1
|
Wang J, Liu A, Li A, Song H, Luo P, Zhan M, Zhou X, Chen L, Zhang J, Wang R. Lactobacillus fermentum CKCC1858 alleviates hyperlipidemia in golden hamsters on a high-fat diet via modulating gut microbiota. Food Funct 2023; 14:9580-9590. [PMID: 37823897 DOI: 10.1039/d3fo02618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
To investigate the effect of probiotic Lactobacillus fermentum CKCC1858, LF on the prevention of hyperlipidemia and its correlation with gut microbiota, golden hamsters were fed a high-fat diet alone or in combination with the probiotic for 6 weeks. The results showed that the LF intervention alleviated HFD-induced hyperlipidemia and liver damage, as evidenced by the reduced serum lipid profile levels and liver function markers. More importantly, the LF intervention attenuated HFD-induced microbiota dysbiosis by enhancing the abundance of SCFA-producing bacteria and reshaping the metabolic functions of the gut microbiota, likely contributing to its pronounced preventive effects on hyperlipidemia. This study elucidated the mechanism of the preventive effect of probiotics on hyperlipidemia in terms of regulating gut microbiota, and provided suggestions for regulating gut microbiota through probiotic interventions to improve lipid metabolism.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Aijie Liu
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | | | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | | | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Abdel Tawab FI, Abd Elkadr MH, Sultan AM, Hamed EO, El-Zayat AS, Ahmed MN. Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food. Sci Rep 2023; 13:16601. [PMID: 37789063 PMCID: PMC10547719 DOI: 10.1038/s41598-023-43752-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Lactic acid bacteria (LAB) are of major concern due to their health benefits. Fermented food products comprise variable LAB demonstrating probiotic properties. Discovering and evaluating new probiotics in fermented food products poses a global economic and health importance. Therefore, the present work aimed to investigate and evaluate the probiotic potentials of LAB strains isolated from Egyptian fermented food. In this study, we isolated and functionally characterized 100 bacterial strains isolated from different Egyptian fermented food sources as probiotics. Only four LAB strains amongst the isolated LAB showed probiotic attributes and are considered to be safe for their implementation as feed or dietary supplements. Additionally, they were shown to exert antimicrobial activities against pathogenic bacteria and anticancer effects against the colon cancer cell line Caco-2. The Enterococcus massiliensis IS06 strain was exclusively reported in this study as a probiotic strain with high antimicrobial, antioxidant, and anti-colon cancer activity. Hitherto, few studies have focused on elucidating the impact of probiotic supplementation in vivo. Therefore, in the current study, the safety of the four strains was tested in vivo through the supplementation of rats with potential probiotic strains for 21 days. The results revealed that probiotic bacterial supplementation in rats did not adversely affect the general health of rats. The Lactiplantibacillus plantarum IS07 strain significantly increased the growth performance of rats. Furthermore, the four strains exhibited increased levels of antioxidants such as superoxide dismutase and glutathione in vivo. Consistently, all strains also showed high antioxidant activity of the superoxide dismutase enzyme in vitro. Overall, these findings demonstrated that these isolated potential probiotics harbor desirable characteristics and can be applied widely as feed additives for animals or as dietary supplements for humans to exert their health benefits and combat serious diseases.
Collapse
Affiliation(s)
- Fatma I Abdel Tawab
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Institute, Agricultural Research Center, Giza, Egypt
| | - Menna H Abd Elkadr
- Microbiology Lab, Research Park, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Amany M Sultan
- Department of Biochemistry, Toxicology Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ehdaa O Hamed
- Department of Biochemistry, Toxicology Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ayatollah S El-Zayat
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt
| | - Marwa N Ahmed
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt.
| |
Collapse
|
3
|
Xu D, Wu Q, Liu W, Hu G, Meng H, Wang J. Therapeutic efficacy and underlying mechanisms of Gastrodia elata polysaccharides on dextran sulfate sodium-induced inflammatory bowel disease in mice: Modulation of the gut microbiota and improvement of metabolic disorders. Int J Biol Macromol 2023; 248:125919. [PMID: 37481182 DOI: 10.1016/j.ijbiomac.2023.125919] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory gastrointestinal disease, and an imbalance in the gut microbiota is a critical factor in its development. Gastrodia elata (G. elata), an Orchidaceae plant, is recognized for its nutritional and medicinal value. Studies have shown that G. elata polysaccharides (GBP) have anti-inflammatory properties that may ameliorate IBD. However, the therapeutic effects of GBP on gut microbiota metabolism remain unknown. Therefore, we aimed to examine the therapeutic potential of G. elata extract and GBP in dextran sulfate sodium (DSS)-induced IBD mice. GBP demonstrated the best therapeutic effect by reducing IBD symptoms in mice to the greatest extent. Administering GBP resulted in significant increases in the relative abundances of bacteria with potential anti-inflammatory effects, such as Ligilactobacillus and Alloprevotella, and decreases in the levels of bacteria associated with proinflammatory responses, such as Bacteroides and Escherichia-Shigella. Furthermore, 36 significant differential metabolites between the model and GBP groups were identified in feces, which were mainly enriched in amino acid metabolism, including tryptophan and cysteine, vitamin B6 metabolism and steroid hormone biosynthesis. Consequently, investigating the metabolic regulation of the gut microbiota is a promising approach to evaluate the therapeutic effect of GBP on IBD.
Collapse
Affiliation(s)
- Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qingyan Wu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenya Liu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guannan Hu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Meng
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Rudiansyah M, Abdalkareem Jasim S, S Azizov B, Samusenkov V, Kamal Abdelbasset W, Yasin G, Mohammad HJ, Jawad MA, Mahmudiono T, Hosseini-Fard SR, Mirzaei R, Karampoor S. The emerging microbiome-based approaches to IBD therapy: From SCFAs to urolithin A. J Dig Dis 2022; 23:412-434. [PMID: 36178158 DOI: 10.1111/1751-2980.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic gastrointestinal inflammatory conditions which can be life-threatening, affecting both children and adults. Crohn's disease and ulcerative colitis are the two main forms of IBD. The pathogenesis of IBD is complex and involves genetic background, environmental factors, alteration in gut microbiota, aberrant immune responses (innate and adaptive), and their interactions, all of which provide clues to the identification of innovative diagnostic or prognostic biomarkers and the development of novel treatments. Gut microbiota provide significant benefits to its host, most notably via maintaining immunological homeostasis. Furthermore, changes in gut microbial populations may promote immunological dysregulation, resulting in autoimmune diseases, including IBD. Investigating the interaction between gut microbiota and immune system of the host may lead to a better understanding of the pathophysiology of IBD as well as the development of innovative immune- or microbe-based therapeutics. In this review we summarized the most recent findings on innovative therapeutics for IBD, including microbiome-based therapies such as fecal microbiota transplantation, probiotics, live biotherapeutic products, short-chain fatty acids, bile acids, and urolithin A.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College Medical Laboratory Techniques Department Al-Anbar-Ramadi, Ramadi, Iraq
| | - Bakhadir S Azizov
- Department of Therapeutic Disciplines No.1, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ghulam Yasin
- Department of Botany University of Bahauddin Zakariya University, Multan, Pakistan
| | | | | | - Trias Mahmudiono
- Department of Nutrition Faculty of Public Health Universitas, Airlangga, Indonesia
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wang X, Yue H, Zhang H, Wan L, Ji S, Geng C. Preventive Effects of Long-Term Intake of Plant Oils With Different Linoleic Acid/Alpha-Linolenic Acid Ratios on Acute Colitis Mouse Model. Front Nutr 2022; 9:788775. [PMID: 35903457 PMCID: PMC9315388 DOI: 10.3389/fnut.2022.788775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the preventive effects of plant oils with different linoleic acid/alpha-linolenic acid (LA/ALA) ratios against colitis symptoms, and dysbiosis of gut microbiota in acute colitis mouse model.MethodsSixty male C57BL/6 mice were assigned into six groups (n = 10): three groups were fed low-fat diets with low, medium, and high LA/ALA ratios; and three groups were fed with high-fat diets with low, medium, and high LA/ALA ratios. After 3 months of diet, the mice were exposed to dextran sodium sulfate solution to induce acute colitis. The severity of colitis was estimated by disease activity index (DAI) and histopathological examination. 16S rRNA gene sequencing was used for the analysis of gut microbiota.ResultsPlant oils with a lower LA/ALA ratio showed higher alleviating effects on the symptoms of colitis, which were accompanied by the better prebiotic characteristics manifested as effectively inhibiting the abnormal expansion of phylum Proteobacteria and genus Escherichia-Shigella in the gut microbiota of colitis mouse models.ConclusionA potential IBD prevention strategy of reducing the LA/ALA ratio in the daily consumed plant oils was proposed in this study. Furthermore, based on the optimized LA/ALA ratio, this preventive effect might not be weakened by the high intake of plant oils.
