1
|
Messina M, Vaz FM, Rahman S. Mitochondrial membrane synthesis, remodelling and cellular trafficking. J Inherit Metab Dis 2024. [PMID: 38872485 DOI: 10.1002/jimd.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria are dynamic cellular organelles with complex roles in metabolism and signalling. Primary mitochondrial disorders are a group of approximately 400 monogenic disorders arising from pathogenic genetic variants impacting mitochondrial structure, ultrastructure and/or function. Amongst these disorders, defects of complex lipid biosynthesis, especially of the unique mitochondrial membrane lipid cardiolipin, and membrane biology are an emerging group characterised by clinical heterogeneity, but with recurrent features including cardiomyopathy, encephalopathy, neurodegeneration, neuropathy and 3-methylglutaconic aciduria. This review discusses lipid synthesis in the mitochondrial membrane, the mitochondrial contact site and cristae organising system (MICOS), mitochondrial dynamics and trafficking, and the disorders associated with defects of each of these processes. We highlight overlapping functions of proteins involved in lipid biosynthesis and protein import into the mitochondria, pointing to an overarching coordination and synchronisation of mitochondrial functions. This review also focuses on membrane interactions between mitochondria and other organelles, namely the endoplasmic reticulum, peroxisomes, lysosomes and lipid droplets. We signpost disorders of these membrane interactions that may explain the observation of secondary mitochondrial dysfunction in heterogeneous pathological processes. Disruption of these organellar interactions ultimately impairs cellular homeostasis and organismal health, highlighting the central role of mitochondria in human health and disease.
Collapse
Affiliation(s)
- Martina Messina
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Frédéric M Vaz
- Department of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Shiels A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes (Basel) 2024; 15:785. [PMID: 38927721 PMCID: PMC11202810 DOI: 10.3390/genes15060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract may also be inherited as a classic Mendelian trait-often with an early or pediatric onset-with or without other ocular and/or systemic features. Since the early 1990s, over 85 genes and loci have been genetically associated with inherited and/or age-related forms of cataract. While many of these underlying genes-including those for lens crystallins, connexins, and transcription factors-recapitulate signature features of lens development and differentiation, an increasing cohort of unpredicted genes, including those involved in cell-signaling, membrane remodeling, and autophagy, has emerged-providing new insights regarding lens homeostasis and aging. This review provides a brief history of gene discovery for inherited and age-related forms of cataract compiled in the Cat-Map database and highlights potential gene-based therapeutic approaches to delay, reverse, or even prevent cataract formation that may help to reduce the increasing demand for cataract surgery.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Wu CHW, Caha M, Smoot L, Harris DJ, Roberts AE, Sacharow S, Bodamer O. Sengers syndrome and AGK-related disorders - Minireview of phenotypic variability and clinical outcomes in molecularly confirmed cases. Mol Genet Metab 2023; 139:107626. [PMID: 37354892 DOI: 10.1016/j.ymgme.2023.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
Sengers syndrome (OMIM# 212350) is a rare autosomal recessive mitochondrial disease caused by biallelic pathogenic variants in the AGK gene, which encodes the acylglycerol kinase enzyme. The syndrome was originally defined as a "triad" of hypertrophic cardiomyopathy, cataracts, and lactic acidosis, with or without skeletal myopathy. The clinical manifestation of Sengers Syndrome exhibits substantial heterogeneity, with mild and severe/infantile forms reported. Further, biallelic AGK pathogenic variants have also been identified in a familial case of non-syndromic isolated cataract (OMIM# 614691), expanding our understanding of the gene's influence beyond the originally defined syndrome. In this study, we provide a systematic review of molecularly confirmed cases with biallelic AGK pathogenic variants (Supplementary Table 1). Our analysis demonstrates the variable expressivity and penetrance of the central features of Sengers syndrome, as follows: cataracts (98%), cardiomyopathy (88%), lactic acidosis (adjusted 88%), and skeletal myopathy (adjusted 74%) (Table 1). Furthermore, we investigate the associations between genotype, biochemical profiles, and clinical outcomes, with a particular focus on infantile mortality. Our findings reveal that patients carrying homozygous nonsense variants have a higher incidence of infant mortality and a lower median age of death (p = 0.005 and p = 0.02, Table 2a). However, the location of pathogenic variants within the AGK domains was not significantly associated with infantile death (p = 0.62, Table 2b). Additionally, we observe a borderline association between the absence of lactic acidosis and longer survival (p = 0.053, Table 2c). Overall, our systematic review sheds light on the diverse clinical manifestations of AGK-related disorders and highlights potential factors that influence its prognosis. These provide important implications for the diagnosis, treatment, and counseling of affected individuals and families.
Collapse
Affiliation(s)
- Chen-Han Wilfred Wu
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, United States; Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals, United States; Department of Urology, Case Western Reserve University and University Hospitals, United States.
| | - Martin Caha
- Department of Pediatrics, SUNY Downstate Health Sciences University, United States
| | - Leslie Smoot
- Department of Cardiology, Boston Children's Hospital/Harvard Medical School, United States
| | - David J Harris
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, United States
| | - Amy E Roberts
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, United States; Department of Cardiology, Boston Children's Hospital/Harvard Medical School, United States
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, United States
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, United States
| |
Collapse
|
4
|
Bennett TM, Zhou Y, Meyer KJ, Anderson MG, Shiels A. Whole-exome sequencing prioritizes candidate genes for hereditary cataract in the Emory mouse mutant. G3 (BETHESDA, MD.) 2023; 13:jkad055. [PMID: 36891866 PMCID: PMC10151407 DOI: 10.1093/g3journal/jkad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
The Emory cataract (Em) mouse mutant has long been proposed as an animal model for age-related or senile cataract in humans-a leading cause of visual impairment. However, the genetic defect(s) underlying the autosomal dominant Em phenotype remains elusive. Here, we confirmed development of the cataract phenotype in commercially available Em/J mice [but not ancestral Carworth Farms White (CFW) mice] at 6-8 months of age and undertook whole-exome sequencing of candidate genes for Em. Analysis of coding and splice-site variants did not identify any disease-causing/associated mutations in over 450 genes known to underlie inherited and age-related forms of cataract and other lens disorders in humans and mice, including genes for lens crystallins, membrane/cytoskeleton proteins, DNA/RNA-binding proteins, and those associated with syndromic/systemic forms of cataract. However, we identified three cataract/lens-associated genes each with one novel homozygous variant including predicted missense substitutions in Prx (p.R167C) and Adamts10 (p.P761L) and a disruptive in-frame deletion variant (predicted missense) in Abhd12 (p.L30_A32delinsS) that were absent in CFW and over 35 other mouse strains. In silico analysis predicted that the missense substitutions in Prx and Adamts10 were borderline neutral/damaging and neutral, respectively, at the protein function level, whereas, that in Abhd12 was functionally damaging. Both the human counterparts of Adamts10 and Abhd12 are clinically associated with syndromic forms of cataract known as Weil-Marchesani syndrome 1 and polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract syndrome, respectively. Overall, while we cannot exclude Prx and Adamts10, our data suggest that Abhd12 is a promising candidate gene for cataract in the Em/J mouse.
Collapse
Affiliation(s)
- Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kacie J Meyer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
A novel AGK splicing mutation in a patient with Sengers syndrome and left ventricular non-compaction cardiomyopathy. Pediatr Res 2023:10.1038/s41390-023-02515-3. [PMID: 36759750 DOI: 10.1038/s41390-023-02515-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Sengers syndrome characterized by hypertrophic cardiomyopathy is an extremely rare genetic disorder. Sengers syndrome associated with left ventricular non-compaction (LVNC) has not been described. METHODS Genetic testing was used to identify candidate AGK variants in the proband. The predicted molecular structures were constructed by protein modeling. Exon skipping caused by the identified splicing mutations was verified by in silico analyses and in vitro assays. The genotypic and phenotypic features of patients with AGK splicing mutations were extracted by a systematic review. RESULTS The proband was characterized by Sengers syndrome and LVNC and caused by a novel compound heterozygous AGK splicing mutation. This compound mutation simultaneously perturbed the protein sequences and spatial conformation of the acylglycerol kinase protein. In silico and in vitro analyses demonstrated skipping of exons 7 and 8 and premature truncation as a result of exon 8 skipping. The systematic review indicated that patients with an AGK splicing mutation may have milder phenotypes of Sengers syndrome. CONCLUSIONS The genotypic and phenotypic spectrums of Sengers syndrome have been expanded, which will provide essential information for genetic counseling. The molecular mechanism in AGK mutations can offer insights into the potential targets for treatment. IMPACT First description of a child with Sengers syndrome and left ventricular non-compaction cardiomyopathy. A novel pathogenic compound heterozygous splicing mutation in AGK for Sengers syndrome was identified. The identified mutations led to exons skipping by in silico analyses and in vitro assays.
