Department of Cardiology, University Hospital Virgen de la ArrixacaMurcia, Spain
| | - María C Olmo
- Inherited Cardiac Disease Unit, Department of Cardiology, University Hospital Virgen de la ArrixacaMurcia, Spain
| | - Inmaculada Pérez
- Cardiogenetics Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la ArrixacaMurcia (Spain)
| | | | - Juan R Gimeno Blanes
- Inherited Cardiac Disease Unit, Department of Cardiology, University Hospital Virgen de la ArrixacaMurcia, Spain
- Department of Internal Medicine, Murcia UniversityMurcia, Spain
| |
Collapse
|
38
|
Hamdi Y, Ben Rekaya M, Jingxuan S, Nagara M, Messaoud O, Benammar Elgaaied A, Mrad R, Chouchane L, Boubaker MS, Abdelhak S, Boussen H, Romdhane L. A genome wide SNP genotyping study in the Tunisian population: specific reporting on a subset of common breast cancer risk loci. BMC Cancer 2018; 18:1295. [PMID: 30594178 PMCID: PMC6310952 DOI: 10.1186/s12885-018-5133-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background Breast cancer is the most common cancer in women worldwide. Around 50% of breast cancer familial risk has been so far explained by known susceptibility alleles with variable levels of risk and prevalence. The vast majority of these breast cancer associated variations reported to date are from populations of European ancestry. In spite of its heterogeneity and genetic wealth, North-African populations have not been studied by the HapMap and the 1000Genomes projects. Thus, very little is known about the genetic architecture of these populations. Methods This study aimed to investigate a subset of common breast cancer loci in the general Tunisian population and to compare their genetic composition to those of other ethnic groups. We undertook a genome-wide haplotype study by genotyping 135 Tunisian subjects using the Affymetrix 6.0-Array. We compared Tunisian allele frequencies and linkage disequilibrium patterns to those of HapMap populations and we performed a comprehensive assessment of the functional effects of several selected variants. Results Haplotype analyses showed that at risk haplotypes on 2p24, 4q21, 6q25, 9q31, 10q26, 11p15, 11q13 and 14q32 loci are considerably frequent in the Tunisian population (> 20%). Allele frequency comparison showed that the frequency of rs13329835 is significantly different between Tunisian and all other HapMap populations. LD-blocks and Principle Component Analysis revealed that the genetic characteristics of breast cancer variants in the Tunisian, and so probably the North-African populations, are more similar to those of Europeans than Africans. Using eQTl analysis, we characterized rs9911630 as the most strongly expression-associated SNP that seems to affect the expression levels of BRCA1 and two long non coding RNAs (NBR2 and LINC008854). Additional in-silico analysis also suggested a potential functional significance of this variant. Conclusions We illustrated the utility of combining haplotype analysis in diverse ethnic groups with functional analysis to explore breast cancer genetic architecture in Tunisia. Results presented in this study provide the first report on a large number of common breast cancer genetic polymorphisms in the Tunisian population which may establish a baseline database to guide future association studies in North Africa. Electronic supplementary material The online version of this article (10.1186/s12885-018-5133-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie.
| | - Mariem Ben Rekaya
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Shan Jingxuan
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Majdi Nagara
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Olfa Messaoud
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Mohamed Samir Boubaker
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Sonia Abdelhak
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Hamouda Boussen
- Medical Oncology Department, Abderrahmen Mami Hospital, Ariana, Tunisia
| | - Lilia Romdhane
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie.,Department of Biology, Faculty of Science of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| |
Collapse
|
39
|
Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, Chrismer IC, Zhang X, Cosgrove MM, Kuo A, Vasavada R, Jain MS, Waite M, Rajapakse D, Witherspoon JW, Wistow G, Meilleur KG. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol 2018; 265:2506-2524. [PMID: 30155738 PMCID: PMC6182665 DOI: 10.1007/s00415-018-9033-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/01/2023]
Abstract
Variants in the skeletal muscle ryanodine receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.
Collapse
Affiliation(s)
- Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA.