Collapse
Affiliation(s)
- Xianshu Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Hao Yue
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Wan
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Wei Fang Medical University, Weifang, China
| | - Shuxia Ji
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chong Geng
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chong Geng,
| |
Collapse
|
6
|
Alkushi AG, Elazab ST, Abdelfattah-Hassan A, Mahfouz H, Salem GA, Sheraiba NI, Mohamed EAA, Attia MS, El-Shetry ES, Saleh AA, ElSawy NA, Ibrahim D. Multi-Strain-Probiotic-Loaded Nanoparticles Reduced Colon Inflammation and Orchestrated the Expressions of Tight Junction, NLRP3 Inflammasome and Caspase-1 Genes in DSS-Induced Colitis Model. Pharmaceutics 2022; 14:pharmaceutics14061183. [PMID: 35745756 PMCID: PMC9228487 DOI: 10.3390/pharmaceutics14061183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/30/2022] Open
Abstract
Gut modulation by multi-strain probiotics (MSPs) is considered an effective strategy for treating inflammatory bowel disease (IBD). The combination of nanomaterial-based MSPs can improve their viability and resistance and can allow their targeted release in the gastrointestinal tract to be achieved. Thus, our aim is to investigate the prospective role of MSP integration into nanomaterials (MSPNPs) and the underlying molecular mechanisms supporting their application as an alternative therapy for IBD using a colitis rat model. To induce the colitis model, rats received 5% DSS, and the efficacy of disease progression after oral administration of MSPNPs was assessed by evaluating the severity of clinical signs, inflammatory response, expressions of tight-junction-related genes and NLRP3 inflammasome and caspase-1 genes, microbial composition and histopathological examination of colonic tissues. The oral administration of MSPNPs successfully alleviated the colonic damage induced by DSS as proved by the reduced severity of clinical signs and fecal calprotectin levels. Compared with the untreated DSS-induced control group, the high activities of colonic NO and MPO and serum CRP levels were prominently reduced in rats treated with MSPNPs. Of note, colonic inflammation in the group treated with MSPNPs was ameliorated by downstreaming NLRP3 inflammasome, caspase-1, IL-18 and IL-1β expressions. After colitis onset, treatment with MSPNPs was more effective than that with free MSPs in restoring the expressions of tight-junction-related genes (upregulation of occludin, ZO-1, JAM, MUC and FABP-2) and beneficial gut microbiota. Interestingly, treatment with MSPNPs accelerated the healing of intestinal epithelium as detected in histopathological findings. In conclusion, the incorporation of MPSs into nanomaterials is recommended as a perspective strategy to overcome the challenges they face and augment their therapeutic role for treating of colitis.
Collapse
Affiliation(s)
- Abdullah Glil Alkushi
- Department of Human Anatomy, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Mecca 24382, Saudi Arabia;
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Hala Mahfouz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Gamal A. Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Nagwa I. Sheraiba
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mai S. Attia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| | - Eman S. El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Ayman A. Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Naser A. ElSawy
- Department of Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| |
Collapse
|
7
|
Ren S, Chen A, Tian Y, Bai Z, Wang C. Lactobacillus paracasei from Koumiss Ameliorates Diarrhea in mice via Tight Junctions Modulation. Nutrition 2022; 98:111584. [DOI: 10.1016/j.nut.2021.111584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/23/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
|
8
|
Msaad Guerfali M, Charaabi K, Hamden H, Djobbi W, Fadhl S, Mosbah A, Cherif A. Probiotic based-diet effect on the immune response and induced stress in irradiated mass reared Ceratitis capitata males (Diptera: Tephritidae) destined for the release in the sterile insect technique programs. PLoS One 2021; 16:e0257097. [PMID: 34506561 PMCID: PMC8432743 DOI: 10.1371/journal.pone.0257097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Ceratitis capitata (medfly) is one of the most devastating crop pests worldwide. The Sterile Insect Technique (SIT) is a control method that is based on the mass rearing of males, their sterilization, and release in the field. However, the effectiveness of the technique depends on the quality of the released males and their fitness. We previously isolated and selected a probiotic bacteria (Enterobacter sp.), from wild-caught medflies, according to criteria that improved biological quality traits of reared medfly males.We firstly evaluated the impact of the irradiation on the expression of different immune and stress genes in the medfly sterile males. Expression was measured at differents time points ranging from 0 to 168 h after irradiation to capture the response of genes with distinct temporal expression patterns. Then, we supplemented the larval diet with previously isolated Enterobacter sp.strain, live and autoclaved at various concentrations to see whether the probiotic treatments affect, through their protective role, the gene expression level, and quality traits. The irradiation had significant effect on the genes attacin, cecropin, PGPR-LC, hsp23, and hsp70 level expression. The expression of attacin and PGPR-LC was up-regulated while that of cecropin was down-regulated. Hsp genes showed decreased levels between 0 and 18 h to peak at 72 h. However, the supplementation of the probiotic strain, either live or autoclaved, was statistically significant only for attacingene. However, significant interaction time x probiotic was noticed for attacin, cecropin, hsp23 and hsp70. The probiotic treatments also improved the quality control parameters like pupal weight. From this work we can conclude that a consortium of parabiotics (autoclaved probiotics) treatment will be recommended in insectaries considering both the beneficial effects on mass reared insects and its general safety for insectary workers and for environment.