Collapse
|
6
|
Panicucci C, Schiaffino MC, Nesti C, Derchi M, Trocchio G, Severino M, Stagnaro N, Priolo E, Zara F, Santorelli FM, Bruno C. Long term follow-up in two siblings with Sengers syndrome: Case report. Ital J Pediatr 2022; 48:180. [PMID: 36253788 PMCID: PMC9575244 DOI: 10.1186/s13052-022-01370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Sengers syndrome is characterized by congenital cataract, hypertrophic cardiomyopathy, mitochondrial myopathy, and lactic acidosis associated with mutations in AGK gene. Clinical course ranges from a severe fatal neonatal form, to a more benign form allowing survival into adulthood, to an isolated form of congenital cataract. Thus far few reported cases have survived the second decade at their latest examination, and no natural history data are available for the disease. Case presentation Here we provide a 20-year follow-up in two siblings with a benign form of Sengers syndrome, expanding the phenotypical spectrum of the disease by reporting a condition of ovarian agenesis. Conclusion To our knowledge, this report provides the first longitudinal data of Sengers syndrome patients. Supplementary information The online version contains supplementary material available at 10.1186/s13052-022-01370-y.
Collapse
Affiliation(s)
- Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | | | - Claudia Nesti
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Maria Derchi
- Cardiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Nicola Stagnaro
- Radiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enrico Priolo
- Ophthalmology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy. .,Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.
| |
Collapse
|
7
|
A Novel Mutation in the FYCO1 Gene Causing Congenital Cataract: Case Study of a Chinese Family. DISEASE MARKERS 2022; 2022:5838104. [PMID: 36061348 PMCID: PMC9439885 DOI: 10.1155/2022/5838104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
Congenital cataract is the most important global cause of visual impairment in children. Autosomal dominant and autosomal recessive inheritance account for the majority of the hereditary nonsyndromic congenital cataract. The function of FYCO1 gene is to guide the transport of the microtubule-directed vesicles. Mutations in the FYCO1 gene may cause cataracts. We reported a novel nonsense mutation in FYCO1 (c.1411C > T, P. R471 ∗), which could cause nonsyndrome autosomal recessive congenital cataract. We underwent an ophthalmology examination of all participants and collected blood samples from all participants and extracted genomic DNAs. By whole exome sequencing, we found that this family carried an unreported mutation in the FYCO1 gene: c.1411C > T, P. R471 ∗. Sanger sequencing was performed to verify the mutation. We used ITASSER and PYMOL to predict and compare the structure and function of the mutated proteins. Using SIFT software and referring to the relevant guidelines of ACMG, the mutation was determined to be pathogenic. The models suggested that the nonsense mutation p.R471∗ resulted in a profound disruption of the FYCO1 protein structure. This report expands the locus information of the FYCO1 mutations.
Collapse
|
8
|
Characterization of a Novel Splicing Variant in Acylglycerol Kinase (AGK) Associated with Fatal Sengers Syndrome. Int J Mol Sci 2021; 22:ijms222413484. [PMID: 34948281 PMCID: PMC8708263 DOI: 10.3390/ijms222413484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial functional integrity depends on protein and lipid homeostasis in the mitochondrial membranes and disturbances in their accumulation can cause disease. AGK, a mitochondrial acylglycerol kinase, is not only involved in lipid signaling but is also a component of the TIM22 complex in the inner mitochondrial membrane, which mediates the import of a subset of membrane proteins. AGK mutations can alter both phospholipid metabolism and mitochondrial protein biogenesis, contributing to the pathogenesis of Sengers syndrome. We describe the case of an infant carrying a novel homozygous AGK variant, c.518+1G>A, who was born with congenital cataracts, pielic ectasia, critical congenital dilated myocardiopathy, and hyperlactacidemia and died 20 h after birth. Using the patient’s DNA, we performed targeted sequencing of 314 nuclear genes encoding respiratory chain complex subunits and proteins implicated in mitochondrial oxidative phosphorylation (OXPHOS). A decrease of 96-bp in the length of the AGK cDNA sequence was detected. Decreases in the oxygen consumption rate (OCR) and the OCR:ECAR (extracellular acidification rate) ratio in the patient’s fibroblasts indicated reduced electron flow through the respiratory chain, and spectrophotometry revealed decreased activity of OXPHOS complexes I and V. We demonstrate a clear defect in mitochondrial function in the patient’s fibroblasts and describe the possible molecular mechanism underlying the pathogenicity of this novel AGK variant. Experimental validation using in vitro analysis allowed an accurate characterization of the disease-causing variant.
Collapse
|
9
|
Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old. Exp Eye Res 2021; 209:108662. [PMID: 34126080 PMCID: PMC8595562 DOI: 10.1016/j.exer.2021.108662] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Cataract(s) is the clinical equivalent of lens opacity and is caused by light scattering either by high molecular weight protein aggregates in lens cells or disruption of the lens microarchitecture itself. Genetic mutations underlying inherited cataract can provide insight into the biological processes and pathways critical for lens homeostasis and transparency, classically including the lens crystallins, connexins, membrane proteins or components, and intermediate filament proteins. More recently, cataract genes have been expanded to include newly identified biological processes such as chaperone or protein degradation components, transcription or growth factors, channels active in the lens circulation, and collagen and extracellular matrix components. Cataracts can be classified by age, and in general congenital cataracts are caused by severe mutations resulting in major damage to lens proteins, while age related cataracts are associated with variants that merely destabilize proteins thereby increasing susceptibility to environmental insults over time. Thus there might be separate pathways to opacity for congenital and age-related cataracts whereby congenital cataracts induce the unfolded protein response (UPR) and apoptosis to destroy the lens microarchitecture, while in age related cataract high molecular weight (HMW) aggregates formed by denatured crystallins bound by α-crystallin result in light scattering without severe damage to the lens microarchitecture.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1860, USA.
| |
Collapse
|
10
|
Kim SY, Lee SM, Shin J, Lee JE, Kim SJ. Two Cases of Ocular Manifestations in Patients with Microdeletion of the Chromosome 7 Long Arm. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.7.1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: We report ocular manifestations in two patients with 7q microdeletion. Case summary: (Case 1) A 62-day-old male infant was admitted to the ophthalmology outpatient department for ocular examination after being diagnosed with microdeletion of chromosome seven (7q36.2q36.3 deletion) in DNA microarray comparative genomic hybridization (DNA microarray CGH) and fluorescence in situ hybridization (FISH) tests. Fundus examination showed optic disc hypoplasia in both eyes and retinopathy of prematurity, accompanied by retinal hemorrhage in his right eye. Around the age of 24 months, the patient was diagnosed with intermittent exotropia with anisometropia and was prescribed spectacles. (Case 2) A 3-year-old male infant was referred to the ophthalmology clinic to evaluate poor fixation, which was found during rehabilitation therapy for cerebral palsy and developmental delay. Fundus examination showed an increased cup/disc ratio bilaterally. A flash visual evoked potential test indicated a decrease in amplitude in his right eye. Intermittent exotropia of forty prism diopters was observed. DNA microarray CGH and FISH tests performed at another hospital revealed microdeletion of chromosome seven (7q35 microdeletion) and CNTNAP2 gene loss. Conclusions: When genetic anomalies associated with ocular development are identified, it is necessary to detect the ophthalmic abnormalities early and provide the appropriate treatment to allow for the development of normal visual function.
Collapse
|
11
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
12
|
Barashkov NA, Konovalov FA, Borisova TV, Teryutin FM, Solovyev AV, Pshennikova VG, Sapojnikova NV, Vychuzhina LS, Romanov GP, Gotovtsev NN, Morozov IV, Bondar AA, Platonov FA, Burtseva TE, Khusnutdinova EK, Posukh OL, Fedorova SA. Autosomal recessive cataract (CTRCT18) in the Yakut population isolate of Eastern Siberia: a novel founder variant in the FYCO1 gene. Eur J Hum Genet 2021; 29:965-976. [PMID: 33767456 PMCID: PMC8187664 DOI: 10.1038/s41431-021-00833-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/19/2020] [Accepted: 02/10/2021] [Indexed: 11/09/2022] Open
Abstract
Congenital autosomal recessive cataract with unknown genetic etiology is one of the most common Mendelian diseases among the Turkic-speaking Yakut population (Eastern Siberia, Russia). To identify the genetic cause of congenital cataract spread in this population, we performed whole-exome sequencing (Illumina NextSeq 500) in one Yakut family with three affected siblings whose parents had preserved vision. We have revealed the novel homozygous c.1621C>T transition leading to premature stop codon p.(Gln541*) in exon 8 of the FYCO1 gene (NM_024513.4). Subsequent screening of c.1621C>T p.(Gln541*) revealed this variant in a homozygous state in 25 out of 29 Yakut families with congenital cataract (86%). Among 424 healthy individuals from seven populations of Eastern Siberia (Russians, Yakuts, Evenks, Evens, Dolgans, Chukchi, and Yukaghirs), the highest carrier frequency of c.1621C>T p.(Gln541*) was found in the Yakut population (7.9%). DNA samples of 25 homozygous for c.1621C>T p.(Gln541*) patients with congenital cataract and 114 unaffected unrelated individuals without this variant were used for a haplotype analysis based on the genotyping of six STR markers (D3S3512, D3S3685, D3S3582, D3S3561, D3S1289, and D3S3698). The structure of the identified haplotypes indicates a common origin for all of the studied mutant chromosomes bearing c.1621C>T p.(Gln541*). The age of the с.1621C>T p.(Gln541*) founder haplotype was estimated to be approximately 260 ± 65 years (10 generations). These findings characterize Eastern Siberia as the region of the world with the most extensive accumulation of the unique variant c.1621C>T p.(Gln541*) in the FYCO1 gene as a result of the founder effect.
