1
|
Zykaj E, Abboud C, Asadi P, Warsame S, Almousa H, Milev MP, Greco BM, López-Sánchez M, Bratkovic D, Kachroo AH, Pérez-Jurado LA, Sacher M. A Humanized Yeast Model for Studying TRAPP Complex Mutations; Proof-of-Concept Using Variants from an Individual with a TRAPPC1-Associated Neurodevelopmental Syndrome. Cells 2024; 13:1457. [PMID: 39273027 PMCID: PMC11394476 DOI: 10.3390/cells13171457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Variants in membrane trafficking proteins are known to cause rare disorders with severe symptoms. The highly conserved transport protein particle (TRAPP) complexes are key membrane trafficking regulators that are also involved in autophagy. Pathogenic genetic variants in specific TRAPP subunits are linked to neurological disorders, muscular dystrophies, and skeletal dysplasias. Characterizing these variants and their phenotypes is important for understanding the general and specialized roles of TRAPP subunits as well as for patient diagnosis. Patient-derived cells are not always available, which poses a limitation for the study of these diseases. Therefore, other systems, like the yeast Saccharomyces cerevisiae, can be used to dissect the mechanisms at the intracellular level underlying these disorders. The development of CRISPR/Cas9 technology in yeast has enabled a scar-less editing method that creates an efficient humanized yeast model. In this study, core yeast subunits were humanized by replacing them with their human orthologs, and TRAPPC1, TRAPPC2, TRAPPC2L, TRAPPC6A, and TRAPPC6B were found to successfully replace their yeast counterparts. This system was used for studying the first reported individual with an autosomal recessive disorder caused by biallelic TRAPPC1 variants, a girl with a severe neurodevelopmental disorder and myopathy. We show that the maternal variant (TRAPPC1 p.(Val121Alafs*3)) is non-functional while the paternal variant (TRAPPC1 p.(His22_Lys24del)) is conditional-lethal and affects secretion and non-selective autophagy in yeast. This parallels defects seen in fibroblasts derived from this individual which also showed membrane trafficking defects and altered Golgi morphology, all of which were rescued in the human system by wild-type TRAPPC1. This study suggests that humanized yeast can be an efficient means to study TRAPP subunit variants in the absence of human cells and can assign significance to variants of unknown significance (VUS). This study lays the foundation for characterizing further TRAPP variants through this system, rapidly contributing to disease diagnosis.
Collapse
Affiliation(s)
- Erta Zykaj
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Chelsea Abboud
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Paria Asadi
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Simane Warsame
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Hashem Almousa
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Miroslav P. Milev
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Brittany M. Greco
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Marcos López-Sánchez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.L.-S.); (L.A.P.-J.)
- Hospital del Mar, Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
| | - Drago Bratkovic
- Women’s and Children’s Hospital, Metabolic Clinic, North Adelaide, SA 5006, Australia;
| | - Aashiq H. Kachroo
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Luis Alberto Pérez-Jurado
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.L.-S.); (L.A.P.-J.)
- Hospital del Mar, Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Women’s and Children’s Hospital, Metabolic Clinic, North Adelaide, SA 5006, Australia;
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Kopčilová J, Ptáčková H, Kramářová T, Fajkusová L, Réblová K, Zeman J, Honzík T, Zdražilová L, Zámečník J, Balážová P, Viestová K, Kolníková M, Hansíková H, Zídková J. Large TRAPPC11 gene deletions as a cause of muscular dystrophy and their estimated genesis. J Med Genet 2024; 61:908-913. [PMID: 38955476 DOI: 10.1136/jmg-2024-110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.
Collapse
Affiliation(s)
- Johana Kopčilová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Ptáčková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Kramářová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Zeman
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Lucie Zdražilová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Charles University, Second Faculty of Medicine, and Faculty Hospital Motol, Prague, Czech Republic
| | - Patrícia Balážová
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Karin Viestová
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Miriam Kolníková
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Hana Hansíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Zídková
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
| |
Collapse
|
3
|
Corona-Rivera JR, Martínez-Duncker I, Morava E, Ranatunga W, Salinas-Marin R, González-Jaimes AM, Castillo-Reyes KA, Peña-Padilla C, Bobadilla-Morales L, Corona-Rivera A, Orozco-Vela M, Brukman-Jiménez SA. TRAPPC11-CDG muscular dystrophy: Review of 54 cases including a novel patient. Mol Genet Metab 2024; 142:108469. [PMID: 38564972 DOI: 10.1016/j.ymgme.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
| | - Eva Morava
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wasantha Ranatunga
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberta Salinas-Marin
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ana María González-Jaimes
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Katia Alejandra Castillo-Reyes
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Christian Peña-Padilla
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucina Bobadilla-Morales
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mireya Orozco-Vela
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sinhue Alejandro Brukman-Jiménez
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Justel M, Jou C, Sariego-Jamardo A, Juliá-Palacios NA, Ortez C, Poch ML, Hedrera-Fernandez A, Gomez-Martin H, Codina A, Dominguez-Carral J, Muxart J, Hernández-Laín A, Vila-Bedmar S, Zulaica M, Cancho-Candela R, Castro MDC, de la Osa-Langreo A, Peña-Valenceja A, Marcos-Vadillo E, Prieto-Matos P, Pascual-Pascual SI, López de Munain A, Camacho A, Estevez-Arias B, Musokhranova U, Olivella M, Oyarzábal A, Jimenez-Mallebrera C, Domínguez-González C, Nascimento A, García-Cazorla À, Natera-de Benito D. Expanding the phenotypic spectrum of TRAPPC11-related muscular dystrophy: 25 Roma individuals carrying a founder variant. J Med Genet 2023; 60:965-973. [PMID: 37197784 PMCID: PMC10579479 DOI: 10.1136/jmg-2022-109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders. TRAPPC11-related LGMD is an autosomal-recessive condition characterised by muscle weakness and intellectual disability. METHODS A clinical and histopathological characterisation of 25 Roma individuals with LGMD R18 caused by the homozygous TRAPPC11 c.1287+5G>A variant is reported. Functional effects of the variant on mitochondrial function were investigated. RESULTS The c.1287+5G>A variant leads to a phenotype characterised by early onset muscle weakness, movement disorder, intellectual disability and elevated serum creatine kinase, which is similar to other series. As novel clinical findings, we found that microcephaly is almost universal and that infections in the first years of life seem to act as triggers for a psychomotor regression and onset of seizures in several individuals with TRAPPC11 variants, who showed pseudometabolic crises triggered by infections. Our functional studies expanded the role of TRAPPC11 deficiency in mitochondrial function, as a decreased mitochondrial ATP production capacity and alterations in the mitochondrial network architecture were detected. CONCLUSION We provide a comprehensive phenotypic characterisation of the pathogenic variant TRAPPC11 c.1287+5G>A, which is founder in the Roma population. Our observations indicate that some typical features of golgipathies, such as microcephaly and clinical decompensation associated with infections, are prevalent in individuals with LGMD R18.