Collapse
Affiliation(s)
- Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Kamel Charaabi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Haytham Hamden
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Wafa Djobbi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Salma Fadhl
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Amor Mosbah
- Laboratory of Biology and Bio-Geo Resources LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- Laboratory of Biology and Bio-Geo Resources LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
9
|
Zhang Y, Liu W, Zhang D, Yang Y, Wang X, Li L. Fermented and Germinated Processing Improved the Protective Effects of Foxtail Millet Whole Grain Against Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis and Gut Microbiota Dysbiosis in C57BL/6 Mice. Front Nutr 2021; 8:694936. [PMID: 34395495 PMCID: PMC8358663 DOI: 10.3389/fnut.2021.694936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of foxtail millet whole grain flours obtained through different processing methods on alleviating symptoms and gut microbiota dysbiosis in a dextran sulfate sodium (DSS)-induced murine colitis model. Sixty C57BL/6 mice were divided into six groups (n = 10 in each group), including one control group (CTRL) without DSS treatment and five DSS-treated groups receiving one of the following diets: AIN-93M standard diet (93MD), whole grain foxtail millet flour (FM), fermented (F-FM), germinated (G-FM), and fermented-germinated foxtail millet flour (FG-FM). A comparison of the disease activity index (DAI) demonstrated that foxtail millet whole grain-based diets could alleviate the symptoms of enteritis to varying degrees. In addition, 16S rRNA gene sequencing revealed that FG-FM almost completely alleviated DSS-induced dysbiosis. Mice on the FG-FM diet also had the lowest plasma IL-6 levels and claudin2 expression levels in the colon, indicating reduced systemic inflammation and improved gut barrier function. This study suggested that foxtail millet whole grain is an attractive choice for the intervention of IBD and gut microbiota dysbiosis, and its prebiotic properties are highly affected by the processing methods.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.,Qilu Hospital, Shandong University, Jinan, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Di Zhang
- Qilu Hospital, Shandong University, Jinan, China
| | - Yanbing Yang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianshu Wang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Mayorgas A, Dotti I, Salas A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol Nutr Food Res 2020; 65:e2000188. [DOI: 10.1002/mnfr.202000188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Isabella Dotti
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Azucena Salas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| |
Collapse
|
11
|
Komaki S, Haque A, Miyazaki H, Matsumoto T, Nakamura S. Unexpected effect of probiotics by Lactococcus lactis subsp. lactis against colitis induced by dextran sulfate sodium in mice. J Infect Chemother 2020; 26:549-553. [PMID: 32122783 DOI: 10.1016/j.jiac.2020.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Ulcerative colitis (UC) is a representative intestinal chronic inflammatory disease whose incidence is rapidly increasing worldwide. It was previously shown that some specific probiotics help to guard against UC. In this study, we analyzed the effect of Lactococcus lactis subsp. lactis JCM5805 (L. lactis), which has been put to practical use as a probiotic, on the pathogenesis of UC using a dextran sulfate sodium-induced colitis mouse model. Survival rate, length, and histopathological parameters of the colon were elucidated. Further, the concentrations of inflammatory cytokines in serum were measured. As a result, the oral administration of high-dose L. lactis showed significant decreases in survival rate and colon length. Histopathological analysis showed that a bleeding appearance was observed in the L. lactis group, and the histology scores in the L. lactis group were significantly higher than those in the normal saline group. Furthermore, the levels of interferon gamma, tumor necrosis factor alpha, and interleukin-6 were significantly elevated in the L. lactis group. These results support that high-dose administration of L. lactis deteriorates intestinal inflammation and suggest that the careful selection of probiotics strains and administration dose is important for improving colitis including UC.
Collapse
Affiliation(s)
- Shinichirou Komaki
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Anwarul Haque
- International University of Health and Welfare, School of Medicine, Kozunomori 4-3, Narita City, Chiba, 286-8686, Japan
| | - Haruko Miyazaki
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tetsuya Matsumoto
- International University of Health and Welfare, School of Medicine, Kozunomori 4-3, Narita City, Chiba, 286-8686, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
12
|
Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ. Characterization of Lactic Acid Bacteria Isolated From the Gastrointestinal Tract of a Wild Boar as Potential Probiotics. Front Vet Sci 2020; 7:49. [PMID: 32118070 PMCID: PMC7026679 DOI: 10.3389/fvets.2020.00049] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/20/2020] [Indexed: 01/11/2023] Open
Abstract
Lactic acid bacteria (LAB) are major microorganisms used for probiotic purposes and prime parts of the human and mammalian gut microbiota, which exert important health-promoting effects on the host. The present study aimed to evaluate and compare the probiotic potential and safety of LAB strains isolated from the gastrointestinal tract of a wild boar from the Greater Khingan Mountains, China. Amongst all of the isolated LAB strains, five isolates identified as Lactobacillus mucosae, Lactobacillus salivarius, Enterococcus hirae, Enterococcus durans, and Enterococcus faecium, were remarkably resistant to acid and bile salt. The probiotic characteristics (including adhesion capability, antimicrobial activities, autoaggregation, and coaggregation abilities), and safety properties (including hemolytic activity, antibiotic resistance, absence/presence of virulence factors, and in vivo safety) were evaluated. The results showed that all five isolates exhibited high adhesive potential, remarkable aggregation capacity, and antibacterial activities. Upon assessment of the safety, these strains were negative for hemolytic activity and all tested virulence genes. In vivo safety assessment showed no adverse effects of isolated strains supplementation on the body weight gain and organ indices of the treated mice. This study revealed that these LAB isolates, especially L. salivarius M2-71, possess desirable probiotic properties and have great potentials for the development of feed additives for animals to promote health.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
13
|
SUGAWARA T, SAWADA D, KAJI I, KARAKI SI, KUWAHARA A. The effects of viable and non-viable Lactobacillus gasseri CP2305 cells on colonic ion transport and corticotropin releasing factor-induced diarrhea. Biomed Res 2019; 40:225-233. [DOI: 10.2220/biomedres.40.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomonori SUGAWARA
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University
| | - Daisuke SAWADA
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University
| | - Izumi KAJI
- Section of Surgical Sciences, School of Medicine, Vanderbilt University
| | | | - Atsukazu KUWAHARA
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University
| |
Collapse
|
14
|
Yoon JY. Nutritional approach as therapeutic manipulation in inflammatory bowel disease. Intest Res 2019; 17:463-475. [PMID: 31665832 PMCID: PMC6821940 DOI: 10.5217/ir.2019.00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Malnutrition is observed more frequently in patients with inflammatory bowel disease (IBD) than in the general population and associated with adverse clinical outcomes. This study aimed to review the current knowledge regarding the efficacy of dietary and nutritional intervention in IBD patients. Exclusive enteral nutrition might be inferior to corticosteroid treatment in adults with active Crohn’s disease (CD) but might even be superior considering the adverse effects of corticosteroid treatment in children. Total parenteral nutrition has no advantage over enteral nutrition, which is considered a more physiologic modality in organ function. Current guidelines do not yet recommend ω3-polyunsaturated fatty acid supplementation for the prevention and maintenance of remission in IBD patients. Dietary fiber supplementation could be effective in the relief of symptoms and maintenance of remission in ulcerative colitis (UC). Although vitamin D may be favorable to clinical course of IBD and bone density. Probiotic supplementation has proven to be effective in preventing and treating pouchitis for UC but is less effective in treating CD. Nutritional interventions not only correct nutritional deficiencies but also improve symptoms and clinical courses of the disease. Hence, nutritional approaches need to be developed to significantly evaluate the effectiveness of dietary interventions used to treat IBD.
Collapse
Affiliation(s)
- Jin Young Yoon
- Division of Gastroenterology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Zhai Z, Zhang F, Cao R, Ni X, Xin Z, Deng J, Wu G, Ren W, Yin Y, Deng B. Cecropin A Alleviates Inflammation Through Modulating the Gut Microbiota of C57BL/6 Mice With DSS-Induced IBD. Front Microbiol 2019; 10:1595. [PMID: 31354682 PMCID: PMC6635700 DOI: 10.3389/fmicb.2019.01595] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
The present study is undertaken to assess the alleviating effects of antimicrobial peptide cecropin A on inflammatory bowel disease (IBD) in C57BL/6 mice and changes in the gut microbiota, compared to an antibiotic gentamicin. Different doses of cecropin A were intraperitoneally injected into C57BL/6 mice for 5 days to determine the safe doses. The injection doses at ≤ 15 mg/kg showed no negative impact on the liver, heart, spleen, and kidney. The severe and moderate IBD mice model was successfully established via supplementation of 4 or 2.5% dextran sulfate sodium (DSS) in drinking water for 5 days. The severe IBD model was used to ensure the optimal therapeutic dose of cecropin A. Survival rate, body weight and disease activity index (DAI) scores were measured. Administration of 15 mg/kg, not 5 mg/kg cecropin A, for 5 days increased survival rate and decreased body weight loss of mice. The moderate IBD model was applied to investigate the mechanisms for cecropin A to alleviate inflammation in comparison to gentamicin. The mice were treated with 15 mg/kg cecropin A or 5 mg/kg gentamicin for 3 days. The levels of cytokines and related proteins in the colon were detected by ELISA and Western blotting. The microbiota in cecum contents were analyzed using 16S rRNA gene sequencing. The results showed that cecropin A and gentamicin relieved body weight loss, DAI, and gut mucosa disruption, while decreasing tumor necrosis factor-α (TNF-α), interlukin-1β (IL-1β), and interlukin-6 (IL-6) induced by DSS. In addition, cecropin A and gentamicin showed different effects on the gut microbiota structure. Both cecropin A and gentamicin decreased DSS-induced enrichment of Bacteroidaceae and Enterobacteriaceae. However, cecropin A showed a selective enrichment of Lactobacillus in contrast to gentamicin, which demonstrated a selective effect on Desulfovibrionaceae and Ruminococcaceae. Cecropin A alleviates IBD through decreasing harmful gut microflora and specifically enhancing beneficial gut microflora. The mechanism of this effect is different from gentamicin.