Collapse
Affiliation(s)
- Nikolay A Barashkov
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation.
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation.
| | | | - Tuyara V Borisova
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
| | - Fedor M Teryutin
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation
| | - Aisen V Solovyev
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
| | - Vera G Pshennikova
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation
| | - Nadejda V Sapojnikova
- Department of Ophthalmology, Republican Hospital #1 - National Centre of Medicine, Yakutsk, Russian Federation
| | - Lyubov S Vychuzhina
- Department of Ophthalmology, Republican Hospital #1 - National Centre of Medicine, Yakutsk, Russian Federation
| | - Georgii P Romanov
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
| | - Nyurgun N Gotovtsev
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation
| | - Igor V Morozov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexander A Bondar
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Fedor A Platonov
- Medical Institute, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
| | - Tatiana E Burtseva
- Medical Institute, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
- Laboratory of the Children Health Monitoring and Medical-environmental Research, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation
| | - Elza K Khusnutdinova
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
- Laboratory of Human Molecular Genetics, Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Russian Federation
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russian Federation
| | - Olga L Posukh
- Novosibirsk State University, Novosibirsk, Russian Federation
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sardana A Fedorova
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
| |
Collapse
|
13
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
14
|
Aggarwal B, Kabra M, Gupta N. Report of an Indian Family with Sengers Syndrome. Indian J Pediatr 2021; 88:92. [PMID: 32852732 DOI: 10.1007/s12098-020-03471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Bhawana Aggarwal
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
15
|
Wang B, Du Z, Shan G, Yan C, Zhang VW, Li Z. Case Report: Two Chinese Infants of Sengers Syndrome Caused by Mutations in AGK Gene. Front Pediatr 2021; 9:639687. [PMID: 34164355 PMCID: PMC8215120 DOI: 10.3389/fped.2021.639687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Sengers syndrome (OMIM #212350) is a rare autosomal recessive disorder due to mutations in acylglycerol kinase (AGK) gene. We report two cases that were diagnosed clinically and confirmed genetically. Both infants had typical clinical features characterized by hypertrophic cardiomyopathy, bilateral cataracts, myopathy, and lactic acidosis, and heart failure was the most severe manifestation. Genetic testing of a boy revealed a homozygous pathogenic variant for Sengers syndrome in AGK (c.1131+2T>C) which was classified as likely pathogenic according to the ACMG guideline; besides, his skeletal muscle biopsy and transmission electron microscope presented obvious abnormity. One girl had compound heterozygous (c.409C>T and c.390G>A) variants of AGK gene that was identified in the proband and further Sanger sequencing indicated that the parents carried a single heterozygous mutation each. After the administration of "cocktail" therapy including coenzyme Q10, carnitine, and vitamin B complex, as well as ACEI, heart failure and myopathy of the boy were significantly improved and the condition was stable after 1-year follow-up, while the cardiomyopathy of the girl is not progressive but the plasma lactate acid increased significantly. We present the first report of two infants with Sengers syndrome diagnosed via exome sequencing in China.
Collapse
Affiliation(s)
- Benzhen Wang
- Qingdao Women and Children's Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Heart Center, Qingdao Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Qingdao Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, China
| | - Guangsong Shan
- Heart Center, Qingdao Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Victor Wei Zhang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Zipu Li
- Heart Center, Qingdao Women and Children's Hospital, Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Guleray N, Kosukcu C, Taskiran ZE, Simsek Kiper PO, Utine GE, Gucer S, Tokatli A, Boduroglu K, Alikasifoglu M. Atypical Presentation of Sengers Syndrome: A Novel Mutation Revealed with Postmortem Genetic Testing. Fetal Pediatr Pathol 2020; 39:163-171. [PMID: 31303091 DOI: 10.1080/15513815.2019.1639089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Sengers syndrome is an autosomal recessive disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. The causative AGK mutations have been identified with whole exome sequencing. CLINICAL REPORT We report on a 9-month-old infant with episodic lactic acidosis who died before a definitive diagnosis could be established. Postmortem genomic autopsy revealed a novel homozygous NM_018238: c.1215dupG; p.Phe406Valfs*4 mutation in AGK (OMIM 610345) confirming the diagnosis of Sengers syndrome. CONCLUSION This report provides further evidence that reverse genetics is a useful approach in patients who do not manifest the hallmark features of known and recognizable syndromes.
Collapse
Affiliation(s)
- Naz Guleray
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Kosukcu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Turkey
| | - Zihni Ekim Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Ozlem Simsek Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gulen Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Safak Gucer
- Division of Pediatric Pathology, Department of Pediatrics, Hacettepe Universitesi Faculty of Medicine, Ankara, Turkey
| | - Aysegul Tokatli
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Chen LJ. Genetic Association of Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy. Asia Pac J Ophthalmol (Phila) 2020; 9:104-109. [PMID: 32195675 DOI: 10.1097/01.apo.0000656976.47696.7d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) are leading causes of irreversible blindness among the elderly population in developed countries. Although being considered as different subtypes of a same disease, neovascular AMD and PCV have differences in clinical, epidemiological, therapeutic, and genetic profiles. Both AMD and PCV are complex diseases involving multiple genetic and environmental risk factors. Different genetic strategies have been adopted to discover associated genes and variants for neovascular AMD and PCV, including genome-wide association study (GWAS), next-generation sequencing (NGS) based sequence analysis, and candidate gene analyses. So far, a number of susceptible genes have been identified for AMD and/or PCV, such as CFH, ARMS2-HTRA1, C2-CFB-SKIV2L, C3, CETP, and FGD6. Although many of these genes are shared by AMD and PCV, some showed difference between them, such as ARMS2-HTRA1 and FGD6. Also, some of the genes showed ethnic diversities, such as the CFH p.Tyr402His variant. Further larger-scale genomic studies should be warranted to identify more susceptibility genes for AMD and, in particular, PCV among different populations, and differentiate the genetic architectures between neovascular AMD and PCV.
Collapse
Affiliation(s)
- Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital Eye Center, Hong Kong, China
| |
Collapse
|
18
|
Jiao X, Khan SY, Kaul H, Butt T, Naeem MA, Riazuddin S, Hejtmancik JF, Riazuddin SA. Autosomal recessive congenital cataracts linked to HSF4 in a consanguineous Pakistani family. PLoS One 2019; 14:e0225010. [PMID: 31815953 PMCID: PMC6901218 DOI: 10.1371/journal.pone.0225010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To investigate the genetic basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous Pakistani family. METHODS All participating members of family, PKCC074 underwent an ophthalmic examination. Slit-lamp photographs were ascertained for affected individuals that have not been operated for the removal of the cataractous lens. A small aliquot of the blood sample was collected from all participating individuals and genomic DNAs were extracted. A genome-wide scan was performed with polymorphic short tandem repeat (STR) markers and the logarithm of odds (LOD) scores were calculated. All coding exons and exon-intron boundaries of HSF4 were sequenced and expression of Hsf4 in mouse ocular lens was investigated. The C-terminal FLAG-tagged wild-type and mutant HSF4b constructs were prepared to examine the nuclear localization pattern of the mutant protein. RESULTS The ophthalmological examinations suggested that nuclear cataracts are present in affected individuals. Genome-wide linkage analyses localized the critical interval to a 10.95 cM (14.17 Mb) interval on chromosome 16q with a maximum two-point LOD score of 4.51 at θ = 0. Sanger sequencing identified a novel missense mutation: c.433G>C (p.Ala145Pro) that segregated with the disease phenotype in the family and was not present in ethnically matched controls. Real-time PCR analysis identified the expression of HSF4 in mouse lens as early as embryonic day 15 with a steady level of expression thereafter. The immunofluorescence tracking confirmed that both wild-type and mutant HSF4 (p.Ala145Pro) proteins localized to the nucleus. CONCLUSION Here, we report a novel missense mutation in HSF4 associated with arCC in a familial case of Pakistani descent.
