1
|
Xu R, Ning Y, Ren F, Gu C, Zhu Z, Pan X, Pshezhetsky AV, Ge J, Yu J. Structure and mechanism of lysosome transmembrane acetylation by HGSNAT. Nat Struct Mol Biol 2024; 31:1502-1508. [PMID: 38769387 DOI: 10.1038/s41594-024-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Lysosomal transmembrane acetylation of heparan sulfates (HS) is catalyzed by HS acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), whose dysfunction leads to lysosomal storage diseases. The mechanism by which HGSNAT, the sole non-hydrolase enzyme in HS degradation, brings cytosolic acetyl-coenzyme A (Ac-CoA) and lysosomal HS together for N-acyltransferase reactions remains unclear. Here, we present cryogenic-electron microscopy structures of HGSNAT alone, complexed with Ac-CoA and with acetylated products. These structures explain that Ac-CoA binding from the cytosolic side causes dimeric HGSNAT to form a transmembrane tunnel. Within this tunnel, catalytic histidine and asparagine approach the lumen and instigate the transfer of the acetyl group from Ac-CoA to the glucosamine group of HS. Our study unveils a transmembrane acetylation mechanism that may help advance therapeutic strategies targeting lysosomal storage diseases.
Collapse
Affiliation(s)
- Ruisheng Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chenxia Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | - Jingpeng Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jie Yu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
2
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). eLife 2024; 13:RP93510. [PMID: 39196614 DOI: 10.7554/elife.93510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, United States
| | - Jaimin K Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, United States
| |
Collapse
|
3
|
Zhao B, Cao Z, Zheng Y, Nguyen P, Bowen A, Edwards RH, Stroud RM, Zhou Y, Van Lookeren Campagne M, Li F. Structural and mechanistic insights into a lysosomal membrane enzyme HGSNAT involved in Sanfilippo syndrome. Nat Commun 2024; 15:5388. [PMID: 38918376 PMCID: PMC11199644 DOI: 10.1038/s41467-024-49614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Heparan sulfate (HS) is degraded in lysosome by a series of glycosidases. Before the glycosidases can act, the terminal glucosamine of HS must be acetylated by the integral lysosomal membrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT). Mutations of HGSNAT cause HS accumulation and consequently mucopolysaccharidosis IIIC, a devastating lysosomal storage disease characterized by progressive neurological deterioration and early death where no treatment is available. HGSNAT catalyzes a unique transmembrane acetylation reaction where the acetyl group of cytosolic acetyl-CoA is transported across the lysosomal membrane and attached to HS in one reaction. However, the reaction mechanism remains elusive. Here we report six cryo-EM structures of HGSNAT along the reaction pathway. These structures reveal a dimer arrangement and a unique structural fold, which enables the elucidation of the reaction mechanism. We find that a central pore within each monomer traverses the membrane and controls access of cytosolic acetyl-CoA to the active site at its luminal mouth where glucosamine binds. A histidine-aspartic acid catalytic dyad catalyzes the transfer reaction via a ternary complex mechanism. Furthermore, the structures allow the mapping of disease-causing variants and reveal their potential impact on the function, thus creating a framework to guide structure-based drug discovery efforts.
Collapse
Affiliation(s)
- Boyang Zhao
- Amgen Research, Department of Structural biology, South San Francisco, CA, USA
| | - Zhongzheng Cao
- Amgen Research, Department of Inflammation, South San Francisco, CA, USA
| | - Yi Zheng
- Amgen Research, Department of Discovery Protein Science, South San Francisco, CA, USA
| | - Phuong Nguyen
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Laboratory for Genomics Research, UCSF School of Medicine, San Francisco, CA, USA
| | - Alisa Bowen
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Adanate, Alameda, CA, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Yi Zhou
- Amgen Research, Department of Inflammation, South San Francisco, CA, USA
| | | | - Fei Li
- Amgen Research, Department of Structural biology, South San Francisco, CA, USA.
| |
Collapse
|
4
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563672. [PMID: 37961489 PMCID: PMC10634761 DOI: 10.1101/2023.10.23.563672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of a-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-a-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal a-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in HGSNAT catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Jaimin K. Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
5
|
da Palma MM, Marra M, Igelman AD, Ku CA, Burr A, Andersen K, Everett LA, Porto FBO, Sallum JMF, Yang P, Pennesi ME. Expanding the phenotypic and genotypic spectrum of patients with HGSNAT-related retinopathy. Ophthalmic Genet 2024; 45:167-174. [PMID: 37592806 DOI: 10.1080/13816810.2023.2245035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Variants in HGSNAT have historically been associated with syndromic mucopolysaccharidosis type IIIC (MPSIIIC) but more recent studies demonstrate cases of HGSNAT-related non-syndromic retinitis pigmentosa. We describe and expand the genotypic and phenotypic spectrum of this disease. MATERIALS AND METHODS This is a retrospective, observational, case series of 11 patients with pericentral retinitis pigmentosa due to variants in HGSNAT gene without a syndromic diagnosis of MPSIIIC. We reviewed ophthalmologic data extracted from medical records, genetic testing, color fundus photos, fundus autofluorescence (FAF), and optical coherence tomography (OCT). RESULTS Of the 11 patients, the mean age was 52 years (range: 26-78). The mean age of ophthalmologic symptoms onset was 45 years (range: 15-72). The visual acuity varied from 20/20 to 20/80 (mean 20/30 median 20/20). We described five novel variants in HGSNAT: c.715del (p.Arg239Alafs *37), c.118 G>A (p.Asp40Asn), c.1218_1220delinsTAT, c.1297A>G (p.Asn433Asp), and c.1726 G>T (p.Gly576*). CONCLUSIONS HGSNAT has high phenotypic heterogeneity. Data from our cohort showed that all patients who had at least one variant of c.1843 G>A (p.Ala615Thr) presented with the onset of ocular symptoms after the fourth decade of life. The two patients with onset of ocular symptoms before the fourth decade did not carry this variant. This may suggest that c.1843 G>A variant is associated with a later onset of retinopathy.
Collapse
Affiliation(s)
- Mariana Matioli da Palma
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Ophthalmology and Visual Sciences, Universidade Federal de São Paulo Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
- Department of Surgery & Hospital Clinic of Barcelona, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Austin D Igelman
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Cristy A Ku
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California, USA
| | - Amanda Burr
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Katherine Andersen
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Lesley A Everett
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences, Universidade Federal de São Paulo Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
6
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
7
|
Carvelli L, Hermo L, O’Flaherty C, Oko R, Pshezhetsky AV, Morales CR. Effects of Heparan sulfate acetyl-CoA: Alpha-glucosaminide N-acetyltransferase (HGSNAT) inactivation on the structure and function of epithelial and immune cells of the testis and epididymis and sperm parameters in adult mice. PLoS One 2023; 18:e0292157. [PMID: 37756356 PMCID: PMC10529547 DOI: 10.1371/journal.pone.0292157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.
Collapse
Affiliation(s)
- Lorena Carvelli
- IHEM-CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Cristian O’Flaherty
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Surgery (Urology Division), McGill University, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Alexey V. Pshezhetsky
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Gul R, Firasat S, Schubert M, Ullah A, Peña E, Thuesen ACB, Gjesing AP, Hussain M, Tufail M, Saqib M, Afshan K, Hansen T. Identification of genetic variants associated with a wide spectrum of phenotypes clinically diagnosed as Sanfilippo and Morquio syndromes using whole genome sequencing. Front Genet 2023; 14:1254909. [PMID: 37772257 PMCID: PMC10524275 DOI: 10.3389/fgene.2023.1254909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders (LSDs). MPSs are caused by excessive accumulation of mucopolysaccharides due to missing or deficiency of enzymes required for the degradation of specific macromolecules. MPS I-IV, MPS VI, MPS VII, and MPS IX are sub-types of mucopolysaccharidoses. Among these, MPS III (also known as Sanfilippo) and MPS IV (Morquio) syndromes are lethal and prevalent sub-types. This study aimed to identify causal genetic variants in cases of MPS III and MPS IV and characterize genotype-phenotype relations in Pakistan. We performed clinical, biochemical and genetic analysis using Whole Genome Sequencing (WGS) in 14 Pakistani families affected with MPS III or MPS IV. Patients were classified into MPS III by history of aggressive behaviors, dementia, clear cornea and into MPS IV by short trunk, short stature, reversed ratio of upper segment to lower segment with a short upper segment. Data analysis and variant selections were made based on segregation analysis, examination of known MPS III and MPS IV genes, gene function, gene expression, the pathogenicity of variants based on ACMG guidelines and in silico analysis. In total, 58 individuals from 14 families were included in the present study. Six families were clinically diagnosed with MPS III and eight families with MPS IV. WGS revealed variants in MPS-associated genes including NAGLU, SGSH, GALNS, GNPTG as well as the genes VWA3B, BTD, and GNPTG which have not previously associated with MPS. One family had causal variants in both GALNS and BTD. Accurate and early diagnosis of MPS in children represents a helpful step for designing therapeutic strategies to protect different organs from permanent damage. In addition, pre-natal screening and identification of genetic etiology will facilitate genetic counselling of the affected families. Identification of novel causal MPS genes might help identifying new targeted therapies to treat LSDs.
