1
|
Curtis AA, Yu Y, Carey M, Parfrey P, Yilmaz YE, Savas S. Multifactor dimensionality reduction method identifies novel SNP interactions in the WNT protein interaction networks that are associated with recurrence risk in colorectal cancer. Front Oncol 2023; 13:1122229. [PMID: 36998434 PMCID: PMC10043327 DOI: 10.3389/fonc.2023.1122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundInteractions among genetic variants are rarely studied but may explain a part of the variability in patient outcomes.ObjectivesIn this study, we aimed to identify 1 to 3 way interactions among SNPs from five Wnt protein interaction networks that predict the 5-year recurrence risk in a cohort of stage I-III colorectal cancer patients.Methods423 patients recruited to the Newfoundland Familial Colorectal Cancer Registry were included. Five Wnt family member proteins (Wnt1, Wnt2, Wnt5a, Wnt5b, and Wnt11) were selected. The BioGRID database was used to identify the proteins interacting with each of these proteins. Genotypes of the SNPs located in the interaction network genes were retrieved from a genome-wide SNP genotype data previously obtained in the patient cohort. The GMDR 0.9 program was utilized to examine 1-, 2-, and 3-SNP interactions using a 5-fold cross validation step. Top GMDR 0.9 models were assessed by permutation testing and, if significant, prognostic associations were verified by multivariable logistic regression models.ResultsGMDR 0.9 has identified novel 1, 2, and 3-way SNP interactions associated with 5-year recurrence risk in colorectal cancer. Nine of these interactions were multi loci interactions (2-way or 3-way). Identified interaction models were able to distinguish patients based on their 5-year recurrence-free status in multivariable regression models. The significance of interactions was the highest in the 3-SNP models. Several of the identified SNPs were eQTLs, indicating potential biological roles of the genes they were associated with in colorectal cancer recurrence.ConclusionsWe identified novel interacting genetic variants that associate with 5-year recurrence risk in colorectal cancer. A significant portion of the genes identified were previously linked to colorectal cancer pathogenesis or progression. These variants and genes are of interest for future functional and prognostic studies. Our results provide further evidence for the utility of GMDR models in identifying novel prognostic biomarkers and the biological importance of the Wnt pathways in colorectal cancer.
Collapse
Affiliation(s)
- Aaron A. Curtis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yajun Yu
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Megan Carey
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Patrick Parfrey
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yildiz E. Yilmaz
- Department of Mathematics and Statistics, Faculty of Science, Memorial University, St. John’s, NL, Canada
| | - Sevtap Savas
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- *Correspondence: Sevtap Savas,
| |
Collapse
|
2
|
Liu Z, Georgakopoulos-Soares I, Ahituv N, Wong KC. Risk scoring based on DNA methylation-driven related DEGs for colorectal cancer prognosis with systematic insights. Life Sci 2023; 316:121413. [PMID: 36682524 DOI: 10.1016/j.lfs.2023.121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Colorectal cancer is a common malignant tumor of the digestive tract. Despite advances in diagnostic techniques and medications. Its prognosis remains challenging. DNA methylation-driven related circulating tumor cells have attracted enormous interest in diagnosing owing to their non-invasive nature and early recognition properties. However, the mechanism through which risk biomarkers act remains elusive. Here, we designed a risk model based on differentially expressed genes, DNA methylation, robust, and survival-related factors in the framework of Cox regression. The model has satisfactory performance and is independently verified by an external and isolated dataset in terms of C-index value, ROC, and tROC. The model was applied to Colorectal cancer patients who were subsequently divided into high- and low-risk groups. Functional annotations, genomic alterations, tumor immune environment, and drug sensitivity were analyzed. We observed that up-regulated genes are associated with epithelial cell differentiation and MAPK signaling pathways. The down-regulated genes are related to IL-7 signaling and apoptosis-induced DNA fragmentation. Interestingly, the immune system was inhibited in high-risk groups. High-frequency mutation genes tend to co-occur. High-risk score patients are related to copy number amplification events. To address the challenges, we suggested eleven and twenty-one drugs that are sensitive to low- and high-risk patients. Finally, an artificial neural network was provided to evaluate the immunotherapeutic efficiency. Taken together, the findings demonstrated that our risk score model is robust and reliable for evaluating the prognosis with novel diagnostic and treatment targets. It also yields benefits for the treatment and provides unique insights into developing therapeutic strategies.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, Sato Y, Spits C, Stacey GN, Wang H, Pera MF. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell 2022; 29:1624-1636. [PMID: 36459966 DOI: 10.1016/j.stem.2022.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.
Collapse
Affiliation(s)
- Peter W Andrews
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Steering Committee, International Stem Cell Initiative
| | - Jonathan S Draper
- Stem Cell Network, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Steering Committee, International Stem Cell Initiative
| | - Tenneille Ludwig
- WiCell Research Institute, Madison, WI, USA; University of Wisconsin-Madison, Madison, WI 53719, USA; Steering Committee, International Stem Cell Initiative
| | - Florian T Merkle
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK; Steering Committee, International Stem Cell Initiative
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan; Steering Committee, International Stem Cell Initiative
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Steering Committee, International Stem Cell Initiative
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Steering Committee, International Stem Cell Initiative
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China; Steering Committee, International Stem Cell Initiative
| | - Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Steering Committee, International Stem Cell Initiative.