Collapse
Affiliation(s)
- Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Haiba Kaul
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tariq Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Abstract
Cataract, the clinical correlate of opacity or light scattering in the eye lens, is usually caused by the presence of high-molecular-weight (HMW) protein aggregates or disruption of the lens microarchitecture. In general, genes involved in inherited cataracts reflect important processes and pathways in the lens including lens crystallins, connexins, growth factors, membrane proteins, intermediate filament proteins, and chaperones. Usually, mutations causing severe damage to proteins cause congenital cataracts, while milder variants increasing susceptibility to environmental insults are associated with age-related cataracts. These may have different pathogenic mechanisms: Congenital cataracts induce the unfolded protein response and apoptosis. By contrast, denatured crystallins in age-related cataracts are bound by α-crystallin and form light-scattering HMW aggregates. New therapeutic approaches to age-related cataracts use chemical chaperones to solubilize HMW aggregates, while attempts are being made to regenerate lenses using endogenous stem cells to treat congenital cataracts.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1860, USA;
| |
Collapse
|
20
|
Tort F, Ugarteburu O, Texidó L, Gea-Sorlí S, García-Villoria J, Ferrer-Cortès X, Arias Á, Matalonga L, Gort L, Ferrer I, Guitart-Mampel M, Garrabou G, Vaz FM, Pristoupilova A, Rodríguez MIE, Beltran S, Cardellach F, Wanders RJ, Fillat C, García-Silva MT, Ribes A. Mutations in TIMM50 cause severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology. Hum Mutat 2019; 40:1700-1712. [PMID: 31058414 DOI: 10.1002/humu.23779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/16/2023]
Abstract
3-Methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of diseases associated with mitochondrial membrane defects. Whole-exome sequencing identified compound heterozygous mutations in TIMM50 (c.[341 G>A];[805 G>A]) in a boy with West syndrome, optic atrophy, neutropenia, cardiomyopathy, Leigh syndrome, and persistent 3-MGA-uria. A comprehensive analysis of the mitochondrial function was performed in fibroblasts of the patient to elucidate the molecular basis of the disease. TIMM50 protein was severely reduced in the patient fibroblasts, regardless of the normal mRNA levels, suggesting that the mutated residues might be important for TIMM50 protein stability. Severe morphological defects and ultrastructural abnormalities with aberrant mitochondrial cristae organization in muscle and fibroblasts were found. The levels of fully assembled OXPHOS complexes and supercomplexes were strongly reduced in fibroblasts from this patient. High-resolution respirometry demonstrated a significant reduction of the maximum respiratory capacity. A TIMM50-deficient HEK293T cell line that we generated using CRISPR/Cas9 mimicked the respiratory defect observed in the patient fibroblasts; notably, this defect was rescued by transfection with a plasmid encoding the TIMM50 wild-type protein. In summary, we demonstrated that TIMM50 deficiency causes a severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology, such as the maintenance of proper mitochondrial morphology, OXPHOS assembly, and mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Frederic Tort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Laura Texidó
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Sabrina Gea-Sorlí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Xènia Ferrer-Cortès
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Ángela Arias
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Leslie Matalonga
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Bellvitge University Hospital; IDIBELL; Network Biomedical Research Center of Neurodegenerative diseases (CIBERNED), Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Science-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, CIBERER, Barcelona, Spain
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Science-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, CIBERER, Barcelona, Spain
| | - Frederick M Vaz
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana Pristoupilova
- Department of Pediatrics and Adolescent Medicine, Research Unit for Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sergi Beltran
- Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesc Cardellach
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Science-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, CIBERER, Barcelona, Spain
| | - Ronald Ja Wanders
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, University of Amsterdam, Amsterdam, The Netherlands
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Spain
| | - María Teresa García-Silva
- Unidad de Enfermedades Mitocondriales- Enfermedades Metabólicas Hereditarias. Servicio de Pediatría. Universitary Hospital 12 de Octubre, U723 CIBERER, Universidad Complutense, Madrid, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| |
Collapse
|
21
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
22
|
Reyes A, Melchionda L, Burlina A, Robinson AJ, Ghezzi D, Zeviani M. Mutations in TIMM50 compromise cell survival in OxPhos-dependent metabolic conditions. EMBO Mol Med 2018; 10:emmm.201708698. [PMID: 30190335 PMCID: PMC6180300 DOI: 10.15252/emmm.201708698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
TIMM50 is an essential component of the TIM23 complex, the mitochondrial inner membrane machinery that imports cytosolic proteins containing a mitochondrial targeting presequence into the mitochondrial inner compartment. Whole exome sequencing (WES) identified compound heterozygous pathogenic mutations in TIMM50 in an infant patient with rapidly progressive, severe encephalopathy. Patient fibroblasts presented low levels of TIMM50 and other components of the TIM23 complex, lower mitochondrial membrane potential, and impaired TIM23-dependent protein import. As a consequence, steady-state levels of several components of mitochondrial respiratory chain were decreased, resulting in decreased respiration and increased ROS production. Growth of patient fibroblasts in galactose shifted energy production metabolism toward oxidative phosphorylation (OxPhos), producing an apparent improvement in most of the above features but also increased apoptosis. Complementation of patient fibroblasts with TIMM50 improved or restored these features to control levels. Moreover, RNASEH1 and ISCU mutant fibroblasts only shared a few of these features with TIMM50 mutant fibroblasts. Our results indicate that mutations in TIMM50 cause multiple mitochondrial bioenergetic dysfunction and that functional TIMM50 is essential for cell survival in OxPhos-dependent conditions.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Laura Melchionda
- Unit of Molecular NeurogeneticsFoundation Carlo Besta Neurological Institute‐IRCCSMilanItaly
| | - Alberto Burlina
- Division of Inherited Metabolic DiseasesDepartment of PediatricsUniversity Hospital PadovaPadovaItaly
| | - Alan J Robinson
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Daniele Ghezzi
- Unit of Molecular NeurogeneticsFoundation Carlo Besta Neurological Institute‐IRCCSMilanItaly
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
23
|
Reis LM, Semina EV. Genetic landscape of isolated pediatric cataracts: extreme heterogeneity and variable inheritance patterns within genes. Hum Genet 2018; 138:847-863. [PMID: 30187164 DOI: 10.1007/s00439-018-1932-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Pediatric cataract represents an important cause of pediatric visual impairment. While both genetic and environmental causes for pediatric cataract are known, a large proportion remains idiopathic. The purpose of this review is to discuss genes involved in isolated pediatric cataract, with a focus on variable inheritance patterns within genes. Mutations in over 52 genes are known to cause isolated pediatric cataract, with a major contribution from genes encoding for crystallins, transcription factors, membrane proteins, and cytoskeletal proteins. Interestingly, both dominant and recessive inheritance patterns have been reported for mutations in 13 different cataract genes. For some genes, dominant and recessive alleles represent distinct types of mutations, but for many, especially missense variants, there are no clear patterns to distinguish between dominant and recessive alleles. Further research into the functional effects of these mutations, as well as additional data on the frequency of the identified variants, is needed to clarify variant pathogenicity. Exome sequencing continues to be successful in identifying novel genes associated with congenital cataract but is hindered by the extreme genetic heterogeneity of this condition. The large number of idiopathic cases suggests that more genes and potentially novel mechanisms of gene disruption remain to be identified.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
24
|
Li J, Leng Y, Han S, Yan L, Lu C, Luo Y, Zhang X, Cao L. Clinical and genetic characteristics of Chinese patients with familial or sporadic pediatric cataract. Orphanet J Rare Dis 2018; 13:94. [PMID: 29914532 PMCID: PMC6006596 DOI: 10.1186/s13023-018-0828-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
Background Pediatric cataract is a clinically and genetically heterogeneous disease which is a significant cause of lifelong visual impairment and treatable blindness. Our study aims to investigate the genotype spectrum in a group of Chinese patients with pediatric cataract. Methods We enrolled 39 families with pediatric cataract from October 2015 to April 2016. DNA samples of the probands were analyzed by target next-generation sequencing. Variants were validated using Sanger sequencing in the probands and available family members. Results In our cohort of 39 cases with different types of pediatric cataract, 23 cases were found to harbor putative pathogenic variants in 15 genes: CRYAA, CRYBA1, CRYBA4, CRYBB1, CRYGC, CRYGD, MIP, GCNT2, IARS2, NHS, BCOR, BFSP2, FYCO1, MAF, and PAX6. The mutation detection rates in the familial and sporadic cases were 75 and 47.8%, respectively. Of the 23 causative variants, over half were novel. Conclusions This is a rare report of systematic mutation screening analysis of pediatric cataract in a comparably large cohort of Chinese patients. Our observations enrich the mutation spectrum of pediatric cataract. Next-generation sequencing provides significant diagnostic information for pediatric cataract cases, especially when considering sporadic and subtle syndromal cases. Electronic supplementary material The online version of this article (10.1186/s13023-018-0828-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyan Li
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Yunji Leng
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Shirui Han
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Lulu Yan
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Chaoxia Lu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xue Zhang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China. .,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Lihua Cao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
25
|
Khatter S, Puri RD, Bijarnia-Mahay S, Aggarwal M, Ramprasad V, Saxena R, Verma IC. Sengers syndrome in Asian Indians – two novel mutations and variant phenotype-genotype correlation. ACTA ACUST UNITED AC 2017. [DOI: 10.3233/trd-170017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sangeeta Khatter
- Institute of Genomics and Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ratna Dua Puri
- Institute of Genomics and Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Genomics and Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Mridul Aggarwal
- Department of Pediatric Cardiac Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | | | - Renu Saxena
- Institute of Genomics and Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ishwar C. Verma
- Institute of Genomics and Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| |
Collapse
|
26
|
Allali S, Dorboz I, Samaan S, Slama A, Rambaud C, Boespflug-Tanguy O, Sarret C. Mutation in the AGK gene in two siblings with unusual Sengers syndrome. Metab Brain Dis 2017; 32:2149-2154. [PMID: 28868593 DOI: 10.1007/s11011-017-0101-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Sengers syndrome is a rare autosomal recessive metabolic disorder caused by lack of acylglycerol kinase due to mutations in the AGK gene. It is characterized by congenital cataract, hypertrophic cardiomyopathy, myopathy and lactic acidosis. Two clinical forms have been described: a severe neonatal form, and a more benign form displaying exercise intolerance. We describe two siblings with congenital cataract, cardiomyopathy, hypotonia, intellectual disability and lactic acidosis. Whole exome sequencing revealed a homozygous c.1035dup mutation in the two siblings, supporting a diagnosis of Sengers syndrome. Our patients presented an intermediate form with intellectual deficiency, an unusual feature in Sengers syndrome. This permitted a prenatal diagnosis for a following pregnancy.