Collapse
Affiliation(s)
- Maria Justel
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Paediatrics, Complejo asistencial de Salamanca, Salamanca, Spain
| | - Cristina Jou
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Andrea Sariego-Jamardo
- Paediatric Neurology Unit, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Natalia Alexandra Juliá-Palacios
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
| | | | | | - Hilario Gomez-Martin
- Department of Paediatrics, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Anna Codina
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
| | - Jana Dominguez-Carral
- Unit of Epilepsy, Sleep and Neurophysiology, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordi Muxart
- Department of Radiology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sara Vila-Bedmar
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miren Zulaica
- Biodonostia, Neurosciences Area, Neuromuscular Diseases Laboratory, Hospital Universitario de Donostia, San Sebastian, Spain
| | - Ramon Cancho-Candela
- Paediatric Neurology Unit, Hospital Universitario Rio Hortega de Valladolid, Valladolid, Spain
| | | | | | | | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Pablo Prieto-Matos
- Department of Paediatrics, Complejo asistencial de Salamanca, Salamanca, Spain
| | | | - Adolfo López de Munain
- Biodonostia, Neurosciences Area, Neuromuscular Diseases Laboratory, Hospital Universitario de Donostia, San Sebastian, Spain
| | - Ana Camacho
- Paediatric Neurology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Berta Estevez-Arias
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Sant Joan de Deu Research Institute, Barcelona, Spain
| | - Uliana Musokhranova
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mireia Olivella
- Biosciences Department, Faculty of Sciences, Technology and Engineering, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Alfonso Oyarzábal
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Domínguez-González
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Àngels García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
| |
Collapse
|
5
|
Sun S, Sui SF. Structural insights into assembly of TRAPPII and its activation of Rab11/Ypt32. Curr Opin Struct Biol 2023; 80:102596. [PMID: 37068358 DOI: 10.1016/j.sbi.2023.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 04/19/2023]
Abstract
Transport protein particle (TRAPP) complexes belong to the multisubunit tethering complex. They are guanine nucleotide exchange factors (GEFs) that play essential roles in secretory and endocytic recycling pathway and autophagy. There are two major forms of TRAPP complexes, TRAPPII and TRAPPIII, which share a core set of small subunits. TRAPPIII activates Rab1, while TRAPPII primarily activates Rab11. A steric gating mechanism has been proposed to control the substrate selection in vivo. However, the detailed mechanisms underlying the transition from TRAPPIII's GEF activity for Rab1 to TRAPPII's GEF activity for Rab11 and the roles of the complex-specific subunits in this transition are insufficiently understood. In this review, we discuss recent advances in understanding the mechanism of specific activation of Rab11/Ypt32 by TRAPPII, with a particular focus on new findings from structural studies.
Collapse
Affiliation(s)
- Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
6
|
Wada Y, Okamoto N. Electrospray Ionization Mass Spectrometry of Apolipoprotein CIII to Evaluate O-glycan Site Occupancy and Sialylation in Congenital Disorders of Glycosylation. Mass Spectrom (Tokyo) 2022; 11:A0104. [PMID: 36060528 PMCID: PMC9396207 DOI: 10.5702/massspectrometry.a0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are inherited metabolic diseases that affect the synthesis of glycoconjugates. Defects in mucin-type O-glycosylation occur independently or in combination with N-glycosylation disorders, and the profiling of the O-glycans of apolipoprotein CIII (apoCIII) by mass spectrometry (MS) can be used to support a diagnosis. The biomarkers are site occupancy and sialylation levels, which are indicated by the content of non-glycosylated apoCIII0a isoform and by the ratio of monosialylated apoCIII1 to disialylated apoCIII2 isoforms, respectively. In this report, electrospray ionization (ESI) quadrupole MS of apoCIII was used to identify these biomarkers. Among the instrumental parameters, the declustering potential (DP) induced the fragmentation of the O-glycan moiety including the Thr-GalNAc linkage, resulting in an increase in apoCIII0a ions. This incurs the risk of creating a false positive for reduced site occupancy. The apoCIII1/apoCIII2 ratio was substantially unchanged despite some dissociation of sialic acids. Therefore, appropriate DP settings are especially important when transferrin, which requires a higher DP, for N-glycosylation disorders is analyzed simultaneously with apoCIII in a single ESI MS measurement. Finally, a reference range of diagnostic biomarkers and mass spectra of apoCIII obtained from patients with SLC35A1-, TRAPPC11-, and ATP6V0A2-CDG are presented.
Collapse
Affiliation(s)
- Yoshinao Wada
- Department of Obstetric Medicine, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
- Department of Molecular Medicine, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
| |
Collapse
|
7
|
Cheng S, Cheng B, Liu L, Yang X, Meng P, Yao Y, Pan C, Zhang J, Li C, Zhang H, Chen Y, Zhang Z, Wen Y, Jia Y, Zhang F. Exome-wide screening identifies novel rare risk variants for major depression disorder. Mol Psychiatry 2022; 27:3069-3074. [PMID: 35365804 DOI: 10.1038/s41380-022-01536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Despite thousands of common genetic loci of major depression disorders (MDD) have been identified by GWAS to date, a large proportion of genetic variation predisposing to MDD remains unaccounted for. By utilizing the newly released UK Biobank 200,643 exome dataset, we conducted an exome-wide association study to identify rare risk variants contributing to MDD. After quality control, 120,033 participants with MDD polygenic risk scores (PRS) values were included. The individuals with lower 30% quantile of the PRS value were filtered for case and control selecting. Then the cases were set as the individuals with upper 10% quantile of the PHQ depression score and lower 10% quantile were set as controls. Finally, 1612 cases and 1612 controls were included in this study. The variants were annotated by ANNOVRA software. After exclusions, 34,761 qualifying variants, including 148 frameshift variant, 335 non-frameshift variant, 33,758 nonsynonymous, 91 start-loss, 393 stop-gain, 36 stop-loss variants were imported into the SKAT R-package to perform single variants, gene-based burden and robust burden tests with minor allele frequency (MAF) < 0.01. Single variant association testing identified one variant, rs4057749 (P = 5.39 × 10-9), within OR8B4 gene at an exome-wide significance level. The gene-based burden test of the exonic variants identified genome-wide significant associations in OR8B4 (PSKAT = 6.23 × 10-5, PSKAT Robust = 4.49 × 10-5), TRAPPC11 (PSKAT = 0.014, PSKAT Robust = 0.015), SBK3 (PSKAT = 0.020, PSKAT Robust = 0.025) and TNRC6B (PSKAT = 0.026, PSKAT Robust = 0.036). We identified multiple novel rare risk variants contributing to MDD in the individuals with lower PRS of MDD. The findings can help to broaden the genetic insights of the MDD pathogenesis.