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Monique S Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Xuemin Zhang
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Ruhi Vasavada
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Waite
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Monogenic forms of diabetes have specific treatments that differ from the standard care provided for type 1 and type 2 diabetes, making the appropriate diagnosis essential. In this review, we discuss current clinical challenges that remain, including improving case-finding strategies, particularly those that have transethnic applicability, and understanding the interpretation of genetic variants as pathogenic, with clinically meaningful impacts. RECENT FINDINGS Biomarker approaches to the stratification for genetic testing now appear to be most effective in identifying cases of monogenic diabetes, and use of genetic risk scores may also prove useful. However, applicability in all ethnic groups is lacking. Challenges remain in the classification of genes as diabetes-causing and the interpretation of genetic variants at the clinical interface. Since the discovery that genetic defects can cause neonatal or young-onset diabetes, multiple causal genes have been identified and there have been many advances in strategies to detect genetic forms of diabetes and their treatments. Approaches learnt from monogenic diabetes are now being translated to polygenic diabetes.
Collapse
Affiliation(s)
- Shivani Misra
- Diabetes, Endocrinology & Metabolism, Imperial College London, Ground Floor Medical School, St Mary’s Campus, Norfolk Place, London, W2 1PG UK
| | - Katharine R. Owen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| |
Collapse
|
41
|
Choudhary RK, Siddiqui MQ, Gadewal N, Kumar NS, Kuligina ES, Varma AK. Biophysical evaluation to categorize pathogenicity of cancer-predisposing mutations identified in the BARD1 BRCT domain. RSC Adv 2018; 8:34056-34068. [PMID: 35548793 PMCID: PMC9086705 DOI: 10.1039/c8ra06524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
The BRCT domain of BARD1 (BARD1 BRCT) is involved in many cellular processes such as DNA damage repair (DDR) and cell-cycle checkpoint regulation. BARD1 BRCT performs tumor suppressor function by recruiting BRCA1 at DNA damage site via interactions with other DNA damage repair (DDR) proteins. Considering the importance of the BRCT domain in genomic integrity, we decided to evaluate reported mutations of BARD1 BRCT Cys645Arg, Val695Leu, and Ser761Asn for their pathogenicity. To explore the effect of the mutation on the structure and function, BARD1 BRCT wild-type proteins and the mutant proteins were studied using different biochemical, biophysical and in silico techniques. Comparative fluorescence, circular dichroism (CD) spectroscopy and limited proteolysis studies demonstrate the well-folded structural conformation of wild-type and mutant proteins. However, thermal and chemical denaturation studies revealed similarity in the folding pattern of BARD1 BRCT wild-type and Cys645Arg mutant proteins, whereas there was a significant loss in the thermodynamic stability of Val695Leu and Ser761Asn mutants. Molecular dynamics (MD) simulation studies on wild-type and mutant protein structures indicate the loss in structural integrity of mutants compared with the wild-type protein.
Collapse
Affiliation(s)
- Rajan Kumar Choudhary
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalem 91904Israel
| | - M. Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112,University of Nebraska Medical CentreOmahaNEUSA
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University)Aizawl – 796 004MizoramIndia
| | - Ekaterina S. Kuligina
- Laboratory of Molecular Oncology, Department of Tumor Growth Biology, N.N. Petrov Institute of OncologyRU-197758, Pesochny-2St.-PetersburgRussia
| | - Ashok K. Varma
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112,Homi Bhabha National Institute, Training School ComplexAnushaktinagarMumbai - 400 094India
| |
Collapse
|
42
|
Maresca L, Lodovichi S, Lorenzoni A, Cervelli T, Monaco R, Spugnesi L, Tancredi M, Falaschi E, Zavaglia K, Landucci E, Roncella M, Congregati C, Gadducci A, Naccarato AG, Caligo MA, Galli A. Functional Interaction Between BRCA1 and DNA Repair in Yeast May Uncover a Role of RAD50, RAD51, MRE11A, and MSH6 Somatic Variants in Cancer Development. Front Genet 2018; 9:397. [PMID: 30283497 PMCID: PMC6156519 DOI: 10.3389/fgene.2018.00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023] Open
Abstract
In this study, we determined if BRCA1 partners involved in DNA double-strand break (DSB) and mismatch repair (MMR) may contribute to breast and ovarian cancer development. Taking advantage the functional conservation of DNA repair pathways between yeast and human, we expressed several BRCA1 missense variants in DNA repair yeast mutants to identify functional interaction between BRCA1 and DNA repair in BRCA1-induced genome instability. The pathogenic p.C61G, pA1708E, p.M775R, and p.I1766S, and the neutral pS1512I BRCA1 variants increased intra-chromosomal recombination in the DNA-repair proficient strain RSY6. In the mre11, rad50, rad51, and msh6 deletion strains, the BRCA1 variants p.C61G, pA1708E, p.M775R, p.I1766S, and pS1215I did not increase intra-chromosomal recombination suggesting that a functional DNA repair pathway is necessary for BRCA1 variants to determine genome instability. The pathogenic p.C61G and p.I1766S and the neutral p.N132K, p.Y179C, and p.N550H variants induced a significant increase of reversion in the msh2Δ strain; the neutral p.Y179C and the pathogenic p.I1766S variant induced gene reversion also, in the msh6Δ strain. These results imply a functional interaction between MMR and BRCA1 in modulating genome instability. We also performed a somatic mutational screening of MSH6, RAD50, MRE11A, and RAD51 genes in tumor samples from 34 patients and identified eight pathogenic or predicted pathogenic rare missense variants: four in MSH6, one in RAD50, one in MRE11A, and two in RAD51. Although we found no correlation between BRCA1 status and these somatic DNA repair variants, this study suggests that somatic missense variants in DNA repair genes may contribute to breast and ovarian tumor development.