Collapse
Affiliation(s)
- Sanae Allali
- Service des Urgences Pédiatriques, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Imen Dorboz
- Inserm U1141 Paris Diderot Sorbonne Université-Paris Cité, DHU PROTECT, Hôpital Robert Debré, Paris, France
| | - Simon Samaan
- Département de Génétique, Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Abdelhamid Slama
- pôle BPP-SP, Hôpital de Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Charlène Rambaud
- Service de Génétique Médicale, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Inserm U1141 Paris Diderot Sorbonne Université-Paris Cité, DHU PROTECT, Hôpital Robert Debré, Paris, France
| | - Catherine Sarret
- Service de Génétique Médicale, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
27
|
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, Mackey DA, Staffieri SE, Elder JE, Taranath D, Straga T, Black J, Pater J, Casey T, Hewitt AW, Burdon KP. High-Throughput Genetic Screening of 51 Pediatric Cataract Genes Identifies Causative Mutations in Inherited Pediatric Cataract in South Eastern Australia. G3 (BETHESDA, MD.) 2017; 7:3257-3268. [PMID: 28839118 PMCID: PMC5633377 DOI: 10.1534/g3.117.300109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 08/15/2017] [Indexed: 01/09/2023]
Abstract
Pediatric cataract is a leading cause of childhood blindness. This study aimed to determine the genetic cause of pediatric cataract in Australian families by screening known disease-associated genes using massively parallel sequencing technology. We sequenced 51 previously reported pediatric cataract genes in 33 affected individuals with a family history (cases with previously known or published mutations were excluded) using the Ion Torrent Personal Genome Machine. Variants were prioritized for validation if they were predicted to alter the protein sequence and were absent or rare with minor allele frequency <1% in public databases. Confirmed mutations were assessed for segregation with the phenotype in all available family members. All identified novel or previously reported cataract-causing mutations were screened in 326 unrelated Australian controls. We detected 11 novel mutations in GJA3, GJA8, CRYAA, CRYBB2, CRYGS, CRYGA, GCNT2, CRYGA, and MIP; and three previously reported cataract-causing mutations in GJA8, CRYAA, and CRYBB2 The most commonly mutated genes were those coding for gap junctions and crystallin proteins. Including previous reports of pediatric cataract-associated mutations in our Australian cohort, known genes account for >60% of familial pediatric cataract in Australia, indicating that still more causative genes remain to be identified.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia 6009, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Department of Ophthalmology, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - James E Elder
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Department of Ophthalmology, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Deepa Taranath
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Tania Straga
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Joanna Black
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - John Pater
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Alex W Hewitt
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
- Department of Paediatrics, University of Melbourne, Victoria 3010, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
28
|
Vukotic M, Nolte H, König T, Saita S, Ananjew M, Krüger M, Tatsuta T, Langer T. Acylglycerol Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria. Mol Cell 2017; 67:471-483.e7. [DOI: 10.1016/j.molcel.2017.06.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/13/2017] [Accepted: 06/13/2017] [Indexed: 11/15/2022]
|
29
|
Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Mol Cell 2017; 67:457-470.e5. [DOI: 10.1016/j.molcel.2017.06.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/28/2017] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
|
30
|
Kang Y, Fielden LF, Stojanovski D. Mitochondrial protein transport in health and disease. Semin Cell Dev Biol 2017; 76:142-153. [PMID: 28765093 DOI: 10.1016/j.semcdb.2017.07.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura F Fielden
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
31
|
Javadiyan S, Craig JE, Sharma S, Lower KM, Casey T, Haan E, Souzeau E, Burdon KP. Novel missense mutation in the bZIP transcription factor, MAF, associated with congenital cataract, developmental delay, seizures and hearing loss (Aymé-Gripp syndrome). BMC MEDICAL GENETICS 2017; 18:52. [PMID: 28482824 PMCID: PMC5422868 DOI: 10.1186/s12881-017-0414-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/28/2017] [Indexed: 01/24/2023]
Abstract
Background Cataract is a major cause of severe visual impairment in childhood. The purpose of this study was to determine the genetic cause of syndromic congenital cataract in an Australian mother and son. Method Fifty-one genes associated with congenital cataract were sequenced in the proband using a custom Ampliseq library on the Ion Torrent Personal Genome Machine (PGM). Reads were aligned against the human genome (hg19) and variants were annotated. Variants were prioritised for validation by Sanger sequencing if they were novel, rare or previously reported to be associated with paediatric cataract and were predicted to be protein changing. Variants were assessed for segregation with the phenotype in the affected mother. Result A novel likely pathogenic variant was identified in the transactivation domain of the MAF gene (c.176C > G, p.(Pro59Arg)) in the proband and his affected mother., but was absent in 326 unrelated controls and absent from public variant databases. Conclusion The MAF variant is the likely cause of the congenital cataract, Asperger syndrome, seizures, hearing loss and facial characteristics in the proband, providinga diagnosis of Aymé-Gripp syndrome for the family. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0414-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia.
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, Australia
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia
| | - Eric Haan
- SA Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
32
|
Irum B, Khan SY, Ali M, Daud M, Kabir F, Rauf B, Fatima F, Iqbal H, Khan AO, Al Obaisi S, Naeem MA, Nasir IA, Khan SN, Husnain T, Riazuddin S, Akram J, Eghrari AO, Riazuddin SA. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts. PLoS One 2016; 11:e0167562. [PMID: 27936067 PMCID: PMC5147899 DOI: 10.1371/journal.pone.0167562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. METHODS All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. RESULTS Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. CONCLUSION Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.
