1
|
Costermans NGJ, Teerds KJ, Kemp B, Keijer J, Soede NM. Physiological and metabolic aspects of follicular developmental competence as affected by lactational body condition loss. Mol Reprod Dev 2023; 90:491-502. [PMID: 35775400 DOI: 10.1002/mrd.23628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Metabolic demands of modern hybrid sows have increased over the years, which increases the chance that sows enter a substantial negative energy balance (NEB) during lactation. This NEB can negatively impact reproductive outcome, which is especially evident in primiparous sows causing a reduced second parity reproductive performance. The negative effects of the lactational NEB on reproductive performance can be partly explained by the influence of the premating metabolic state, during and after lactation, on the development of follicles from which oocytes will give rise to the next litter. In addition, the degree and type of body tissue mobilization during lactation that is, adipose tissue or lean mass, highly influences follicular development. Research investigating relations between the premating metabolic state and follicular and oocyte competence in modern hybrid sows, which experience higher metabolic demands during lactation, is limited. In this review we summarize current knowledge of physiological relations between the metabolic state of modern hybrid sows and follicular developmental competence. In addition, we discuss potential implications of these relations for current sow management strategies.
Collapse
Affiliation(s)
- Natasja G J Costermans
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Katja J Teerds
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Bas Kemp
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Nicoline M Soede
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Pathania A, Liu W, Matityahu A, Irudayaraj J, Onn I. Chromosome loading of cohesin depends on conserved residues in Scc3. Curr Genet 2021; 67:447-459. [PMID: 33404730 DOI: 10.1007/s00294-020-01150-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Cohesin is essential for sister chromatid cohesion, which ensures equal segregation of the chromatids to daughter cells. However, the molecular mechanism by which cohesin mediates this function is elusive. Scc3, one of the four core subunits of cohesin, is vital to cohesin activity. However, the mechanism by which Scc3 contributes to the activity and identity of its functional domains is not fully understood. Here, we describe an in-frame five-amino acid insertion mutation after glutamic acid 704 (scc3-E704ins) in yeast Scc3, located in the middle of the second armadillo repeat. Mutated cohesin-scc3-E704ins complexes are unable to establish cohesion. Detailed molecular and genetic analyses revealed that the mutated cohesin has reduced affinity to the Scc2 loader. This inhibits its enrichment at centromeres and chromosomal arms. Mutant complexes show a slow diffusion rate in live cells suggesting that they induce a major conformational change in the complex. The analysis of systematic mutations in the insertion region of Scc3 revealed two conserved aspartic acid residues that are essential for the activity. The study offers a better understanding of the contribution of Scc3 to cohesin activity and the mechanism by which cohesin tethers the sister chromatids during the cell cycle.
Collapse
Affiliation(s)
- Anjali Pathania
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel
| | - Wenjie Liu
- Micro and Nanotechnology Laboratory, Department of Bioengineering, Beckman Institute, Carl Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, IL, USA
| | - Avi Matityahu
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel
| | - Joseph Irudayaraj
- Micro and Nanotechnology Laboratory, Department of Bioengineering, Beckman Institute, Carl Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, IL, USA
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel.
| |
Collapse
|
3
|
Postema FAM, Oosterwijk JC, Hennekam RC. Genetic control of tumor development in malformation syndromes. Am J Med Genet A 2020; 185:324-335. [PMID: 33141500 DOI: 10.1002/ajmg.a.61947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
One of the questions that arises frequently when caring for an individual with a malformation syndrome, is whether some form of tumor surveillance is indicated. In some syndromes there is a highly variable increased risk to develop tumors, while in others this is not the case. The risks can be hard to predict and difficult to explain to affected individuals and their families, and often also to caregivers. The queries arise especially if syndrome causing mutations are also known to occur in tumors. It needs insight in the mechanisms to understand and explain differences of tumor occurrence, and to offer optimal care to individuals with syndromes. Here we provide a short overview of the major mechanisms of the control for tumor occurrences in malformation syndromes.
Collapse
Affiliation(s)
- Floor A M Postema
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan C Oosterwijk
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
El Beaino M, Liu J, Wasylishen AR, Pourebrahim R, Migut A, Bessellieu BJ, Huang K, Lin PP. Loss of Stag2 cooperates with EWS-FLI1 to transform murine Mesenchymal stem cells. BMC Cancer 2020; 20:3. [PMID: 31898537 PMCID: PMC6941350 DOI: 10.1186/s12885-019-6465-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/15/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Ewing sarcoma is a malignancy of primitive cells, possibly of mesenchymal origin. It is probable that genetic perturbations other than EWS-FLI1 cooperate with it to produce the tumor. Sequencing studies identified STAG2 mutations in approximately 15% of cases in humans. In the present study, we hypothesize that loss of Stag2 cooperates with EWS-FLI1 in generating sarcomas derived from murine mesenchymal stem cells (MSCs). METHODS Mice bearing an inducible EWS-FLI1 transgene were crossed to p53-/- mice in pure C57/Bl6 background. MSCs were derived from the bone marrow of the mice. EWS-FLI1 induction and Stag2 knockdown were achieved in vitro by adenovirus-Cre and shRNA-bearing pGIPZ lentiviral infection, respectively. The cells were then treated with ionizing radiation to 10 Gy. Anchorage independent growth in vitro was assessed by soft agar assays. Cellular migration and invasion were evaluated by transwell assays. Cells were injected with Matrigel intramuscularly into C57/Bl6 mice to test for tumor formation. RESULTS Primary murine MSCs with the genotype EWS-FLI1 p53-/- were resistant to transformation and did not form tumors in syngeneic mice without irradiation. Stag2 inhibition increased the efficiency and speed of sarcoma formation significantly in irradiated EWS-FLI1 p53-/- MSCs. The efficiency of tumor formation was 91% for cells in mice injected with Stag2-repressed cells and 22% for mice receiving cells without Stag2 inhibition (p < .001). Stag2 knockdown reduced survival of mice in Kaplan-Meier analysis (p < .001). It also increased MSC migration and invasion in vitro but did not affect proliferation rate or aneuploidy. CONCLUSION Loss of Stag2 has a synergistic effect with EWS-FLI1 in the production of sarcomas from murine MSCs, but the mechanism may not relate to increased proliferation or chromosomal instability. Primary murine MSCs are resistant to transformation, and the combination of p53 null mutation, EWS-FLI1, and Stag2 inhibition does not confer immediate conversion of MSCs to sarcomas. Irradiation is necessary in this model, suggesting that perturbations of other genes beside Stag2 and p53 are likely to be essential in the development of EWS-FLI1-driven sarcomas from MSCs.
Collapse
Affiliation(s)
- Marc El Beaino
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jiayong Liu
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Amanda R Wasylishen
- Department of Genetics - Unit 1010, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Rasoul Pourebrahim
- Department of Leukemia - Unit 428, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Agata Migut
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Bryan J Bessellieu
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ke Huang
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Patrick P Lin
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Cukrov D, Newman TAC, Leask M, Leeke B, Sarogni P, Patimo A, Kline AD, Krantz ID, Horsfield JA, Musio A. Antioxidant treatment ameliorates phenotypic features of SMC1A-mutated Cornelia de Lange syndrome in vitro and in vivo. Hum Mol Genet 2019; 27:3002-3011. [PMID: 29860495 DOI: 10.1093/hmg/ddy203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare disease characterized by cognitive impairment, multisystemic alterations and premature aging. Furthermore, CdLS cells display gene expression dysregulation and genomic instability. Here, we demonstrated that treatment with antioxidant drugs, such as ascorbic acid and riboceine, reduced the level of genomic instability and extended the in vitro lifespan of CdLS cell lines. We also found that antioxidant treatment partially rescued the phenotype of a zebrafish model of CdLS. Gene expression profiling showed that antioxidant drugs caused dysregulation of gene transcription; notably, a number of genes coding for the zinc finger (ZNF)-containing Krueppel-associated box (KRAB) protein domain (KRAB-ZNF) were found to be downregulated. Taken together, these data suggest that antioxidant drugs have the potential to ameliorate the developmental phenotype of CdLS.