Collapse
Affiliation(s)
- Luisa Maresca
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy.,PhD Program in Clinical and Translational Sciences, University of Pisa, Pisa, Italy
| | - Alessandra Lorenzoni
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy
| | - Rossella Monaco
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Laura Spugnesi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Mariella Tancredi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Elisabetta Falaschi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Katia Zavaglia
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | | | | | - Caterina Congregati
- Department of Clinical and Experimental Medicine, Division of Internal Medicine, University Hospital of Pisa, Pisa, Italy
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University Hospital of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, University Hospital of Pisa, Pisa, Italy
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy
| |
Collapse
|
43
|
Fortuno C, James PA, Young EL, Feng B, Olivier M, Pesaran T, Tavtigian SV, Spurdle AB. Improved, ACMG-compliant, in silico prediction of pathogenicity for missense substitutions encoded by TP53 variants. Hum Mutat 2018; 39:1061-1069. [PMID: 29775997 PMCID: PMC6043381 DOI: 10.1002/humu.23553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023]
Abstract
Clinical interpretation of germline missense variants represents a major challenge, including those in the TP53 Li-Fraumeni syndrome gene. Bioinformatic prediction is a key part of variant classification strategies. We aimed to optimize the performance of the Align-GVGD tool used for p53 missense variant prediction, and compare its performance to other bioinformatic tools (SIFT, PolyPhen-2) and ensemble methods (REVEL, BayesDel). Reference sets of assumed pathogenic and assumed benign variants were defined using functional and/or clinical data. Area under the curve and Matthews correlation coefficient (MCC) values were used as objective functions to select an optimized protein multisequence alignment with best performance for Align-GVGD. MCC comparison of tools using binary categories showed optimized Align-GVGD (C15 cut-off) combined with BayesDel (0.16 cut-off), or with REVEL (0.5 cut-off), to have the best overall performance. Further, a semi-quantitative approach using multiple tiers of bioinformatic prediction, validated using an independent set of nonfunctional and functional variants, supported use of Align-GVGD and BayesDel prediction for different strength of evidence levels in ACMG/AMP rules. We provide rationale for bioinformatic tool selection for TP53 variant classification, and have also computed relevant bioinformatic predictions for every possible p53 missense variant to facilitate their use by the scientific and medical community.
Collapse
Affiliation(s)
- Cristina Fortuno
- QIMR Berghofer Medical Research Institute, Genetics and Computational Division, 300 Herston Rd, Herston QLD 4006, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital
| | - Erin L. Young
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Bing Feng
- Department of Dermatology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | | | - Sean V. Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Amanda B. Spurdle
- QIMR Berghofer Medical Research Institute, Genetics and Computational Division, 300 Herston Rd, Herston QLD 4006, Australia
| |
Collapse
|
44
|
Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism. Sci Rep 2018; 8:11330. [PMID: 30054523 PMCID: PMC6063891 DOI: 10.1038/s41598-018-29547-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
The human uptake transporter NaCT is important for human brain development, brain function and energy metabolism and mediates the uptake of citrate and other intermediates of the tricarboxylic acid cycle from blood into neurons and hepatocytes. Mutations in the SLC13A5 gene encoding NaCT are associated with epileptic encephalopathy. To gain more insights into the transport mechanisms we analyzed the functional consequences of mutations in the SLC13A5 gene on NaCT-mediated transport function. Using HEK293 cells expressing wild-type and eight mutated NaCT proteins, we investigated the mRNA and protein amount as well as the protein localization of all NaCT variants. Furthermore, the impact on NaCT-mediated citrate uptake was measured. In addition, a structural model of the transport pore was generated to rationalize the consequences of the mutations on a structural basis. We demonstrated that all proteins were synthesized with an identical molecular weight as the wild-type transporter but several mutations (NaCTp.G219R, −p.G219E, −p.T227M, −p.L420P and −p.L488P) lead to a complete loss of NaCT-mediated citrate transport. This loss of transport activity can be explained on the basis of the developed structural model. This model may help in the further elucidation of the transport mechanism of this important uptake transporter.