| |
Collapse
|
4
|
Curtis A, Yu Y, Carey M, Parfrey P, Yilmaz YE, Savas S. Examining SNP-SNP interactions and risk of clinical outcomes in colorectal cancer using multifactor dimensionality reduction based methods. Front Genet 2022; 13:902217. [PMID: 35991579 PMCID: PMC9385108 DOI: 10.3389/fgene.2022.902217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background: SNP interactions may explain the variable outcome risk among colorectal cancer patients. Examining SNP interactions is challenging, especially with large datasets. Multifactor Dimensionality Reduction (MDR)-based programs may address this problem.Objectives: 1) To compare two MDR-based programs for their utility; and 2) to apply these programs to sets of MMP and VEGF-family gene SNPs in order to examine their interactions in relation to colorectal cancer survival outcomes.Methods: This study applied two data reduction methods, Cox-MDR and GMDR 0.9, to study one to three way SNP interactions. Both programs were run using a 5-fold cross validation step and the top models were verified by permutation testing. Prognostic associations of the SNP interactions were verified using multivariable regression methods. Eight datasets, including SNPs from MMP family genes (n = 201) and seven sets of VEGF-family interaction networks (n = 1,517 SNPs) were examined.Results: ∼90 million potential interactions were examined. Analyses in the MMP and VEGF gene family datasets found several novel 1- to 3-way SNP interactions. These interactions were able to distinguish between the patients with different outcome risks (regression p-values 0.03–2.2E-09). The strongest association was detected for a 3-way interaction including CHRM3.rs665159_EPN1.rs6509955_PTGER3.rs1327460 variants.Conclusion: Our work demonstrates the utility of data reduction methods while identifying potential prognostic markers in colorectal cancer.
Collapse
Affiliation(s)
- Aaron Curtis
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yajun Yu
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Megan Carey
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Patrick Parfrey
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yildiz E. Yilmaz
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Department of Mathematics and Statistics, Faculty of Science, Memorial University, St. John’s, NL, Canada
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- *Correspondence: Sevtap Savas,
| |
Collapse
|
5
|
Ramírez-González A, Manzo-Merino J, Contreras-Ochoa CO, Bahena-Román M, Aguilar-Villaseñor JM, Lagunas-Martínez A, Rosenstein Y, Madrid Marina V, Torres-Poveda K. Functional Role of AKNA: A Scoping Review. Biomolecules 2021; 11:1709. [PMID: 34827707 PMCID: PMC8615511 DOI: 10.3390/biom11111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Human akna encodes an AT-hook transcription factor whose expression participates in various cellular processes. We conducted a scoping review on the literature regarding the functional role of AKNA according to the evidence found in human and in vivo and in vitro models, stringently following the "PRISMA-ScR" statement recommendations. METHODS We undertook an independent PubMed literature search using the following search terms, AKNA OR AKNA ADJ gene OR AKNA protein, human OR AKNA ADJ functions. Observational and experimental articles were considered. The selected studies were categorized using a pre-determined data extraction form. A narrative summary of the evidence was produced. RESULTS AKNA modulates the expression of CD40 and CD40L genes in immune system cells. It is a negative regulator of inflammatory processes as evidenced by knockout mouse models and observational studies for several autoimmune and inflammatory diseases. Furthermore, AKNA contributes to the de-regulation of the immune system in cancer, and it has been proposed as a susceptibility genetic factor and biomarker in CC, GC, and HNSCC. Finally, AKNA regulates neurogenesis by destabilizing the microtubules dynamics. CONCLUSION Our results provide evidence for the role of AKNA in various cellular processes, including immune response, inflammation, development, cancer, autoimmunity, and neurogenesis.
Collapse
Affiliation(s)
- Abrahán Ramírez-González
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Joaquín Manzo-Merino
- Department of Basic Research, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
- Consejo Nacional de Ciencia y Tecnología (CONACyT)-Instituto Nacional de Cancerología, Mexico City 03940, Mexico
| | - Carla Olbia Contreras-Ochoa
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Margarita Bahena-Román
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - José Manasés Aguilar-Villaseñor
- Centro Nacional para la Salud de la Infancia y la Adolescencia (CeNSIA)-Secretaría de Salud Federal, Mexico City 01480, Mexico;
| | - Alfredo Lagunas-Martínez
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City 62210, Mexico;
| | - Vicente Madrid Marina
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Kirvis Torres-Poveda
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
- CONACyT-Instituto Nacional de Salud Pública, Cuernavaca 03940, Mexico
| |
Collapse
|
6
|
Song Y, Pan Y, Liu J. The relevance between the immune response-related gene module and clinical traits in head and neck squamous cell carcinoma. Cancer Manag Res 2019; 11:7455-7472. [PMID: 31496804 PMCID: PMC6689548 DOI: 10.2147/cmar.s201177] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer in the world, accounting for more than 90% of head and neck malignant tumors. However, its molecular mechanism is largely unknown. To help elucidate the potential mechanism of HNSCC tumorigenesis, we investigated the gene interaction patterns associated with tumorigenesis. Methods Weighted gene co-expression network analysis (WGCNA) can help us to predict the intrinsic relationship or correlation between gene expression. Additionally, we further explored the combination of clinical information and module construction. Results Sixteen modules were constructed, among which the key module most closely associated with clinical information was identified. By analyzing the genes in this module, we found that the latter may be related to the immune response, inflammatory response and formation of the tumor microenvironment. Sixteen hub genes were identified-ARHGAP9, SASH3, CORO1A, ITGAL, PPP1R16B, TBC1D10C, IL10RA, ITK, AKNA, PRKCB, TRAF3IP3, GIMAP4, CCR7, P2RY8, GIMAP7, and SP140. We further validated these genes at the transcriptional and translation levels. Conclusion The innovative use of a weighted network to analyze HNSCC samples provides new insights into the molecular mechanism and prognosis of HNSCC. Additionally, the hub genes we identified can be used as biomarkers and therapeutic targets of HNSCC, laying the foundation for the accurate diagnosis and treatment of HNSCC in clinical and research in the future.