Collapse
Affiliation(s)
- Zhenya Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Ruihua Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Xiaojun Ni
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Probiotic Bifidobacterium lactis V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis. mSystems 2019; 4:mSystems00017-19. [PMID: 31020040 PMCID: PMC6469956 DOI: 10.1128/msystems.00017-19] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common metabolic disorder among women of reproductive age worldwide. Through a two-phase clinical experiment, we first revealed an imbalance in the intestinal microbiome of PCOS patients. By binning and annotating shotgun metagenomic sequences into metagenomic species (MGS), 61 MGSs were identified as potential PCOS-related microbial biomarkers. In the second stage, we monitored the impact of the probiotic Bifidobacterium lactis V9 on the intestinal microbiota, metabolic parameters, gut-brain mediators, and sex hormones of PCOS patients. Notably, we observed that the PCOS-related clinical indices and the intestinal microbiotas of the participating patients exhibited an inconsistent response to the intake of the B. lactis V9 probiotic. Therefore, effective host gut colonization of the probiotic was crucial for its ability to function as a probiotic. Finally, we propose a potential mechanism by which B. lactis V9 regulates the levels of sex hormones by manipulating the intestinal microbiome in PCOS patients. Although a few studies have investigated the intestinal microbiota of women with polycystic ovary syndrome (PCOS), the functional and metabolic mechanisms of the microbes associated with PCOS, as well as potential microbial biomarkers, have not yet been identified. To address this gap, we designed a two-phase experiment in which we performed shotgun metagenomic sequencing and monitored the metabolic parameters, gut-brain mediators, and sex hormones of PCOS patients. In the first stage, we identified an imbalance in the intestinal microbiota of the PCOS patients, observing that Faecalibacterium, Bifidobacterium, and Blautia were significantly more abundant in the control group, whereas Parabacteroides and Clostridium were enriched in the PCOS group. In the second stage, we monitored the impact of the probiotic Bifidobacterium lactis V9 on the intestinal microbiome, gut-brain mediators, and sex hormones of 14 PCOS patients. Notably, we observed that the levels of luteinizing hormone (LH) and LH/follicle-stimulating hormone (LH/FSH) decreased significantly in 9 volunteers, whereas the levels of sex hormones and intestinal short-chain fatty acids (SCFAs) increased markedly. In contrast, the changes in the indices mentioned above were indistinct in the remaining 5 volunteers. The results of an analysis of the number of viable Bifidobacterium lactis V9 cells in the two groups were highly consistent with the clinical and SCFA results. Therefore, effective host gut colonization of the probiotic Bifidobacterium lactis V9 was crucial for its ability to function as a probiotic. Finally, we propose a potential mechanism describing how probiotics regulate the levels of sex hormones by manipulating the intestinal microbiome in PCOS patients. IMPORTANCE Polycystic ovary syndrome (PCOS) is a common metabolic disorder among women of reproductive age worldwide. Through a two-phase clinical experiment, we first revealed an imbalance in the intestinal microbiome of PCOS patients. By binning and annotating shotgun metagenomic sequences into metagenomic species (MGS), 61 MGSs were identified as potential PCOS-related microbial biomarkers. In the second stage, we monitored the impact of the probiotic Bifidobacterium lactis V9 on the intestinal microbiota, metabolic parameters, gut-brain mediators, and sex hormones of PCOS patients. Notably, we observed that the PCOS-related clinical indices and the intestinal microbiotas of the participating patients exhibited an inconsistent response to the intake of the B. lactis V9 probiotic. Therefore, effective host gut colonization of the probiotic was crucial for its ability to function as a probiotic. Finally, we propose a potential mechanism by which B. lactis V9 regulates the levels of sex hormones by manipulating the intestinal microbiome in PCOS patients.
Collapse
|
17
|
Chen X, Fu Y, Wang L, Qian W, Zheng F, Hou X. Bifidobacterium longum and VSL#3 ® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:77-86. [PMID: 30227219 DOI: 10.1016/j.dci.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Probiotics are a beneficial treatment for inflammatory bowel disease (IBD). However, studies comparing the effects of similar doses of single and mixed probiotics on IBD are scarce. High mobility group box 1 (HMGB1) is an important proinflammatory mediator involved IBD development. The present study assessed fecal HMGB1 levels in IBD patients and compared the effects of similar doses of Bifidobacterium longum (Bif) versus VSL#3® on HMGB1 levels in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced murine colitis. Twenty-four mice were divided into four treatment groups (n = 6 per group): ethanol (control), TNBS, TNBS + Bif, and TNBS + VSL#3®. Bif and VSL#3® (4 × 109 CFU/dose) were administered daily by intragastric gavage, beginning 3 d before TNBS treatment, for a total of 7 d. Fecal HMGB1 levels were higher in both active IBD patients and TNBS-induced colitis mice versus their respective controls. Both Bif and VSL#3® improved intestinal inflammation and fecal microbiota imbalance in TNBS-induced colitis mice. Both treatments also reduced serum and fecal HMGB1 levels as well as increased expression of zonula occludins-1, occludin, and claudin-1 in colon tissues. In Caco-2 cells, HMGB1 reduced transepithelial electrical resistance, zonula occludins-1 protein expression, and increased paracellular permeability of FITC-dextran; the opposite was found with both probiotic treatments. These findings suggest Bif and VSL#3® have similar beneficial effects on TNBS-induced colitis, possibly through inhibition of HMGB1 release and subsequent HMGB1-mediated gut barrier dysfunction. The present study provides novel insights into probiotic treatment of IBD.
Collapse
Affiliation(s)
- Xiaohong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Cao G, Wang K, Li Z, Tao F, Xu Y, Lan J, Chen G, Yang C. Bacillus amyloliquefaciens Ameliorates Dextran Sulfate Sodium-Induced Colitis by Improving Gut Microbial Dysbiosis in Mice Model. Front Microbiol 2019; 9:3260. [PMID: 30671050 PMCID: PMC6331537 DOI: 10.3389/fmicb.2018.03260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
Several Bacillus strains exert beneficial effects on the maintenance of intestinal homeostasis and host health. However, whether Bacillus amyloliquefaciens (BA) can improve gut microbial dysbiosis and ameliorate colitis is unknown. Therefore, we conducted the present study to investigate the effects of BA administration on intestinal morphology, inflammatory response, and colonic microbial composition in a mouse model of dextran sulfate sodium (DSS)-induced colitis. Results showed that BA administration significantly ameliorated body weight loss, decreased disease activity index, and improved colonic tissue morphology in DSS-treated mice. In addition, levels of immunoglobulins, as well as pro-inflammatory cytokines, were decreased after BA administration. Importantly, colonic microbiota profiling indicated a significant (p < 0.05) difference in beta-diversity between BA-administrated and DSS-treated mice, according to weighted principal coordinate analysis (PCoA) results. The relative abundance of the Firmicutes genus was increased, whereas that of Bacteroidetes was decreased by BA administration. Furthermore, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed that the most significantly changed pathways between the four groups of mice were carbohydrate, lipid, and amino acid metabolism. In conclusion, our results showed that BA administration has beneficial effects on DSS-induced colitis, suggesting that this strategy might be useful for the treatment of dysbiosis during ulcerative colitis. Further, the changes in metabolism, especially amino acid metabolism, might contribute to the beneficial effects of BA on the amelioration of DSS-induced colitis.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Kangli Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A and F University, Hangzhou, China
| | - Zhanming Li
- Department of Food Science, China Jiliang University, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A and F University, Hangzhou, China
| | - Junhong Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A and F University, Hangzhou, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A and F University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A and F University, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A and F University, Hangzhou, China
| |
Collapse
|
19
|
Liu M, Zhang X, Hao Y, Ding J, Shen J, Xue Z, Qi W, Li Z, Song Y, Zhang T, Wang N. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: in vivo and in vitro evidence. Food Funct 2019; 10:1132-1145. [DOI: 10.1039/c8fo02301h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).