Collapse
Affiliation(s)
- Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China. .,Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China. .,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
TRAPPC9-CDG: A novel congenital disorder of glycosylation with dysmorphic features and intellectual disability. Genet Med 2022; 24:894-904. [PMID: 35042660 DOI: 10.1016/j.gim.2021.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.
Collapse
|
9
|
Munot P, McCrea N, Torelli S, Manzur A, Sewry C, Chambers D, Feng L, Ala P, Zaharieva I, Ragge N, Roper H, Marton T, Cox P, Milev MP, Liang WC, Maruyama S, Nishino I, Sacher M, Phadke R, Muntoni F. TRAPPC11-related muscular dystrophy with hypoglycosylation of alpha-dystroglycan in skeletal muscle and brain. Neuropathol Appl Neurobiol 2021; 48:e12771. [PMID: 34648194 DOI: 10.1111/nan.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022]
Abstract
AIMS TRAPPC11, a subunit of the transport protein particle (TRAPP) complex, is important for complex integrity and anterograde membrane transport from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment. Several individuals with TRAPPC11 mutations have been reported with muscle weakness and other features including brain, liver, skeletal and eye involvement. A detailed analysis of brain and muscle pathology will further our understanding of the presentation and aetiology of TRAPPC11 disease. METHODS We describe five cases of early-onset TRAPPC11-related muscular dystrophy with a systematic review of muscle pathology in all five individuals, post-mortem brain pathology findings in one and membrane trafficking assays in another. RESULTS All affected individuals presented in infancy with muscle weakness, motor delay and elevated serum creatine kinase (CK). Additional features included cataracts, liver disease, intellectual disability, cardiomyopathy, movement disorder and structural brain abnormalities. Muscle pathology in all five revealed dystrophic changes, universal hypoglycosylation of alpha-dystroglycan and variably reduced dystrophin-associated complex proteins. Membrane trafficking assays showed defective Golgi trafficking in one individual. Neuropathological examination of one individual revealed cerebellar atrophy, granule cell hypoplasia, Purkinje cell (PC) loss, degeneration and dendrite dystrophy, reduced alpha-dystroglycan (IIH6) expression in PC and dentate neurones and absence of neuronal migration defects. CONCLUSIONS This report suggests that recessive mutations in TRAPPC11 are linked to muscular dystrophies with hypoglycosylation of alpha-dystroglycan. The structural cerebellar involvement that we document for the first time resembles the neuropathology reported in N-linked congenital disorders of glycosylation (CDG) such as PMM2-CDG, suggesting defects in multiple glycosylation pathways in this condition.
Collapse
Affiliation(s)
- Pinki Munot
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nadine McCrea
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Silvia Torelli
- UCL, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, London, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK
| | - Darren Chambers
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK
| | - Pierpaolo Ala
- UCL, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, London, UK
| | - Irina Zaharieva
- UCL, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, London, UK
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Hospital Trust, West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham, UK
| | - Helen Roper
- Department of Paediatrics, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tamas Marton
- Department of Histopathology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Phil Cox
- Department of Histopathology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shinsuke Maruyama
- Department of Paediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK.,Division of Neuropathology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
10
|
Zambon AA, Muntoni F. Congenital muscular dystrophies: What is new? Neuromuscul Disord 2021; 31:931-942. [PMID: 34470717 DOI: 10.1016/j.nmd.2021.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Congenital muscular dystrophies (CMDs) are a group of inherited conditions defined by muscle weakness occurring before the acquisition of ambulation, delayed motor milestones, and characterised by muscle dystrophic pathology. A large number of genes - at least 35- are responsible for CMD phenotypes, and it is therefore not surprising that CMDs comprise a wide spectrum of phenotypes, with variable involvement of cardiac/respiratory muscles, central nervous system, and ocular structures. The identification of several new genes over the past few years has further expanded both the clinical and the molecular spectrum underlying CMDs. Comprehensive gene panels allow to arrive at a final diagnosis in around 60% of cases, suggesting that both new genes, and unusual mutations of the currently known genes are likely to account for the remaining cases. The aim of this review is to present the most recent advances in this field. We will outline recent natural history studies that provide additional information on disease progression, discuss recently discovered genes and the current status of the most promising therapeutic options.
Collapse
Affiliation(s)
- Alberto A Zambon
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford street, London, United Kingdom; Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford street, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.
| |
Collapse
|
11
|
Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. EMBO J 2021; 40:e107608. [PMID: 34018214 PMCID: PMC8204870 DOI: 10.15252/embj.2020107608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo‐EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII‐specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease‐causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur‐TRAPP.
Collapse
Affiliation(s)
| | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
12
|
Wada Y, Okamoto N. Apolipoprotein C-III O-glycoform profiling of 500 serum samples by matrix-assisted laser desorption/ionization mass spectrometry for diagnosis of congenital disorders of glycosylation. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4597. [PMID: 32677746 DOI: 10.1002/jms.4597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Congenital disorders of glycosylation (CDG) are caused by defects in various genes governing glycoconjugate biosynthesis. Several responsible genes have been identified in the protein N-glycosylation process. Analyses of mucin-type core-1 O-glycoform of apolipoprotein C-III (apoCIII) have recently revealed combined N- and O-glycosylation defects. We applied matrix-assisted laser desorption/ionization mass spectrometry profiling of apoCIII glycoforms to 500 serum samples for CDG screening, and reference values were determined. The content of unglycosylated apoCIII was low in early infancy, indicating that the O-glycan occupancy should be assessed based on age-matched reference values. The samples from patients with mutations in the ALG1, ATP6V0A2, B4GALT1, COG2, GCS1, PGM1, SLC35A2, and TRAPPC11 genes were analyzed. B4GALT1- and TRAPPC11-CDG were accompanied by under-sialylation of O-glycans and are now recognized as combined N- and O-glycosylation disorders.