Collapse
|
45
|
Mercatanti A, Lodovichi S, Cervelli T, Galli A. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants. FEMS Yeast Res 2018; 17:4562592. [PMID: 29069390 DOI: 10.1093/femsyr/fox078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain localization and functional conservation between yeast and human, the selected variants are ranked by the RS. The RS is assigned by an algorithm that computes functional data, type of mutation, chemistry of amino acid substitution and the degree of mutation transferability between human and yeast protein. Mutations giving a positive RS are highly transferable to yeast and, therefore, yeast functional assays will be more predictable. To validate the web application, we have analyzed 8078 cancer-associated variants located in 31 genes that have a yeast homologue. More than 50% of variants are transferable to yeast. Incidentally, 88% of all transferable mutations have a reliability score >0. Moreover, we analyzed by CTY 72 functionally validated missense variants located in yeast genes at positions corresponding to the human cancer-associated variants. All these variants gave a positive RS. To further validate CTY, we analyzed 3949 protein variants (with positive RS) by the predictive algorithm PROVEAN. This analysis shows that yeast-based functional assays will be more predictable for the variants with positive RS. We believe that CTY could be an important resource for the cancer research community by providing information concerning the functional impact of specific mutations, as well as for the design of functional assays useful for decision support in precision medicine.
Collapse
Affiliation(s)
- Alberto Mercatanti
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, via G. Moruzzi 1, 56124 Pisa, Italy
- PhD program in Clinical and Translational Science, University of Pisa, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
46
|
Hamdi Y, Boujemaa M, Ben Rekaya M, Ben Hamda C, Mighri N, El Benna H, Mejri N, Labidi S, Daoud N, Naouali C, Messaoud O, Chargui M, Ghedira K, Boubaker MS, Mrad R, Boussen H, Abdelhak S. Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases. J Transl Med 2018; 16:158. [PMID: 29879995 PMCID: PMC5992876 DOI: 10.1186/s12967-018-1504-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. METHODS A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. RESULTS Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. CONCLUSIONS In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Houda El Benna
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nesrine Mejri
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Soumaya Labidi
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nouha Daoud
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Chokri Naouali
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - the PEC Consortium
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| |
Collapse
|
47
|
Renault AL, Mebirouk N, Fuhrmann L, Bataillon G, Cavaciuti E, Le Gal D, Girard E, Popova T, La Rosa P, Beauvallet J, Eon-Marchais S, Dondon MG, d'Enghien CD, Laugé A, Chemlali W, Raynal V, Labbé M, Bièche I, Baulande S, Bay JO, Berthet P, Caron O, Buecher B, Faivre L, Fresnay M, Gauthier-Villars M, Gesta P, Janin N, Lejeune S, Maugard C, Moutton S, Venat-Bouvet L, Zattara H, Fricker JP, Gladieff L, Coupier I, Chenevix-Trench G, Hall J, Vincent-Salomon A, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers. Breast Cancer Res 2018; 20:28. [PMID: 29665859 PMCID: PMC5905168 DOI: 10.1186/s13058-018-0951-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/05/2018] [Indexed: 01/23/2023] Open
Abstract
Background The ataxia telangiectasia mutated (ATM) gene is a moderate-risk breast cancer susceptibility gene; germline loss-of-function variants are found in up to 3% of hereditary breast and ovarian cancer (HBOC) families who undergo genetic testing. So far, no clear histopathological and molecular features of breast tumours occurring in ATM deleterious variant carriers have been described, but identification of an ATM-associated tumour signature may help in patient management. Methods To characterise hallmarks of ATM-associated tumours, we performed systematic pathology review of tumours from 21 participants from ataxia-telangiectasia families and 18 participants from HBOC families, as well as copy number profiling on a subset of 23 tumours. Morphology of ATM-associated tumours was compared with that of 599 patients with no BRCA1 and BRCA2 mutations from a hospital-based series, as well