Collapse
Affiliation(s)
- Rutaba Gul
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elionora Peña
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne C. B. Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annete P. Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mulazim Hussain
- The Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Muhammad Tufail
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saqib
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Kiran Afshan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Carrera W, Ng C, Burckhard B, Ng J, McDonald HR, Agarwal A. NONSYNDROMIC RETINITIS PIGMENTOSA WITH BILATERAL RETINAL NEOVASCULARIZATION DUE TO HGSNAT MUTATION. Retin Cases Brief Rep 2023; 17:348-351. [PMID: 34580245 DOI: 10.1097/icb.0000000000001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe a case of nonsyndromic retinitis pigmentosa caused by presumed compound heterozygous A615T and T522M mutations in HGSNAT, characterized by bilateral cystoid macular edema and retinal neovascularization. METHODS Case report. The patient underwent clinical evaluation, multimodal imaging, and next-generation panel sequencing. In silico analysis was performed with PolyPhen-2, SIFT, and MutationTaster. Segregation analysis was not available. RESULTS A 35-year-old hypertensive man presented with nyctalopia, photopsia, and difficulty reading for six months. He had no family history of visual deficits. The best-corrected visual acuity was 20/25 in the right eye and 20/20 in the left eye. Examination revealed midperipheral bone spicules and macular neovascularization in both eyes. Multimodal imaging demonstrated cystoid macular edema, ellipsoid band loss outside the central macula, and leakage from the neovascularization in both eyes. Sequencing detected four mutations in three genes, including two heterozygous mutations in HGSNAT (c.1843G>A, p.A615T and c.1565C>T, p.T522M). A615T is a pathogenic, hypomorphic mutation. T522M has not been previously phenotypically described. It is predicted damaging by in silico analysis and occurs at a conserved position near the eighth transmembrane domain, adjacent to residues in which missense mutations result in protein misfolding. CONCLUSION This is, to the best of our knowledge, the first reported case of retinal neovascularization in a case of nonsyndromic retinitis pigmentosa due to HGSNAT mutation. The T522M variant likely functions as a severe mutation alongside the hypomorphic A615T mutation. These findings expand the genotypic and phenotypic spectrum of nonsyndromic retinitis pigmentosa.
Collapse
Affiliation(s)
- William Carrera
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, California; and
| | - Caleb Ng
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, California; and
- West Coast Retina Group, San Francisco, California
| | - Braden Burckhard
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, California; and
- West Coast Retina Group, San Francisco, California
| | - Joshua Ng
- West Coast Retina Group, San Francisco, California
| | - Henry Richard McDonald
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, California; and
- West Coast Retina Group, San Francisco, California
| | - Anita Agarwal
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, California; and
- West Coast Retina Group, San Francisco, California
| |
Collapse
|
10
|
Pan X, Taherzadeh M, Bose P, Heon-Roberts R, Nguyen AL, Xu T, Pará C, Yamanaka Y, Priestman DA, Platt FM, Khan S, Fnu N, Tomatsu S, Morales CR, Pshezhetsky AV. Glucosamine amends CNS pathology in mucopolysaccharidosis IIIC mouse expressing misfolded HGSNAT. J Exp Med 2022; 219:e20211860. [PMID: 35704026 PMCID: PMC9204472 DOI: 10.1084/jem.20211860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023] Open
Abstract
The majority of mucopolysaccharidosis IIIC (MPS IIIC) patients have missense variants causing misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), which are potentially treatable with pharmacological chaperones. To test this approach, we generated a novel HgsnatP304L mouse model expressing misfolded HGSNAT Pro304Leu variant. HgsnatP304L mice present deficits in short-term and working/spatial memory 2-4 mo earlier than previously described constitutive knockout Hgsnat-Geo mice. HgsnatP304L mice also show augmented severity of neuroimmune response, synaptic deficits, and neuronal storage of misfolded proteins and gangliosides compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat-Geo neurons further reduced levels of synaptic proteins. Memory deficits and majority of brain pathology were rescued in mice receiving HGSNAT chaperone, glucosamine. Our data for the first time demonstrate dominant-negative effects of misfolded HGSNAT Pro304Leu variant and show that they are treatable by oral administration of glucosamine. This suggests that patients affected with mutations preventing normal folding of the enzyme can benefit from chaperone therapy.
Collapse
Affiliation(s)
- Xuefang Pan
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Mahsa Taherzadeh
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Poulomee Bose
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Rachel Heon-Roberts
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Annie L.A. Nguyen
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - TianMeng Xu
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Camila Pará
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | | | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Nidhi Fnu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Kim MS, Yang A, Noh ES, Kim C, Bae GY, Lim HH, Park HD, Cho SY, Jin DK. Natural History and Molecular Characteristics of Korean Patients with Mucopolysaccharidosis Type III. J Pers Med 2022; 12:jpm12050665. [PMID: 35629088 PMCID: PMC9145712 DOI: 10.3390/jpm12050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Mucopolysaccharidosis type III (MPS III) is an autosomal recessive lysosomal storage disorder characterised by progressive neurocognitive deterioration. MPS III subtypes are clinically indistinguishable, with a wide range of symptoms and variable severity. The natural history of this disorder within an Asian population has not yet been extensively studied. This study investigated the natural history of Korean patients with MPS III. Methods: Thirty-four patients from 31 families diagnosed with MPS III from January 1997 to May 2020 in Samsung Medical Centre were enrolled. Clinical, molecular, and biochemical characteristics were retrospectively collected from the patients’ medical records and via interviews. Results: 18 patients had MPS IIIA, 14 had IIIB, and two had IIIC. Twenty (58.9%) patients were male. Mean age at symptom onset was 2.8 ± 0.8 years and at diagnosis was 6.3 ± 2.2 years. All patients with MPS IIIA and IIIB were classified into the rapidly progressing (RP) phenotype. The most common symptom at diagnosis was language retardation (88.2%), followed by motor retardation (76.5%), general retardation (64.7%), and hyperactivity (41.2%). Language retardation was more predominant in IIIA, and motor retardation was more predominant in IIIB. The mean age of the 13 deceased patients at the time of the study was 14.4 ± 4.1 years. The age at diagnosis and lag time were significantly older and longer in the non-survivor group compared with the survivor group (p = 0.029 and 0.045, respectively). Genetic analysis was performed in 24 patients with MPS III and identified seven novel variants and three hot spots. Conclusion: This study is the first to analyse the genetic and clinical characteristics of MPS III patients in Korea. Better understanding of the natural history of MPS III might allow early diagnosis and timely management of the disease and evaluation of treatment outcomes in future clinical trials for MPS III.
Collapse
Affiliation(s)
- Min-Sun Kim
- Department of Pediatrics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.K.); (E.-s.N.); (G.Y.B.); (D.-K.J.)
| | - Aram Yang
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Eu-seon Noh
- Department of Pediatrics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.K.); (E.-s.N.); (G.Y.B.); (D.-K.J.)
| | - Chiwoo Kim
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea;
| | - Ga Young Bae
- Department of Pediatrics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.K.); (E.-s.N.); (G.Y.B.); (D.-K.J.)
| | - Han Hyuk Lim
- Department of Pediatrics, Chungnam National University College of Medicine, Daejeon 35015, Korea;
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.K.); (E.-s.N.); (G.Y.B.); (D.-K.J.)
- Correspondence: ; Tel.: +82-2-3410-3539; Fax: +82-2-3410-0043
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.K.); (E.-s.N.); (G.Y.B.); (D.-K.J.)
| |
Collapse
|
12
|
Sabitha KR, Chandran D, Shetty AK, Upadhya D. Delineating the neuropathology of lysosomal storage diseases using patient-derived induced pluripotent stem cells. Stem Cells Dev 2022; 31:221-238. [PMID: 35316126 DOI: 10.1089/scd.2021.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSD) are inherited metabolic diseases caused due to deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of iPSC technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood brain barrier dysfunction, neurodegeneration, gliosis, altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation corrected lines identified using patient-derived iPSCs for different LSDs.