Collapse
Affiliation(s)
- Dubravka Cukrov
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| | - Trent A C Newman
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Megan Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Bryony Leeke
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Patrizia Sarogni
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| | - Alessandra Patimo
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Ian D Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag, Auckland, New Zealand
| | - Antonio Musio
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| |
Collapse
|
6
|
Hsp90 Is Essential for Chl1-Mediated Chromosome Segregation and Sister Chromatid Cohesion. mSphere 2018; 3:3/3/e00225-18. [PMID: 29875144 PMCID: PMC5990887 DOI: 10.1128/msphere.00225-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
Recently, Hsp90 functional loss has been linked to aneuploidy; however, until now none of the components of sister chromatid cohesion (SCC) have been demonstrated as the putative clients of Hsp90. In this study, we have established that Chl1, the protein which is involved in maintaining sister chromatid cohesion as well as in preventing chromosome loss, is a direct client of Hsp90. Thus, with understanding of the molecular mechanism, how Hsp90 controls the cohesion machinery might reveal new insights which can be exploited further for attenuation of tumorigenesis. Recent studies have demonstrated that aberrant sister chromatid cohesion causes genomic instability and hence is responsible for the development of a tumor. The Chl1 (chromosome loss 1) protein (homolog of human ChlRl/DDX11 helicase) plays an essential role in the proper segregation of chromosomes during mitosis. The helicase activity of Chl1 is critical for sister chromatid cohesion. Our study demonstrates that Hsp90 interacts with Chl1 and is necessary for its stability. We observe that the Hsp90 nonfunctional condition (temperature-sensitive iG170Dhsp82 strain at restrictive temperature) induces proteasomal degradation of Chl1. We have mapped the domains of Chl1 and identified that the presence of domains II, III, and IV is essential for efficient interaction with Hsp90. We have demonstrated that Hsp90 inhibitor 17-AAG (17-allylamino-geldenamycin) causes destabilization of Chl1 protein and enhances significant disruption of sister chromatid cohesion, which is comparable to that observed under the Δchl1 condition. Our study also revealed that 17-AAG treatment causes an increased frequency of chromosome loss to a similar extent as that of the Δchl1 cells. Hsp90 functional loss has been earlier linked to aneuploidy with very poor mechanistic insight. Our result identifies Chl1 as a novel client of Hsp90, which could be further explored to gain mechanistic insight into aneuploidy. IMPORTANCE Recently, Hsp90 functional loss has been linked to aneuploidy; however, until now none of the components of sister chromatid cohesion (SCC) have been demonstrated as the putative clients of Hsp90. In this study, we have established that Chl1, the protein which is involved in maintaining sister chromatid cohesion as well as in preventing chromosome loss, is a direct client of Hsp90. Thus, with understanding of the molecular mechanism, how Hsp90 controls the cohesion machinery might reveal new insights which can be exploited further for attenuation of tumorigenesis.
Collapse
|
7
|
Fazio G, Bettini LR, Rigamonti S, Meta D, Biondi A, Cazzaniga G, Selicorni A, Massa V. Impairment of Retinoic Acid Signaling in Cornelia de Lange Syndrome Fibroblasts. Birth Defects Res 2017; 109:1268-1276. [PMID: 28752682 DOI: 10.1002/bdr2.1070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2023]
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a rare genetic disorder affecting the neurodevelopment, gastrointestinal, musculoskeletal systems. CdLS is caused by mutations within NIPBL, SMC1A, SMC3, RAD21, and HDAC8 genes. These genes codify for the "cohesin complex" playing a role in chromatid adhesion, DNA repair and gene expression regulation. The aim of this study was to investigate retinoic acid (RA) signaling pathway, a master developmental regulator, in CdLS cells. METHODS Skin biopsies from CdLS patients and healthy controls were cultured and derived primary fibroblast cells were treated with RA or dimethyl sulfoxide (vehicle). After RA treatment, cells were harvested and RNA was isolated for quantitative real-time polymerase chain reaction experiments. RESULTS We analyzed several components of RA metabolism in a human cell line of kidney fibroblasts (293T), in addition to fibroblasts collected from both NIPBL-mutated patients and healthy donors, with or without RA treatment. In all cases, ADH and RALDH1 gene expression was not affected by RA treatment, while CRABP1 was induced. CRABP2 was dramatically upregulated upon RA treatment in healthy donors but not in CdLS patients cells. CONCLUSION We investigated if CdLS alterations are associated to perturbation of RA signaling. Cells derived from CdLS patients do not respond to RA signaling as efficiently as healthy controls. RA pathway alterations suggest a possible underlying mechanism for several cellular and developmental abnormalities associated with cohesin function. Birth Defects Research 109:1268-1276, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Grazia Fazio
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Silvia Rigamonti
- Università degli Studi di Milano, Dipartimento di Scienze della Salute, Milan, Italy
| | - Dorela Meta
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
- Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Angelo Selicorni
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
- Department of Pediatrics, Presidio S. Fermo, ASST Lariana, Como, Italy
| | - Valentina Massa
- Università degli Studi di Milano, Dipartimento di Scienze della Salute, Milan, Italy
| |
Collapse
|
8
|
Marcos-Alcalde Í, Mendieta-Moreno JI, Puisac B, Gil-Rodríguez MC, Hernández-Marcos M, Soler-Polo D, Ramos FJ, Ortega J, Pié J, Mendieta J, Gómez-Puertas P. Two-step ATP-driven opening of cohesin head. Sci Rep 2017; 7:3266. [PMID: 28607419 PMCID: PMC5468275 DOI: 10.1038/s41598-017-03118-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the "head" structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: i) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer.
Collapse
Affiliation(s)
| | - Jesús I Mendieta-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Beatriz Puisac
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - María Concepción Gil-Rodríguez
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - María Hernández-Marcos
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - Diego Soler-Polo
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Feliciano J Ramos
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - José Ortega
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Pié
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - Jesús Mendieta
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Departamento de Biotecnología, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | |
Collapse
|
9
|
Wali RK, Momi N, Dela Cruz M, Calderwood AH, Stypula-Cyrus Y, Almassalha L, Chhaparia A, Weber CR, Radosevich A, Tiwari AK, Latif B, Backman V, Roy HK. Higher Order Chromatin Modulator Cohesin SA1 Is an Early Biomarker for Colon Carcinogenesis: Race-Specific Implications. Cancer Prev Res (Phila) 2016; 9:844-854. [PMID: 27549371 PMCID: PMC5093027 DOI: 10.1158/1940-6207.capr-16-0054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Alterations in high order chromatin, with concomitant modulation in gene expression, are one of the earliest events in the development of colorectal cancer. Cohesins are a family of proteins that modulate high-order chromatin, although the role in colorectal cancer remains incompletely understood. We, therefore, assessed the role of cohesin SA1 in colorectal cancer biology and as a biomarker focusing in particular on the increased incidence/mortality of colorectal cancer among African-Americans. Immunohistochemistry on tissue arrays revealed dramatically decreased SA1 expression in both adenomas (62%; P = 0.001) and adenocarcinomas (75%; P = 0.0001). RT-PCR performed in endoscopically normal rectal biopsies (n = 78) revealed a profound decrease in SA1 expression in adenoma-harboring patients (field carcinogenesis) compared with those who were neoplasia-free (47%; P = 0.03). From a racial perspective, colorectal cancer tissues from Caucasians had 56% higher SA1 expression than in African-Americans. This was mirrored in field carcinogenesis where healthy Caucasians expressed more SA1 at baseline compared with matched African-American subjects (73%; P = 0.003). However, as a biomarker for colorectal cancer risk, the diagnostic performance as assessed by area under ROC curve was greater in African-Americans (AUROC = 0.724) than in Caucasians (AUROC = 0.585). From a biologic perspective, SA1 modulation of high-order chromatin was demonstrated with both biophotonic (nanocytology) and chromatin accessibility [micrococcal nuclease (MNase)] assays in SA1-knockdown HT29 colorectal cancer cells. The functional consequences were underscored by increased proliferation (WST-1; P = 0.0002, colony formation; P = 0.001) in the SA1-knockdown HT29 cells. These results provide the first evidence indicating a tumor suppressor role of SA1 in early colon carcinogenesis and as a risk stratification biomarker giving potential insights into biologic basis of racial disparities in colorectal cancer. Cancer Prev Res; 9(11); 844-54. ©2016 AACR.