Collapse
Affiliation(s)
- Yoshinao Wada
- Department of Molecular Medicine, Osaka Women's and Children's Hospital (OWCH), Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Osaka Women's and Children's Hospital (OWCH), Osaka, Japan
| |
Collapse
|
13
|
Chen Q, Zheng W, Xu H, Yang Y, Song Z, Yuan L, Deng H. Digenic Variants in the TTN and TRAPPC11 Genes Co-segregating With a Limb-Girdle Muscular Dystrophy in a Han Chinese Family. Front Neurosci 2021; 15:601757. [PMID: 33746696 PMCID: PMC7969792 DOI: 10.3389/fnins.2021.601757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are hereditary genetic disorders characterized by progressive muscle impairment which predominantly include proximal muscle weaknesses in the pelvic and shoulder girdles. This article describes an attempt to identify genetic cause(s) for a LGMD pedigree via a combination of whole exome sequencing and Sanger sequencing. Digenic variants, the titin gene (TTN) c.19481T>G (p.Leu6494Arg) and the trafficking protein particle complex 11 gene (TRAPPC11) c.3092C>G (p.Pro1031Arg), co-segregated with the disease phenotype in the family, suggesting their possible pathogenicity.
Collapse
Affiliation(s)
- Qian Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
14
|
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2020; 1865:129751. [PMID: 32991969 DOI: 10.1016/j.bbagen.2020.129751] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inherited metabolic diseases caused by defects in the genes important for the process of protein and lipid glycosylation. With the ever growing number of the known subtypes and discoveries regarding the disease mechanisms and therapy development, it remains a very active field of study. SCOPE OF REVIEW This review brings an update on the CDG-related research since 2017, describing the novel gene defects, pathobiomechanisms, biomarkers and the patients' phenotypes. We also summarize the clinical guidelines for the most prevalent disorders and the current therapeutical options for the treatable CDG. MAJOR CONCLUSIONS In the majority of the 23 new CDG, neurological involvement is associated with other organ disease. Increasingly, different aspects of cellular metabolism (e.g., autophagy) are found to be perturbed in multiple CDG. GENERAL SIGNIFICANCE This work highlights the recent trends in the CDG field and comprehensively overviews the up-to-date clinical recommendations.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Cechova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jaak Jaeken
- Department of Paediatrics and Centre for Metabolic Diseases, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish. Biomolecules 2020; 10:biom10091352. [PMID: 32971894 PMCID: PMC7564250 DOI: 10.3390/biom10091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of metabolism cause abnormal synthesis, recycling, or breakdown of amino acids, neurotransmitters, and other various metabolites. This aberrant homeostasis commonly causes the accumulation of toxic compounds or depletion of vital metabolites, which has detrimental consequences for the patients. Efficient and rapid intervention is often key to survival. Therefore, it requires useful animal models to understand the pathomechanisms and identify promising therapeutic drug targets. Zebrafish are an effective tool to investigate developmental mechanisms and understanding the pathophysiology of disorders. In the past decades, zebrafish have proven their efficiency for studying genetic disorders owing to the high degree of conservation between human and zebrafish genes. Subsequently, several rare inherited metabolic disorders have been successfully investigated in zebrafish revealing underlying mechanisms and identifying novel therapeutic targets, including methylmalonic acidemia, Gaucher’s disease, maple urine disorder, hyperammonemia, TRAPPC11-CDGs, and others. This review summarizes the recent impact zebrafish have made in the field of inborn errors of metabolism.
Collapse
|
16
|
Kaur P, Kadavigere R, Girisha KM, Shukla A. Recurrent bi-allelic splicing variant c.454+3A>G in TRAPPC4 is associated with progressive encephalopathy and muscle involvement. Brain 2020; 143:e29. [PMID: 32125366 DOI: 10.1093/brain/awaa046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajagopal Kadavigere
- Department of Radiodiagnosis and Imaging, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
17
|
Wada Y. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect Diagnostic Glycopeptide Markers of Congenital Disorders of Glycosylation. ACTA ACUST UNITED AC 2020; 9:A0084. [PMID: 32547898 PMCID: PMC7242785 DOI: 10.5702/massspectrometry.a0084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 12/04/2022]
Abstract
Congenital disorders of glycosylation (CDG), an increasingly recognized group of diseases that affect glycosylation, comprise the largest known subgroup of approximately 100 responsible genes related to N-glycosylation. This subgroup presents various molecular abnormalities, of either the CDG-I or the CDG-II type, attributable to a lack of glycans or abnormal glycoform profiles, respectively. The most effective approach to identifying these N-glycosylation disorders is mass spectrometry (MS) using either released glycans, intact glycoproteins or proteolytic peptides as analytes. Among these, MS of tryptic peptides derived from transferrin can be used to reliably identify signature peptides that are characteristic of CDG-I and II. In the present study, matrix-assisted laser desorption/ionization (MALDI) MS was applied to various N-glycosylation disorders including ALG1-CDG, B4GALT1-CDG, SLC35A2-CDG, ATP6V0A2-CDG, TRAPPC11-CDG and MAN1B1-CDG. This method does not require the prior enrichment of glycopeptides or chromatographic separation, and thus serves as a practical alternative to liquid chromatography-electrospray ionization MS. The signature peptides are biomarkers of CDG.