Collapse
Affiliation(s)
- Bushra Irum
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Muhammad Daud
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Bushra Rauf
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Fareeha Fatima
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hira Iqbal
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Arif O. Khan
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saif Al Obaisi
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Idrees A. Nasir
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Allen O. Eghrari
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
33
|
Patel N, Anand D, Monies D, Maddirevula S, Khan AO, Algoufi T, Alowain M, Faqeih E, Alshammari M, Qudair A, Alsharif H, Aljubran F, Alsaif HS, Ibrahim N, Abdulwahab FM, Hashem M, Alsedairy H, Aldahmesh MA, Lachke SA, Alkuraya FS. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 2016; 136:205-225. [PMID: 27878435 DOI: 10.1007/s00439-016-1747-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Talal Algoufi
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muneera Alshammari
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Qudair
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hadeel Alsharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatimah Aljubran
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haifa Alsedairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
34
|
Irum B, Khan SY, Ali M, Kaul H, Kabir F, Rauf B, Fatima F, Nadeem R, Khan AO, Al Obaisi S, Naeem MA, Nasir IA, Khan SN, Husnain T, Riazuddin S, Akram J, Eghrari AO, Riazuddin SA. Mutation in LIM2 Is Responsible for Autosomal Recessive Congenital Cataracts. PLoS One 2016; 11:e0162620. [PMID: 27814360 PMCID: PMC5096708 DOI: 10.1371/journal.pone.0162620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022] Open
Abstract
Purpose To identify the molecular basis of non-syndromic autosomal recessive congenital cataracts (arCC) in a consanguineous family. Methods All family members participating in the study received a comprehensive ophthalmic examination to determine their ocular phenotype and contributed a blood sample, from which genomic DNA was extracted. Available medical records and interviews with the family were used to compile the medical history of the family. The symptomatic history of the individuals exhibiting cataracts was confirmed by slit-lamp biomicroscopy. A genome-wide linkage analysis was performed to localize the disease interval. The candidate gene, LIM2 (lens intrinsic membrane protein 2), was sequenced bi-directionally to identify the disease-causing mutation. The physical changes caused by the mutation were analyzed in silico through homology modeling, mutation and bioinformatic algorithms, and evolutionary conservation databases. The physiological importance of LIM2 to ocular development was assessed in vivo by real-time expression analysis of Lim2 in a mouse model. Results Ophthalmic examination confirmed the diagnosis of nuclear cataracts in the affected members of the family; the inheritance pattern and cataract development in early infancy indicated arCC. Genome-wide linkage analysis localized the critical interval to chromosome 19q with a two-point logarithm of odds (LOD) score of 3.25. Bidirectional sequencing identified a novel missense mutation, c.233G>A (p.G78D) in LIM2. This mutation segregated with the disease phenotype and was absent in 192 ethnically matched control chromosomes. In silico analysis predicted lower hydropathicity and hydrophobicity but higher polarity of the mutant LIM2-encoded protein (MP19) compared to the wild-type. Moreover, these analyses predicted that the mutation would disrupt the secondary structure of a transmembrane domain of MP19. The expression of Lim2, which was detected in the mouse lens as early as embryonic day 15 (E15) increased after birth to a level that was sustained through the postnatal time points. Conclusion A novel missense mutation in LIM2 is responsible for autosomal recessive congenital cataracts.
Collapse
Affiliation(s)
- Bushra Irum
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
| | - Haiba Kaul
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
| | - Bushra Rauf
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Fareeha Fatima
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Raheela Nadeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Arif O. Khan
- King Khaled Eye Specialist Hospital, Riyadh, 12329, Saudi Arabia
| | - Saif Al Obaisi
- King Khaled Eye Specialist Hospital, Riyadh, 12329, Saudi Arabia
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Idrees A. Nasir
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54550, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44000, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54550, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44000, Pakistan
| | - Allen O. Eghrari
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States of America
- * E-mail:
| |
Collapse
|
35
|
Sun R, Weng H, Hu I, Guo J, Wu WKK, Zee BCY, Wang MH. A W-test collapsing method for rare-variant association testing in exome sequencing data. Genet Epidemiol 2016; 40:591-596. [PMID: 27531462 DOI: 10.1002/gepi.22000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 06/06/2016] [Accepted: 07/17/2016] [Indexed: 12/20/2022]
Abstract
Advancement in sequencing technology enables the study of association between complex disorder phenotypes and single-nucleotide polymorphisms with rare mutations. However, the rare genetic variant has extremely small variance and impairs testing power of traditional statistical methods. We introduce a W-test collapsing method to evaluate rare-variant association by measuring the distributional differences between cases and controls through combined log of odds ratio within a genomic region. The method is model-free and inherits chi-squared distribution with degrees of freedom estimated from bootstrapped samples of the data, and allows for fast and accurate P-value calculation without the need of permutations. The proposed method is compared with the Weighted-Sum Statistic and Sequence Kernel Association Test on simulation datasets, and showed good performances and significantly faster computing speed. In the application of real next-generation sequencing dataset of hypertensive disorder, it identified genes of interesting biological functions associated to metabolism disorder and inflammation, including the MACROD1, NLRP7, AGK, PAK6, and APBB1. The proposed method offers an efficient and effective way for testing rare genetic variants in whole exome sequencing datasets.
Collapse
Affiliation(s)
- Rui Sun
- Division of Biostatistics, Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR.,Centre for Clinical Trials and Biostatistics, CUHK Shenzhen Research Institute, Shenzhen, China
| | - Haoyi Weng
- Division of Biostatistics, Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR.,Centre for Clinical Trials and Biostatistics, CUHK Shenzhen Research Institute, Shenzhen, China
| | - Inchi Hu
- ISOM Department, Biomedical Engineering Division, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| | - Junfeng Guo
- Division of Biostatistics, Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR.,Centre for Clinical Trials and Biostatistics, CUHK Shenzhen Research Institute, Shenzhen, China.,Australian National University, Canberra, Australia
| | - William K K Wu
- Department of Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Benny Chung-Ying Zee
- Division of Biostatistics, Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR.,Centre for Clinical Trials and Biostatistics, CUHK Shenzhen Research Institute, Shenzhen, China
| | - Maggie Haitian Wang
- Division of Biostatistics, Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR. .,Centre for Clinical Trials and Biostatistics, CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
36
|
Jiao X, Kabir F, Irum B, Khan AO, Wang Q, Li D, Khan AA, Husnain T, Akram J, Riazuddin S, Hejtmancik JF, Riazuddin SA. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts. PLoS One 2016; 11:e0157005. [PMID: 27326458 PMCID: PMC4915718 DOI: 10.1371/journal.pone.0157005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/22/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study was performed to investigate the genetic determinants of autosomal recessive congenital cataracts in large consanguineous families. METHODS Affected individuals underwent a detailed ophthalmological examination and slit-lamp photographs of the cataractous lenses were obtained. An aliquot of blood was collected from all participating family members and genomic DNA was extracted from white blood cells. Initially, a genome-wide scan was performed with genomic DNAs of family PKCC025 followed by exclusion analysis of our familial cohort of congenital cataracts. Protein-coding exons of CRYBB1, CRYBB2, CRYBB3, and CRYBA4 were sequenced bidirectionally. A haplotype was constructed with SNPs flanking the causal mutation for affected individuals in all four families, while the probability that the four familial cases have a common founder was estimated using EM and CHM-based algorithms. The expression of Crybb3 in the developing murine lens was investigated using TaqMan assays. RESULTS The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis localized the causal phenotype in family PKCC025 to chromosome 22q with statistically significant two-point logarithm of odds (LOD) scores. Subsequently, we localized three additional families, PKCC063, PKCC131, and PKCC168 to chromosome 22q. Bidirectional Sanger sequencing identified a missense variation: c.493G>C (p.Gly165Arg) in CRYBB3 that segregated with the disease phenotype in all four familial cases. This variation was not found in ethnically matched control chromosomes, the NHLBI exome variant server, or the 1000 Genomes or dbSNP databases. Interestingly, all four families harbor a unique disease haplotype that strongly suggests a common founder of the causal mutation (p<1.64E-10). We observed expression of Crybb3 in the mouse lens as early as embryonic day 15 (E15), and expression remained relatively steady throughout development. CONCLUSION Here, we report a common ancestral mutation in CRYBB3 associated with autosomal recessive congenital cataracts identified in four familial cases of Pakistani origin.
Collapse
Affiliation(s)
- Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
| | - Bushra Irum
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Arif O. Khan
- King Khaled Eye Specialist Hospital, Riyadh, 12329, Saudi Arabia
| | - Qiwei Wang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - David Li
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Asma A. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54550, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54550, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States of America
- * E-mail:
| |
Collapse
|
37
|
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, Pater J, Casey T, Hodson T, Burdon KP. Recurrent mutation in the crystallin alpha A gene associated with inherited paediatric cataract. BMC Res Notes 2016; 9:83. [PMID: 26867756 PMCID: PMC4750205 DOI: 10.1186/s13104-016-1890-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Cataract is a major cause of childhood blindness worldwide. The purpose of this study was to determine the genetic cause of paediatric cataract in a South Australian family with a bilateral lamellar paediatric cataract displaying variable phenotypes. Case presentation Fifty-one genes implicated in congenital cataract in human or mouse were sequenced in an affected individual from an Australian (Caucasian) family using a custom Ampliseq library on the Ion Torrent Personal Genome Machine. Reads were mapped against the human genome (hg19) and variants called with the Torrent Suite software. Variants were annotated to dbSNP 137 using Ion Reporter (IR 1.6.2) and were prioritised for validation if they were novel or rare and were predicted to be protein changing. We identified a previously reported oligomerization disrupting mutation, c.62G > A (p.R21Q), in the Crystallin alpha A (CRYAA) gene segregating in this three generation family. No other novel or rare coding mutations were detected in the known cataract genes sequenced. Microsatellite markers were used to compare the haplotypes between the family reported here and a previously published family with the same segregating mutation. Haplotype analysis indicated a potential common ancestry between the two South Australian families with this mutation. The work strengthens the genotype-phenotype correlations between this functional mutation in the crystallin alpha A (CRYAA) gene and paediatric cataract. Conclusion The p.R21Q mutation is the most likely cause of paediatric cataract in this family. The recurrence of this mutation in paediatric cataract families is likely due to a familial relationship. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1890-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, Australia.
| | - John Pater
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia.