Collapse
|
20
|
Shin W, Kim HJ. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci U S A 2018; 115:E10539-E10547. [PMID: 30348765 PMCID: PMC6233106 DOI: 10.1073/pnas.1810819115] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The initiation of intestinal inflammation involves complex intercellular cross-talk of inflammatory cells, including the epithelial and immune cells, and the gut microbiome. This multicellular complexity has hampered the identification of the trigger that orchestrates the onset of intestinal inflammation. To identify the initiator of inflammatory host-microbiome cross-talk, we leveraged a pathomimetic "gut inflammation-on-a-chip" undergoing physiological flow and motions that recapitulates the pathophysiology of dextran sodium sulfate (DSS)-induced inflammation in murine models. DSS treatment significantly impaired, without cytotoxic damage, epithelial barrier integrity, villous microarchitecture, and mucus production, which were rapidly recovered after cessation of DSS treatment. We found that the direct contact of DSS-sensitized epithelium and immune cells elevates oxidative stress, in which the luminal microbial stimulation elicited the production of inflammatory cytokines and immune cell recruitment. In contrast, an intact intestinal barrier successfully suppressed oxidative stress and inflammatory cytokine production against the physiological level of lipopolysaccharide or nonpathogenic Escherichia coli in the presence of immune elements. Probiotic treatment effectively reduced the oxidative stress, but it failed to ameliorate the epithelial barrier dysfunction and proinflammatory response when the probiotic administration happened after the DSS-induced barrier disruption. Maintenance of epithelial barrier function was necessary and sufficient to control the physiological oxidative stress and proinflammatory cascades, suggesting that "good fences make good neighbors." Thus, the modular gut inflammation-on-a-chip identifies the mechanistic contribution of barrier dysfunction mediated by intercellular host-microbiome cross-talk to the onset of intestinal inflammation.
Collapse
Affiliation(s)
- Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712;
- Department of Medical Engineering, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
| |
Collapse
|
21
|
Altamirano-Barrera A, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. The role of the gut microbiota in the pathology and prevention of liver disease. J Nutr Biochem 2018; 60:1-8. [DOI: 10.1016/j.jnutbio.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
|
22
|
Damman JL, Rodriguez EA, Ali AH, Buness CW, Cox KL, Carey EJ, Lindor KD. Review article: the evidence that vancomycin is a therapeutic option for primary sclerosing cholangitis. Aliment Pharmacol Ther 2018; 47:886-895. [PMID: 29411404 DOI: 10.1111/apt.14540] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS PSC is an autoimmune biliary inflammatory disorder that is often associated with inflammatory bowel disease (IBD), with 50%-75% of patients with PSC having coexisting IBD, most commonly ulcerative colitis. Currently, no medical therapies have been shown to improve the disease course or slow its progression. However, ongoing research has resulted in a growing interest in the use of antibiotics for treatment of PSC, of which vancomycin is the most studied. In this review, we summarise the current evidence on the use of vancomycin in PSC and comment on future research areas of interest. METHODS A comprehensive PUBMED and EMBASE literature search for articles on vancomycin, PSC, therapeutic options and microbiome was performed. RESULTS Two randomised clinical trials, three case series and two case reports were included in the study. These include uncontrolled data from at least 98 patients that include promising improvements in biochemistry and imaging. Optimal dosing regimens are unclear. CONCLUSION Vancomycin is one of the most studied antibiotics used in the treatment of PSC with promising results. There is not currently sufficient evidence to support treatment recommendations. Further research is needed to establish if vancomycin is a PSC treatment.
Collapse
Affiliation(s)
- J L Damman
- Pediatrics/Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - E A Rodriguez
- Gastroenterology and Hepatology, Mayo Clinic, Arizona, USA
| | - A H Ali
- Hepatology, Mayo Clinic, Arizona, USA
| | - C W Buness
- National Patient Advocate Foundation, Paradise Valley, AZ, USA
| | - K L Cox
- Pediatric Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - E J Carey
- Gastroenterology and Hepatology, Mayo Clinic, Arizona, USA
| | - K D Lindor
- Gastroenterology and Hepatology, Arizona State University and Mayo Clinic, Arizona, USA
| |
Collapse
|
23
|
Iron Supplements Modulate Colon Microbiota Composition and Potentiate the Protective Effects of Probiotics in Dextran Sodium Sulfate-induced Colitis. Inflamm Bowel Dis 2017; 23:753-766. [PMID: 28368910 DOI: 10.1097/mib.0000000000001089] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Iron is an important nutrient for both the host and colonizing bacteria. Oral iron supplementation may impact the composition of the microbiota and can be particularly damaging to patients suffering from inflammatory bowel disease (IBD). However, patients with IBD may require iron supplementation to treat their anemia. METHODS We fed mice with diets supplemented with ferrous sulfate at different doses (5, 50, and 500 mg of iron/kg chow) and with different iron formulations (ferrous sulfate, ferrous bisglycinate and ferric ethylenediaminetetraacetic acid [FEDTA]), and analyzed the effects on the composition of the gut microbiota by 16S ribosomal RNA gene sequencing. Using the dextran sodium sulfate (DSS)-induced colitis mouse model, we investigated the effects of iron supplementation in colitis severity, as well as the use of the probiotic Escherichia coli Nissle 1917 (EcN) in combination with iron supplementation. RESULTS Iron supplementation at different doses induced shifts in the gut microbial communities and inferred metabolic pathways. However, depending on the iron formulation used in the diets, iron supplementation during dextran sodium sulfate-induced colitis was either beneficial (ferrous bisglycinate) or highly detrimental (FEDTA). Finally, the beneficial effect of the probiotic EcN in the dextran sodium sulfate-induced colitis model was potentiated by oral iron supplementation with ferrous sulfate. CONCLUSIONS These results show that the iron formulations used to treat iron deficiency influence the gut microbiota and colitis in mice and suggest that distinct iron compounds may be of particular relevance to patients with IBD. In addition, the beneficial action of probiotics in IBD may be enhanced by oral iron supplementation.