Collapse
Affiliation(s)
- Ramesh K Wali
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Navneet Momi
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Mart Dela Cruz
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Audrey H Calderwood
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | | | - Luay Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Anuj Chhaparia
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | | | - Andrew Radosevich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Ashish K Tiwari
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Bilal Latif
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Hemant K Roy
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts.
| |
Collapse
|
10
|
França JA, Diniz MG, Bernardes VF, Costa-Silva RC, Souza RP, Gomez RS, Gomes CC. Cohesin subunits, STAG1 and STAG2, and cohesin regulatory factor, PDS5b, in oral squamous cells carcinomas. J Oral Pathol Med 2016; 46:188-193. [PMID: 27341316 DOI: 10.1111/jop.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cohesin complex is responsible for sister chromatid cohesion. STAG1/STAG2 is part of the complex, which is regulated by PDS5B. Alterations in these genes were described in tumors. PDS5B is a negative regulator of cell proliferation. We aimed to assess molecular alterations in these genes in oral squamous cell carcinoma (OSCC) and predict their expression by the expression of 84 cell cycle genes. In addition, we investigated whether pds5b protein expression impacted ki-67 and p53 immunopositivity. METHODS We assessed loss of heterozygosity (LOH) at STAG1 and STAG2 loci in 15 OSCC using three polymorphic markers. Associations between the immunoexpression of pds5b and ki-67 and p53 were tested in 62 samples. Differences between transcriptional levels of STAG1, STAG2, and PDS5B between OSCC and normal oral mucosa (NM) were evaluated by qPCR. An 84 cell cycle genes qPCR array was carried with OSCC samples, and STAG1, STAG2, and PDS5B were independently used as response variables in multiple linear regression models. RESULTS Loss of heterozygosity in at least one marker was observed in three samples. pds5b, p53, and ki-67 were highly expressed, and no association was found between pds5b immunoexpression and ki-67 or p53 (P > 0.05). OSCC and NM showed similar transcriptional levels of STAG1, STAG2, and PDS5B. STAG1 and CUL3 expression seem to be related (P = 0.004). CONCLUSIONS There is LOH at STAG1 and STAG2 loci in OSCC, but OSCC and NM showed similar transcriptional levels of STAG1, STAG2, and PDS5B. pds5b immunoexpression in OSCC was high, but it was not associated with proliferation cell index.
Collapse
Affiliation(s)
- Josiane Alves França
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Marina Gonçalves Diniz
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Vanessa Fátima Bernardes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Raíssa Cristina Costa-Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Renan Pedra Souza
- Department of General Biology, Biological Sciences Institute, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Cucco F, Musio A. Genome stability: What we have learned from cohesinopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2016; 172:171-8. [PMID: 27091086 DOI: 10.1002/ajmg.c.31492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cohesin is a multiprotein complex involved in many DNA-related processes such as proper chromosome segregation, replication, transcription, and repair. Mutations in cohesin gene pathways are responsible for human diseases, collectively referred to as cohesinopathies. In addition, both cohesin gene expression dysregulation and mutations have been identified in cancer. Cohesinopathy cells are characterized by genome instability (GIN) visualized by a constellation of markers such as chromosome aneuploidies, chromosome aberrations, precocious sister chromatid separation, premature centromere separation, micronuclei formation, and sensitivity to genotoxic drugs. The emerging picture suggests that GIN observed in cohesinopathies may result from the synergistic effects of the multiple cohesin dysfunctions. © 2016 Wiley Periodicals, Inc.
Collapse
|
12
|
Yun J, Song SH, Kang JY, Park J, Kim HP, Han SW, Kim TY. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res 2016; 44:558-72. [PMID: 26420833 PMCID: PMC4737181 DOI: 10.1093/nar/gkv933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/09/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023] Open
Abstract
Gene amplification is a hallmark of cancer with chromosomal instability although the underlying mechanism by which altered copy numbers are maintained is largely unclear. Cohesin, involved in sister chromatid cohesion, DNA repair, cell cycle progression and transcriptional regulation of key developmental genes, is frequently overexpressed in human cancer. Here we show that cohesin-dependent change in DNA replication controls the copy numbers of amplified genes in cancer cells with chromosomal instability. We found that the down-regulation of elevated cohesin leads to copy number-associated gene expression changes without disturbing chromosomal segregation. Highly amplified genes form typical long-range chromatin interactions, which are stabilized by enriched cohesin. The spatial proximities among cohesin binding sites within amplified genes are decreased by RAD21-knockdown, resulting in the rapid decline of amplified gene expression. After several passages, cohesin depletion inhibits DNA replication initiation by reducing the recruitment of pre-replication complexes such as minichromosome maintenance subunits 7 (MCM7), DNA polymerase α, and CDC45 at replication origins near the amplified regions, and as a result, decreases the DNA copy numbers of highly amplified genes. Collectively, our data demonstrate that cohesin-mediated chromatin organization and DNA replication are important for stabilizing gene amplification in cancer cells with chromosomal instability.
Collapse
Affiliation(s)
- Jiyeon Yun
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jee-Youn Kang
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jinah Park
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| |
Collapse
|
13
|
Mannini L, Cucco F, Quarantotti V, Amato C, Tinti M, Tana L, Frattini A, Delia D, Krantz ID, Jessberger R, Musio A. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins. Sci Rep 2015; 5:18472. [PMID: 26673124 PMCID: PMC4682075 DOI: 10.1038/srep18472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/18/2015] [Indexed: 01/02/2023] Open
Abstract
Cohesin is an evolutionarily conserved protein complex that plays a role in many biological processes: it ensures faithful chromosome segregation, regulates gene expression and preserves genome stability. In mammalian cells, the mitotic cohesin complex consists of two structural maintenance of chromosome proteins, SMC1A and SMC3, the kleisin protein RAD21 and a fourth subunit either STAG1 or STAG2. Meiotic paralogs in mammals were reported for SMC1A, RAD21 and STAG1/STAG2 and are called SMC1B, REC8 and STAG3 respectively. It is believed that SMC1B is only a meiotic-specific cohesin member, required for sister chromatid pairing and for preventing telomere shortening. Here we show that SMC1B is also expressed in somatic mammalian cells and is a member of a mitotic cohesin complex. In addition, SMC1B safeguards genome stability following irradiation whereas its ablation has no effect on chromosome segregation. Finally, unexpectedly SMC1B depletion impairs gene transcription, particularly at genes mapping to clusters such as HOX and PCDHB. Genome-wide analyses show that cluster genes changing in expression are enriched for cohesin-SMC1B binding.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Valentina Quarantotti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Clelia Amato
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Mara Tinti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Luigi Tana
- Azienda Ospedaliero Universitaria Pisana, U.O. Fisica Sanitaria, Pisa, Italy
| | - Annalisa Frattini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi dell’Insubria, Varese, Italy
| | - Domenico Delia
- Fondazione IRCCS Istituto Nazionale Tumori, Department of Experimental Oncology, Milan, Italy
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
14
|
Mannini L, C Lamaze F, Cucco F, Amato C, Quarantotti V, Rizzo IM, Krantz ID, Bilodeau S, Musio A. Mutant cohesin affects RNA polymerase II regulation in Cornelia de Lange syndrome. Sci Rep 2015; 5:16803. [PMID: 26581180 PMCID: PMC4652179 DOI: 10.1038/srep16803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023] Open
Abstract
In addition to its role in sister chromatid cohesion, genome stability and integrity, the cohesin complex is involved in gene transcription. Mutations in core cohesin subunits SMC1A, SMC3 and RAD21, or their regulators NIPBL and HDAC8, cause Cornelia de Lange syndrome (CdLS). Recent evidence reveals that gene expression dysregulation could be the underlying mechanism for CdLS. These findings raise intriguing questions regarding the potential role of cohesin-mediated transcriptional control and pathogenesis. Here, we identified numerous dysregulated genes occupied by cohesin by combining the transcriptome of CdLS cell lines carrying mutations in SMC1A gene and ChIP-Seq data. Genome-wide analyses show that genes changing in expression are enriched for cohesin-binding. In addition, our results indicate that mutant cohesin impairs both RNA polymerase II (Pol II) transcription initiation at promoters and elongation in the gene body. These findings highlight the pivotal role of cohesin in transcriptional regulation and provide an explanation for the typical gene dysregulation observed in CdLS patients.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Fabien C Lamaze
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.,Centre de recherche du CHU de Québec (Hôtel-Dieu de Québec), Québec, Canada
| | - Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Clelia Amato
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Valentina Quarantotti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ilaria M Rizzo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ian D Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Steve Bilodeau
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.,Centre de recherche du CHU de Québec (Hôtel-Dieu de Québec), Québec, Canada.,Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
15
|
Thompson LL, McManus KJ. A novel multiplexed, image-based approach to detect phenotypes that underlie chromosome instability in human cells. PLoS One 2015; 10:e0123200. [PMID: 25893404 PMCID: PMC4404342 DOI: 10.1371/journal.pone.0123200] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/19/2015] [Indexed: 11/30/2022] Open
Abstract
Chromosome instability (CIN) is characterized by a progressive change in chromosome numbers. It is a characteristic common to virtually all tumor types, and is commonly observed in highly aggressive and drug resistant tumors. Despite this information, the majority of human CIN genes have yet to be elucidated. In this study, we developed and validated a multiplexed, image-based screen capable of detecting three different phenotypes associated with CIN. Large-scale chromosome content changes were detected by quantifying changes in nuclear volumes following RNAi-based gene silencing. Using a DsRED-LacI reporter system to fluorescently label chromosome 11 within a human fibrosarcoma cell line, we were able to detect deviations from the expected number of two foci per nucleus (one focus/labelled chromosome) that occurred following CIN gene silencing. Finally, micronucleus enumeration was performed, as an increase in micronucleus formation is a classic hallmark of CIN. To validate the ability of each assay to detect phenotypes that underlie CIN, we silenced the established CIN gene, SMC1A. Following SMC1A silencing we detected an increase in nuclear volumes, a decrease in the number of nuclei harboring two DsRED-LacI foci, and an increase in micronucleus formation relative to controls (untreated and siGAPDH). Similar results were obtained in an unrelated human fibroblast cell line. The results of this study indicate that each assay is capable of detecting CIN-associated phenotypes, and can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer.