Collapse
Affiliation(s)
- Yoshinao Wada
- Osaka Women's and Children's Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| |
Collapse
|
18
|
Van Bergen NJ, Christodoulou J. Reply: Recurrent bi-allelic splicing variant c.454+3A>G in TRAPPC4 is associated with progressive encephalopathy and muscle involvement. Brain 2020; 143:e30. [PMID: 32125358 DOI: 10.1093/brain/awaa047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, VIC, Australia.,Kids Research, The Children's Hospital at Westmead, and Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Van Bergen NJ, Guo Y, Al-Deri N, Lipatova Z, Stanga D, Zhao S, Murtazina R, Gyurkovska V, Pehlivan D, Mitani T, Gezdirici A, Antony J, Collins F, Willis MJH, Coban Akdemir ZH, Liu P, Punetha J, Hunter JV, Jhangiani SN, Fatih JM, Rosenfeld JA, Posey JE, Gibbs RA, Karaca E, Massey S, Ranasinghe TG, Sleiman P, Troedson C, Lupski JR, Sacher M, Segev N, Hakonarson H, Christodoulou J. Deficiencies in vesicular transport mediated by TRAPPC4 are associated with severe syndromic intellectual disability. Brain 2020; 143:112-130. [PMID: 31794024 PMCID: PMC6935753 DOI: 10.1093/brain/awz374] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Yiran Guo
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - Noraldin Al-Deri
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniela Stanga
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah Zhao
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Rakhilya Murtazina
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Valeriya Gyurkovska
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, 34303, Turkey
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, Children’s Hospital at Westmead, Sydney, Australia
| | - Felicity Collins
- Western Sydney Genetics Program, Children’s Hospital at Westmead, Sydney, Australia
- Medical Genomics Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary J H Willis
- Department of Pediatrics, Naval Medical Center San Diego, San Diego, California, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ender Karaca
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Thisara G Ranasinghe
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Patrick Sleiman
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - Chris Troedson
- TY Nelson Department of Neurology and Neurosurgery, Children’s Hospital at Westmead, Sydney, Australia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, VIC, Australia
- Kids Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
20
|
Pinar M, Arias-Palomo E, de los Ríos V, Arst HN, Peñalva MA. Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII. PLoS Genet 2019; 15:e1008557. [PMID: 31869332 PMCID: PMC6946167 DOI: 10.1371/journal.pgen.1008557] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
TRAnsport Protein Particle complexes (TRAPPs) are ubiquitous regulators of membrane traffic mediating nucleotide exchange on the Golgi regulatory GTPases RAB1 and RAB11. In S. cerevisiae and metazoans TRAPPs consist of two large oligomeric complexes: RAB11-activating TRAPPII and RAB1-activating TRAPPIII. These share a common core TRAPPI hetero-heptamer, absent in metazoans but detected in minor proportions in yeast, likely originating from in vitro-destabilized TRAPPII/III. Despite overall TRAPP conservation, the budding yeast genome has undergone extensive loss of genes, and lacks homologues of some metazoan TRAPP subunits. With nearly twice the total number of genes of S. cerevisiae, another ascomycete Aspergillus nidulans has also been used for studies on TRAPPs. We combined size-fractionation chromatography with single-step purification coupled to mass-spectrometry and negative-stain electron microscopy to establish the relative abundance, composition and architecture of Aspergillus TRAPPs, which consist of TRAPPII and TRAPPIII in a 2:1 proportion, plus a minor amount of TRAPPI. We show that Aspergillus TRAPPIII contains homologues of metazoan TRAPPC11, TRAPPC12 and TRAPPC13 subunits, absent in S. cerevisiae, and establish that these subunits are recruited to the complex by Tca17/TRAPPC2L, which itself binds to the ‘Trs33 side’ of the complex. Thus Aspergillus TRAPPs compositionally resemble mammalian TRAPPs to a greater extent than those in budding yeast. Exploiting the ability of constitutively-active (GEF-independent, due to accelerated GDP release) RAB1* and RAB11* alleles to rescue viability of null mutants lacking essential TRAPP subunits, we establish that the only essential role of TRAPPs is activating RAB1 and RAB11, and genetically classify each essential subunit according to their role(s) in TRAPPII (TRAPPII-specific subunits) or TRAPPII and TRAPPIII (core TRAPP subunits). Constitutively-active RAB mutant combinations allowed examination of TRAPP composition in mutants lacking essential subunits, which led to the discovery of a stable Trs120/Trs130/Trs65/Tca17 TRAPPII-specific subcomplex whose Trs20- and Trs33-dependent assembly onto core TRAPP generates TRAPPII. TRAPPs govern intracellular traffic across eukaryotes, activating the Golgi GTPases RAB1 and RAB11. Other genetically tractable fungi are emerging as alternatives to baker’s yeast for cell-biological studies. We exploit Aspergillus nidulans, a filamentous ascomycete that has a lifestyle highly demanding for exocytosis and, that unlike baker’s yeast, has not undergone extensive gene loss. We show that fungal and metazoan TRAPPs are more similar than previously thought, after identifying three A. nidulans subunits previously believed exclusive to metazoans and demonstrating that TRAPPI is very minor, if it exists at all. Also importantly we classified, using a novel genetic approach, essential TRAPP subunits according to their role in activating RAB1 and/or RAB11, which demonstrated that the only indispensable role for TRAPPs is mediating nucleotide exchange on these GTPases and led to the discovery of a stable four-subunit subcomplex that assembles onto the also stable seven-subunit core to form the TRAPPII holocomplex.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Milev MP, Stanga D, Schänzer A, Nascimento A, Saint-Dic D, Ortez C, Natera-de Benito D, Barrios DG, Colomer J, Badosa C, Jou C, Gallano P, Gonzalez-Quereda L, Töpf A, Johnson K, Straub V, Hahn A, Sacher M, Jimenez-Mallebrera C. Characterization of three TRAPPC11 variants suggests a critical role for the extreme carboxy terminus of the protein. Sci Rep 2019; 9:14036. [PMID: 31575891 PMCID: PMC6773699 DOI: 10.1038/s41598-019-50415-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
TRAPPC11 was identified as a component of the TRAPP III complex that functions in membrane trafficking and autophagy. Variants in TRAPPC11 have been reported to be associated with a broad spectrum of phenotypes but all affected individuals display muscular pathology. Identifying additional variants will further our understanding of the clinical spectrum of phenotypes and will reveal regions of the protein critical for its functions. Here we report three individuals from unrelated families that have bi-allellic TRAPPC11 variants. Subject 1 harbors a compound heterozygous variant (c.1287 + 5G > A and c.3379_3380insT). The former variant results in a partial deletion of the foie gras domain (p.Ala372_Ser429del), while the latter variant results in a frame-shift and extension at the carboxy terminus (p.Asp1127Valfs*47). Subjects 2 and 3 both harbour a homozygous missense variant (c.2938G > A; p.Gly980Arg). Fibroblasts from all three subjects displayed membrane trafficking defects manifested as delayed endoplasmic reticulum (ER)-to-Golgi transport and/or a delay in protein exit from the Golgi. All three individuals also show a defect in glycosylation of an ER-resident glycoprotein. However, only the compound heterozygous subject displayed an autophagic flux defect. Collectively, our characterization of these individuals with bi-allelic TRAPPC11 variants highlights the functional importance of the carboxy-terminal portion of the protein.
Collapse
Affiliation(s)
- Miroslav P Milev
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Daniela Stanga
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Djenann Saint-Dic
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Desiré González Barrios
- Servicio de Pediatría, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Pathology Department and Biobank, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Pia Gallano
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lidia Gonzalez-Quereda
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Katherine Johnson
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany.
| | - Michael Sacher
- Concordia University, Department of Biology, Montreal, Quebec, Canada. .,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, Canada.