Collapse
|
24
|
Wu Y, Wang Y, Zou H, Wang B, Sun Q, Fu A, Wang Y, Wang Y, Xu X, Li W. Probiotic Bacillus amyloliquefaciens SC06 Induces Autophagy to Protect against Pathogens in Macrophages. Front Microbiol 2017; 8:469. [PMID: 28382029 PMCID: PMC5360707 DOI: 10.3389/fmicb.2017.00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/07/2017] [Indexed: 01/25/2023] Open
Abstract
Probiotics are increasingly applied in popularity in both humans and animals. Decades of research has revealed their beneficial effects, including the immune modulation in intestinal pathogens inhibition. Autophagy—a cellular process that involves the delivery of cytoplasmic proteins and organelles to the lysosome for degradation and recirculation—is essential to protect cells against bacterial pathogens. However, the mechanism of probiotics-mediated autophagy and its role in the elimination of pathogens are still unknown. Here, we evaluated Bacillus amyloliquefaciens SC06 (Ba)-induced autophagy and its antibacterial activity against Escherichia coli (E. coli) in murine macrophage cell line RAW264.7 cells. Western blotting and confocal laser scanning analysis showed that Ba activated autophagy in a dose- and time-dependent manner. Ba-induced autophagy was found to play a role in the elimination of intracellular bacteria when RAW264.7 cells were challenged with E. coli. Ba induced autophagy by increasing the expression of Beclin1 and Atg5-Atg12-Atg16 complex, but not the AKT/mTOR signaling pathway. Moreover, Ba pretreatment attenuated the activation of JNK in RAW264.7 cells during E. coli infection, further indicating a protective role for probiotics via modulating macrophage immunity. The above findings highlight a novel mechanism underlying the antibacterial activity of probiotics. This study enriches the current knowledge on probiotics-mediated autophagy, and provides a new perspective on the prevention of bacterial infection in intestine, which further the application of probiotics in food products.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Yang Wang
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, School of Medicine, Zhejiang University Hangzhou, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Yibing Wang
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Xiaogang Xu
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
25
|
ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci Rep 2017; 7:43126. [PMID: 28233796 PMCID: PMC5324050 DOI: 10.1038/srep43126] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are widespread inflammatory diseases that cause debilitating health problems including cancer. In this study, we show that ZnO nanoparticle (ZnONP) treatment has markedly dose-dependent effects on the remission of dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. We demonstrate the mechanism involves the antioxidant and anti-inflammatory abilities of ZnONPs to suppress ROS and malondialdehyde (MDA) production; increase GSH level; suppress proinflammatory cytokines IL-1β and TNF-α and myeloperoxidase (MPO). The ZnONP treatment is able to activate the Nrf2 pathway in the cellular antioxidant defense system. The novel finding is that ZnONP combined with mesalazine (5-ASA) can enhance the therapeutic efficacy of 5-ASA in the treatment of DSS-induced colitis. Lastly, we found that ZnONP treatment can restore the changes in special colonic bacteria of DSS-mice while the drug 5-ASA cannot. These results indicate that ZnONPs can act as a medical additive for the therapy of IBD.
Collapse
|
26
|
Moraes-Filho JP, Quigley EMM. THE INTESTINAL MICROBIOTA AND THE ROLE OF PROBIOTICS IN IRRITABLE BOWEL SYNDROME: a review. ARQUIVOS DE GASTROENTEROLOGIA 2016; 52:331-8. [PMID: 26840477 DOI: 10.1590/s0004-28032015000400015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome is a common, chronic relapsing gastrointestinal disorder that affects 7%-22% of the population worldwide. According to Rome III Criteria, the disorder is defined by the coexistence of abdominal discomfort or pain associated with an alteration in bowel habits. Its pathophysiology is not completely understood but, in addition to some important abnormalities, the disturbed intestinal microbiota has also been described supported by several strands of evidence. The treatment of irritable bowel syndrome is based upon several therapeutic approaches but few have been successful or without adverse events and more recently the gut microbiota and the use of probiotics have emerged as a factor to be considered. Probiotics are live micro-organisms which when consumed in adequate amounts confer a health benefit to the host, such as Lactic bacteria among others. An important scientific rationale has emerged for the use of probiotics in irritable bowel syndrome, although the data regarding different species are still limited. Not all probiotics are beneficial: it is important to select the specific strain which should be supported by good evidence base. The mechanisms of action of probiotics are described and the main strains are quoted.
Collapse
|
27
|
Durchschein F, Petritsch W, Hammer HF. Diet therapy for inflammatory bowel diseases: The established and the new. World J Gastroenterol 2016; 22:2179-2194. [PMID: 26900283 PMCID: PMC4734995 DOI: 10.3748/wjg.v22.i7.2179] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Although patients with inflammatory bowel diseases (IBD) have a strong interest in dietary modifications as part of their therapeutic management, dietary advice plays only a minor part in published guidelines. The scientific literature shows that dietary factors might influence the risk of developing IBD, that dysbiosis induced by nutrition contributes to the pathogenesis of IBD, and that diet may serve as a symptomatic treatment for irritable bowel syndrome-like symptoms in IBD. The role of nutrition in IBD is underscored by the effect of various dietary therapies. In paediatric patients with Crohn’s disease (CD) enteral nutrition (EN) reaches remission rates similar to steroids. In adult patients, however, EN is inferior to corticosteroids. EN is not effective in ulcerative colitis (UC). Total parenteral nutrition in IBD is not superior to steroids or EN. The use of specific probiotics in patients with IBD can be recommended only in special clinical situations. There is no evidence for efficacy of probiotics in CD. By contrast, studies in UC have shown a beneficial effect in selected patients. For patients with pouchitis, antibiotic treatment followed by probiotics, like VSL#3 or Lactobacillus GG, is effective. When probiotics are used, the risk of bacterial translocation and subsequent bacteremia has to be considered. More understanding of the normal intestinal microflora, and better characterization of probiotic strains at the phenotypic and genomic levels is needed as well as clarification of the mechanisms of action in different clinical settings. A FODMAP reduced diet may improve symptoms in IBD.
Collapse
|
28
|
Abstract
During the last decade, probiotics have been established to be important mediators of host immunity. Their effects on both innate and adaptive immunity have been documented in the literature. Although several reports have correlated different strains of bacteria as probiotics, their effects on immunity vary. Clearly, there is a complex interplay between various constituents of probiotics and the immune response in humans. The role of probiotics on natural killer (NK) cells in the gut has been the subject of a few reports. In this review, we summarize the reported findings on the role of probiotics in the activation of gut-associated NK cells and the response of NK cells to stimuli elicited by probiotics and their microenvironment. The effects of probiotics on the activation of NK cells and their secretion of immune factors (e.g., interferon-γ, tumor necrosis factor-α, interleukin-2, etc.) are discussed in regard to their clinical significance in various diseases. Current investigations are being pursued, in particular, on the role of probiotics-activated NK cells in promoting the adaptive immune response against pathogens.
Collapse
Affiliation(s)
- Nabil Aziz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
29
|
Stavely R, Robinson AM, Miller S, Boyd R, Sakkal S, Nurgali K. Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis. Stem Cell Res Ther 2015; 6:263. [PMID: 26718461 PMCID: PMC4697327 DOI: 10.1186/s13287-015-0254-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Background The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. This study aims to isolate and characterise guinea pig MSCs and then test their therapeutic potential for the treatment of enteric neuropathy associated with intestinal inflammation. Methods MSCs from guinea pig bone marrow and adipose tissue were isolated and characterised in vitro. In in vivo experiments, guinea pigs received either TNBS for the induction of colitis or sham treatment by enema. MSCs were administered at a dose of 1 × 106 cells via enema 3 h after the induction of colitis. Colon tissues were collected 24 and 72 h after TNBS administration to assess the level of inflammation and damage to the ENS. The secretion of transforming growth factor-β1 (TGF-β1) was analysed in MSC conditioned medium by flow cytometry. Results Cells isolated from both sources were adherent to plastic, multipotent and expressed some human MSC surface markers. In vitro characterisation revealed distinct differences in growth kinetics, clonogenicity and cell morphology between MSC types. In an in vivo model of TNBS-induced colitis, guinea pig bone marrow MSCs were comparatively more efficacious than adipose tissue MSCs in attenuating weight loss, colonic tissue damage and leukocyte infiltration into the mucosa and myenteric plexus. MSCs from both sources were equally neuroprotective in the amelioration of enteric neuronal loss and changes to the neurochemical coding of neuronal subpopulations. MSCs from both sources secreted TGF-β1 which exerted neuroprotective effects in vitro. Conclusions This study is the first evaluating the functional capacity of guinea pig bone marrow and adipose tissue-derived MSCs and providing evidence of their neuroprotective value in an animal model of colitis. In vitro characteristics of MSCs cannot be extrapolated to their therapeutic efficacy. TGF-β1 released by both types of MSCs might have contributed to the attenuation of enteric neuropathy associated with colitis.