Collapse
Affiliation(s)
- Laura L. Thompson
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
16
|
Cucco F, Servadio A, Gatti V, Bianchi P, Mannini L, Prodosmo A, De Vitis E, Basso G, Friuli A, Laghi L, Soddu S, Fontanini G, Musio A. Mutant cohesin drives chromosomal instability in early colorectal adenomas. Hum Mol Genet 2014; 23:6773-8. [PMID: 25080505 DOI: 10.1093/hmg/ddu394] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chromosome missegregation leads to chromosomal instability (CIN), thought to play a role in cancer development. As cohesin functions in guaranteeing correct chromosome segregation, increasing data suggest its involvement in tumorigenesis. In a screen of a large series of early colorectal adenomas, a precocious step during colorectal tumorigenesis, we identified 11 mutations in SMC1A core cohesin subunit. In addition, we sequenced the SMC1A gene in colorectal carcinomas and we found only one mutation. Finally, the transfection of the SMC1A mutations identified in early adenomas and wild-type SMC1A gene silencing in normal human fibroblasts led to CIN. Our findings that SMC1A mutations decrease from early adenomas to colorectal cancers and that mutations lead to CIN suggest that mutant cohesin could play a pivotal role during colorectal cancer development.
Collapse
Affiliation(s)
- Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy Dipartimento di Biologia, Università degli Studi di Pisa, Pisa, Italy
| | - Adele Servadio
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e di Area Critica, Università di Pisa, Pisa, Italy
| | - Veronica Gatti
- Oncologia Sperimentale, Istituto Nazionale Tumori Regina Elena, Roma, Italy
| | - Paolo Bianchi
- Humanitas Clinical and Research Center, Rozzano (MI), Italy and
| | - Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Andrea Prodosmo
- Oncologia Sperimentale, Istituto Nazionale Tumori Regina Elena, Roma, Italy
| | - Elisa De Vitis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Gianluca Basso
- Humanitas Clinical and Research Center, Rozzano (MI), Italy and
| | - Alessandro Friuli
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Luigi Laghi
- Humanitas Clinical and Research Center, Rozzano (MI), Italy and
| | - Silvia Soddu
- Oncologia Sperimentale, Istituto Nazionale Tumori Regina Elena, Roma, Italy
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e di Area Critica, Università di Pisa, Pisa, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy Istituto Toscano Tumori, Firenze, Italy
| |
Collapse
|
17
|
Parenti I, Rovina D, Masciadri M, Cereda A, Azzollini J, Picinelli C, Limongelli G, Finelli P, Selicorni A, Russo S, Gervasini C, Larizza L. Overall and allele-specific expression of the SMC1A gene in female Cornelia de Lange syndrome patients and healthy controls. Epigenetics 2014; 9:973-9. [PMID: 24756084 DOI: 10.4161/epi.28903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder characterized by facial dysmorphisms, limb anomalies, and growth and cognitive deficits. Mutations in genes encoding subunits (SMC1A, SMC3, RAD21) or regulators (NIPBL, HDAC8) of the cohesin complex account for approximately 65% of clinically diagnosed CdLS cases. The SMC1A gene (Xp11.22), responsible for 5% of CdLS cases, partially escapes X chromosome inactivation in humans and the allele on the inactive X chromosome is variably expressed. In this study, we evaluated overall and allele-specific SMC1A expression. Real-time PCR analysis conducted on 17 controls showed that SMC1A expression in females is 50% higher than in males. Immunoblotting experiments confirmed a 44% higher protein level in healthy females than in males, and showed no significant differences in SMC1A protein levels between controls and patients. Pyrosequencing was used to assess the reciprocal level of allelic expression in six female carriers of different SMC1A mutations and 15 controls who were heterozygous at a polymorphic transcribed SMC1A locus. The two alleles were expressed at a 1:1 ratio in the control group and at a 2:1 ratio in favor of the wild type allele in the test group. Since a dominant negative effect is considered the pathogenic mechanism in SMC1A-defective female patients, the level of allelic preferential expression might be one of the factors contributing to the wide phenotypic variability observed in these patients. An extension of this study to a larger cohort containing mild to borderline cases could enhance our understanding of the clinical spectrum of SMC1A-linked CdLS.