Collapse
Affiliation(s)
- K R Sabitha
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Divya Chandran
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Ashok K Shetty
- Texas A&M University College Station, 14736, College of Medicine, Institute for Regenerative Medicine, College Station, Texas, United States;
| | - Dinesh Upadhya
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| |
Collapse
|
13
|
Shapiro EG, Eisengart JB. The natural history of neurocognition in MPS disorders: A review. Mol Genet Metab 2021; 133:8-34. [PMID: 33741271 DOI: 10.1016/j.ymgme.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023]
Abstract
MPS disorders are associated with a wide spectrum of neurocognitive effects, from mild problems with attention and executive functions to progressive and degenerative neuronopathic disease. Studies of the natural history of neurocognition are necessary to determine the profile of abnormality and the rates of change, which are crucial to select endpoints for clinical trials of brain treatments and to make clinical recommendations for interventions to improve patients' quality of life. The goal of this paper is to review neurocognitive natural history studies to determine the current state of knowledge and assist in directing future research in all MPS disorders. There are seven different types of MPS diseases, each resulting from a specific enzyme deficiency and each having a separate natural history. MPS IX, will not be discussed as there are only 4 cases reported in the literature without cognitive abnormality. For MPS IH, hematopoietic cell transplant (HCT) is standard of care and many studies have documented the relationship between age at treatment and neurocognitive outcome, and to a lesser extent, neurocognitive status at baseline. However, the mortality and morbidity associated with the transplant process and residual long-term problems after transplant, have led to renewed efforts to find better treatments. Rather than natural history, new trials will likely need to use the developmental trajectories of the patients with HCT as a comparators. The literature has extensive data regarding developmental trajectories post-HCT. For attenuated MPS I, significant neurocognitive deficits have been documented, but more longitudinal data are needed in order to support a treatment directed at their attention and executive function abnormalities. The neuronopathic form of MPS II has been a challenge due to the variability of the trajectory of the disease with differences in timing of slowing of development and decline. Finding predictors of the course of the disease has only been partially successful, using mutation type and family history. Because of lack of systematic data and clinical trials that precede a thorough understanding of the disease, there is need for a major effort to gather natural history data on the entire spectrum of MPS II. Even in the attenuated disease, attention and executive function abnormalities need documentation. Lengthy detailed longitudinal studies are needed to encompass the wide variability in MPS II. In MPS IIIA, the existence of three good natural history studies allowed a quasi-meta-analysis. In patients with a rapid form of the disease, neurocognitive development slowed up until 42 to 47 months, halted up to about 54 months, then declined rapidly thereafter, with a leveling off at an extremely low age equivalent score below 22 months starting at about chronological age of 6. Those with slower or attenuated forms have been more variable and difficult to characterize. Because of the plethora of studies in IIIA, it has been recommended that data be combined from natural history studies to minimize the burden on parents and patients. Sufficient data exists to understand the natural history of cognition in MPS IIIA. MPS IIIB is quite similar to IIIA, but more attenuated patients in that phenotype have been reported. MPS IIIC and D, because they are so rare, have little documentation of natural history despite the prospects of treatments. MPS IV and VI are the least well documented of the MPS disorders with respect to their neurocognitive natural history. Because, like attenuated MPS I and II, they do not show progression of neurocognitive abnormality and most patients function in the range of normality, their behavioral, attentional, and executive function abnormalities have been ignored to the detriment of their quality of life. A peripheral treatment for MPS VII, extremely rare even among MPS types, has recently been approved with a post-approval monitoring system to provide neurocognitive natural history data in the future. More natural history studies in the MPS forms with milder cognitive deficits (MPS I, II, IV, and VI) are recommended with the goal of improving these patients' quality of life with and without new brain treatments, beyond the benefits of available peripheral enzyme replacement therapy. Recommendations are offered at-a-glance with respect to what areas most urgently need attention to clarify neurocognitive function in all MPS types.
Collapse
Affiliation(s)
- Elsa G Shapiro
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Shapiro Neuropsychology Consulting LLC, Portland, OR, USA.
| | - Julie B Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Epidemiology of Mucopolysaccharidoses Update. Diagnostics (Basel) 2021; 11:diagnostics11020273. [PMID: 33578874 PMCID: PMC7916572 DOI: 10.3390/diagnostics11020273] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed. Saudi Arabia provided the highest frequency of overall MPS because of regional or consanguineous marriages (or founder effect), followed by Portugal, Brazil, the Netherlands, and Australia. The newborn screening is an efficient and early diagnosis for MPS. MPS I has been approved for newborn screening in the United States. After the newborn screening of MPS I, the frequency of MPS I increased, compared with the past incidence rates. Overall, we conclude that the current identification methods are not enough to recognize all MPS patients, leading to an inaccurate incidence and status. Differences in ethnic background and/or founder effects impact on the frequency of MPS, which affects the prevalence of MPS. Two-tier newborn screening has accelerated early recognition of MPS I, providing an accurate incidence of patients.
Collapse
|
15
|
Schiff ER, Daich Varela M, Robson AG, Pierpoint K, Ba-Abbad R, Nutan S, Zein WM, Ullah E, Huryn LA, Tuupanen S, Mahroo OA, Michaelides M, Burke D, Harvey K, Arno G, Hufnagel RB, Webster AR. A genetic and clinical study of individuals with nonsyndromic retinopathy consequent upon sequence variants in HGSNAT, the gene associated with Sanfilippo C mucopolysaccharidosis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:631-643. [PMID: 32770643 PMCID: PMC8125330 DOI: 10.1002/ajmg.c.31822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 11/06/2022]
Abstract
Pathogenic variants in the gene HGSNAT (heparan-α-glucosaminide N-acetyltransferase) have been reported to underlie two distinct recessive conditions, depending on the specific genotype, mucopolysaccharidosis type IIIC (MPSIIIC)-a severe childhood-onset lysosomal storage disorder, and adult-onset nonsyndromic retinitis pigmentosa (RP). Here we describe the largest cohort to-date of HGSNAT-associated nonsyndromic RP patients, and describe their retinal phenotype, leukocyte enzymatic activity, and likely pathogenic genotypes. We identified biallelic HGSNAT variants in 17 individuals (15 families) as the likely cause of their RP. None showed any other symptoms of MPSIIIC. All had a mild but significant reduction of HGSNAT enzyme activity in leukocytes. The retinal condition was generally of late-onset, showing progressive degeneration of a concentric area of paramacular retina, with preservation but reduced electroretinogram responses. Symptoms, electrophysiology, and imaging suggest the rod photoreceptor to be the cell initially compromised. HGSNAT enzymatic testing was useful in resolving diagnostic dilemmas in compatible patients. We identified seven novel sequence variants [p.(Arg239Cys); p.(Ser296Leu); p.(Phe428Cys); p.(Gly248Ala); p.(Gly418Arg), c.1543-2A>C; c.1708delA], three of which were considered to be retina-disease-specific alleles. The most prevalent retina-disease-specific allele p.(Ala615Thr) was observed heterozygously or homozygously in 8 and 5 individuals respectively (7 and 4 families). Two siblings in one family, while identical for the HGSNAT locus, but discordant for retinal disease, suggest the influence of trans-acting genetic or environmental modifying factors.
Collapse
Affiliation(s)
- Elena R Schiff
- Genetics Service, Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - Malena Daich Varela
- Ophthalmic Genetics and Visual Function branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony G Robson
- UCL Institute of Ophthalmology, London, UK.,Department of Electrophysiology, Moorfields Eye Hospital, London, UK
| | | | - Rola Ba-Abbad
- Genetics Service, Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - Savita Nutan
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Omar A Mahroo
- Genetics Service, Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK.,Section of Ophthalmology, King's College London, London, UK
| | - Michel Michaelides
- Genetics Service, Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - Derek Burke
- Enzyme Unit, Chemical Pathology, Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Katie Harvey
- Enzyme Unit, Chemical Pathology, Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Gavin Arno
- Genetics Service, Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK.,North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew R Webster
- Genetics Service, Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
16
|
Long Y, Li S, Dai L, Liu X, Yin X, Ren J, Guo H, Liu Y, Meng X, Li S. Nonsyndromic retinitis pigmentosa caused by two novel variants in the HGSNAT gene in a Chinese family. Ophthalmic Genet 2020; 41:390-393. [PMID: 32347150 DOI: 10.1080/13816810.2020.1755986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanling Long
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| | - Sha Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| | - Xin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| | - Jiayun Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, Third Military Medical University (Army Medical University) , Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University) , Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing , Chongqing, China
| |
Collapse
|
17
|
Heon-Roberts R, Nguyen ALA, Pshezhetsky AV. Molecular Bases of Neurodegeneration and Cognitive Decline, the Major Burden of Sanfilippo Disease. J Clin Med 2020; 9:jcm9020344. [PMID: 32012694 PMCID: PMC7074161 DOI: 10.3390/jcm9020344] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of diseases caused by the lysosomal accumulation of glycosaminoglycans, due to genetic deficiencies of enzymes involved in their degradation. MPS III or Sanfilippo disease, in particular, is characterized by early-onset severe, progressive neurodegeneration but mild somatic involvement, with patients losing milestones and previously acquired skills as the disease progresses. Despite being the focus of extensive research over the past years, the links between accumulation of the primary molecule, the glycosaminoglycan heparan sulfate, and the neurodegeneration seen in patients have yet to be fully elucidated. This review summarizes the current knowledge on the molecular bases of neurological decline in Sanfilippo disease. It emerges that this deterioration results from the dysregulation of multiple cellular pathways, leading to neuroinflammation, oxidative stress, impaired autophagy and defects in cellular signaling. However, many important questions about the neuropathological mechanisms of the disease remain unanswered, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Rachel Heon-Roberts
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (R.H.-R.); (A.L.A.N.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Annie L. A. Nguyen
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (R.H.-R.); (A.L.A.N.)
- Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (R.H.-R.); (A.L.A.N.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Paediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
- Correspondence: ; Tel.: +1-(514)-345-4931 (ext. 2736)
| |
Collapse
|
18
|
Martins C, de Medeiros PFV, Leistner-Segal S, Dridi L, Elcioglu N, Wood J, Behnam M, Noyan B, Lacerda L, Geraghty MT, Labuda D, Giugliani R, Pshezhetsky AV. Molecular characterization of a large group of Mucopolysaccharidosis type IIIC patients reveals the evolutionary history of the disease. Hum Mutat 2019; 40:1084-1100. [PMID: 31228227 DOI: 10.1002/humu.23752] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe, rare autosomal recessive disorder caused by variants in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene which result in lysosomal accumulation of heparan sulfate. We analyzed clinical presentation, molecular defects and their haplotype context in 78 (27 novel) MPSIIIC cases from 22 countries, the largest group studied so far. We describe for the first time disease-causing variants in the patients from Brazil, Algeria, Azerbaijan, and Iran, and extend their spectrum within Canada, Colombia, Turkey, and the USA. Six variants are novel: two missense, c.773A>T/p.N258I and c.1267G>T/p.G423W, a nonsense c.164T>A/p.L55*, a splice-site mutation c.494-1G>A/p.[P165_L187delinsQSCYVTQAGVRWHHLGSLQALPPGFTPFSYLSLLSSWNC,P165fs], a deletion c.1348delG/p.(D450fs) and an insertion c.1479dupA/p.(Leu494fs). The missense HGSNAT variants lacked lysosomal targeting, enzymatic activity, and likely the correct folding. The haplotype analysis identified founder mutations, p.N258I, c.525dupT, and p.L55* in the Brazilian state of Paraiba, c.493+1G>A in Eastern Canada/Quebec, p.A489E in the USA, p.R384* in Poland, p.R344C and p.S518F in the Netherlands and suggested that variants c.525dupT, c.372-2G>A, and c.234+1G>A present in cis with c.564-98T>C and c.710C>A rare single-nucleotide polymorphisms, have been introduced by Portuguese settlers in Brazil. Altogether, our results provide insights into the origin, migration roots and founder effects of HGSNAT disease-causing variants, and reveal the evolutionary history of MPSIIIC.
Collapse
Affiliation(s)
- Carla Martins
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.,Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Sandra Leistner-Segal
- Department of Genetics, UFRGS, Medical Genetics Service, Hospital de Clínicas de Porto Alegre-HCPA, and Brazilian National Institute of Population Medical Genetics-INAGEMP, Porto Alegre, Brazil
| | - Larbi Dridi
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Nursel Elcioglu
- Department of Pediatric Genetics, Marmara University Hospital, Istanbul, Turkey
| | - Jill Wood
- Jonah's Just Begun-Foundation to Cure Sanfilippo Inc, Brooklyn, New York, USA
| | - Mahdiyeh Behnam
- Medical Genetics Center of Genome, Isfahan, Islamic Republic of Iran
| | - Bilge Noyan
- Department of Pediatric Genetics, Marmara University Hospital, Istanbul, Turkey
| | - Lucia Lacerda
- Biochemical Genetics Unit, Institute of Medical Genetics Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal
| | - Michael T Geraghty
- Department of Pathology and Laboratry Medicine, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Damian Labuda
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Roberto Giugliani
- Department of Genetics, UFRGS, Medical Genetics Service, Hospital de Clínicas de Porto Alegre-HCPA, and Brazilian National Institute of Population Medical Genetics-INAGEMP, Porto Alegre, Brazil
| | - Alexey V Pshezhetsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.,Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Filocamo M, Tomanin R, Bertola F, Morrone A. Biochemical and molecular analysis in mucopolysaccharidoses: what a paediatrician must know. Ital J Pediatr 2018; 44:129. [PMID: 30442161 PMCID: PMC6238298 DOI: 10.1186/s13052-018-0553-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are rare inherited disorders caused by a deficit of the lysosomal hydrolases involved in the degradation of mucopolysaccharides, also known as glycosaminoglycans (GAGs). They are all monogenic defects, transmitted in an autosomal recessive way, except for MPS type II which is X-linked. The enzymatic deficit causes a pathologic accumulation of undegraded or partially degraded substrates inside lysosomes as well as in the extracellular compartment. MPS generally present with recognizable signs and symptoms to raise a clinical suspicion. However, although they have individual peculiarities, often signs and symptoms may overlap between different MPS types. Therefore, a deeper evaluation of specific disease biomarkers becomes necessary to reach an appropriate diagnosis. This paper stresses the central role of the laboratory in completing and confirming the clinical suspicion of MPS according to a standardized procedure: first, a biochemical evaluation of the patient samples, including qualitative/quantitative urinary GAG analysis and a determination of enzyme activities, and then the molecular diagnosis. We also encourage a constant and close communication between clinicians and laboratory personnel to address a correct and early MPS diagnosis.
Collapse
Affiliation(s)
- Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto G. Gaslini, Genova, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Francesca Bertola
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Amelia Morrone
- Neuroscience Department, Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Meyer Children’s Hospital, University of Florence, Florence, Italy
- Department of Neurofarba, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Pshezhetsky AV, Martins C, Ashmarina M. Sanfilippo type C disease: pathogenic mechanism and potential therapeutic applications. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1534585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alexey V. Pshezhetsky
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Carla Martins
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
| | - Mila Ashmarina
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
| |
Collapse
|
21
|
Brusius-Facchin AC, Rojas Malaga D, Leistner-Segal S, Giugliani R. Recent advances in molecular testing to improve early diagnosis in children with mucopolysaccharidoses. Expert Rev Mol Diagn 2018; 18:855-866. [DOI: 10.1080/14737159.2018.1523722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Diana Rojas Malaga
- Medical Genetics Service, HCPA, Porto Alegre, RS, Brazil
- Postgraduate Program of Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Sandra Leistner-Segal
- Medical Genetics Service, HCPA, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Science, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Porto Alegre, RS, Brazil
- Postgraduate Program of Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Science, UFRGS, Porto Alegre, RS, Brazil
- Department of Genetics, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Comander J, Weigel-DiFranco C, Maher M, Place E, Wan A, Harper S, Sandberg MA, Navarro-Gomez D, Pierce EA. The Genetic Basis of Pericentral Retinitis Pigmentosa-A Form of Mild Retinitis Pigmentosa. Genes (Basel) 2017; 8:genes8100256. [PMID: 28981474 PMCID: PMC5664106 DOI: 10.3390/genes8100256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
Pericentral retinitis pigmentosa (RP) is an atypical form of RP that affects the near-peripheral retina first and tends to spare the far periphery. This study was performed to further define the genetic basis of this phenotype. We identified a cohort of 43 probands with pericentral RP based on a comprehensive analysis of their retinal phenotype. Genetic analyses of DNA samples from these patients were performed using panel-based next-generation sequencing, copy number variations, and whole exome sequencing (WES). Mutations provisionally responsible for disease were found in 19 of the 43 families (44%) analyzed. These include mutations in RHO (five patients), USH2A (four patients), and PDE6B (two patients). Of 28 putatively pathogenic alleles, 15 (54%) have been previously identified in patients with more common forms of typical RP, while the remaining 13 mutations (46%) were novel. Burden testing of WES data successfully identified HGSNAT as a cause of pericentral RP in at least two patients, suggesting it is also a relatively common cause of pericentral RP. While additional sequencing might uncover new genes specifically associated with pericentral RP, the current results suggest that genetically pericentral RP is not a separate clinical entity, but rather is part of the spectrum of mild RP phenotypes.
Collapse
Affiliation(s)
- Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Carol Weigel-DiFranco
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Matthew Maher
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Emily Place
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Aliete Wan
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Shyana Harper
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael A Sandberg
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel Navarro-Gomez
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | - Eric A Pierce
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Ouesleti S, Coutinho MF, Ribeiro I, Miled A, Mosbahi DS, Alves S. Update of the spectrum of mucopolysaccharidoses type III in Tunisia: identification of three novel mutations and in silico structural analysis of the missense mutations. World J Pediatr 2017; 13:374-380. [PMID: 28101780 DOI: 10.1007/s12519-017-0005-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Mucopolysaccharidoses type III (MPS III) are a group of autosomal recessive lysosomal storage diseases, caused by mutations in genes that code for enzymes involved in the lysosomal degradation of heparan sulphate: heparan sulfate sulfamidase (SGSH), α-Nacetylglucosaminidase (NAGLU), heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT), and N-acetylglucosamine-6-sulfatase (GNS). METHODS In this study, we have performed the molecular analysis of the SGSH, NAGLU and HGSNAT genes in 10 patients from 6 different MPS III Tunisian families. RESULTS In the SGSH gene, two mutations were identified: one novel (p.D477N) and one already described (p.Q365X). In the NAGLU gene, two novel mutations were discovered (p.L550P and p.E153X). For the novel missense mutations found in these two genes we performed an in silico structural analysis and the results were consistent with the clinical course of the patients harboring those mutations. Finally, in HGSNAT gene, we found the splicesite mutation c.234+1G>A that had already been reported as relatively frequent in MPS IIIC patients from countries surrounding the basin of the Mediterranean sea. Its presence in two Tunisian MPS IIIC families points to the hypothesis of its peri Mediterranean origin. With the exception of the c.234+1G>A mutation, that was identified in two unrelated MPS IIIC families, the other identified mutations were family-specific and were always found in homozygosity in the patients studied, thus reflecting the existence of consanguinity in MPS III Tunisian families. CONCLUSIONS Three novel mutations are reported here, further contributing to the knowledge of the molecular basis of these diseases. The results of this study will allow carrier detection in affected families and prenatal molecular diagnosis, leading to an improvement in genetic counseling.