Collapse
Affiliation(s)
- Rhian Stavely
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Ainsley M Robinson
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Sarah Miller
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Richard Boyd
- Department of Anatomy and Developmental Biology, Monash University, 19 Innovation Walk, Clayton, 3800, Victoria, Australia.
| | - Samy Sakkal
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| |
Collapse
|
30
|
Zou J, Shankar N. Surface protein Esp enhances pro-inflammatory cytokine expression through NF-κB activation during enterococcal infection. Innate Immun 2015; 22:31-9. [PMID: 26503704 DOI: 10.1177/1753425915611237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/21/2015] [Indexed: 11/17/2022] Open
Abstract
Enterococcal surface protein (Esp) is encoded on a pathogenicity island in Enterococcus faecalis and E. faecium and is involved in biofilm formation and binding to epithelial cells. In this study, using Esp-expressing E. faecalis MMH594 and its isogenic Esp-deficient strain, as well as purified Esp, we show that Esp is sufficient for activation of NF-κB and the subsequent production of pro-inflammatory cytokines IL-1β and TNF-α in macrophages in vitro. In a mouse peritonitis model, we also show that mice infected with Esp-expressing E. faecalis showed comparatively higher levels of cytokines TNF-α, IL-1β and IL-6 in peritoneal fluid, and IL-6 in serum. Moreover, neutrophil infiltration and tissue damage in the liver was higher in the mice infected with the Esp-expressing strain compared with mice infected with the Esp-deficient mutant. These results add Esp to the growing list of enterococcal virulence factors that can modulate inflammation during infection and has implications for enterococcal pathogenesis.
Collapse
Affiliation(s)
- Jun Zou
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nathan Shankar
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
31
|
Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants' and children's health? J Pediatr Gastroenterol Nutr 2015; 60:294-307. [PMID: 25313849 PMCID: PMC4340742 DOI: 10.1097/mpg.0000000000000597] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial colonization of the infant occurs during a critical time window for immune and gastrointestinal development. Infant colonization sets the stage for the adult microbiome. This review is a broad survey of the factors affecting infant colonization and the downstream effects on gastrointestinal health and disease. Major topics affecting colonization include initial inoculation dependent on birth mode, the impact of breast-feeding, and inside-out modulation of the developing microbiome by the immune system. Major outcomes of colonization include the timing-dependent education of the neonatal immune system, which is interconnected with barrier function and metabolism. These all engage in further continuing cross-talk with the microbiome, genetics, and nutrition. This review also briefly examines mechanisms of disease resulting from disrupted colonization as well as nutritional and microbial therapies.
Collapse
Affiliation(s)
- Pearl D. Houghteling
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16th Street (114-3505), Charlestown, MA02129-4404, USA
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16th Street (114-3505), Charlestown, MA02129-4404, USA
| |
Collapse
|
32
|
Live Combined Bacillus subtilis and Enterococcus faecium Ameliorate Murine Experimental Colitis by Immunosuppression. Int J Inflam 2014; 2014:878054. [PMID: 25276470 PMCID: PMC4170745 DOI: 10.1155/2014/878054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Live combined Bacillus subtilis and Enterococcus faecium ameliorate murine experimental colitis by immunosuppression manifested by downregulation of TLRs, macrophages, Th1, and Th2 but upregulation of Tregs.
Collapse
|
33
|
Gkouskou KK, Deligianni C, Tsatsanis C, Eliopoulos AG. The gut microbiota in mouse models of inflammatory bowel disease. Front Cell Infect Microbiol 2014; 4:28. [PMID: 24616886 PMCID: PMC3937555 DOI: 10.3389/fcimb.2014.00028] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/14/2014] [Indexed: 12/14/2022] Open
Abstract
The intestine and the intestinal immune system have evolved through a symbiotic homeostasis under which a highly diverse microbial flora is maintained in the gastrointestinal tract while pathogenic bacteria are recognized and eliminated. Disruption of the balance between the immune system and the gut microbiota results in the development of multiple pathologies in humans. Inflammatory bowel diseases (IBD) have been associated with alterations in the composition of intestinal flora but whether these changes are causal or result of inflammation is still under dispute. Various chemical and genetic models of IBD have been developed and utilized to elucidate the complex relationship between intestinal epithelium, immune system and the gut microbiota. In this review we describe some of the most commonly used mouse models of colitis and Crohn's disease (CD) and summarize the current knowledge of how changes in microbiota composition may affect intestinal disease pathogenesis. The pursuit of gut-microbiota interactions will no doubt continue to provide invaluable insight into the complex biology of IBD.
Collapse
Affiliation(s)
- Kalliopi K Gkouskou
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School Heraklion, Greece ; Laboratory of Translational Medicine and Experimental Therapeutics, University of Crete Medical School Heraklion, Greece
| | - Chrysoula Deligianni
- Department of Clinical Chemistry, University of Crete Medical School Heraklion, Greece
| | - Christos Tsatsanis
- Department of Clinical Chemistry, University of Crete Medical School Heraklion, Greece
| | - Aristides G Eliopoulos
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School Heraklion, Greece ; Laboratory of Translational Medicine and Experimental Therapeutics, University of Crete Medical School Heraklion, Greece ; Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology-FORTH Heraklion, Greece
| |
Collapse
|
34
|
Arthur JC, Gharaibeh RZ, Uronis JM, Perez-Chanona E, Sha W, Tomkovich S, Mühlbauer M, Fodor AA, Jobin C. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci Rep 2013; 3:2868. [PMID: 24100376 PMCID: PMC3792409 DOI: 10.1038/srep02868] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/18/2013] [Indexed: 02/07/2023] Open
Abstract
Although probiotics have shown success in preventing the development of experimental colitis-associated colorectal cancer (CRC), beneficial effects of interventional treatment are relatively unknown. Here we show that interventional treatment with VSL#3 probiotic alters the luminal and mucosally-adherent microbiota, but does not protect against inflammation or tumorigenesis in the azoxymethane (AOM)/Il10⁻/⁻ mouse model of colitis-associated CRC. VSL#3 (10⁹ CFU/animal/day) significantly enhanced tumor penetrance, multiplicity, histologic dysplasia scores, and adenocarcinoma invasion relative to VSL#3-untreated mice. Illumina 16S sequencing demonstrated that VSL#3 significantly decreased (16-fold) the abundance of a bacterial taxon assigned to genus Clostridium in the mucosally-adherent microbiota. Mediation analysis by linear models suggested that this taxon was a contributing factor to increased tumorigenesis in VSL#3-fed mice. We conclude that VSL#3 interventional therapy can alter microbial community composition and enhance tumorigenesis in the AOM/Il10⁻/⁻ model.