Collapse
Affiliation(s)
- Ilaria Parenti
- Medical Genetics; Department of Health Sciences; Università degli Studi di Milano; Milan, Italy
| | - Davide Rovina
- Medical Genetics; Department of Health Sciences; Università degli Studi di Milano; Milan, Italy
| | - Maura Masciadri
- Laboratory of Medical Cytogenetics and Molecular Genetics; IRCCS Istituto Auxologico Italiano; Milan, Italy
| | - Anna Cereda
- Department of Pediatrics; Università Milano Bicocca; Fondazione MBBM; Monza, Italy
| | - Jacopo Azzollini
- Medical Genetics; Department of Health Sciences; Università degli Studi di Milano; Milan, Italy
| | - Chiara Picinelli
- Laboratory of Medical Cytogenetics and Molecular Genetics; IRCCS Istituto Auxologico Italiano; Milan, Italy
| | - Giuseppe Limongelli
- Department of Cardiology; Monaldi Hospital; Second University of Naples; Naples, Italy
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics; IRCCS Istituto Auxologico Italiano; Milan, Italy; Department of Medical Biotechnology and Translational Medicine; Università degli Studi di Milano; Milan, Italy
| | - Angelo Selicorni
- Department of Pediatrics; Università Milano Bicocca; Fondazione MBBM; Monza, Italy
| | - Silvia Russo
- Laboratory of Medical Cytogenetics and Molecular Genetics; IRCCS Istituto Auxologico Italiano; Milan, Italy
| | - Cristina Gervasini
- Medical Genetics; Department of Health Sciences; Università degli Studi di Milano; Milan, Italy
| | - Lidia Larizza
- Medical Genetics; Department of Health Sciences; Università degli Studi di Milano; Milan, Italy; Laboratory of Medical Cytogenetics and Molecular Genetics; IRCCS Istituto Auxologico Italiano; Milan, Italy
| |
Collapse
|
18
|
Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 2014; 88:1703-13. [PMID: 24257606 PMCID: PMC3911611 DOI: 10.1128/jvi.02209-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/12/2013] [Indexed: 01/31/2023] Open
Abstract
The chromatin regulatory factors CTCF and cohesin have been implicated in the coordinated control of multiple gene loci in Epstein-Barr virus (EBV) latency. We have found that CTCF and cohesin are highly enriched at the convergent and partially overlapping transcripts for the LMP1 and LMP2A genes, but it is not yet known how CTCF and cohesin may coordinately regulate these transcripts. We now show that genetic disruption of this CTCF binding site (EBVΔCTCF166) leads to a deregulation of LMP1, LMP2A, and LMP2B transcription in EBV-immortalized B lymphocytes. EBVΔCTCF166 virus-immortalized primary B lymphocytes showed a decrease in LMP1 and LMP2A mRNA and a corresponding increase in LMP2B mRNA. The reduction of LMP1 and LMP2A correlated with a loss of euchromatic histone modification H3K9ac and a corresponding increase in heterochromatic histone modification H3K9me3 at the LMP2A promoter region in EBVΔCTCF166. Chromosome conformation capture (3C) revealed that DNA loop formation with the origin of plasmid replication (OriP) enhancer was eliminated in EBVΔCTCF166. We also observed that the EBV episome copy number was elevated in EBVΔCTCF166 and that this was not due to increased lytic cycle activity. These findings suggest that a single CTCF binding site controls LMP2A and LMP1 promoter selection, chromatin boundary function, DNA loop formation, and episome copy number control during EBV latency.
Collapse
Affiliation(s)
| | - Kayla A. Martin
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Lena N. Lupey
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Italo Tempera
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
STAG2 expression in oral cancer and potentially malignant lesions. Tumour Biol 2013; 35:3641-5. [PMID: 24318971 DOI: 10.1007/s13277-013-1482-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022] Open
Abstract
Oral cancer is a world health problem, and one of the highest incidence rates of oral cancer worldwide occurs in Brazil. STAG2 is part of the cohesin complex which is responsible for sister chromatid cohesion. STAG2 loss of expression was reported in a range of tumors, and STAG2 loss was found to cause chromosomal instability and aneuploidy in cancer cells. On the basis of these findings, we investigated STAG2 expression in oral cancer and potentially malignant lesions. We investigated STAG2 immunoexpression in oral cancer, lip cancer, oral leukoplakia, and actinic cheilitis, including complete clinical information. Normal oral mucosa samples were included as normal controls. STAG2 protein was highly expressed in all samples. We further tested STAG2 expression in gastric adenocarcinomas and glioblastomas, as these tumor types were previously shown to lose STAG2 expression. We found homogenous expression of STAG2 by these tumor cells. Our results suggest that STAG2 loss of expression is not a common event in oral carcinogenesis.
Collapse
|
20
|
Bellacosa A. Developmental disease and cancer: biological and clinical overlaps. Am J Med Genet A 2013; 161A:2788-96. [PMID: 24123833 DOI: 10.1002/ajmg.a.36267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/07/2013] [Indexed: 01/14/2023]
Abstract
Numerous parallelisms exist between development and cancer. In this article, I review some of the founding ideas linking development and cancer, and highlight clinical conditions exhibiting features of both developmental derangement and cancer predisposition, including cohesinopathies, rasopathies, phakomatoses, Proteus syndrome and other overgrowth disorders, recessive chromosome breakage syndromes, and dominant hereditary cancer syndromes. I suggest that these disorders encompass a continuous spectrum spanning clinical genetics and clinical oncology, and derive some general implications that might be useful in the future for the treatment of these diseases.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
The Drosophila enhancer of split gene complex: architecture and coordinate regulation by notch, cohesin, and polycomb group proteins. G3-GENES GENOMES GENETICS 2013; 3:1785-94. [PMID: 23979932 PMCID: PMC3789803 DOI: 10.1534/g3.113.007534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cohesin protein complex functionally interacts with Polycomb group (PcG) silencing proteins to control expression of several key developmental genes, such as the Drosophila Enhancer of split gene complex [E(spl)-C]. The E(spl)-C contains 12 genes that inhibit neural development. In a cell line derived from the central nervous system, cohesin and the PRC1 PcG protein complex bind and repress E (spl)-C transcription, but the repression mechanisms are unknown. The genes in the E(spl)-C are directly activated by the Notch receptor. Here we show that depletion of cohesin or PRC1 increases binding of the Notch intracellular fragment to genes in the E(spl)-C, correlating with increased transcription. The increased transcription likely reflects both direct effects of cohesin and PRC1 on RNA polymerase activity at the E(spl)-C, and increased expression of Notch ligands. By chromosome conformation capture we find that the E(spl)-C is organized into a self-interactive architectural domain that is co-extensive with the region that binds cohesin and PcG complexes. The self-interactive architecture is formed independently of cohesin or PcG proteins. We posit that the E(spl)-C architecture dictates where cohesin and PcG complexes bind and act when they are recruited by as yet unidentified factors, thereby controlling the E(spl)-C as a coordinated domain.
Collapse
|
22
|
siRNA-mediated knockdown of SMC1A expression suppresses the proliferation of glioblastoma cells. Mol Cell Biochem 2013; 381:209-15. [PMID: 23754617 DOI: 10.1007/s11010-013-1704-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 05/24/2013] [Indexed: 01/01/2023]
Abstract
SMC1A is a member of cohesin complex which has essential functions in cell cycle progression and DNA repair. Therefore, we choose SMC1A as a target gene therapy of glioblastoma. It is well known that glioblastoma has very low survival rate because of ineffectiveness of conventional treatments. This study was designed to explore the possibilities of small interfering RNA (siRNA)-mediated SMC1A silencing as alternative method of treatment. We found that the lentivirus-mediated RNAi system efficiently decreased the expression level of SMC1A. Inhibiting SMC1A expression efficiently (P < 0.001) resulted in inhibiting the proliferation and colony formation of U251 and U87MG cells. Moreover, we found that SMC1A silencing led to S cell-cycle arresting. Collectively, these results demonstrated the possibility of siRNA-mediated silencing of SMC1A as a therapeutic tool for the treatment of glioblastoma.
Collapse
|
23
|
Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 2012; 8:e1003093. [PMID: 23284289 PMCID: PMC3527224 DOI: 10.1371/journal.pgen.1003093] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
Genome duplication, which results in polyploidy, is disruptive to fundamental biological processes. Genome duplications occur spontaneously in a range of taxa and problems such as sterility, aneuploidy, and gene expression aberrations are common in newly formed polyploids. In mammals, genome duplication is associated with cancer and spontaneous abortion of embryos. Nevertheless, stable polyploid species occur in both plants and animals. Understanding how natural selection enabled these species to overcome early challenges can provide important insights into the mechanisms by which core cellular functions can adapt to perturbations of the genomic environment. Arabidopsis arenosa includes stable tetraploid populations and is related to well-characterized diploids A. lyrata and A. thaliana. It thus provides a rare opportunity to leverage genomic tools to investigate the genetic basis of polyploid stabilization. We sequenced the genomes of twelve A. arenosa individuals and found signatures suggestive of recent and ongoing selective sweeps throughout the genome. Many of these are at genes implicated in genome maintenance functions, including chromosome cohesion and segregation, DNA repair, homologous recombination, transcriptional regulation, and chromatin structure. Numerous encoded proteins are predicted to interact with one another. For a critical meiosis gene, ASYNAPSIS1, we identified a non-synonymous mutation that is highly differentiated by cytotype, but present as a rare variant in diploid A. arenosa, indicating selection may have acted on standing variation already present in the diploid. Several genes we identified that are implicated in sister chromatid cohesion and segregation are homologous to genes identified in a yeast mutant screen as necessary for survival of polyploid cells, and also implicated in genome instability in human diseases including cancer. This points to commonalities across kingdoms and supports the hypothesis that selection has acted on genes controlling genome integrity in A. arenosa as an adaptive response to genome doubling.