Collapse
Affiliation(s)
- Souad Ouesleti
- Biochemical Service, CHU Farhat Hached, 4000, Sousse, Tunisia
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Isaura Ribeiro
- Biochemical Genetics Unit, Medical Genetics Center Dr. Jacinto de Magalhães, Porto Hospital Centre, Porto, Portugal
| | - Abdehedi Miled
- Biochemical Service, CHU Farhat Hached, 4000, Sousse, Tunisia
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal. .,Research and Development Unit, Department of Human Genetics, INSA, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal.
| |
Collapse
|
24
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
25
|
Marcó S, Pujol A, Roca C, Motas S, Ribera A, Garcia M, Molas M, Villacampa P, Melia CS, Sánchez V, Sánchez X, Bertolin J, Ruberte J, Haurigot V, Bosch F. Progressive neurologic and somatic disease in a novel mouse model of human mucopolysaccharidosis type IIIC. Dis Model Mech 2016; 9:999-1013. [PMID: 27491071 PMCID: PMC5047683 DOI: 10.1242/dmm.025171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/26/2016] [Indexed: 02/02/2023] Open
Abstract
Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe lysosomal storage disease caused by deficiency in activity of the transmembrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT) that catalyses the N-acetylation of α-glucosamine residues of heparan sulfate. Enzyme deficiency causes abnormal substrate accumulation in lysosomes, leading to progressive and severe neurodegeneration, somatic pathology and early death. There is no cure for MPSIIIC, and development of new therapies is challenging because of the unfeasibility of cross-correction. In this study, we generated a new mouse model of MPSIIIC by targeted disruption of the Hgsnat gene. Successful targeting left LacZ expression under control of the Hgsnat promoter, allowing investigation into sites of endogenous expression, which was particularly prominent in the CNS, but was also detectable in peripheral organs. Signs of CNS storage pathology, including glycosaminoglycan accumulation, lysosomal distension, lysosomal dysfunction and neuroinflammation were detected in 2-month-old animals and progressed with age. Glycosaminoglycan accumulation and ultrastructural changes were also observed in most somatic organs, but lysosomal pathology seemed most severe in liver. Furthermore, HGSNAT-deficient mice had altered locomotor and exploratory activity and shortened lifespan. Hence, this animal model recapitulates human MPSIIIC and provides a useful tool for the study of disease physiopathology and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Sara Marcó
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| | - Carles Roca
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| | - Sandra Motas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| | - Miguel Garcia
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| | - Maria Molas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| | - Pilar Villacampa
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| | - Cristian S Melia
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Víctor Sánchez
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Xavier Sánchez
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona 08036, Spain
| |
Collapse
|
26
|
Synthesis of 1-BODIPY-labeled 2-amino-2-deoxy-d-glucose, substrate for acetyl-CoA:glucosaminide N-acetyltransferase. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Choi Y, Tuzikov AB, Ovchinnikova TV, Bovin NV, Pshezhetsky AV. Novel Direct Assay for Acetyl-CoA:α-Glucosaminide N-Acetyltransferase Using BODIPY-Glucosamine as a Substrate. JIMD Rep 2015; 28:11-18. [PMID: 26493749 PMCID: PMC5059212 DOI: 10.1007/8904_2015_501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/15/2023] Open
Abstract
Heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT) catalyzes the transmembrane acetylation of heparan sulfate in lysosomes required for its further catabolism. Inherited deficiency of HGSNAT in humans results in lysosomal storage of heparan sulfate and causes severe neurodegenerative disease, mucopolysaccharidosis III type C (MPS IIIC). MPS IIIC patients can potentially benefit from a therapeutic approach based on active site-specific inhibitors of HGSNAT used as pharmacological chaperons to modify the folding of the mutant protein in the patient's cells. This research however was hampered by the absence of the assay suitable for high-throughput screening of drug libraries for HGSNAT inhibitors. The existing method utilizing 4-methylumbelliferyl-β-D-glucosaminide (MU-βGlcN) requires the sequential action of two enzymes, HGSNAT and β-hexosaminidase, whereas the radioactive assay with [C14]-AcCoA is complicated and expensive. We describe a novel direct method to assay HGSNAT enzymatic activity using fluorescent BODIPY-glucosamine as a substrate. The specificity of the assay was tested using cultured fibroblasts of MPS IIIC patients, which showed a profound deficiency of HGSNAT activity as compared to normal controls as well as to MPS IIIA and D patients known to have normal HGSNAT activity. Known competitive HGSNAT inhibitor, glucosamine, had similar inhibition constants for MU-βGlcN and BODIPY-glucosamine acetylation reactions. Altogether our data show that novel HGSNAT assay is specific and potentially applicable for the biochemical diagnosis of MPS IIIC and high-throughput screening for HGSNAT inhibitors.
Collapse
Affiliation(s)
- Yoo Choi
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, QC, Canada
| | - Alexander B Tuzikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia
| | | | - Nicolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, QC, Canada.
| |
Collapse
|
28
|
Pshezhetsky AV. Crosstalk between 2 organelles: Lysosomal storage of heparan sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type C. Rare Dis 2015; 3:e1049793. [PMID: 26459666 PMCID: PMC4588229 DOI: 10.1080/21675511.2015.1049793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 12/05/2022] Open
Abstract
More than 30% of all lysosomal diseases are mucopolysaccharidoses, disorders affecting the enzymes needed for the stepwise degradation of glycosaminoglycans (mucopolysaccharides). Mucopolysaccharidosis type IIIC (MPS IIIC) is a severe neurologic disease caused by genetic deficiency of heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT). Through our studies, we have cloned the gene, identified molecular defects in MPS IIIC patients and most recently completed phenotypic characterization of the first animal model of the disease, a mouse with a germline inactivation of the Hgsnat gene.1 The obtained data have led us to propose that Hgsnat deficiency and lysosomal accumulation of heparan sulfate in microglial cells followed by their activation and cytokine release result in mitochondrial dysfunction in the neurons causing their death which explains why MPS IIIC manifests primarily as a neurodegenerative disease. The goal of this addendum is to summarize data yielding new insights into the mechanism of MPS IIIC and promising novel therapeutic solutions for this and similar disorders.
Collapse
Affiliation(s)
- Alexey V Pshezhetsky
- CHU Ste-Justine and Departments of Pediatrics and Biochemistry; University of Montreal ; Montreal, QC, Canada
| |
Collapse
|
29
|
Haer-Wigman L, Newman H, Leibu R, Bax NM, Baris HN, Rizel L, Banin E, Massarweh A, Roosing S, Lefeber DJ, Zonneveld-Vrieling MN, Isakov O, Shomron N, Sharon D, Den Hollander AI, Hoyng CB, Cremers FPM, Ben-Yosef T. Non-syndromic retinitis pigmentosa due to mutations in the mucopolysaccharidosis type IIIC gene, heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT). Hum Mol Genet 2015; 24:3742-51. [PMID: 25859010 PMCID: PMC4459392 DOI: 10.1093/hmg/ddv118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is clinically and genetically heterogeneous and can appear as syndromic or non-syndromic. Mucopolysaccharidosis type IIIC (MPS IIIC) is a lethal disorder, caused by mutations in the heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) gene and characterized by progressive neurological deterioration, with retinal degeneration as a prominent feature. We identified HGSNAT mutations in six patients with non-syndromic RP. Whole exome sequencing (WES) in an Ashkenazi Jewish Israeli RP patient revealed a novel homozygous HGSNAT variant, c.370A>T, which leads to partial skipping of exon 3. Screening of 66 Ashkenazi RP index cases revealed an additional family with two siblings homozygous for c.370A>T. WES in three Dutch siblings with RP revealed a complex HGSNAT variant, c.[398G>C; 1843G>A] on one allele, and c.1843G>A on the other allele. HGSNAT activity levels in blood leukocytes of patients were reduced compared with healthy controls, but usually higher than those in MPS IIIC patients. All patients were diagnosed with non-syndromic RP and did not exhibit neurological deterioration, or any phenotypic features consistent with MPS IIIC. Furthermore, four of the patients were over 60 years old, exceeding by far the life expectancy of MPS IIIC patients. HGSNAT is highly expressed in the mouse retina, and we hypothesize that the retina requires higher HGSNAT activity to maintain proper function, compared with other tissues associated with MPS IIIC, such as the brain. This report broadens the spectrum of phenotypes associated with HGSNAT mutations and highlights the critical function of HGSNAT in the human retina.