Collapse
Affiliation(s)
- Yidan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
7
|
Mandal RK, Dar SA, Jawed A, Wahid M, Lohani M, Panda AK, Mishra BN, Akhter N, Areeshi MY, Haque S. Impact of LMP7 (rs2071543) gene polymorphism in increasing cancer risk: evidence from a meta-analysis and trial sequential analysis. Oncotarget 2017; 9:6572-6585. [PMID: 29464093 PMCID: PMC5814233 DOI: 10.18632/oncotarget.23547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023] Open
Abstract
Genetic variant LMP7 (low molecular weight polypeptide 7) –145 C > A may influence the function of immune surveillance of an individual and lead to cancer development. Various studies have investigated the relevance of LMP7 –145 C > A gene polymorphism with cancer risk; but, their results are conflicting and inconsistent. To obtain a comprehensive conclusion, a meta-analysis was performed by including eight eligible published studies retrieved from PubMed (Medline), EMBASE and Google Scholar web search until December 2016. Individuals with AA genotype (AA vs CC: p = 0.001; OR = 2.602, 95% CI = 1.780 to 3.803) of LMP7 -145 C > A were found to have 2 folds higher risk of cancer than those with CC genotype. The recessive genetic model (AA vs AC + CC) also indicated that individuals with AA genotype have 2 folds higher cancer risk than AC and CC genotypes (p = 0.001; OR = 2.216, 95% CI = 1.525 to 3.221). Also, significant increased cancer risk was observed in Asians but not in Caucasians. No publication bias was observed during the analysis. Trial sequential analysis also strengthened our current findings. These results suggest that genetic variant LMP7–145 C > A has significant role in increasing cancer risk in overall and Asian population, and could be useful as a prognostic marker for early cancer predisposition.
Collapse
Affiliation(s)
- Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.,The University College of Medical Sciences and GTB Hospital University of Delhi, Delhi 110095, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.,Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia A Central University, New Delhi 110025, India
| | - Mohtashim Lohani
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Aditya K Panda
- Centre for Life Sciences, Central University of Jharkhand, Ranchi, Jharkhand 835205, India
| | - Bhartendu N Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, Uttar Pradesh 226021, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65431, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Werdyani S, Yu Y, Skardasi G, Xu J, Shestopaloff K, Xu W, Dicks E, Green J, Parfrey P, Yilmaz YE, Savas S. Germline INDELs and CNVs in a cohort of colorectal cancer patients: their characteristics, associations with relapse-free survival time, and potential time-varying effects on the risk of relapse. Cancer Med 2017; 6:1220-1232. [PMID: 28544645 PMCID: PMC5463068 DOI: 10.1002/cam4.1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/24/2022] Open
Abstract
INDELs and CNVs are structural variations that may play roles in cancer susceptibility and patient outcomes. Our objectives were a) to computationally detect and examine the genome‐wide INDEL/CNV profiles in a cohort of colorectal cancer patients, and b) to examine the associations of frequent INDELs/CNVs with relapse‐free survival time. We also identified unique variants in 13 Familial Colorectal Cancer Type X (FCCX) cases. The study cohort consisted of 495 colorectal cancer patients. QuantiSNP and PennCNV algorithms were utilized to predict the INDELs/CNVs using genome‐wide signal intensity data. Duplex PCR was used to validate predictions for 10 variants. Multivariable Cox regression models were used to test the associations of 106 common variants with relapse‐free survival time. Score test and the multivariable Cox proportional hazards models with time‐varying coefficients were applied to identify the variants with time‐varying effects on the relapse‐free survival time. A total of 3486 distinct INDELs/CNVs were identified in the patient cohort. The majority of these variants were rare (83%) and deletion variants (81%). The results of the computational predictions and duplex PCR results were highly concordant (93–100%). We identified four promising variants significantly associated with relapse‐free survival time (P < 0.05) in the multivariable Cox proportional hazards regression models after adjustment for clinical factors. More importantly, two additional variants were identified to have time‐varying effects on the risk of relapse. Finally, 58 rare variants were identified unique to the FCCX cases; none of them were detected in more than one patient. This is one of the first genome‐wide analyses that identified the germline INDEL/CNV profiles in colorectal cancer patients. Our analyses identified novel variants and genes that can biologically affect the risk of relapse in colorectal cancer patients. Additionally, for the first time, we identified germline variants that can potentially be early‐relapse markers in colorectal cancer.
Collapse
Affiliation(s)
- Salem Werdyani
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Yajun Yu
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Georgia Skardasi
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Jingxiong Xu
- Department of Biostatistics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Wei Xu
- Department of Biostatistics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Dicks
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Jane Green
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Patrick Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Yildiz E Yilmaz
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Clinical Epidemiology Unit, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Department of Mathematics and Statistics, Faculty of Science, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Guo YM, Sun MX, Li J, Liu TT, Huang HZ, Chen JR, Liu WS, Feng QS, Chen LZ, Bei JX, Zeng YX. Association of CELF2 polymorphism and the prognosis of nasopharyngeal carcinoma in southern Chinese population. Oncotarget 2016; 6:27176-86. [PMID: 26314850 PMCID: PMC4694981 DOI: 10.18632/oncotarget.4870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy with high metastatic potential and loco-regional recurrence. The overall survival of NPC has been limited from further improvement partly due to the lack of effective biomarker for accurate prognosis prediction and precise treatments. Here, in light of the implication of CELF gene family in cancer prognosis, we selected 112 tagging single nucleotide polymorphisms (SNPs) located in six members of the family and tested their associations with the clinical outcomes in a discovery cohort of 717 NPC patients. Survival analyses under multivariate cox proportional hazards model and Kaplan–Meier curve revealed five promising SNPs, which were further validated in another independent sample of 1,520 cases. Combined analysis revealed that SNP rs3740194 in CELF2 was significantly associated with the decreased risk of death with a Hazard ratio (HR) of 0.69 (95% confidence interval [CI] = 0.58–0.82, codominant model). Moreover, rs3740194 also showed a significant association with superior metastasis-free survival (HR = 0.69, 95% CI = 0.57–0.83, codominant model). Taken together, our findings suggested that genetic variant of rs3740194 in CELF2 gene might be a valuable predictor for NPC prognosis, and potentially useful in the personalized treatment of NPC.