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain. .,U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Reunert J, Rust S, Grüneberg M, Seelhöfer A, Kurz D, Ocker V, Weber D, Fingerhut R, Marquardt T. Transient N-glycosylation abnormalities likely due to a de novo loss-of-function mutation in the delta subunit of coat protein I. Am J Med Genet A 2019; 179:1371-1375. [PMID: 31075182 DOI: 10.1002/ajmg.a.61190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
Accurate glycosylation of proteins is essential for their function and their intracellular transport. Numerous diseases have been described, where either glycosylation or intracellular transport of proteins is impaired. Coat protein I (COPI) is involved in anterograde and retrograde transport of proteins between endoplasmic reticulum and Golgi, where glycosylation takes place, but no association of defective COPI proteins and glycosylation defects has been described so far. We identified a patient whose phenotype at a first glance was reminiscent of PGM1 deficiency, a disease that also affects N-glycosylation of proteins. More detailed analyses revealed a different disease with a glycosylation deficiency that was only detectable during episodes of acute illness of the patient. Trio-exome analysis revealed a de novo loss-of-function mutation in ARCN1, coding for the delta-COP subunit of COPI. We hypothesize that the capacity of flow through Golgi is reduced by this defect and at high protein synthesis rates, this bottleneck also manifests as transient glycosylation deficiency.
Collapse
Affiliation(s)
- Janine Reunert
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Stephan Rust
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Marianne Grüneberg
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Anja Seelhöfer
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Daniel Kurz
- Department of Paediatrics, Olgahospital, Stuttgart, Germany
| | - Volker Ocker
- Department of Paediatrics, Olgahospital, Stuttgart, Germany
| | - Dorothea Weber
- Gemeinschaftspraxis für Kinderheilkunde, Bensheim, Germany
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory and Division of Metabolism, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
23
|
Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mallebrera C, Sacher M. TRAPPC11 functions in autophagy by recruiting ATG2B-WIPI4/WDR45 to preautophagosomal membranes. Traffic 2019; 20:325-345. [PMID: 30843302 DOI: 10.1111/tra.12640] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/01/2023]
Abstract
TRAPPC11 has been implicated in membrane traffic and lipid-linked oligosaccharide synthesis, and mutations in TRAPPC11 result in neuromuscular and developmental phenotypes. Here, we show that TRAPPC11 has a role upstream of autophagosome formation during macroautophagy. Upon TRAPPC11 depletion, LC3-positive membranes accumulate prior to, and fail to be cleared during, starvation. A proximity biotinylation assay identified ATG2B and its binding partner WIPI4/WDR45 as TRAPPC11 interactors. TRAPPC11 depletion phenocopies that of ATG2 and WIPI4 and recruitment of both proteins to membranes is defective upon reduction of TRAPPC11. We find that a portion of TRAPPC11 and other TRAPP III proteins localize to isolation membranes. Fibroblasts from a patient with TRAPPC11 mutations failed to recruit ATG2B-WIPI4, suggesting that this interaction is physiologically relevant. Since ATG2B-WIPI4 is required for isolation membrane expansion, our study suggests that TRAPPC11 plays a role in this process. We propose a model whereby the TRAPP III complex participates in the formation and expansion of the isolation membrane at several steps.
Collapse
Affiliation(s)
- Daniela Stanga
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Qingchuan Zhao
- University of Montreal, Department of Medicine and Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Miroslav P Milev
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Djenann Saint-Dic
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Michael Sacher
- Concordia University, Department of Biology, Montreal, Quebec, Canada.,McGill University, Department of Anatomy and Cell Biology, Quebec, Canada
| |
Collapse
|
24
|
Kanagawa M. Myo-Glyco disease Biology: Genetic Myopathies Caused by Abnormal Glycan Synthesis and Degradation. J Neuromuscul Dis 2019; 6:175-187. [PMID: 30856120 PMCID: PMC6598100 DOI: 10.3233/jnd-180369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycosylation is a major form of post-translational modification and plays various important roles in organisms by modifying proteins or lipids, which generates functional variability and can increase their stability. Because of the physiological importance of glycosylation, defects in genes encoding proteins involved in glycosylation or glycan degradation are sometimes associated with human diseases. A number of genetic neuromuscular diseases are caused by abnormal glycan modification or degeneration. Heterogeneous and complex modification machinery, and difficulties in structural and functional analysis of glycans have impeded the understanding of how glycosylation contributes to pathology. However, recent rapid advances in glycan and genetic analyses, as well as accumulating genetic and clinical information have greatly contributed to identifying glycan structures and modification enzymes, which has led to breakthroughs in the understanding of the molecular pathogenesis of various diseases and the possible development of therapeutic strategies. For example, studies on the relationship between glycosylation and muscular dystrophy in the last two decades have significantly impacted the fields of glycobiology and neuromyology. In this review, the basis of glycan structure and biosynthesis will be briefly explained, and then molecular pathogenesis and therapeutic concepts related to neuromuscular diseases will be introduced from the point of view of the life cycle of a glycan molecule.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
25
|
Sacher M, Shahrzad N, Kamel H, Milev MP. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2018; 20:5-26. [PMID: 30152084 DOI: 10.1111/tra.12615] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
Abstract
The movement of proteins between cellular compartments requires the orchestrated actions of many factors including Rab family GTPases, Soluble NSF Attachment protein REceptors (SNAREs) and so-called tethering factors. One such tethering factor is called TRAnsport Protein Particle (TRAPP), and in humans, TRAPP proteins are distributed into two related complexes called TRAPP II and III. Although thought to act as a single unit within the complex, in the past few years it has become evident that some TRAPP proteins function independently of the complex. Consistent with this, variations in the genes encoding these proteins result in a spectrum of human diseases with diverse, but partially overlapping, phenotypes. This contrasts with other tethering factors such as COG, where variations in the genes that encode its subunits all result in an identical phenotype. In this review, we present an up-to-date summary of all the known disease-related variations of genes encoding TRAPP-associated proteins and the disorders linked to these variations which we now call TRAPPopathies.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nassim Shahrzad
- Department of Medicine, University of California, San Francisco, California
| | - Hiba Kamel
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Novel TRAPPC11 Mutations in a Chinese Pedigree of Limb Girdle Muscular Dystrophy. Case Rep Genet 2018; 2018:8090797. [PMID: 30105108 PMCID: PMC6076900 DOI: 10.1155/2018/8090797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/22/2018] [Indexed: 12/30/2022] Open
Abstract
Limb girdle muscular dystrophies (LGMDs) are a heterogeneous group of genetic myopathies leading primarily to proximal muscle weakness. It is caused by mutations at over 50 known genetic loci typically from mutations in genes encoding constituents of the sarcolemmal dystrophin complex or related functions. Herein we describe the case of two siblings with LGMD that were investigated using whole-exome sequencing followed by Sanger sequencing validation of a specific double-mutation in the TRAPPC11 gene. Further, from parental sequencing we determined the mode of transmission, a double heterozygous mutation at the maternal and paternal alleles. The two mutations detected have not been described in other patients.