Collapse
Affiliation(s)
| | - Hadas Newman
- Department of Ophthalmology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Rina Leibu
- Alberto Moscona Department of Ophthalmology
| | | | - Hagit N Baris
- The Genetic Institute, Rambam Health Care Campus, Haifa, Israel, The Rappaport Faculty of Medicine
| | - Leah Rizel
- The Rappaport Faculty of Medicine, Rappaport Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel and
| | - Amir Massarweh
- The Rappaport Faculty of Medicine, Rappaport Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Susanne Roosing
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences
| | - Dirk J Lefeber
- Radboud Institute for Molecular Life Sciences, Department of Neurology, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ofer Isakov
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel and
| | - Anneke I Den Hollander
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Department of Ophthalmology
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences
| | - Tamar Ben-Yosef
- The Rappaport Faculty of Medicine, Rappaport Research Institute, Technion-Israel Institute of Technology, Haifa, Israel,
| |
Collapse
|
30
|
Beck M. Enzyme replacement and gene therapy for mucopolysaccharidoses: current progress and future directions. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1021777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Matos L, Canals I, Dridi L, Choi Y, Prata MJ, Jordan P, Desviat LR, Pérez B, Pshezhetsky AV, Grinberg D, Alves S, Vilageliu L. Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations. Orphanet J Rare Dis 2014; 9:180. [PMID: 25491247 PMCID: PMC4279800 DOI: 10.1186/s13023-014-0180-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides. METHODS In this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome. RESULTS Partial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding. CONCLUSIONS We have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications.
Collapse
Affiliation(s)
- Liliana Matos
- Department of Human Genetics, Research and Development Unit, INSA, Porto, Portugal. .,Department of Biology, Faculty of Sciences, Porto, Portugal.
| | - Isaac Canals
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain. .,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| | - Larbi Dridi
- Department of Medical Genetics, Sainte-Justine University Hospital Centre, University of Montreal, Montreal, Canada.
| | - Yoo Choi
- Department of Medical Genetics, Sainte-Justine University Hospital Centre, University of Montreal, Montreal, Canada.
| | - Maria João Prata
- Department of Biology, Faculty of Sciences, Porto, Portugal. .,IPATIMUP, Porto, Portugal.
| | - Peter Jordan
- Department of Human Genetics, Research and Development Unit, INSA, Lisbon, Portugal.
| | - Lourdes R Desviat
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain. .,Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Belén Pérez
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain. .,Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Alexey V Pshezhetsky
- Department of Medical Genetics, Sainte-Justine University Hospital Centre, University of Montreal, Montreal, Canada. .,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Daniel Grinberg
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain. .,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| | - Sandra Alves
- Department of Human Genetics, Research and Development Unit, INSA, Porto, Portugal.
| | - Lluïsa Vilageliu
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain. .,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
32
|
Sabol JK, Wei W, López-Hoyos M, Seo Y, Andaya A, Leary JA. Heparan sulfate differences in rheumatoid arthritis versus healthy sera. Matrix Biol 2014; 40:54-61. [PMID: 25217862 DOI: 10.1016/j.matbio.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future.
Collapse
Affiliation(s)
- Jenny K Sabol
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Wei Wei
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Marcos López-Hoyos
- Immunology Section. Hospital Universitario Marques de Valdecilla-IDIVAL, Santander 39008, SPAIN
| | - Youjin Seo
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Armann Andaya
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Julie A Leary
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA.,Department of Chemistry, University of California, Davis, California 95616, USA
| |
Collapse
|
33
|
Braunlin E, Orchard PJ, Whitley CB, Schroeder L, Reed RC, Manivel JC. Unexpected coronary artery findings in mucopolysaccharidosis. Report of four cases and literature review. Cardiovasc Pathol 2014; 23:145-51. [PMID: 24508139 DOI: 10.1016/j.carpath.2014.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The mucopolysaccharidosis syndromes are a group of lethal inherited disorders affecting multiple organ systems by the progressive deposition of glycosaminoglycan. Advances in treatment such as enzyme replacement and hematopoietic stem cell transplantation have significantly improved the outcome of these disorders. An in-depth understanding of the pathophysiology of heart disease in these disorders is essential since death from cardiac causes continues to be common. Epicardial coronary artery luminal narrowing from myointimal proliferation and glycosaminoglycan deposition is well described in severe mucopolysaccharidosis type I [Hurler syndrome, mucopolysaccharide IH] but poorly understood in other "non-Hurler" phenotypes of these disorders. Given the rarity of these conditions, autopsy specimens are uncommon. METHODS Tissue from epicardial coronary arteries from autopsies of four patients with non-Hurler mucopolysaccharidosis (attenuated type I, type IIIA, type IIIC, and type VI) who had died after hematopoietic cell transplantation (within 1 month in three cases; after 5 years in the fourth) was examined by light microscopy. RESULTS Unexpectedly, near-normal coronary arteries were observed in the patient with attenuated mucopolysaccharidosis type I, while the coronaries from patients with type IIIA, IIIC, and VI demonstrated classic histologic features of glycosaminoglycan deposition. The most severe findings were found in the MPS IIIC patient who had 5 years of full donor engraftment after transplantation. CONCLUSIONS Our current understanding of the cardiac manifestations of the mucopolysaccharidoses fails to explain why near-normal coronary arteries may be observed when abnormalities would be most likely to be expected and, conversely, why significant histopathology is present when it would be least expected. Identification of downstream effects of glycosaminoglycan deposition may identify other metabolites or metabolic pathways that are important in the clinicopathologic manifestations of these diseases. SUMMARY The mucopolysaccharidosis diseases are a group of inherited disorders affecting multiple organ systems by the progressive deposition of glycosaminoglycan. Severe coronary artery disease is well recognized in severe type I mucopolysaccharidosis (Hurler syndrome), but unexpected coronary artery disease occurs in other, "non-Hurler" mucopolysaccharidoses. Factors responsible for the development of coronary pathology in the mucopolysaccharidoses remain elusive.
Collapse
Affiliation(s)
| | - Paul J Orchard
- Department of Pediatrics, University of Minnesota Medical School
| | - Chester B Whitley
- Department of Pediatrics, University of Minnesota Medical School; Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN
| | - Luke Schroeder
- Department of Pediatrics, University of Minnesota Medical School
| | - Robyn C Reed
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School
| | | |
Collapse
|
34
|
Adhikari N, Billaud M, Carlson M, Lake SP, Montaniel KRC, Staggs R, Guan W, Walek D, Desir S, Isakson BE, Barocas VH, Hall JL. Vascular biomechanical properties in mice with smooth muscle specific deletion of Ndst1. Mol Cell Biochem 2014; 385:225-38. [PMID: 24101444 PMCID: PMC4853023 DOI: 10.1007/s11010-013-1831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022]
Abstract
Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation. Previously published work has shown that HSPGs alter tangent moduli and stiffness of tissues and cells. We hypothesized that loss of Ndst1 in smooth muscle would lead to significant changes in heparan sulfate modification and the elastic properties of arteries. In line with this hypothesis, the axial tangent modulus was significantly decreased in aorta from mice lacking Ndst1 in smooth muscle (SM22αcre(+)Ndst1(-/-), p < 0.05, n = 5). The decrease in axial tangent modulus was associated with a significant switch in myosin and actin types and isoforms expressed in aorta and isolated aortic vascular smooth muscle cells. In contrast, no changes were found in the compliance of smaller thoracodorsal arteries of SM22αcre(+)Ndst1(-/-) mice. In summary, the major findings of this study were that targeted ablation of Ndst1 in smooth muscle cells results in altered biomechanical properties of aorta and differential expression of myosin and actin types and isoforms.