as with data from The Cancer Genome Atlas. Absolute copy number and loss of heterozygosity (LOH) profiles were obtained from the OncoScan SNP array. In addition, we performed whole-genome sequencing on four tumours from ATM loss-of-function variant carriers with available frozen material. Results We found that ATM-associated tumours belong mostly to the luminal B subtype, are tetraploid and show LOH at the ATM locus at 11q22–23. Unlike tumours in which BRCA1 or BRCA2 is inactivated, tumours arising in ATM deleterious variant carriers are not associated with increased large-scale genomic instability as measured by the large-scale state transitions signature. Losses at 13q14.11-q14.3, 17p13.2-p12, 21p11.2-p11.1 and 22q11.23 were observed. Somatic alterations at these loci may therefore represent biomarkers for ATM testing and harbour driver mutations in potentially ‘druggable’ genes that would allow patients to be directed towards tailored therapeutic strategies. Conclusions Although ATM is involved in the DNA damage response, ATM-associated tumours are distinct from BRCA1-associated tumours in terms of morphological characteristics and genomic alterations, and they are also distinguishable from sporadic breast tumours, thus opening up the possibility to identify ATM variant carriers outside the ataxia-telangiectasia disorder and direct them towards effective cancer risk management and therapeutic strategies. Electronic supplementary material The online version of this article (10.1186/s13058-018-0951-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Laure Renault
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Noura Mebirouk
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | | | - Eve Cavaciuti
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Dorothée Le Gal
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Elodie Girard
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Tatiana Popova
- Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,INSERM U830, Paris, France
| | - Philippe La Rosa
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Juana Beauvallet
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Séverine Eon-Marchais
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | | | - Walid Chemlali
- Unité de Pharmacogénomique, Institut Curie, Paris, France
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Martine Labbé
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Ivan Bièche
- Unité de Pharmacogénomique, Institut Curie, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Pascaline Berthet
- Unité de Pathologie Gynécologique, Centre François Baclesse, Caen, France
| | - Olivier Caron
- Service d'Oncologie Génétique, Gustave Roussy, Villejuif, France
| | | | - Laurence Faivre
- Institut GIMI, CHU de Dijon, Hôpital d'Enfants, Dijon, France.,Oncogénétique, Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France
| | - Marc Fresnay
- Département d'Hématologie et d'Oncologie Médicale, CLCC Antoine Lacassagne, Nice, France
| | | | - Paul Gesta
- Service d'Oncogénétique Régional Poitou-Charentes, Centre Hospitalier Georges-Renon, Niort, France
| | - Nicolas Janin
- Service de Génétique, Clinique Universitaire Saint-Luc, Brussels, Belgium
| | - Sophie Lejeune
- Service de Génétique Clinique Guy Fontaine, Hôpital Jeanne de Flandre, Lille, France
| | - Christine Maugard
- Laboratoire de Diagnostic Génétique, UF1422 Oncogénétique Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Oncogénétique Evaluation familiale et suivi, UF6948 Oncogénétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sébastien Moutton
- Laboratoire Maladies Rares: Génétique et Métabolisme, CHU de Bordeaux-GH Pellegrin, Bordeaux, France
| | | | - Hélène Zattara
- Département de Génétique, Hôpital de la Timone, Marseille, France
| | | | | | - Isabelle Coupier
- Service de Génétique Médicale et Oncogénétique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France.,Unité d'Oncogénétique, ICM Val d'Aurelle, Montpellier, France
| | | | | | | | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janet Hall
- UMR INSERM 1052, Lyon, France.,CNRS 5286, Lyon, France.,Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Dominique Stoppa-Lyonnet
- INSERM U830, Paris, France.,Service de Génétique, Institut Curie, Paris, France.,Université Paris Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Fabienne Lesueur
- INSERM, U900, Paris, France. .,Institut Curie, Paris, France. .,Mines Paris Tech, Fontainebleau, France. .,PSL Research University, Paris, France.