Collapse
|
27
|
Larson AA, Baker PR, Milev MP, Press CA, Sokol RJ, Cox MO, Lekostaj JK, Stence AA, Bossler AD, Mueller JM, Prematilake K, Tadjo TF, Williams CA, Sacher M, Moore SA. TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of α-dystroglycan and muscular dystrophy. Skelet Muscle 2018; 8:17. [PMID: 29855340 PMCID: PMC5984345 DOI: 10.1186/s13395-018-0163-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transport protein particle (TRAPP) is a supramolecular protein complex that functions in localizing proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in muscle disease by virtue of homozygous and compound heterozygous deleterious mutations being identified in individuals with limb girdle muscular dystrophy and congenital muscular dystrophy. It remains unclear how this protein leads to muscle disease. Furthermore, a role for this protein, or any other membrane trafficking protein, in the etiology of the dystroglycanopathy group of muscular dystrophies has yet to be found. Here, using a multidisciplinary approach including genetics, immunofluorescence, western blotting, and live cell analysis, we implicate both TRAPPC11 and another membrane trafficking protein, GOSR2, in α-dystroglycan hypoglycosylation. CASE PRESENTATION Subject 1 presented with severe epileptic episodes and subsequent developmental deterioration. Upon clinical evaluation she was found to have brain, eye, and liver abnormalities. Her serum aminotransferases and creatine kinase were abnormally high. Subjects 2 and 3 are siblings from a family unrelated to subject 1. Both siblings displayed hypotonia, muscle weakness, low muscle bulk, and elevated creatine kinase levels. Subject 3 also developed a seizure disorder. Muscle biopsies from subjects 1 and 3 were severely dystrophic with abnormal immunofluorescence and western blotting indicative of α-dystroglycan hypoglycosylation. Compound heterozygous mutations in TRAPPC11 were identified in subject 1: c.851A>C and c.965+5G>T. Cellular biological analyses on fibroblasts confirmed abnormal membrane trafficking. Subject 3 was found to have compound heterozygous mutations in GOSR2: c.430G>T and c.2T>G. Cellular biological analyses on fibroblasts from subject 3 using two different model cargo proteins did not reveal defects in protein transport. No mutations were found in any of the genes currently known to cause dystroglycanopathy in either individual. CONCLUSION Recessive mutations in TRAPPC11 and GOSR2 are associated with congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. This is the first report linking membrane trafficking proteins to dystroglycanopathy and suggests that these genes should be considered in the diagnostic evaluation of patients with congenital muscular dystrophy and dystroglycanopathy.
Collapse
Affiliation(s)
- Austin A. Larson
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | - Peter R. Baker
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | | | - Craig A. Press
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | - Ronald J. Sokol
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | - Mary O. Cox
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Jacqueline K. Lekostaj
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Aaron A. Stence
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Aaron D. Bossler
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Jennifer M. Mueller
- Division of Genetics and Metabolism, University of Florida College of Medicine, Gainesville, FL USA
| | | | | | - Charles A. Williams
- Division of Genetics and Metabolism, University of Florida College of Medicine, Gainesville, FL USA
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Steven A. Moore
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| |
Collapse
|
28
|
Bertoli-Avella AM, Garcia-Aznar JM, Brandau O, Al-Hakami F, Yüksel Z, Marais A, Grüning NM, Abbasi Moheb L, Paknia O, Alshaikh N, Alameer S, Marafi MJ, Al-Mulla F, Al-Sannaa N, Rolfs A, Bauer P. Biallelic inactivating variants in the GTPBP2 gene cause a neurodevelopmental disorder with severe intellectual disability. Eur J Hum Genet 2018; 26:592-598. [PMID: 29449720 DOI: 10.1038/s41431-018-0097-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022] Open
Abstract
Congenital neurological disorders are genetically highly heterogeneous. Rare forms of hereditary neurological disorders are still difficult to be adequately diagnosed. Pertinent studies, especially when reporting only single families, need independent confirmation. We present three unrelated families in which whole-exome sequencing identified the homozygous non-sense variants c.430[C>T];[C>T] p.(Arg144*), c.1219[C>T];[C>T] p.(Gln407*) and c.1408[C>T];[C>T] p.(Arg470*) in GTPBP2. Their clinical presentations include early onset and apparently non-progressive motor and cognitive impairment, and thereby overlap with findings in a recently described family harbouring a homozygous GTPBP2 splice site variant. Notable differences include structural brain abnormalities (e.g., agenesis of the corpus callosum, exclusive to our patients), and evidence for brain iron accumulation (exclusive to the previously described family). This report confirms pathogenicity of biallelic GTPBP2 inactivation and broadens the phenotypic spectrum. It also underlines that a potential involvement of brain iron accumulation needs clarification. Further patients will have to be identified and characterised in order to fully define the core features of GTPBP2-associated neurological disorder, but future approaches to molecular diagnosis of neurodevelopmental disorders should implement GTPBP2.