Collapse
Affiliation(s)
- Yun-Miao Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Ming-Xia Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Tong-Tong Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Hang-Zhen Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jie-Rong Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Wen-Sheng Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Qi-Sheng Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Li-Zhen Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jin-Xin Bei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Yi-Xin Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China.,Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
10
|
Chandra V, Kim JJ, Gupta U, Mittal B, Rai R. Impact of DCC (rs714) and PSCA (rs2294008 and rs2976392) Gene Polymorphism in Modulating Cancer Risk in Asian Population. Genes (Basel) 2016; 7:genes7020009. [PMID: 26891331 PMCID: PMC4773753 DOI: 10.3390/genes7020009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple studies have investigated the association of gene variant of Deleted in colorectal carcinoma (DCC) and Prostate Stem cell antigen (PSCA) with various cancer susceptibility; however, the results are discrepant. Since SNPs are emerging as promising biomarker of cancer susceptibility, here, we aimed to execute a meta-analysis of DCC (rs714 A > G) and PSCA (rs2294008 C > T, rs2976392 G > A) polymorphism to demonstrate the more accurate strength of these associations. We followed a rigorous inclusion/exclusion criteria and calculated the pooled odds ratios (ORs) and 95% confidence intervals (CIs). Overall, the pooled analysis showed that the DCC rs714 conferred increased risk of cancer only in Asians (AA vs. GG: OR = 1.86, p ≤ 0.0001; AG vs. GG: OR = 1.43, p = 0.005; GA + AA vs. GG: OR = 1.66, p ≤ 0.0001; AA vs. GG + GA; OR = 1.52, p ≤ 0.004, A vs. G allele: OR = 1.41, p ≤ 0.0001). PSCA rs2294008 was associated with increased overall cancer risk (TT vs. CC: OR = 1.28, p = 0.002; CT vs. CC: OR = 1.21, p ≤ 0.0001; CT + TT vs. CC: OR = 1.24, p ≤ 0.0001; TT vs. CC + CT; OR = 1.17, p ≤ 0.005, T vs. C allele: OR = 1.16, p ≤ 0.0001); however, in stratified analysis this association was limited only to gastric and bladder cancer and the strength was more prominent in Asians. In contrast, the PSCA rs2976392 SNP did not modulate the cancer risk. Therefore, we concluded that rs714 and rs2294008 polymorphism may represent a potential genetic biomarker for cancer risk in Asians and gastric as well as bladder cancer, respectively. However, since our study is limited to Asians and cancer types, further larger studies involving other cancers and/or population, gene-environment interactions and the mechanism of DCC and PSCA gene deregulation are desired to define the role of genotype with overall cancer risk.
Collapse
Affiliation(s)
- Vishal Chandra
- Department of Biosciences, Integral University, Lucknow 226026 (Uttar Pradesh), India.
| | - Jong Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea.
| | - Usha Gupta
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014 (Uttar Pradesh), India.
| | - Balraj Mittal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014 (Uttar Pradesh), India.
| | - Rajani Rai
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea.
| |
Collapse
|
11
|
Combination of genetic variants in cyclin D1 and retinoblastoma genes predict clinical outcome in oral cancer patients. Tumour Biol 2015; 37:3609-17. [DOI: 10.1007/s13277-015-4179-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022] Open
|
12
|
Sanguedolce F, Cormio A, Bufo P, Carrieri G, Cormio L. Molecular markers in bladder cancer: Novel research frontiers. Crit Rev Clin Lab Sci 2015; 52:242-55. [PMID: 26053693 DOI: 10.3109/10408363.2015.1033610] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools combining standard clinical-pathological factors with molecular markers represents a major quest in managing this poorly predictable disease.
Collapse
|
13
|
Martínez-Nava GA, Torres-Poveda K, Lagunas-Martínez A, Bahena-Román M, Zurita-Díaz MA, Ortíz-Flores E, García-Carrancá A, Madrid-Marina V, Burguete-García AI. Cervical cancer-associated promoter polymorphism affects akna expression levels. Genes Immun 2014; 16:43-53. [PMID: 25373726 DOI: 10.1038/gene.2014.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
Abstract
Cervical cancer (CC) is responsible for >260,000 deaths worldwide each year. Efforts are being focused on identifying genetic susceptibility factors, especially in genes related to the immune response. Akna has been proposed to be one of them, but data regarding its functional role in the disease is scarce. Supporting the notion of akna as a CC susceptibility gene, we found two polymorphisms associated with squamous intraepithelial lesion (SIL) and CC; moreover, we identified an association between high akna expression levels and CC and SIL, but its direction differs in each disease stage. To show the potential existence of a cis-acting polymorphism, we assessed akna allelic expression imbalance for the alleles of the -1372C>A polymorphism. We found that, regardless of the study group, the number of transcripts derived from the A allele was significantly higher than those from the C allele. Our results support the hypothesis that akna is a CC susceptibility genetic factor and suggest that akna transcriptional regulation has a role in the disease. We anticipate our study to be a starting point for in vitro evaluation of akna transcriptional regulation and for the identification of transcription factors and cis-elements regulating AKNA function that are involved in carcinogenesis.