Collapse
Affiliation(s)
- Jesse D. Hollister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian J. Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elisabeth Svedin
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Katherine S. Xue
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian P. Dilkes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Gimigliano A, Mannini L, Bianchi L, Puglia M, Deardorff MA, Menga S, Krantz ID, Musio A, Bini L. Proteomic profile identifies dysregulated pathways in Cornelia de Lange syndrome cells with distinct mutations in SMC1A and SMC3 genes. J Proteome Res 2012; 11:6111-23. [PMID: 23106691 DOI: 10.1021/pr300760p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mutations in cohesin genes have been identified in Cornelia de Lange syndrome (CdLS), but its etiopathogenetic mechanisms are still poorly understood. To define biochemical pathways that are affected in CdLS, we analyzed the proteomic profile of CdLS cell lines carrying mutations in the core cohesin genes, SMC1A and SMC3. Dysregulated protein expression was found in CdLS probands compared to controls. The proteomics analysis was able to discriminate between probands harboring mutations in the different domains of the SMC proteins. In particular, proteins involved in the response to oxidative stress were specifically down-regulated in hinge mutated probands. In addition, the finding that CdLS cell lines show an increase in global oxidative stress argues that it could contribute to some CdLS phenotypic features such as premature physiological aging and genome instability. Finally, the c-MYC gene represents a convergent hub lying at the center of dysregulated pathways, and is down-regulated in CdLS. This study allowed us to highlight, for the first time, specific biochemical pathways that are affected in CdLS, providing plausible causal evidence for some of the phenotypic features seen in CdLS.
Collapse
Affiliation(s)
- Anna Gimigliano
- Functional Proteomics Laboratory, Department of Biotechnologies, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
During S phase, not only does DNA have to be replicated, but also newly synthesized DNA molecules have to be connected with each other. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic or meiotic spindle, and is thus an essential prerequisite for chromosome segregation. Cohesion is mediated by cohesin complexes that are thought to embrace sister chromatids as large rings. Cohesin binds to DNA dynamically before DNA replication and is converted into a stably DNA-bound form during replication. This conversion requires acetylation of cohesin, which in vertebrates leads to recruitment of sororin. Sororin antagonizes Wapl, a protein that is able to release cohesin from DNA, presumably by opening the cohesin ring. Inhibition of Wapl by sororin therefore "locks" cohesin rings on DNA and allows them to maintain cohesion for long periods of time in mammalian oocytes, possibly for months or even years.
Collapse
|
26
|
Novara F, Alfei E, D'Arrigo S, Pantaleoni C, Beri S, Achille V, Sciacca FL, Giorda R, Zuffardi O, Ciccone R. 5p13 microduplication syndrome: a new case and better clinical definition of the syndrome. Eur J Med Genet 2012; 56:54-8. [PMID: 23085304 DOI: 10.1016/j.ejmg.2012.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
Chromosome 5p13 duplication syndrome (OMIM #613174), a contiguous gene syndrome involving duplication of several genes on chromosome 5p13 including NIPBL (OMIM 608667), has been described in rare patients with developmental delay and learning disability, behavioral problems and peculiar facial dysmorphisms. 5p13 duplications described so far present with variable sizes, from 0.25 to 13.6 Mb, and contain a variable number of genes. Here we report another patient with 5p13 duplication syndrome including NIPBL gene only. Proband's phenotype overlapped that reported in patients with 5p13 microduplication syndrome and especially that of subjects with smaller duplications. Moreover, we better define genotype-phenotype relationship associated with this duplication and confirmed that NIPBL was likely the major dosage sensitive gene for the 5p13 microduplication phenotype.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen HS, Wikramasinghe P, Showe L, Lieberman PM. Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol 2012; 86:9454-64. [PMID: 22740398 PMCID: PMC3416178 DOI: 10.1128/jvi.00787-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/14/2012] [Indexed: 12/14/2022] Open
Abstract
Chromatin-organizing factors such as CTCF and cohesins have been implicated in the control of complex viral regulatory programs. We investigated the role of CTCF and cohesins in the control of the switch from latency to the lytic cycle for Kaposi's sarcoma-associated herpesvirus (KSHV). We found that cohesin subunits but not CTCF are required for the repression of KSHV immediate early gene transcription. Depletion of the cohesin subunits Rad21, SMC1, and SMC3 resulted in lytic cycle gene transcription and viral DNA replication. In contrast, depletion of CTCF failed to induce lytic transcription or DNA replication. Chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) revealed that cohesins and CTCF bound to several sites within the immediate early control region for ORF50 and to more distal 5' sites that also regulate the divergently transcribed ORF45-ORF46-ORF47 gene cluster. Rad21 depletion led to a robust increase in ORF45, ORF46, ORF47, and ORF50 transcripts, with similar kinetics to that observed with chemical induction by sodium butyrate. During latency, the chromatin between the ORF45 and ORF50 transcription start sites was enriched in histone H3K4me3, with elevated H3K9ac at the ORF45 promoter and elevated H3K27me3 at the ORF50 promoter. A paused form of RNA polymerase II (Pol II) was loosely associated with the ORF45 promoter region during latency but was converted to an active elongating form upon reactivation induced by Rad21 depletion. Butyrate treatment caused a rapid dissociation of cohesins and loss of CTCF binding at the immediate early gene locus, suggesting that cohesins may be a direct target of butyrate-mediated lytic induction. Our findings implicate cohesins as a major repressor of KSHV lytic gene activation and show that they function coordinately with CTCF to regulate the switch between latent and lytic gene activity.
Collapse
|
28
|
Bermudez VP, Farina A, Higashi TL, Du F, Tappin I, Takahashi TS, Hurwitz J. In vitro loading of human cohesin on DNA by the human Scc2-Scc4 loader complex. Proc Natl Acad Sci U S A 2012; 109:9366-71. [PMID: 22628566 PMCID: PMC3386075 DOI: 10.1073/pnas.1206840109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The loading of cohesin onto chromatin requires the heterodimeric complex sister chromatid cohesion (Scc)2 and Scc4 (Scc2/4), which is highly conserved in all species. Here, we describe the purification of the human (h)-Scc2/4 and show that it interacts with h-cohesin and the heterodimeric Smc1-Smc3 complex but not with the Smc1 or Smc3 subunit alone. We demonstrate that both h-Scc2/4 and h-cohesin are loaded onto dsDNA containing the prereplication complex (pre-RC) generated in vitro by Xenopus high-speed soluble extracts. The addition of geminin, which blocks pre-RC formation, prevents the loading of Scc2/4 and cohesin. Xenopus extracts depleted of endogenous Scc2/4 with specific antibodies, although able to form pre-RCs, did not support cohesin loading unless supplemented with purified h-Scc2/4. The results presented here indicate that the Xenopus or h-Scc2/4 complex supports the loading of Xenopus and/or h-cohesin onto pre-RCs formed by Xenopus high-speed extracts. We show that cohesin loaded onto pre-RCs either by h-Scc2/4 and/or the Xenopus complex was dissociated from chromatin by low salt extraction, similar to cohesin loaded onto chromatin in G(1) by HeLa cells in vivo. Replication of cohesin-loaded DNA, both in vitro and in vivo, markedly increased the stability of cohesin associated with DNA. Collectively, these in vitro findings partly recapitulate the in vivo pathway by which sister chromatids are linked together, leading to cohesion.