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia.
| | | | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia. .,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
38
|
Abstract
Lens opacities or cataract(s) represent a universally important cause of visual impairment and blindness. Typically, cataract is acquired with aging as a complex disorder involving environmental and genetic risk factors. Cataract may also be inherited with an early onset either in association with other ocular and/or systemic abnormalities or as an isolated lens phenotype. Here we briefly review recent advances in gene discovery for inherited and age-related forms of cataract that are providing new insights into lens development and aging.
Collapse
|
39
|
SIPA1L3 identified by linkage analysis and whole-exome sequencing as a novel gene for autosomal recessive congenital cataract. Eur J Hum Genet 2015; 23:1627-33. [PMID: 25804400 DOI: 10.1038/ejhg.2015.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
Congenital cataract (CC) is one of the most important causes for blindness or visual impairment in infancy. A substantial proportion of isolated CCs has monogenic causes. The disease is genetically heterogeneous, and all Mendelian modes of inheritance have been reported. We mapped a locus for isolated CC on 19p13.1-q13.2 in a distantly consanguineous German family with two sisters affected by dense white cataracts. Whole-exome sequencing identified a homozygous nonsense variant c.4489C>T (p.(R1497*)) in SIPA1L3 (signal-induced proliferation-associated 1 like 3) in both affected children. SIPA1L3 encodes a GTPase-activating protein (GAP), which interacts with small GTPases of the Rap family via its Rap-GAP-domain. The suggested role of Rap GTPases in cell growth, differentiation and organization of the cytoskeleton in the human lens, and lens-enriched expression of the murine ortholog gene Sipa1l3 in embryonic mice indicates that this gene is crucial for early lens development. Our results provide evidence that sequence variants in human SIPA1L3 cause autosomal recessive isolated CC and give new insight into the molecular pathogenesis underlying human cataracts.
Collapse
|
40
|
Lu YW, Claypool SM. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet 2015; 6:3. [PMID: 25691889 PMCID: PMC4315098 DOI: 10.3389/fgene.2015.00003] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 01/14/2023] Open
Abstract
The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
41
|
Wortmann SB, Espeel M, Almeida L, Reimer A, Bosboom D, Roels F, de Brouwer APM, Wevers RA. Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids. J Inherit Metab Dis 2015; 38:99-110. [PMID: 25178427 DOI: 10.1007/s10545-014-9759-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
Abstract
Since the proposal to define a separate subgroup of inborn errors of metabolism involved in the biosynthesis and remodelling of phospholipids, sphingolipids and long chain fatty acids in 2013, this group is rapidly expanding. This review focuses on the disorders involved in the biosynthesis of phospholipids. Phospholipids are involved in uncountable cellular processes, e.g. as structural components of membranes, by taking part in vesicle and mitochondrial fusion and fission or signal transduction. Here we provide an overview on both pathophysiology and the extremely heterogeneous clinical presentations of the disorders reported so far (Sengers syndrome (due to mutations in AGK), MEGDEL syndrome (or SERAC defect, SERAC1), Barth syndrome (or TAZ defect, TAZ), congenital muscular dystrophy due to CHKB deficiency (CHKB). Boucher-Neuhäuser/Gordon Holmes syndrome (PNPLA6), PHARC syndrome (ABHD12), hereditary spastic paraplegia type 28, 54 and 56 (HSP28, DDHD1; HSP54, DDHD2; HSP56, CYP2U1), Lenz Majewski syndrome (PTDSS1), spondylometaphyseal dysplasia with cone-rod dystrophy (PCYT1A), atypical haemolytic-uremic syndrome due to DGKE deficiency (DGKE).
Collapse
Affiliation(s)
- Saskia B Wortmann
- Nijmegen Centre for Mitochondrial Disorders (NCMD) at the Amalia Children's Hospital, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Haghighi A, Haack TB, Atiq M, Mottaghi H, Haghighi-Kakhki H, Bashir RA, Ahting U, Feichtinger RG, Mayr JA, Rötig A, Lebre AS, Klopstock T, Dworschak A, Pulido N, Saeed MA, Saleh-Gohari N, Holzerova E, Chinnery PF, Taylor RW, Prokisch H. Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J Rare Dis 2014; 9:119. [PMID: 25208612 PMCID: PMC4167147 DOI: 10.1186/s13023-014-0119-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/17/2014] [Indexed: 01/28/2023] Open
Abstract
Background Sengers syndrome is an autosomal recessive condition characterized by congenital cataract, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. Mutations in the acylglycerol kinase (AGK) gene have been recently described as the cause of Sengers syndrome in nine families. Methods We investigated the clinical and molecular features of Sengers syndrome in seven new families; five families with the severe and two with the milder form. Results Sequence analysis of AGK revealed compound heterozygous or homozygous predicted loss-of-function mutations in all affected individuals. A total of eight different disease alleles were identified, of which six were novel, homozygous c.523_524delAT (p.Ile175Tyrfs*2), c.424-1G > A (splice site), c.409C > T (p.Arg137*) and c.877 + 3G > T (splice site), and compound heterozygous c.871C > T (p.Gln291*) and c.1035dup (p.Ile346Tyrfs*39). All patients displayed perinatal or early-onset cardiomyopathy and cataract, clinical features pathognomonic for Sengers syndrome. Other common findings included blood lactic acidosis and tachydyspnoea while nystagmus, eosinophilia and cervical meningocele were documented in only either one or two cases. Deficiency of the adenine nucleotide translocator was found in heart and skeletal muscle biopsies from two patients associated with respiratory chain complex I deficiency. In contrast to previous findings, mitochondrial DNA content was normal in both tissues. Conclusion We compare our findings to those in 21 previously reported AGK mutation-positive Sengers patients, confirming that Sengers syndrome is a clinically recognisable disorder of mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Alireza Haghighi
- Department of Genetics, Harvard Medical School, 77 Ave Louis Pasteur, Boston 02115, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alkuraya FS. Genetics and genomic medicine in Saudi Arabia. Mol Genet Genomic Med 2014; 2:369-78. [PMID: 25333061 PMCID: PMC4190871 DOI: 10.1002/mgg3.97] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 01/01/2023] Open
Affiliation(s)
- Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center Riyadh, Saudi Arabia ; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Görmez Z, Bakir-Gungor B, Sagiroglu MS. HomSI: a homozygous stretch identifier from next-generation sequencing data. ACTA ACUST UNITED AC 2013; 30:445-7. [PMID: 24307702 DOI: 10.1093/bioinformatics/btt686] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED In consanguineous families, as a result of inheriting the same genomic segments through both parents, the individuals have stretches of their genomes that are homozygous. This situation leads to the prevalence of recessive diseases among the members of these families. Homozygosity mapping is based on this observation, and in consanguineous families, several recessive disease genes have been discovered with the help of this technique. The researchers typically use single nucleotide polymorphism arrays to determine the homozygous regions and then search for the disease gene by sequencing the genes within this candidate disease loci. Recently, the advent of next-generation sequencing enables the concurrent identification of homozygous regions and the detection of mutations relevant for diagnosis, using data from a single sequencing experiment. In this respect, we have developed a novel tool that identifies homozygous regions using deep sequence data. Using *.vcf (variant call format) files as an input file, our program identifies the majority of homozygous regions found by microarray single nucleotide polymorphism genotype data. AVAILABILITY AND IMPLEMENTATION HomSI software is freely available at www.igbam.bilgem.tubitak.gov.tr/softwares/HomSI, with an online manual.