Collapse
Affiliation(s)
- G A Martínez-Nava
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - K Torres-Poveda
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A Lagunas-Martínez
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - M Bahena-Román
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - M A Zurita-Díaz
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - E Ortíz-Flores
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Distrito Federal, Mexico
| | - V Madrid-Marina
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A I Burguete-García
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
14
|
Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, Norris MD, Byrne JA. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA CLINICAL 2014; 1:59-77. [PMID: 26675306 PMCID: PMC4633945 DOI: 10.1016/j.bbacli.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. SCOPE OF REVIEW This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. MAJOR CONCLUSIONS There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. GENERAL SIGNIFICANCE The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- ARMS, alveolar rhabdomyosarcoma
- AT/RT, atypical teratoid/rhabdoid tumor
- AURKA, aurora kinase A
- AURKB, aurora kinase B
- BET, bromodomain and extra terminal
- Biomarkers
- CAR, chimeric antigen receptor
- CML, chronic myeloid leukemia
- Childhood cancer
- DFMO, difluoromethylornithine
- DIPG, diffuse intrinsic pontine glioma
- EGFR, epidermal growth factor receptor
- ERMS, embryonal rhabdomyosarcoma
- HDAC, histone deacetylases
- Hsp90, heat shock protein 90
- IGF-1R, insulin-like growth factor type 1 receptor
- IGF/IGFR, insulin-like growth factor/receptor
- Molecular diagnostics
- NSCLC, non-small cell lung cancer
- ODC1, ornithine decarboxylase 1
- PARP, poly(ADP-ribose) polymerase
- PDGFRA/B, platelet derived growth factor alpha/beta
- PI3K, phosphatidylinositol 3′-kinase
- PLK1, polo-like kinase 1
- Ph +, Philadelphia chromosome-positive
- RMS, rhabdomyosarcoma
- SHH, sonic hedgehog
- SMO, smoothened
- SYK, spleen tyrosine kinase
- TOP1/TOP2, DNA topoisomerase 1/2
- TRAIL, TNF-related apoptosis-inducing ligand
- Targeted therapy
- VEGF/VEGFR, vascular endothelial growth factor/receptor
- mAb, monoclonal antibody
- mAbs, monoclonal antibodies
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| | - Murray D. Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Jennifer A. Byrne
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| |
Collapse
|
15
|
Grotenhuis AJ, Dudek AM, Verhaegh GW, Witjes JA, Aben KK, van der Marel SL, Vermeulen SH, Kiemeney LA. Prognostic relevance of urinary bladder cancer susceptibility loci. PLoS One 2014; 9:e89164. [PMID: 24586564 PMCID: PMC3934869 DOI: 10.1371/journal.pone.0089164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/16/2014] [Indexed: 12/13/2022] Open
Abstract
In the last few years, susceptibility loci have been identified for urinary bladder cancer (UBC) through candidate-gene and genome-wide association studies. Prognostic relevance of most of these loci is yet unknown. In this study, we used data of the Nijmegen Bladder Cancer Study (NBCS) to perform a comprehensive evaluation of the prognostic relevance of all confirmed UBC susceptibility loci. Detailed clinical data concerning diagnosis, stage, treatment, and disease course of a population-based series of 1,602 UBC patients were collected retrospectively based on a medical file survey. Kaplan-Meier survival analyses and Cox proportional hazard regression were performed, and log-rank tests calculated, to evaluate the association between 12 confirmed UBC susceptibility variants and recurrence and progression in non-muscle invasive bladder cancer (NMIBC) patients. Among muscle-invasive or metastatic bladder cancer (MIBC) patients, association of these variants with overall survival was tested. Subgroup analyses by tumor aggressiveness and smoking status were performed in NMIBC patients. In the overall NMIBC group (n = 1,269), a statistically significant association between rs9642880 at 8q24 and risk of progression was observed (GT vs. TT: HR = 1.08 (95% CI: 0.76-1.54), GG vs. TT: HR = 1.81 (95% CI: 1.23-2.66), P for trend = 2.6 × 10(-3)). In subgroup analyses, several other variants showed suggestive, though non-significant, prognostic relevance for recurrence and progression in NMIBC and survival in MIBC. This study provides suggestive evidence that genetic loci involved in UBC etiology may influence disease prognosis. Elucidation of the causal variant(s) could further our understanding of the mechanism of disease, could point to new therapeutic targets, and might aid in improvement of prognostic tools.
Collapse
Affiliation(s)
- Anne J. Grotenhuis
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aleksandra M. Dudek
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald W. Verhaegh
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. Alfred Witjes
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja K. Aben
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
- Comprehensive Cancer Center The Netherlands, Utrecht, The Netherlands
| | | | - Sita H. Vermeulen
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Bousman CA, Potiriadis M, Everall IP, Gunn JM. Methylenetetrahydrofolate reductase (MTHFR) genetic variation and major depressive disorder prognosis: A five-year prospective cohort study of primary care attendees. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:68-76. [PMID: 24123968 DOI: 10.1002/ajmg.b.32209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/12/2013] [Indexed: 11/10/2022]
Abstract
Methylenetetrahydrofolate reductase (MTHFR) genetic variation has been associated with the diagnosis of major depressive disorder (MDD) but no study to date has examined the effect MTHFR variation has on MDD prognosis. We sought to examine the prospective effects of two common MTHFR variants (C677T and A1298C) as well as seven haplotype-tagging single nucleotide polymorphisms (htSNPs) on MDD prognosis over a 5-year (60-month) period. Participants were 147 depressed primary care attendees enrolled in the Diagnosis, Management and Outcomes of Depression in Primary Care (diamond) prospective cohort study. Prognosis of MDD was measured using three methods: (1) DSM-IV criteria, (2) Primary Care Evaluation of Mental Disorders Patient Health Questionnaire-9 (PHQ-9), and (3) Center for Epidemiologic Studies Depression Scale (CESD). DSM-IV criteria for MDD was assessed using the Composite International Diagnostic Interview at baseline and 24, 36, 48, and 60 months post-baseline; whereas, PHQ-9 and CESD measures were employed at baseline and 12, 24, 36, 48, and 60 months post-baseline. Repeated measures analysis of variance showed that PHQ-9 symptom severity trajectories differed by C677T genotype (F = 3.34, df = 2,144, P = 0.038), with 677CC genotype showing the most severe symptom severity course over the 60 months of observation. Neither the A1298C polymorphism nor any of the htSNPs were associated with MDD prognosis regardless of measure used. Our results suggest that the MTHFR C677T polymorphism may serve as a marker for MDD prognosis pending independent replication.