Collapse
Affiliation(s)
- Vladimir P. Bermudez
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and
| | - Andrea Farina
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and
| | | | - Fang Du
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and
| | - Inger Tappin
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and
| | | | - Jerard Hurwitz
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and
| |
Collapse
|
29
|
Deardorff M, Wilde J, Albrecht M, Dickinson E, Tennstedt S, Braunholz D, Mönnich M, Yan Y, Xu W, Gil-Rodríguez M, Clark D, Hakonarson H, Halbach S, Michelis L, Rampuria A, Rossier E, Spranger S, Van Maldergem L, Lynch S, Gillessen-Kaesbach G, Lüdecke HJ, Ramsay R, McKay M, Krantz I, Xu H, Horsfield J, Kaiser F. RAD21 mutations cause a human cohesinopathy. Am J Hum Genet 2012; 90:1014-27. [PMID: 22633399 PMCID: PMC3370273 DOI: 10.1016/j.ajhg.2012.04.019] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022] Open
Abstract
The evolutionarily conserved cohesin complex was originally described for its role in regulating sister-chromatid cohesion during mitosis and meiosis. Cohesin and its regulatory proteins have been implicated in several human developmental disorders, including Cornelia de Lange (CdLS) and Roberts syndromes. Here we show that human mutations in the integral cohesin structural protein RAD21 result in a congenital phenotype consistent with a "cohesinopathy." Children with RAD21 mutations display growth retardation, minor skeletal anomalies, and facial features that overlap findings in individuals with CdLS. Notably, unlike children with mutations in NIPBL, SMC1A, or SMC3, these individuals have much milder cognitive impairment than those with classical CdLS. Mechanistically, these mutations act at the RAD21 interface with the other cohesin proteins STAG2 and SMC1A, impair cellular DNA damage response, and disrupt transcription in a zebrafish model. Our data suggest that, compared to loss-of-function mutations, dominant missense mutations result in more severe functional defects and cause worse structural and cognitive clinical findings. These results underscore the essential role of RAD21 in eukaryotes and emphasize the need for further understanding of the role of cohesin in human development.
Collapse
Affiliation(s)
- Matthew A. Deardorff
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Jonathan J. Wilde
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Melanie Albrecht
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
| | - Emma Dickinson
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9054, New Zealand
| | | | - Diana Braunholz
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
| | - Maren Mönnich
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9054, New Zealand
| | - Yuqian Yan
- Research Division, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
| | - Weizhen Xu
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
- Zhejiang Cancer Research Institute, Hangzhou 310058, China
| | - María Concepcion Gil-Rodríguez
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
- Unit of Clinical Genetics and Functional Genomics. Medical School, University of Zaragoza, Zaragoza 50009, Spain
| | - Dinah Clark
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Hakon Hakonarson
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104 USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara Halbach
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Laura Daniela Michelis
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Abhinav Rampuria
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | | | | | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon 25030, France
| | - Sally Ann Lynch
- Our Lady's Children's Hospital, National Centre for Medical Genetics, Dublin 12, Ireland
| | | | | | - Robert G. Ramsay
- Research Division, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, Faculty of Medicine and Dental Sciences, The University of Melbourne, Elizabeth Street, Parkville, Victoria 3000, Australia
| | - Michael J. McKay
- North Coast Cancer Institute, Lismore, New South Wales 2480, Australia
- The University of Sydney Medical School, Sydney, New South Wales 2006, Australia
| | - Ian D. Krantz
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Huiling Xu
- Research Division, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, Faculty of Medicine and Dental Sciences, The University of Melbourne, Elizabeth Street, Parkville, Victoria 3000, Australia
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9054, New Zealand
| | - Frank J. Kaiser
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
30
|
Rudra S, Skibbens RV. Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis. Cell Cycle 2012; 11:2114-21. [PMID: 22592531 PMCID: PMC3368863 DOI: 10.4161/cc.20547] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a popular model is that Ctf7/Eco1 acetylates cohesins encountered by and located in front of the fork. In turn, acetylation is posited both to allow fork passage past cohesin barriers and convert cohesins to a state competent to capture subsequent production of sister chromatids. Here, we report evidence that challenges this pre-replicative cohesion establishment model. Our genetic and biochemical studies link Ctf7/Eco1 to the Okazaki fragment flap endonuclease, Fen1. We further report genetic and biochemical interactions between Fen1 and the cohesion-associated DNA helicase, Chl1. These results raise a new model wherein cohesin deposition and establishment occur in concert with lagging strand-processing events and in the presence of both sister chromatids.
Collapse
Affiliation(s)
- Soumya Rudra
- Department of Biological Sciences; Lehigh University; Bethlehem, PA USA
| | | |
Collapse
|
31
|
Abstract
RB, a well known tumour suppressor that functions in the control of cell cycle progression and proliferation, has recently been shown to have additional functions in the maintenance of genomic stability, such that inactivation of RB family proteins promotes chromosome instability (CIN) and aneuploidy. Several studies have provided potential explanations for these phenomena that occur following RB loss, and they suggest that this new function of RB may contribute to its role in tumour suppression.
Collapse
Affiliation(s)
| | - Nicholas J. Dyson
- Corresponding Author: Nicholas Dyson 149 13th Street MB 7330 Charlestown, MA 02129 617-726-7800 617-726-7808 (fax)
| |
Collapse
|
32
|
Abstract
This chapter focuses on the three-dimensional organization of the nucleus in normal, early genomically unstable, and tumor cells. A cause-consequence relationship is discussed between nuclear alterations and the resulting genomic rearrangements. Examples are presented from studies on conditional Myc deregulation, experimental tumorigenesis in mouse plasmacytoma, nuclear remodeling in Hodgkin's lymphoma, and in adult glioblastoma. A model of nuclear remodeling is proposed for cancer progression in multiple myeloma. Current models of nuclear remodeling are described, including our model of altered nuclear architecture and the onset of genomic instability.
Collapse
|
33
|
Whelan G, Kreidl E, Wutz G, Egner A, Peters JM, Eichele G. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J 2012; 31:71-82. [PMID: 22101327 PMCID: PMC3252581 DOI: 10.1038/emboj.2011.381] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/22/2011] [Indexed: 01/25/2023] Open
Abstract
Sister chromatid cohesion, mediated by cohesin and regulated by Sororin, is essential for chromosome segregation. In mammalian cells, cohesion establishment and Sororin recruitment to chromatin-bound cohesin depends on the acetyltransferases Esco1 and Esco2. Mutations in Esco2 cause Roberts syndrome, a developmental disease in which mitotic chromosomes have a 'railroad' track morphology. Here, we show that Esco2 deficiency leads to termination of mouse development at pre- and post-implantation stages, indicating that Esco2 functions non-redundantly with Esco1. Esco2 is transiently expressed during S-phase when it localizes to pericentric heterochromatin (PCH). In interphase, Esco2 depletion leads to a reduction in cohesin acetylation and Sororin recruitment to chromatin. In early mitosis, Esco2 deficiency causes changes in the chromosomal localization of cohesin and its protector Sgo1. Our results suggest that Esco2 is needed for cohesin acetylation in PCH and that this modification is required for the proper distribution of cohesin on mitotic chromosomes and for centromeric cohesion.
Collapse
Affiliation(s)
- Gabriela Whelan
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Alexander Egner
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
34
|
Mannini L, Menga S, Tonelli A, Zanotti S, Bassi MT, Magnani C, Musio A. SMC1A codon 496 mutations affect the cellular response to genotoxic treatments. Am J Med Genet A 2012; 158A:224-8. [PMID: 22140011 DOI: 10.1002/ajmg.a.34384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/24/2011] [Indexed: 01/01/2023]
Abstract
Cornelia de Lange syndrome is a pleiotropic developmental syndrome characterized by growth and cognitive impairment, facial dysmorphic features, limb anomalies, and other malformations. Mutations in core cohesin genes SMC1A and SMC3, and the cohesin regulatory gene, NIPBL, have been identified in Cornelia de Lange syndrome probands. Patients with NIPBL mutations have more severe phenotypes when compared to those with mutations in SMC1A or SMC3. To date, 26 distinct SMC1A mutations have been identified in patients with Cornelia de Lange syndrome. Here, we describe a 3-year-old girl with psychomotor and cognitive impairment, mild facial dysmorphic features but no limb anomaly, heterozygous for a c.1487G>A mutation in SMC1A which predicts p.Arg496His. We show that this mutation leads to an impairment of the cellular response to genotoxic treatments.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Rhodes JM, McEwan M, Horsfield JA. Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation? Mol Cancer Res 2011; 9:1587-607. [PMID: 21940756 DOI: 10.1158/1541-7786.mcr-11-0382] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cohesin is a multisubunit protein complex that plays an integral role in sister chromatid cohesion, DNA repair, and meiosis. Of significance, both over- and underexpression of cohesin are associated with cancer. It is generally believed that cohesin dysregulation contributes to cancer by leading to aneuploidy or chromosome instability. For cancers with loss of cohesin function, this idea seems plausible. However, overexpression of cohesin in cancer appears to be more significant for prognosis than its loss. Increased levels of cohesin subunits correlate with poor prognosis and resistance to drug, hormone, and radiation therapies. However, if there is sufficient cohesin for sister chromatid cohesion, overexpression of cohesin subunits should not obligatorily lead to aneuploidy. This raises the possibility that excess cohesin promotes cancer by alternative mechanisms. Over the last decade, it has emerged that cohesin regulates gene transcription. Recent studies have shown that gene regulation by cohesin contributes to stem cell pluripotency and cell differentiation. Of importance, cohesin positively regulates the transcription of genes known to be dysregulated in cancer, such as Runx1, Runx3, and Myc. Furthermore, cohesin binds with estrogen receptor α throughout the genome in breast cancer cells, suggesting that it may be involved in the transcription of estrogen-responsive genes. Here, we will review evidence supporting the idea that the gene regulation function of cohesin represents a previously unrecognized mechanism for the development of cancer.