Collapse
Affiliation(s)
- Zeliha Görmez
- Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK-BILGEM), 41470 Gebze, Kocaeli, Turkey and Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Abdullah Gul University, 38039 Kayseri, Turkey
| | | | | |
Collapse
|
45
|
Wortmann SB, Kluijtmans LAJ, Rodenburg RJ, Sass JO, Nouws J, van Kaauwen EP, Kleefstra T, Tranebjaerg L, de Vries MC, Isohanni P, Walter K, Alkuraya FS, Smuts I, Reinecke CJ, van der Westhuizen FH, Thorburn D, Smeitink JAM, Morava E, Wevers RA. 3-Methylglutaconic aciduria--lessons from 50 genes and 977 patients. J Inherit Metab Dis 2013; 36:913-21. [PMID: 23355087 DOI: 10.1007/s10545-012-9579-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Elevated urinary excretion of 3-methylglutaconic acid is considered rare in patients suspected of a metabolic disorder. In 3-methylglutaconyl-CoA hydratase deficiency (mutations in AUH), it derives from leucine degradation. In all other disorders with 3-methylglutaconic aciduria the origin is unknown, yet mitochondrial dysfunction is thought to be the common denominator. We investigate the biochemical, clinical and genetic data of 388 patients referred to our centre under suspicion of a metabolic disorder showing 3-methylglutaconic aciduria in routine metabolic screening. Furthermore, we investigate 591 patients with 50 different, genetically proven, mitochondrial disorders for the presence of 3-methylglutaconic aciduria. Three percent of all urine samples of the patients referred showed 3-methylglutaconic aciduria, often in correlation with disorders not reported earlier in association with 3-methylglutaconic aciduria (e.g. organic acidurias, urea cycle disorders, haematological and neuromuscular disorders). In the patient cohort with genetically proven mitochondrial disorders 11% presented 3-methylglutaconic aciduria. It was more frequently seen in ATPase related disorders, with mitochondrial DNA depletion or deletion, but not in patients with single respiratory chain complex deficiencies. Besides, it was a consistent feature of patients with mutations in TAZ, SERAC1, OPA3, DNAJC19 and TMEM70 accounting for mitochondrial membrane related pathology. 3-methylglutaconic aciduria is found quite frequently in patients suspected of a metabolic disorder, and mitochondrial dysfunction is indeed a common denominator. It is only a discriminative feature of patients with mutations in AUH, TAZ, SERAC1, OPA3, DNAJC19 TMEM70. These conditions should therefore be referred to as inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature.
Collapse
Affiliation(s)
- Saskia B Wortmann
- Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics and the Institute of Genetic and Metabolic Disease (IGMD), Radboud University Medical Centre, P.O Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Centered on the Arabian Peninsula, the Middle East encompasses Northern Africa to Western Asia. Primarily Arab and historically tribal, populations from this region often practice customary intrafamilial marriage (consanguinity), intratribal marriage (endogamy), and a preference for many offspring. These social factors increase the frequency of homozygosity, including homozygosity for gene mutation and thus for recessive ocular disease. This review highlights recent studies of ocular genetic disease in the Middle East. RECENT FINDINGS Among modern molecular genomic/genetic strategies, homozygosity mapping as a method to guide candidate gene analysis has been a powerful technique for the Middle East. Studies from the region have enhanced our understanding of ocular genetic conditions that are more common worldwide (such as pediatric glaucoma, pediatric cataract, and retinal dystrophy/dysfunction), rare worldwide (such as cornea plana, brittle cornea syndrome, and posterior microphthalmos), and currently only reported on the Arabian Peninsula (such as microcornea with myopic chorioretinal degeneration and telecanthus, familial retinal arterial macroaneurysms, and spherophakia with short stature). For some patients diagnosed with non-syndromic cataract or retinal dystrophy, genomic/genetic analysis uncovered recessive mutation in a syndrome gene and phenotypic reassessment confirmed the presence of the undiagnosed syndrome in the tested patients. SUMMARY Recent studies from the Middle East, many of which employed homozygosity mapping, have improved phenotype-genotype correlations for common and rare ocular genetic disease. In some instances genetic diagnosis revealed an undiagnosed syndrome. Reports of ocular genetic conditions thus far unique to the region have suggested novel ocular developmental pathways.
Collapse
|
47
|
The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum Genet 2013; 132:1197-211. [PMID: 23907654 DOI: 10.1007/s00439-013-1344-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/20/2013] [Indexed: 02/08/2023]
Abstract
Autozygosity, or the inheritance of two copies of an ancestral allele, has the potential to not only reveal phenotypes caused by biallelic mutations in autosomal recessive genes, but to also facilitate the mapping of such mutations by flagging the surrounding haplotypes as tractable runs of homozygosity (ROH), a process known as autozygosity mapping. Since SNPs replaced microsatellites as markers for the purpose of genomewide identification of ROH, autozygosity mapping of Mendelian genes has witnessed a significant acceleration. Historically, successful mapping traditionally required favorable family structure that permits the identification of an autozygous interval that is amenable to candidate gene selection and confirmation by Sanger sequencing. This requirement presented a major bottleneck that hindered the utilization of simplex cases and many multiplex families with autosomal recessive phenotypes. However, the advent of next-generation sequencing that enables massively parallel sequencing of DNA has largely bypassed this bottleneck and thus ushered in an era of unprecedented pace of Mendelian disease gene discovery. The ability to identify a single causal mutation among a massive number of variants that are uncovered by next-generation sequencing can be challenging, but applying autozygosity as a filter can greatly enhance the enrichment process and its throughput. This review will discuss the power of combining the best of both techniques in the mapping of recessive disease genes and offer some tips to troubleshoot potential limitations.
Collapse
|
48
|
Carr IM, Morgan J, Watson C, Melnik S, Diggle CP, Logan CV, Harrison SM, Taylor GR, Pena SDJ, Markham AF, Alkuraya FS, Black GCM, Ali M, Bonthron DT. Simple and efficient identification of rare recessive pathologically important sequence variants from next generation exome sequence data. Hum Mutat 2013; 34:945-52. [PMID: 23554237 DOI: 10.1002/humu.22322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/01/2013] [Accepted: 03/15/2013] [Indexed: 11/08/2022]
Abstract
Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis.
Collapse
Affiliation(s)
- Ian M Carr
- School of Medicine, University of Leeds, Leeds, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alkuraya FS. Discovery of rare homozygous mutations from studies of consanguineous pedigrees. ACTA ACUST UNITED AC 2013; Chapter 6:Unit6.12. [PMID: 23074070 DOI: 10.1002/0471142905.hg0612s75] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unmasking of recessive mutations by virtue of biparental inheritance of the same ancestral haplotype on which they reside (autozygosity) has provided human geneticists with one of their most powerful tools in unraveling the genetic basis of autosomal recessive disorders. This has historically been achieved by tracking the blocks of homozygosity as surrogates of autozygosity using polymorphic microsatellite markers. Mapping the entire set of autozygous blocks per individual (autozygome) at high resolution became possible with the advent of high-density SNP arrays. The more recent availability of next-generation sequencing has markedly accelerated the rate at which rare recessive mutations are identified by obviating the need to prioritize genes for sequencing within candidate autozygous loci. This unit will review the individual and combined use of these techniques in the context of mapping novel recessive disease genes, as well as potential pitfalls and recommended solutions.
Collapse
Affiliation(s)
- Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Siriwardena K, Mackay N, Levandovskiy V, Blaser S, Raiman J, Kantor PF, Ackerley C, Robinson BH, Schulze A, Cameron JM. Mitochondrial citrate synthase crystals: novel finding in Sengers syndrome caused by acylglycerol kinase (AGK) mutations. Mol Genet Metab 2013; 108:40-50. [PMID: 23266196 DOI: 10.1016/j.ymgme.2012.11.282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/16/2022]
Abstract
We report on two families with Sengers syndrome and mutations in the acylglycerol kinase gene (AGK). In the first family, two brothers presented with vascular strokes, lactic acidosis, cardiomyopathy and cataracts, abnormal muscle cell histopathology and mitochondrial function. One proband had very abnormal mitochondria with citrate synthase crystals visible in electron micrographs, associated with markedly high citrate synthase activity. Exome sequencing was used to identify mutations in the AGK gene in the index patient. Targeted sequencing confirmed the same homozygous mutation (c.3G>A, p.M1I) in the brother. The second family had four affected members, of which we examined two. They also presented with similar clinical symptoms, but no strokes. Postmortem heart and skeletal muscle tissues showed low complex I, III and IV activities in the heart, but normal in the muscle. Skin fibroblasts showed elevated lactate/pyruvate ratios and low complex I+III activity. Targeted sequencing led to identification of a homozygous c.979A>T, p.K327* mutation. AGK is located in the mitochondria and phosphorylates monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid. Disruption of these signaling molecules affects the mitochondria's response to superoxide radicals, resulting in oxidative damage to mitochondrial DNA, lipids and proteins, and stimulation of cellular detoxification pathways. High levels of manganese superoxide dismutase protein were detected in all four affected individuals, consistent with increased free radical damage. Phosphatidic acid is also involved in the synthesis of phospholipids and its loss will result in changes to the lipid composition of the inner mitochondrial membrane. These effects manifest as cataract formation in the eye, respiratory chain dysfunction and cardiac hypertrophy in heart tissue. These two pedigrees confirm that mutation of AGK is responsible for the severe neonatal presentation of Sengers syndrome. The identification of citrate synthase precipitates by electron microscopy and the presence of vascular strokes in two siblings may expand the cellular and clinical phenotype of this disease.
Collapse
Affiliation(s)
- Komudi Siriwardena
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | |
Collapse
|