Collapse
Affiliation(s)
- Chad A Bousman
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Department of General Practice, The University of Melbourne, Parkville, VIC, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorne, VIC, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
17
|
Ren J, Wang J, Wang J, Wang E. Inhibition of G-quadruplex assembling by DNA ligation: a versatile and non-covalent labeling strategy for bioanalysis. Biosens Bioelectron 2013; 51:336-42. [PMID: 23994843 DOI: 10.1016/j.bios.2013.07.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022]
Abstract
Through tuning relative thermodynamic stabilities (I, II and III), DNA ligation was coupled to split G-quadruplex probes and a versatile, non-covalent labelling and fluorescent strategy was constructed based on inhibition of template-directed G-quadruplex assembling by ligation reaction. The non-covalent complex between G-quadruplex and fluorescent probe was employed as signalling label and thus covalent modification of DNA probes with fluorescent probes was avoided. Selective detection of small biomolecules (ATP and NAD(+)) in the nanomolar range was realized due to the cofactor-dependent activity of DNA ligases (T4 and Escherichia coli DNA ligase). By virtue of the simple strategy, the effect of mismatch position of single-base mismatched template DNA on the ligation efficiency was validated. Meanwhile, highly mismatch-influenced ligation efficiency of ligase endows the cost-effective strategy great potential for single-nucleotide polymorphism (SNP) analysis. The non-covalent labeling strategy provides a versatile and cost-effective platform for monitor of DNA ligation, cofactor detection, SNP analysis and other ligase-based assays.
Collapse
Affiliation(s)
- Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
18
|
Savas S, Liu G, Xu W. Special considerations in prognostic research in cancer involving genetic polymorphisms. BMC Med 2013; 11:149. [PMID: 23773794 PMCID: PMC3729672 DOI: 10.1186/1741-7015-11-149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/01/2013] [Indexed: 01/08/2023] Open
Abstract
Analysis of genetic polymorphisms may help identify putative prognostic markers and determine the biological basis of variable prognosis in patients. However, in contrast to other variables commonly used in the prognostic studies, there are special considerations when studying genetic polymorphisms. For example, variable inheritance patterns (recessive, dominant, codominant, and additive genetic models) need to be explored to identify the specific genotypes associated with the outcome. In addition, several characteristics of genetic polymorphisms, such as their minor allele frequency and linkage disequilibrium among multiple polymorphisms, and the population substructure of the cohort investigated need to be accounted for in the analyses. In addition, in cancer research due to the genomic differences between the tumor and non-tumor DNA, differences in the genetic information obtained using these tissues need to be carefully assessed in prognostic studies. In this article, we review these and other considerations specific to genetic polymorphism by focusing on genetic prognostic studies in cancer.
Collapse
Affiliation(s)
- Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St, John's, Newfoundland, Canada.
| | | | | |
Collapse
|
19
|
Abstract
Urinary bladder cancer is a heterogeneous disease with diverse genetic and environmental risk factors that can influence disease risk or clinical course for recurrence, progression, and survival. Therefore, identification of these factors is paramount for disease prevention and optimal clinical management of bladder cancer patients. Of particular interest is the need to identify molecular biomarkers that can give accurate assessment of tumor biological potential and to predict treatment response. Recent advances in molecular biology, cytogenetic, and genomic research have spurred discovery efforts for novel genetic, epigenetic, and proteomic biomarkers that are prognostic for cancer. This review focuses on some of the important germ line polymorphisms found to be correlated with clinical outcomes in bladder cancer. So far, most of the identified candidate loci were based on prior knowledge of pathogenesis and had not been validated for clinical applications. The future challenges are to analyze the wealth of information from whole-genome studies, to understand the underlying biological mechanisms of these associations, the network of gene-gene and gene-environment interactions, and to apply these markers for the identification of high-risk population for targeted, personalized therapy.
Collapse
|
20
|
Savas S, Hyde A, Stuckless SN, Parfrey P, Younghusband HB, Green R. Serotonin transporter gene (SLC6A4) variations are associated with poor survival in colorectal cancer patients. PLoS One 2012; 7:e38953. [PMID: 22911682 PMCID: PMC3404081 DOI: 10.1371/journal.pone.0038953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/14/2012] [Indexed: 12/02/2022] Open
Abstract
Prognosis in colorectal cancer patients is quite variable, even after adjustment for clinical parameters such as disease stage and microsatellite instability status. It is possible that the psychological distress experienced by patients, including anxiety and depression, may be correlated with poor prognosis. In the present study, we hypothesize that genetic variations within three genes biologically linked to the stress response, namely serotonin transporter (SLC6A4), brain-derived neurotrophic factor (BDNF), and arginine vasopressin receptor (AVPR1B) genes are associated with prognosis in colorectal cancer patients. We used a population-based cohort of 280 patients who were followed for up to 12.5 years after diagnosis. Our multivariate analysis showed that a tagSNP in the SLC6A4 gene (rs12150214) was a predictor of shorter overall survival (HR: 1.572, 95%CI: 1.142–2.164, p = 0.005) independent of stage, age, grade and MSI status. Additionally, a multivariate analysis using the combined genotypes of three polymorphisms in this gene demonstrated that the presence of any of the minor alleles at these polymorphic loci was an independent predictor of both shorter overall survival (HR: 1.631, 95%CI: 1.190–2.236, p = 0.002) and shorter disease specific survival (HR: 1.691, 95%CI: 1.138–2.512, p = 0.009). The 5-HTT protein coded by the SLC6A4 gene has also been implicated in inflammation. While our results remain to be replicated in other patient cohorts, we suggest that the genetic variations in the SLC6A4 gene contribute to poor survival in colorectal cancer patients.