Collapse
Affiliation(s)
- Neeta Adhikari
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Marie Billaud
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Marjorie Carlson
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Spencer P. Lake
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Kim Ramil C. Montaniel
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Rod Staggs
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455
| | - Dinesha Walek
- Biomedical Genomics Center, University of Minnesota, Minneapolis, MN 55455
| | - Snider Desir
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Brant E. Isakson
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Jennifer L. Hall
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
35
|
Delgadillo V, O'Callaghan MDM, Gort L, Coll MJ, Pineda M. Natural history of Sanfilippo syndrome in Spain. Orphanet J Rare Dis 2013; 8:189. [PMID: 24314109 PMCID: PMC3879199 DOI: 10.1186/1750-1172-8-189] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/01/2013] [Indexed: 01/15/2023] Open
Abstract
Background Mucopolysaccharidosis type III (MPS III), or Sanfilippo syndrome, is caused by a deficiency in one of the four enzymes involved in the lysosomal degradation of heparan sulphate. Four MPS III types have been recognized, characterized by a large phenotypic heterogeneity. This is the first Spanish study describing the natural history of Sanfilippo patients (MPSIIIA, MPSIIIB and MPSIIIC), representing an essential step for understanding patient prognosis and for the establishment and application of future therapies. Methods This retrospective study aimed to establish the natural history of MPS III in Spain based on an extensive chronological data survey involving physicians and parents of 55 Spanish MPSIII patients. In addition to clinical description we report biochemical and molecular analysis already performed in the majority of cases. Results The most frequent subtype was MPS IIIA (62%). Symptoms before diagnosis were speech delay in 85%, followed by coarse facial features in 78%, and hyperactivity in 65% of cases at a mean age of 3 years old. The median age at clinical and biochemical diagnosis for each MPS III subtype were as follows: IIIA 4.4 years (1.2 – 16 years), IIIB 3.1 years (1–29 years), and IIIC 6.3 years (3.4-22 years). 45% of patients developed epilepsy at a median age of 8.7 (2.5 – 37) years old. Age of death for MPS IIIA patients was 15 years (11.5 – 26 years). Molecular analysis of our cohort reveals, as alluded to above, a great allelic heterogeneity in the three subtypes without clear genotype-phenotype correlations in most cases. Conclusion MPS IIIA is the most frequent subtype in Spanish Sanfilippo patients. Diagnosing physicians should consider Sanfilippo syndrome in children with non-specific speech delay, behavioural abnormalities, and/or mild dysmorphic features. We stress the importance of establishing early diagnosis procedures as soon as possible so as to be able to determine future short-term enzymatic or gene therapy treatments that can change the prognosis of the disease.
Collapse
|
36
|
Wood J, Sames L, Moore A, Ekins S. Multifaceted roles of ultra-rare and rare disease patients/parents in drug discovery. Drug Discov Today 2013; 18:1043-51. [PMID: 23968993 DOI: 10.1016/j.drudis.2013.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 01/10/2023]
Abstract
Individual parents and patients are increasingly doing more to fund, discover and develop treatments for rare and ultra-rare diseases that afflict their children, themselves or their friends. They are performing roles in business development that would be classed as entrepreneurial; and their organizational roles in driving the science in some cases are equivalent to those of principal investigators. These roles are in addition to their usual positioning as advocates. Through their efforts and those of the collaborative networks that they have developed, they could be positioned to disrupt the usual course of drug discovery. This can be illustrated using three different ultra-rare disease parent/patient advocate groups and the diseases for which they are developing treatments. This represents an alternative model for pharmaceutical research.
Collapse
Affiliation(s)
- Jill Wood
- Jonah's Just Begun, P.O. Box 150057, Brooklyn, NY 11215, USA; Phoenix Nest, P.O. Box 150057, Brooklyn, NY 11215, USA
| | | | | | | |
Collapse
|
37
|
de Ruijter J, Ijlst L, Kulik W, van Lenthe H, Wagemans T, van Vlies N, Wijburg FA. Heparan sulfate derived disaccharides in plasma and total urinary excretion of glycosaminoglycans correlate with disease severity in Sanfilippo disease. J Inherit Metab Dis 2013; 36:271-9. [PMID: 22968582 DOI: 10.1007/s10545-012-9535-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sanfilippo disease (Mucopolysaccharidosis III) is a neurodegenerative lysosomal disorder characterized by accumulation of the glycosaminoglycan heparan sulfate (HS). MPS III has a large phenotypic variability and early assessment of disease severity is difficult. We investigated the correlation between disease severity and the plasma concentration of HS (pHS, defined by the sum of the heparan sulfate derived disaccharides obtained after enzymatic digestion) and urinary total GAGs level (uGAGs, measured by the dimethylene blue test) in a cross-sectional cohort of 44 MPS III patients. METHODS Disease severity was established on the basis of the age of complete loss of independent walking and of full loss of speech in all patients. Hazard ratios (HR) were obtained with cox-regression analysis. In order to allow prediction of a severe phenotype based on a cut-off value for pHS, patients were divided in two groups (severely affected and less severely affected) based on predictive mutations or on the age of full loss of speech. Receiver operator characteristics (ROC) were obtained for pHS. RESULTS pHS and uGAGs were independently and linearly associated with an increased risk of speech loss with a HR of 1.8 (95 % CI 1.3-2.7) per 500 ng/ml increase of HS in plasma (p = 0.002), and a HR of 2.7 (95 % CI 1.6-4.4) per 10 mg/mmol creatinine increase of uGAGs (p < 0.001). pHS and uGAGS were less strongly associated with loss of walking. The area under the ROC curve for pHS was 0.85, indicating good discrimination. CONCLUSION pHS and uGAGs may be useful biomarkers for prediction of severity in MPS III.
Collapse
Affiliation(s)
- J de Ruijter
- Department of Pediatrics and Amsterdam Lysosome Centre 'Sphinx', University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Huh HJ, Seo JY, Cho SY, Ki CS, Lee SY, Kim JW, Park HD, Jin DK. The first Korean case of mucopolysaccharidosis IIIC (Sanfilippo syndrome type C) confirmed by biochemical and molecular investigation. Ann Lab Med 2012; 33:75-9. [PMID: 23301227 PMCID: PMC3535201 DOI: 10.3343/alm.2013.33.1.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/28/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
Mucopolysaccharidosis (MPS) III has 4 enzymatically distinct forms (A, B, C, and D), and MPS IIIC, also known as Sanfilippo C syndrome, is an autosomal recessive lysosomal storage disease caused by a deficiency of heparan acetyl-CoA:alpha-glucosaminide N-acetyltransferase (HGSNAT). Here, we report a case of MPS IIIC that was confirmed by molecular genetic analysis. The patient was a 2-yr-old girl presenting with skeletal deformity, hepatomegaly, and delayed motor development. Urinary excretion of glycosaminoglycan (GAG) was markedly elevated (984.4 mg GAG/g creatinine) compared with the age-specific reference range (<175 mg GAG/g creatinine), and a strong band of heparan sulfate was recognized on performing thin layer chromatography. HGSNAT enzyme activity in leukocytes was 0.7 nmol/17 hr/mg protein, which was significantly lower than the reference range (8.6-32 nmol/17 hr/mg protein). PCR and direct sequencing of the HGSNAT gene showed 2 mutations: c.234+1G>A (IVS2+1G>A) and c.1150C>T (p.Arg384*). To the best of our knowledge, this is the first case of MPS IIIC to be confirmed by clinical, biochemical, and molecular genetic findings in Korea.
Collapse
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fan X, Tkachyova I, Sinha A, Rigat B, Mahuran D. Characterization of the biosynthesis, processing and kinetic mechanism of action of the enzyme deficient in mucopolysaccharidosis IIIC. PLoS One 2011; 6:e24951. [PMID: 21957468 PMCID: PMC3177862 DOI: 10.1371/journal.pone.0024951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
Heparin acetyl-CoA:alpha-glucosaminide N-acetyltransferase (N-acetyltransferase, EC 2.3.1.78) is an integral lysosomal membrane protein containing 11 transmembrane domains, encoded by the HGSNAT gene. Deficiencies of N-acetyltransferase lead to mucopolysaccharidosis IIIC. We demonstrate that contrary to a previous report, the N-acetyltransferase signal peptide is co-translationally cleaved and that this event is required for its intracellular transport to the lysosome. While we confirm that the N-acetyltransferase precursor polypeptide is processed in the lysosome into a small amino-terminal alpha- and a larger ß- chain, we further characterize this event by identifying the mature amino-terminus of each chain. We also demonstrate this processing step(s) is not, as previously reported, needed to produce a functional transferase, i.e., the precursor is active. We next optimize the biochemical assay procedure so that it remains linear as N-acetyltransferase is purified or protein-extracts containing N-acetyltransferase are diluted, by the inclusion of negatively charged lipids. We then use this assay to demonstrate that the purified single N-acetyltransferase protein is both necessary and sufficient to express transferase activity, and that N-acetyltransferase functions as a monomer. Finally, the kinetic mechanism of action of purified N-acetyltransferase was evaluated and found to be a random sequential mechanism involving the formation of a ternary complex with its two substrates; i.e., N-acetyltransferase does not operate through a ping-pong mechanism as previously reported. We confirm this conclusion by demonstrating experimentally that no acetylated enzyme intermediate is formed during the reaction.