Collapse
Affiliation(s)
| | | | | | - Fahad Al-Hakami
- Molecular Medicine Section, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Saud Bin Abdulaziz University For Health Sciences, Ministry of National Guard Health Affairs,, Jeddah, Saudi Arabia
| | | | | | | | | | | | - Nahla Alshaikh
- King Saud Bin Abdulaziz University For Health Sciences, Ministry of National Guard Health Affairs,, Jeddah, Saudi Arabia.,Pediatric Neurology Section, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Seham Alameer
- King Saud Bin Abdulaziz University For Health Sciences, Ministry of National Guard Health Affairs,, Jeddah, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | | | - Fahd Al-Mulla
- Genatak Center for Genomic Medicine, Kuwait City, Kuwait
| | - Nouriya Al-Sannaa
- John Hopkins Aramco Health Care, Pediatric Services, Dhahran, Saudi Arabia
| | - Arndt Rolfs
- Centogene AG, Rostock, Germany.,Albrecht-Kossel-Institute for Neuroregeneration, Medical University Rostock, Rostock, Germany
| | | |
Collapse
|
29
|
Péanne R, de Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava E, Pérez B, Seta N, Thiel C, Van Schaftingen E, Matthijs G, Jaeken J. Congenital disorders of glycosylation (CDG): Quo vadis? Eur J Med Genet 2017; 61:643-663. [PMID: 29079546 DOI: 10.1016/j.ejmg.2017.10.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
Abstract
The survey summarizes in its first part the current status of knowledge on the Congenital Disorders of Glycosylation (CDG) with regard to their phenotypic spectrum, diagnostic and therapeutic strategies, and pathophysiology. It documents the clinical and basic research activities, and efforts to involve patients and their families. In the second part, it tries to look into the future of CDG. More specific biomarkers are needed for fast CDG diagnosis and treatment monitoring. Whole genome sequencing will play an increasingly important role in the molecular diagnosis of unsolved CDG. Epigenetic defects are expected to join the rapidly expanding genetic and allelic heterogeneity of the CDG family. Novel treatments are urgently needed particularly for PMM2-CDG, the most prevalent CDG. Patient services such as apps should be developed e.g. to document the natural history and monitor treatment. Networking (EURO-CDG, the European Reference Networks (MetabERN)) is an efficient tool to disseminate knowledge and boost collaboration at all levels. The final goal is of course to improve the quality of life of the patients and their families.
Collapse
Affiliation(s)
- Romain Péanne
- Center for Human Genetics, KU Leuven, Leuven, Belgium; LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation - from cellular mechanisms to cure", France
| | - Pascale de Lonlay
- APHP, Hôpital Necker Enfants Malades, Service et Centre de Référence des Maladies Métaboliques, Université Paris Descartes, Institut Imagine, Paris, France
| | - François Foulquier
- Université de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve D'ascq, France; LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation - from cellular mechanisms to cure", Belgium
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, and Berlin-Brandenburg Centre for Regenerative Therapies, Charité University, Berlin, Germany
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Belén Pérez
- Centro de Diagnostico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nathalie Seta
- AP-HP, Hôpital Bichat, Biochemistry Laboratory, Paris, France
| | - Christian Thiel
- Stoffwechselzentrum, Universitäts-Kinderklinik, Heidelberg, Germany
| | - Emile Van Schaftingen
- Laboratory of Biochemistry, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Gert Matthijs
- Center for Human Genetics, KU Leuven, Leuven, Belgium; LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation - from cellular mechanisms to cure", France.
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Abstract
Congenital disorders of glycosylation (CDG) are one group among the disorders of glycosylation. The latter comprise defects associated with hypoglycosylation but also defects with hyperglycosylation. Genetic diseases with hypoglycosylation can be divided in primary congenital disorders of glycosylation (CDG) and in genetic diseases causing secondary hypoglycosylation. This review covers the human CDG highlights from the last 3 years (2014-2016) following a summary of the actual status of CDG. It expands on 23 novel CDG namely defects in SLC39A8, CAD, NANS, PGM3, SSR4, POGLUT1, NUS1, GANAB, PIGY, PIGW, PIGC, PIGG, PGAP1, PGAP3, VPS13B, CCDC115, TMEM199, ATP6AP1, ATP6V1A, ATP6V1E1, TRAPPC11, XYLT1 and XYLT2. Besides, it discusses novel phenotypes of known CDG (DHDDS-CDG, ALG9-CDG, EXT2-CDG, PIGA-CDG, PIGN-CDG), the elucidation of putative glycosyltransferase disorders as O-mannosylglycan synthesis disorders (TMEM5-CDG, ISPD-CDG, FKTN-CDG, FKRP-CDG), a novel CDG mechanism, advances in diagnosis, pathogenesis, treatment and finally an updated list of the 104 known CDG.
Collapse
Affiliation(s)
- Jaak Jaeken
- Center for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Herestraat 49, BE 3000, Leuven, Belgium.
| | - Romain Péanne
- Department of Human Genetics, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Liang WC, Tian X, Yuo CY, Chen WZ, Kan TM, Su YN, Nishino I, Wong LJC, Jong YJ. Comprehensive target capture/next-generation sequencing as a second-tier diagnostic approach for congenital muscular dystrophy in Taiwan. PLoS One 2017; 12:e0170517. [PMID: 28182637 PMCID: PMC5300266 DOI: 10.1371/journal.pone.0170517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Congenital muscular dystrophy (CMD) is a heterogeneous disease entity. The detailed clinical manifestation and causative gene for each subgroup of CMD are quite variable. This study aims to analyze the phenotypes and genotypes of Taiwanese patients with CMD as the epidemiology of CMD varies among populations and has been scantly described in Asia. METHODS A total of 48 patients suspected to have CMD were screened and categorized by histochemistry and immunohistochemistry studies. Different genetic analyses, including next-generation sequencing (NGS), were selected, based on the clinical and pathological findings. RESULTS We identified 17 patients with sarcolemma-specific collagen VI deficiency (SSCD), 6 patients with merosin deficiency, two with reduced alpha-dystroglycan staining, and two with striking lymphocyte infiltration in addition to dystrophic change on muscle pathology. Fourteen in 15 patients with SSCD, were shown to have COL6A1, COL6A2 or COL6A3 mutations by NGS analysis; all showed marked distal hyperlaxity and normal intelligence but the overall severity was less than in previously reported patients from other populations. All six patients with merosin deficiency had mutations in LAMA2. They showed relatively uniform phenotype that were compatible with previous studies, except for higher proportion of mental retardation with epilepsy. With reduced alpha-dystroglycan staining, one patient was found to carry mutations in POMT1 while another patient carried mutations in TRAPPC11. LMNA mutations were found in the two patients with inflammatory change on muscle pathology. They were clinically characterized by neck flexion limitation and early joint contracture, but no cardiac problem had developed yet. CONCLUSION Muscle pathology remains helpful in guiding further molecular analyses by direct sequencing of certain genes or by target capture/NGS as a second-tier diagnostic tool, and is crucial for establishing the genotype-phenotype correlation. We also determined the frequencies of the different types of CMD in our cohort which is important for the development of a specific care system for each disease.
Collapse
Affiliation(s)
- Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xia Tian
- Baylor Genetics, Houston Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston Texas, United States of America
| | - Chung-Yee Yuo
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Zi Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Min Kan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ning Su
- Sofiva Genomics Co., Ltd., Taipei, Taiwan
- Dianthus Maternal Fetal Medicine Clinic, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Lee-Jun C. Wong
- Baylor Genetics, Houston Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston Texas, United States of America
| | - Yuh-Jyh Jong
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail: ,
| |
Collapse
|