Collapse
Affiliation(s)
- Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
A genome-wide association study for irinotecan-related severe toxicities in patients with advanced non-small-cell lung cancer. THE PHARMACOGENOMICS JOURNAL 2012; 13:417-22. [PMID: 22664479 DOI: 10.1038/tpj.2012.24] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/26/2012] [Accepted: 04/30/2012] [Indexed: 01/17/2023]
Abstract
The identification of patients who are at high risk for irinotecan-related severe diarrhea and neutropenia is clinically important. We conducted the first genome-wide association study (GWAS) to search for novel susceptibility genes for irinotecan-related severe toxicities, such as diarrhea and neutropenia, in non-small-cell lung cancer (NSCLC) patients treated with irinotecan chemotherapy. The GWAS putatively identified 49 single-nucleotide polymorphisms (SNPs) associated with grade 3 diarrhea (G3D) and 32 SNPs associated with grade 4 neutropenia (G4N). In the replication series, the SNPs rs1517114 (C8orf34), rs1661167 (FLJ41856) and rs2745761 (PLCB1) were confirmed as being associated with G3D, whereas rs11128347 (PDZRN3) and rs11979430 and rs7779029 (SEMAC3) were confirmed as being associated with G4N. The final imputation analysis of our GWAS and replication study showed significant overlaps of association signals within these novel variants. This GWAS screen, along with subsequent validation and imputation analysis, identified novel SNPs associated with irinotecan-related severe toxicities.
Collapse
|
22
|
Elwali NE, Mariani Costantini R, Di Gioacchino M. Environment and immune-mediated diseases in Sub-Saharan Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 423:190-192. [PMID: 20961598 DOI: 10.1016/j.scitotenv.2010.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 08/26/2010] [Indexed: 05/30/2023]
|
23
|
Savas S. A curated database of genetic markers from the angiogenesis/VEGF pathway and their relation to clinical outcome in human cancers. Acta Oncol 2012; 51:243-6. [PMID: 22150118 DOI: 10.3109/0284186x.2011.636758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Angiogenesis causes local growth, aggressiveness and metastasis in solid tumors, and thus, is almost always associated with poor prognosis and survival in cancer patients. Because of this clinical importance, several chemotherapeutic agents targeting angiogenesis have also been developed. Genes and genetic variations in angiogenesis/VEGF pathway thus may be correlated with clinical outcome in cancer patients. MATERIAL AND METHODS Here, we describe a manually curated public database, dbANGIO, which posts the results of studies testing the possible correlation of genetic variations (polymorphisms and mutations) from the angiogenesis/VEGF pathway with demographic features, clinicopathological features, treatment response and toxicity, and prognosis and survival-related endpoints in human cancers. The scientific findings are retrieved from PUBMED and posted in the dbANGIO website in a summarized form. RESULTS AND CONCLUSION As of September 2011, dbANGIO includes 362 entries from 83 research articles encompassing 154 unique genetic variations from 39 genes investigated in several solid and hematological cancers. By curating the literature findings and making them freely available to researchers, dbANGIO will expedite the research on genetic factors from the angiogenesis pathway and will assist in their utility in clinical management of cancer patients. dbANGIO is freely available for non-profit institutions at http://www.med.mun.ca/angio.
Collapse
Affiliation(s)
- Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.
| |
Collapse
|
24
|
Zeng H, Yu H, Lu L, Jain D, Kidd MS, Saif MW, Chanock SJ, Hartge P, Risch HA. Genetic effects and modifiers of radiotherapy and chemotherapy on survival in pancreatic cancer. Pancreas 2011; 40:657-63. [PMID: 21487324 PMCID: PMC3116071 DOI: 10.1097/mpa.0b013e31821268d1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Germ-line genetic variation may affect clinical outcomes of cancer patients. We applied a candidate-gene approach to evaluate the effect of putative markers on survival of patients with pancreatic cancer. We also examined gene-radiotherapy and gene-chemotherapy interactions, aiming to explain interindividual differences in treatment outcomes. METHODS In total, 211 patients with pancreatic cancer were recruited in a population-based study. Sixty-four candidate genes associated with cancer survival or treatment response were selected from existing publications. Genotype information was obtained from a previous genome-wide association study data set. The main effects of genetic variation and gene-specific treatment interactions on overall survival were examined by proportional hazards regression models. RESULTS Fourteen genes showed evidence of association with pancreatic cancer survival. Among these, rs1760217, located at the DPYD gene; rs17091162 at SERPINA3; and rs2231164 at ABCG2 had the lowest P of 10(-4.60), 0.0013, and 0.0023, respectively. We also observed that 2 genes, RRM1 and IQGAP2, had significant interactions with radiotherapy in association with survival, and 2 others, TYMS and MET, showed evidence of interaction with 5-fluorouracil and erlotinib, respectively. CONCLUSIONS Our study suggested significant associations between germ-line genetic polymorphisms and overall survival in pancreatic cancer, as well as survival interactions between various genes and radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Hongmei Zeng
- Department of Epidemiology and Public Health, School of Public Health and School of Medicine, Yale University, New Haven, Connecticut, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| | - Herbert Yu
- Department of Epidemiology and Public Health, School of Public Health and School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Lingeng Lu
- Department of Epidemiology and Public Health, School of Public Health and School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Dhanpat Jain
- Department of Pathology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Mark S. Kidd
- Department of Surgery, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - M. Wasif Saif
- Division of Hematology/Oncology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Stephen J. Chanock
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | - Harvey A. Risch
- Department of Epidemiology and Public Health, School of Public Health and School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res 2011; 21:1564-77. [PMID: 21606955 DOI: 10.1038/cr.2011.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by chromatin modifiers, transcription factors and proteins that modulate DNA architecture. Among the latter, AT-hook transcription factors have emerged as multifaceted regulators that can activate or repress broad A/T-rich gene networks. Thus, alterations of AT-hook genes could affect the transcription of multiple genes causing global cell dysfunction. Here we report that targeted deletions of mouse AKNA, a hypothetical AT-hook-like transcription factor, sensitize mice to pathogen-induced inflammation and cause sudden neonatal death. Compared with wild-type littermates, AKNA KO mice appeared weak, failed to thrive and most died by postnatal day 10. Systemic inflammation, predominantly in the lungs, was accompanied by enhanced leukocyte infiltration and alveolar destruction. Cytologic, immunohistochemical and molecular analyses revealed CD11b(+)Gr1(+) neutrophils as major tissue infiltrators, neutrophilic granule protein, cathelin-related antimicrobial peptide and S100A8/9 as neutrophil-specific chemoattracting factors, interleukin-1β and interferon-γ as proinflammatory mediators, and matrix metalloprotease 9 as a plausible proteolytic trigger of alveolar damage. AKNA KO bone marrow transplants in wild-type recipients reproduced the severe pathogen-induced reactions and confirmed the involvement of neutrophils in acute inflammation. Moreover, promoter/reporter experiments showed that AKNA could act as a gene repressor. Our results support the concept of coordinated pathway-specific gene regulation functions modulating the intensity of inflammatory responses, reveal neutrophils as prominent mediators of acute inflammation and suggest mechanisms underlying the triggering of acute and potentially fatal immune reactions.