Collapse
Affiliation(s)
- Jenny M Rhodes
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
36
|
Abstract
Genome instability is a hallmark of cancer cells and how it arises is still not completely understood. Correct chromosome segregation is a pre-requisite for preserving genome integrity. Cohesin helps to ensure faithful chromosome segregation during cell cycle, however, much evidence regarding its functions have come to light over the last few years and suggest that cohesin plays multiple roles in the maintenance of genome stability. Here we review our rapidly increasing knowledge on the involvement of cohesin pathway in genome stability and cancer.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Richerche, Pisa, Italy
| | | |
Collapse
|
37
|
Majumder P, Boss JM. Cohesin regulates MHC class II genes through interactions with MHC class II insulators. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4236-44. [PMID: 21911605 PMCID: PMC3186872 DOI: 10.4049/jimmunol.1100688] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cohesin is a multiprotein, ringed complex that is most well-known for its role in stabilizing the association of sister chromatids between S phase and M. More recently, cohesin was found to be associated with transcriptional insulators, elements that are associated with the organization of chromatin into regulatory domains. The human MHC class II (MHC-II) locus contains 10 intergenic elements, termed MHC-II insulators, which bind the transcriptional insulator protein CCCTC-binding factor. MHC-II insulators interact with each other, forming a base architecture of discrete loops and potential regulatory domains. When MHC-II genes are expressed, their proximal promoter regulatory regions reorganize to the foci established by the interacting MHC-II insulators. MHC-II insulators also bind cohesin, but the functional role of cohesin in regulating this system is not known. In this article, we show that the binding of cohesin to MHC-II insulators occurred irrespective of MHC-II expression but was required for optimal expression of the HLA-DR and HLA-DQ genes. In a DNA-dependent manner, cohesin subunits interacted with CCCTC-binding factor and the MHC-II-specific transcription factors regulatory factor X and CIITA. Intriguingly, cohesin subunits were important for DNA looping interactions between the HLA-DRA promoter region and a 5' MHC-II insulator but were not required for interactions between the MHC-II insulators themselves. This latter observation introduces cohesin as a regulator of MHC-II expression by initiating or stabilizing MHC-II promoter regulatory element interactions with the MHC-II insulator elements, events that are required for maximal MHC-II transcription.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology & Immunology, 1510 Clifton Rd, Emory University School of Medicine, Atlanta, GA 30322
| | - Jeremy M. Boss
- Department of Microbiology & Immunology, 1510 Clifton Rd, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
38
|
Onishi-Seebacher M, Korbel JO. Challenges in studying genomic structural variant formation mechanisms: The short-read dilemma and beyond. Bioessays 2011; 33:840-50. [DOI: 10.1002/bies.201100075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Manning AL, Dyson NJ. pRB, a tumor suppressor with a stabilizing presence. Trends Cell Biol 2011; 21:433-41. [PMID: 21664133 PMCID: PMC3149724 DOI: 10.1016/j.tcb.2011.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 01/19/2023]
Abstract
The product of the retinoblastoma tumor-susceptibility gene (RB1) is a key regulator of cell proliferation and this function is thought to be central to its tumor suppressive activity. Several studies have demonstrated that inactivation of pRB not only allows inappropriate proliferation but also undermines mitotic fidelity, leading to genome instability and ploidy changes. Such properties promote tumor evolution and correlate with increased resistance to therapeutics and tumor relapse. These observations suggest that inactivation of pRB could contribute to both tumor initiation and progression. Further characterization of the role of pRB in chromosome segregation will provide insight into processes that are misregulated in human tumors and could reveal new therapeutic targets to kill or stall these chromosomally unstable lesions. We review the evidence that pRB promotes genome stability and discuss the mechanisms that probably contribute to this effect.
Collapse
Affiliation(s)
- Amity L Manning
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, USA.
| | | |
Collapse
|
40
|
Renault NKE, Renault MP, Copeland E, Howell RE, Greer WL. Familial skewed X-chromosome inactivation linked to a component of the cohesin complex, SA2. J Hum Genet 2011; 56:390-7. [PMID: 21412246 DOI: 10.1038/jhg.2011.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gene dosage inequality between females with two X-chromosomes and males with one is compensated for by X-chromosome inactivation (XCI), which ensures the silencing of one X in every somatic cell of female mammals. XCI in humans results in a mosaic of two cell populations: those expressing the maternal X-chromosome and those expressing the paternal X-chromosome. We have previously shown that the degree of mosaicism (the X-inactivation pattern) in a Canadian family is directly related to disease severity in female carriers of the X-linked recessive bleeding disorder, haemophilia A. The distribution of X-inactivation patterns in this family was consistent with a genetic trait having a co-dominant mode of inheritance, suggesting that XCI choice may not be completely random. To identify genetic elements that could be responsible for biased XCI choice, a linkage analysis was undertaken using an approach tailored to accommodate the continuous nature of the X-inactivation pattern phenotype in the Canadian family. Several X-linked regions were identified, one of which overlaps with a region previously found to be linked to familial skewed XCI. SA2, a component of the cohesin complex is identified as a candidate gene that could participate in XCI through its association with CTCF.
Collapse
Affiliation(s)
- Nisa K E Renault
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
41
|
Abstract
Cohesin is a conserved multisubunit protein complex with diverse cellular roles, making key contributions to the coordination of chromosome segregation, the DNA damage response and chromatin regulation by epigenetic mechanisms. Much has been learned in recent years about the roles of cohesin in a physiological context, whereas its potential and emerging role in tumour initiation and/or progression has received relatively little attention. In this Opinion article we examine how cohesin deregulation could contribute to cancer development on the basis of its physiological roles.
Collapse
Affiliation(s)
- Huiling Xu
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | | | |
Collapse
|
42
|
Abstract
Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.
Collapse
Affiliation(s)
- Mingxuan Sun
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
43
|
Abstract
Apart from a personal tragedy, could Down syndrome, cancer and infertility possibly have something in common? Are there links between a syndrome with physical and mental problems, a tumor growing out of control and the incapability to reproduce? These questions can be answered if we look at the biological functions of a protein complex, named cohesin, which is the main protagonist in the regulation of sister chromatid cohesion during chromosome segregation in cell division. The establishment, maintenance and removal of sister chromatid cohesion is one of the most fascinating and dangerous processes in the life of a cell. Errors in the control of sister chromatid cohesion frequently lead to cell death or aneuploidy. Recent results showed that cohesins also have important functions in non-dividing cells, revealing new, unexplored roles for these proteins in human syndromes, currently known as cohesinopathies. In the last 10 years, we have improved our understanding of the molecular mechanisms of the cohesin and cohesin-interacting proteins regulating the different events of sister chromatid cohesion during cell division in mitosis and meiosis.
Collapse
Affiliation(s)
- J L Barbero
- Cell Proliferation and Development Program, Chromosome Dynamics in Meiosis Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|