| |
Collapse
|
48
|
Giau VV, Bagyinszky E, An SSA, Kim S. Clinical genetic strategies for early onset neurodegenerative diseases. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0015-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Bradshaw G, Lualhati RR, Albury CL, Maksemous N, Roos-Araujo D, Smith RA, Benton MC, Eccles DA, Lea RA, Sutherland HG, Haupt LM, Griffiths LR. Exome Sequencing Diagnoses X-Linked Moesin-Associated Immunodeficiency in a Primary Immunodeficiency Case. Front Immunol 2018; 9:420. [PMID: 29556235 PMCID: PMC5845094 DOI: 10.3389/fimmu.2018.00420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background We investigated the molecular etiology of a young male proband with confirmed immunodeficiency of unknown cause, presenting with recurrent bacterial and Varicella zoster viral infections in childhood and persistent lymphopenia into early adulthood. Aim To identify causative functional genetic variants related to an undiagnosed primary immunodeficiency. Method Whole genome microarray copy number variant (CNV) analysis was performed on the proband followed by whole exome sequencing (WES) and trio analysis of the proband and family members. A >4 kbp deletion identified by repeated CNV analysis of exome sequencing data along with three damaging missense single nucleotide variants were validated by Sanger sequencing in all family members. Confirmation of the causative role of the candidate gene was performed by qPCR and Western Blot analyses on the proband, family members and a healthy control. Results CNV identified our previously reported interleukin 25 amplification in the proband; however, the variant was not validated to be a candidate gene for immunodeficiency. WES trio analysis, data filtering and in silico prediction identified a novel, damaging (SIFT: 0; Polyphen 1; Grantham score: 101) and disease-causing (MutationTaster) single base mutation in the X chromosome (c.511C > T p.Arg171Trp) MSN gene not identified in the UCSC Genome Browser database. The mutation was validated by Sanger sequencing, confirming the proband was hemizygous X-linked recessive (–/T) at this locus and inherited the affected T allele from his non-symptomatic carrier mother (C/T), with other family members (father, sister) confirmed to be wild type (C/C). Western Blot analysis demonstrated an absence of moesin protein in lymphocytes derived from the proband, compared with normal expression in lymphocytes derived from the healthy control, father and mother. qPCR identified significantly lower MSN mRNA transcript expression in the proband compared to an age- and sex-matched healthy control subject in whole blood (p = 0.02), and lymphocytes (p = 0.01). These results confirmed moesin deficiency in the proband, directly causative of his immunodeficient phenotype. Conclusion These findings confirm X-linked moesin-associated immunodeficiency in a proband previously undiagnosed up to 24 years of age. This study also highlights the utility of WES for the diagnosis of rare or novel forms of primary immunodeficiency disease.
Collapse
Affiliation(s)
- Gabrielle Bradshaw
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robbie R Lualhati
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Neven Maksemous
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Deidre Roos-Araujo
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert A Smith
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Miles C Benton
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - David A Eccles
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod A Lea
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Han JY, Jang JH, Park J, Lee IG. Targeted Next-Generation Sequencing of Korean Patients With Developmental Delay and/or Intellectual Disability. Front Pediatr 2018; 6:391. [PMID: 30631761 PMCID: PMC6315160 DOI: 10.3389/fped.2018.00391] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Differential diagnosis of developmental delay (DD) and/or intellectual disability (ID) is challenging because of the diversity of phenotypic manifestations as DD/ID patients usually have combined congenital malformations, autism-spectrum disorders, and/or seizure disorder. Thus, unbiased genomic approaches are needed to discover genetic alterations leading to DD and/or ID. Objective: The aim of this study was to investigate the clinical usefulness of targeted next-generation sequencing (NGS) to investigate genetic causes in 35 Korean patients with unexplained DD/ID. Methods: Targeted next-generation sequencing (NGS) using the TruSight One Panel was analyzed in 35 patients with unexplained DD/ID. Sanger sequencing was used to confirm candidate variants, and to define genetic inheritance mode of candidate variant as familial segregation testing. Results: Of 35 patients with DD and/or ID, 10 were found to have underlying genetic etiology and carried X-linked recessive inheritance of ZDHHC9 or autosomal dominant inheritance of SMARCB1, CHD8, LAMA5, NSD1, PAX6, CACNA1H, MBD5, FOXP1, or KCNK18 mutations. No autosomal recessive inherited mutation was identified in this study. As a result, the diagnostic yield of DD/ID by targeted NGS was 29% (10/35), mostly involving may be de novo mutation present in the proband only. A total of seven may be de novo mutations, one paternally inherited, and one maternally inherited mutations that had been reported previously to concede the genetic pathogenesis as known DD and/or ID genes were found in nine patients with available inheritance pattern except LAMA5. Mutations in nine causative genes were detected in patients with similar DD/ID phenotypes in the OMIM database, providing support for genetic evidence as the cause of DD and/or ID. Conclusion: Targeted NGS through singleton analysis with phenotype-first approaches was able to explain 10 out of 35 DD/ID cases. However, the excavation of plausible genetic causes may be de novo, and X-linked disease-causative variants in DD/ID-associated genes requires further genetic analysis.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ja Hyun Jang
- Department of Laboratory Medicine, Green Cross Genome, Yongin, South Korea
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|