Collapse
|
26
|
Wang H, Li J, Wang Y, Jin J, Yang R, Wang K, Tan W. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. Anal Chem 2011; 82:7684-90. [PMID: 20726510 DOI: 10.1021/ac101503t] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new fluorescent sensing approach for detection of single-nucleotide polymorphisms (SNPs) is proposed based on the ligase reaction and gold nanoparticle (AuNPs)-quenched fluorescent oligonucleotides. The design exploits the strong fluorescence quenching of AuNPs for organic dyes and the difference in noncovalent interactions of the nanoparticles with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), where ssDNA can be adsorbed onto the surface of AuNPs while dsDNA cannot be. In the assay, two half primer DNA probes, one being labeled with a dye and the other being phosphorylated, were first incubated with a target DNA template. In the presence of DNA ligase, the two captured ssDNAs are linked for the perfectly matched DNA target to form a stable duplex, but the duplex could not be formed by the single-base mismatched DNA template. After addition of AuNPs, the fluorescence of dye-tagged DNA probe will be efficiently quenched unless the perfectly matched DNA target is present. To demonstrate the feasibility of this design, the performance of SNP detection using two different DNA ligases, T4 DNA ligase and Escherichia coli DNA ligase, were investigated. In the case of T4 DNA ligase, the signal enhancement of the dye-tagged DNA for perfectly matched DNA target is 4.6-fold higher than that for the single-base mismatched DNA. While in the presence of E. coli DNA ligase, the value raises to be 30.2, suggesting excellent capability for SNP discrimination.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Many studies have highlighted the role that microRNAs have in physiological processes and how their deregulation can lead to cancer. More recently, it has been proposed that the presence of single nucleotide polymorphisms in microRNA genes, their processing machinery and target binding sites affects cancer risk, treatment efficacy and patient prognosis. In reviewing this new field of cancer biology, we describe the methodological approaches of these studies and make recommendations for which strategies will be most informative in the future.
Collapse
Affiliation(s)
- Bríd M Ryan
- Cancer Prevention Fellowship Program, Center for Cancer Training, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 3068A, Bethesda, MD 20892-4258, USA
| | | | | |
Collapse
|
28
|
Ciccolini J, Dahan L, André N, Evrard A, Ouafik L, Duffaud F, Seitz JF, Mercier C. Reply to E. Giovannetti et al. J Clin Oncol 2010. [DOI: 10.1200/jco.2009.27.5859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Joseph Ciccolini
- Pole Oncologie, Assistance Publique Hôpitaux de Marseille, University-Hospital of Marseille, Marseille France
| | - Laetitia Dahan
- Pole Oncologie, Assistance Publique Hôpitaux de Marseille, University-Hospital of Marseille, Marseille France
| | - Nicolas André
- Pole Oncologie, Assistance Publique Hôpitaux de Marseille, University-Hospital of Marseille, Marseille France
| | | | - L'Houcine Ouafik
- Pole Oncologie, APHM, University-Hospital of Marseille, Marseille France
| | - Florence Duffaud
- Pole Oncologie, APHM, University-Hospital of Marseille, Marseille France
| | | | - Cédric Mercier
- Pole Oncologie, APHM, University-Hospital of Marseille, Marseille France
| |
Collapse
|
29
|
Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL. Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 2010; 29:73-93. [PMID: 20108112 DOI: 10.1007/s10555-010-9199-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
Collapse
Affiliation(s)
- Raj Chari
- Genetics Unit - Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aston KI, Krausz C, Laface I, Ruiz-Castané E, Carrell DT. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 2010; 25:1383-97. [PMID: 20378615 DOI: 10.1093/humrep/deq081] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In spite of tremendous efforts by a number of groups, the search for single nucleotide polymorphisms (SNPs) strongly associated with male factor infertility by means of gene re-sequencing studies has yielded few likely candidates. A recent pilot, genome-wide SNP association study (GWAS) identified a list of SNPs associated with oligozoospermia and azoospermia. This is an expanded follow-up study of the SNPs identified by the GWAS as well as other SNPs from previously published gene re-sequencing studies. METHODS On the basis of the pilot GWAS and SNPs with published associations with male infertility, 172 SNPs were genotyped in men with idiopathic azoospermia or oligozoospermia using the Illumina BeadXpress platform. RESULTS Several SNPs were identified or confirmed to be significantly associated with oligozoospermia and/or azoospermia. More importantly, this follow-up study indicates that, at least in Caucasian men, no single common SNP accounts for a significant proportion of spermatogenic failure cases. CONCLUSIONS The associations reported in this study are promising, but much larger genome-wide studies will be necessary to confidently validate these SNPs and identify novel SNPs associated with male infertility.
Collapse
Affiliation(s)
- Kenneth I Aston
- Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|