Collapse
Affiliation(s)
- Xiaolian Fan
- Genetics and Genome Biology Program, The Hospital For Sick Children, Toronto, Canada
| | - Ilona Tkachyova
- Genetics and Genome Biology Program, The Hospital For Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ankit Sinha
- Genetics and Genome Biology Program, The Hospital For Sick Children, Toronto, Canada
| | - Brigitte Rigat
- Genetics and Genome Biology Program, The Hospital For Sick Children, Toronto, Canada
| | - Don Mahuran
- Genetics and Genome Biology Program, The Hospital For Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
40
|
Héron B, Mikaeloff Y, Froissart R, Caridade G, Maire I, Caillaud C, Levade T, Chabrol B, Feillet F, Ogier H, Valayannopoulos V, Michelakakis H, Zafeiriou D, Lavery L, Wraith E, Danos O, Heard JM, Tardieu M. Incidence and natural history of mucopolysaccharidosis type III in France and comparison with United Kingdom and Greece. Am J Med Genet A 2011; 155A:58-68. [PMID: 21204211 DOI: 10.1002/ajmg.a.33779] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPSIII) is a lysosomal storage disease with predominant neurological manifestations in affected children. It is considered heterogeneous with respect to prevalence, clinical presentation, biochemistry (four biochemical forms of the disease referred to as MPSIIIA, B, C, and D are known), and causative mutations. The perspective of therapeutic options emphasizes the need for better knowledge of MPSIII incidence and natural history. We performed parallel retrospective epidemiological studies of patients diagnosed with MSPIII in France (n = 128), UK (n = 126), and Greece (n = 20) from 1990 to 2006. Incidences ranged from 0.68 per 100,000 live-births in France to 1.21 per 100,000 live-births in UK. MPSIIIA, which predominates in France and UK, was absent in Greece, where most patients have MPSIIIB. The study confirmed the large allelic heterogeneity of MPSIIIA and MPSIIIB and detected several yet undescribed mutations. Analysis of clinical manifestations at diagnosis and over a 6-7 years follow-up indicated that almost all patients, whatever the disease subtype, expressed neurological manifestations before the age of 5 years, including language acquisition delay, cognitive delay, and/or abnormal behavior. In contrast to relatively homogeneous early onset manifestations, disease progression showed significant variation depending on subtype and age at diagnosis. Different severities of disease progressions and different allele distribution between France and UK suggested that mutations are not equally deleterious, although genotype-phenotype correlation could not be established. Notwithstanding the rapidity of further clinical deterioration, all MPSIII patients suffer early onset devastating neurological manifestations that deserve early treatment when available.
Collapse
Affiliation(s)
- Bénédicte Héron
- Hôpital Trousseau, Centre de référence des maladies lysosomales, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Durand S, Feldhammer M, Bonneil É, Thibault P, Pshezhetsky AV. Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete deficiency in mucopolysaccharidosis IIIC. J Biol Chem 2010; 285:31233-42. [PMID: 20650889 PMCID: PMC2951197 DOI: 10.1074/jbc.m110.141150] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/05/2010] [Indexed: 12/17/2022] Open
Abstract
Heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT) catalyzes the transmembrane acetylation of heparan sulfate in lysosomes required for its further catabolism. Inherited deficiency of HGSNAT in humans results in lysosomal storage of heparan sulfate and causes the severe neurodegenerative disease, mucopolysaccharidosis IIIC (MPS IIIC). Previously we have cloned the HGSNAT gene, identified molecular defects in MPS IIIC patients, and found that all missense mutations prevented normal folding and trafficking of the enzyme. Therefore characterization of HGSNAT biogenesis and intracellular trafficking became of central importance for understanding the molecular mechanism underlying the disease and developing future therapies. In the current study we show that HGSNAT is synthesized as a catalytically inactive 77-kDa precursor that is transported to the lysosomes via an adaptor protein-mediated pathway that involves conserved tyrosine- and dileucine-based lysosomal targeting signals in its C-terminal cytoplasmic domain with a contribution from a dileucine-based signal in the N-terminal cytoplasmic loop. In the lysosome, the precursor is cleaved into a 29-kDa N-terminal α-chain and a 48-kDa C-terminal β-chain, and assembled into active ∼440-kDa oligomers. The subunits are held together by disulfide bonds between at least two cysteine residues (Cys(123) and Cys(434)) in the lysosomal luminal loops of the enzyme. We speculate that proteolytic cleavage allows the nucleophile residue, His(269), in the active site to access the substrate acetyl-CoA in the cytoplasm, for further transfer of the acetyl group to the terminal glucosamine on heparan sulfate. Altogether our results identify intralysosomal oligomerization and proteolytic cleavage as two steps crucial for functional activation of HGSNAT.
Collapse
Affiliation(s)
- Stéphanie Durand
- From the Department of Medical Genetics, CHU Sainte-Justine, and
| | - Matthew Feldhammer
- From the Department of Medical Genetics, CHU Sainte-Justine, and
- Departments of Biochemistry and
| | - Éric Bonneil
- the Institute of Research in Immunology and Cancer, University of Montreal, Montreal H3C 3J7, and
| | - Pierre Thibault
- Departments of Biochemistry and
- the Institute of Research in Immunology and Cancer, University of Montreal, Montreal H3C 3J7, and
| | - Alexey V. Pshezhetsky
- From the Department of Medical Genetics, CHU Sainte-Justine, and
- Departments of Biochemistry and
- Pediatrics, University of Montreal, Montreal H3T 1C5
- the Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal H3A 2B2, Canada
| |
Collapse
|
42
|
Canals I, Elalaoui SC, Pineda M, Delgadillo V, Szlago M, Jaouad IC, Sefiani A, Chabás A, Coll MJ, Grinberg D, Vilageliu L. Molecular analysis of Sanfilippo syndrome type C in Spain: seven novel HGSNAT mutations and characterization of the mutant alleles. Clin Genet 2010; 80:367-74. [PMID: 20825431 DOI: 10.1111/j.1399-0004.2010.01525.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Sanfilippo syndrome type C [mucopolysaccharidosis IIIC (MPS IIIC)] is caused by mutations in the HGSNAT gene, encoding an enzyme involved in heparan sulphate degradation. We report the first molecular study on several Spanish Sanfilippo syndrome type C patients. Seven Spanish patients, one Argentinean and three Moroccan patients were analysed. All mutant alleles were identified and comprised nine distinct mutant alleles, seven of which were novel, including four missense mutations (p.A54V, p.L113P, p.G424V and p.L445P) and three splicing mutations due to two point mutations (c.633+1G>A and c.1378-1G>A) and an intronic deletion (c.821-31_821-13del). Furthermore, we found a new single nucleotide polymorphism (SNP) (c.564-98T>C). The two most frequent changes were the previously described c.372-2A>G and c.234+1G>A mutations. All five splicing mutations were experimentally confirmed by studies at the RNA level, and a minigene experiment was carried out in one case for which no fibroblasts were available. Expression assays allowed us to show the pathogenic effect of the four novel missense mutations and to confirm that the already known c.710C>A (p.P237Q) is a non-pathogenic SNP. Haplotype analyses suggested that the two mutations (c.234+1G>A and c.372-2A>G) that were present in more than one patient have a common origin, including one (c.234+1G>A) that was found in Spanish and Moroccan patients.
Collapse
Affiliation(s)
- I Canals
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Feldhammer M, Durand S, Pshezhetsky AV. Protein misfolding as an underlying molecular defect in mucopolysaccharidosis III type C. PLoS One 2009; 4:e7434. [PMID: 19823584 PMCID: PMC2757673 DOI: 10.1371/journal.pone.0007434] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
Mucopolysaccharidosis type IIIC or Sanfilippo syndrome type C (MPS IIIC, MIM #252930) is an autosomal recessive disorder caused by deficiency of the lysosomal membrane enzyme, heparan sulfate acetyl-CoA: alpha-glucosaminide N-acetyltransferase (HGSNAT, EC 2.3.1.78), which catalyses transmembrane acetylation of the terminal glucosamine residues of heparan sulfate prior to their hydrolysis by alpha-N-acetylglucosaminidase. Lysosomal storage of undegraded heparan sulfate in the cells of affected patients leads to neuronal death causing neurodegeneration and is accompanied by mild visceral and skeletal abnormalities, including coarse facies and joint stiffness. Surprisingly, the majority of MPS IIIC patients carrying missense mutations are as severely affected as those with splicing errors, frame shifts or nonsense mutations resulting in the complete absence of HGSNAT protein.In order to understand the effects of the missense mutations in HGSNAT on its enzymatic activity and biogenesis, we have expressed 21 mutant proteins in cultured human fibroblasts and COS-7 cells and studied their folding, targeting and activity. We found that 17 of the 21 missense mutations in HGSNAT caused misfolding of the enzyme, which is abnormally glycosylated and not targeted to the lysosome, but retained in the endoplasmic reticulum. The other 4 mutants represented rare polymorphisms which had no effect on the activity, processing and targeting of the enzyme. Treatment of patient cells with a competitive HGSNAT inhibitor, glucosamine, partially rescued several of the expressed mutants. Altogether our data provide an explanation for the severity of MPS IIIC and suggest that search for pharmaceutical chaperones can in the future result in therapeutic options for this disease.
Collapse
Affiliation(s)
- Matthew Feldhammer
- Department of Medical Genetics, CHU Sainte-Justine University of Montreal, Montreal, Canada
- Department of Biochemistry, University of Montreal, Montreal, Canada
| | - Stéphanie Durand
- Department of Medical Genetics, CHU Sainte-Justine University of Montreal, Montreal, Canada
| | - Alexey V. Pshezhetsky
- Department of Medical Genetics, CHU Sainte-Justine University of Montreal, Montreal, Canada
- Department of Biochemistry, University of Montreal, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|