Collapse
Affiliation(s)
| | - Raad Z. Gharaibeh
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | | | | | - Wei Sha
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | - Sarah Tomkovich
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christian Jobin
- Department of Medicine, Chapel Hill, NC 27599, USA
- Pharmacology, Chapel Hill, NC 27599, USA
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Florida at Gainesville, Gainesville, FL32611, USA
- Department of Infectious Diseases and Pathology, University of Florida at Gainesville, Gainesville, FL32611, USA
| |
Collapse
|
35
|
Ooi JH, Li Y, Rogers CJ, Cantorna MT. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr 2013; 143:1679-86. [PMID: 23966330 PMCID: PMC3771816 DOI: 10.3945/jn.113.180794] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The active form of vitamin D [1,25-dihydroxycholecalciferol, 1,25(OH)2D3] and the vitamin D receptor (VDR) regulate susceptibility to experimental colitis. The effect of the bacterial microflora on the susceptibility of C57BL/6 mice to dextran sodium sulfate-induced colitis was determined. Mice that cannot produce 1,25(OH)2D3 [Cyp27b1 (Cyp) knockout (KO)], VDR KO as well as their wild-type littermates were used. Cyp KO and VDR KO mice had more bacteria from the Bacteroidetes and Proteobacteria phyla and fewer bacteria from the Firmicutes and Deferribacteres phyla in the feces compared with wild-type. In particular, there were more beneficial bacteria, including the Lactobacillaceae and Lachnospiraceae families, in feces from Cyp KO and VDR KO mice than in feces from wild-type. Helicobacteraceae family member numbers were elevated in Cyp KO compared with wild-type mice. Depletion of the gut bacterial flora using antibiotics protected mice from colitis. 1,25(OH)2D3 treatment (1.25 μg/100 g diet) of Cyp KO mice decreased colitis severity and reduced the numbers of Helicobacteraceae in the feces compared with the numbers in the feces of untreated Cyp KO mice. The mechanisms by which the dysbiosis occurs in VDR KO and Cyp KO mice included lower expression of E-cadherin on gut epithelial and immune cells and fewer tolerogenic dendritic cells that resulted in more gut inflammation in VDR and Cyp KO mice compared with wild-type mice. Increased host inflammation has been shown to provide pathogens with substrates to out-compete more beneficial bacterial species. Our data demonstrate that vitamin D regulates the gut microbiome and that 1,25(OH)2D3 or VDR deficiency results in dysbiosis, leading to greater susceptibility to injury in the gut.
Collapse
Affiliation(s)
- Jot Hui Ooi
- Department of Veterinary and Biomedical Science,,Pathobiology Graduate Program, Pennsylvania State University, University Park, PA
| | - Yunfei Li
- Department of Biochemistry and Molecular Biology
| | - Connie J. Rogers
- Department of Nutritional Sciences,,Center for Molecular Immunology and Infectious Disease, and
| | - Margherita T. Cantorna
- Department of Veterinary and Biomedical Science,,Center for Molecular Immunology and Infectious Disease, and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Abstract
The human intestine is colonised by 10¹³ to 10¹⁴ micro-organisms, the vast majority of which belong to the phyla Firmicutes and Bacteroidetes. Although highly stable over time, the composition and activities of the microbiota may be influenced by a number of factors including age, diet and antibiotic treatment. Although perturbations in the composition or functions of the microbiota are linked to inflammatory and metabolic disorders (e.g. inflammatory bowel diseases, irritable bowel syndrome and obesity), it is unclear at this point whether these changes are a symptom of the disease or a contributing factor. A better knowledge of the mechanisms through which changes in microbiota composition (dysbiosis) promote disease states is needed to improve our understanding of the causal relationship between the gut microbiota and disease. While evidence of the preventive and therapeutic effects of probiotic strains on diarrhoeal illness and other intestinal conditions is promising, the exact mechanisms of the beneficial effects are not fully understood. Recent studies have raised the question of whether non-viable probiotic strains can confer health benefits on the host by influencing the immune system. As the potential health effect of these non-viable bacteria depends on whether the mechanism of this effect is dependent on viability, future research needs to consider each probiotic strain on a case-by-case basis. The present review provides a comprehensive, updated overview of the human gut microbiota, the factors influencing its composition and the role of probiotics as a therapeutic modality in the treatment and prevention of diseases and/or restoration of human health.
Collapse
|
37
|
Vigsnæs LK, Brynskov J, Steenholdt C, Wilcks A, Licht TR. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls. Benef Microbes 2013; 3:287-97. [PMID: 22968374 DOI: 10.3920/bm2012.0018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detailed knowledge about the composition of the intestinal microbiota may be critical to unravel the pathogenesis of ulcerative colitis (UC), a human chronic inflammatory bowel disease, since the intestinal microbes are expected to influence some of the key mechanisms involved in the inflammatory process of the gut mucosa. The aim of this study was to investigate the faecal microbiota in patients either with UC in remission (n=6) or with active disease (n=6), and in healthy controls (n=6). The composition of Gram-negative bacteria and Gram-positive bacteria was examined. Antigenic structures of Gram-negative bacteria such as lipopolysaccharides have been related to the inflammatory responses and pathogenesis of inflammatory bowel disease. Dice cluster analysis and principal component analysis of faecal microbiota profiles obtained by denaturing gradient gel electrophoresis and quantitative PCR, respectively, revealed that the composition of faecal bacteria from UC patients with active disease differed from the healthy controls and that this difference should be ascribed to Gram-negative bacteria. The analysis did not show any clear grouping of UC patients in remission. Even with the relatively low number of subjects in each group, we were able to detect a statistically significant underrepresentation of Lactobacillus spp. and Akkermansia muciniphila in UC patients with clinically active disease compared to the healthy controls. In line with previous communications, we have shown that the microbiota in UC patients with active disease differ from that in healthy controls. Our findings indicate that alterations in the composition of the Gram-negative bacterial population, as well as reduced numbers of lactobacilli and A. muciniphila may play a role in UC.
Collapse
Affiliation(s)
- L K Vigsnæs
- Division of Food Microbiology, National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | | | | | | | | |
Collapse
|
38
|
Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men. Immunol Lett 2013; 150:30-40. [PMID: 23352670 DOI: 10.1016/j.imlet.2013.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 02/06/2023]
Abstract
The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota and food antigens. Dendritic cells (DC) generate primary T-cell responses, and determine whether these responses are immunogenic or tolerogenic. The regulatory role of DC is of particular importance in the gut due to the high antigenic load. Intestinal DC act as sentinels, sampling potentially pathogenic antigens but also harmless antigens including the commensal microbiota. Following antigen acquisition, intestinal DC migrate to secondary lymphoid organs to activate naive T-cells. DC also imprint specific homing properties on T-cells that they stimulate; gut DC specifically induce gut-homing properties on T-cells upon activation, enabling T-cell migration back to intestinal sites. Data regarding properties on gut DC in humans is scarce, although evidence now supports the role of DC as important players in intestinal immunity in humans. Here, we review the role of intestinal DC in shaping mucosal immune responses and directing tissue-specific T-cell responses, with a special focus on the importance of distinguishing DC subsets from macrophages at intestinal sites. We compare and contrast human DC with their murine counterparts, and discuss the ability of the gut microbiota to shape intestinal DC function, and how this may be dysregulated in inflammatory bowel disease (IBD). Lastly, we describe recent advances in the study of probiotics on intestinal DC function, including the use of soluble secreted bacterial products.
Collapse
|
39
|
Peitsidou K, Karantanos T, Theodoropoulos GE. Probiotics, prebiotics, synbiotics: is there enough evidence to support their use in colorectal cancer surgery? Dig Surg 2012; 29:426-38. [PMID: 23258276 DOI: 10.1159/000345580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Pro-/pre-/synbiotics supplementation seems to provide beneficial effects in various aspects of abdominal pathology. Skepticism exists with respect to their effects on colorectal cancer (CRC) patients. This review presents the potential clinical applications of pro-/pre-/synbiotics in CRC surgery. METHODS A literature search of electronic databases was conducted and all studies published on 'probiotics', 'prebiotics' and 'synbiotics' were collected. Among them, the ones referring to CRC and which had any clinical relevance offering information on perioperative parameters were used. RESULTS Incorporation of pre-/pro-/synbiotic formulations in the preoperative mechanical bowel preparation cannot be supported by the current evidence. Limited clinical studies may be promising in supporting their potentially protective role against postoperative infectious complications. Encouraging are the results on their protective role against adjuvant (chemo)radiation-induced diarrhea. Such supplementation may also hold promise to improve postcolectomy gastrointestinal related quality of life. CONCLUSIONS Despite the positive results and plethora of agents, bacterial combinations and concentrations, the inconsistency in administration, the inhomogeneity of comparison groups and lack of stringent clinical endpoints remain obstacles in the effort to establish a definitive clinical strategy at this time. Further work is warranted to gain a keen understanding of their clinical value in CRC patients.
Collapse
Affiliation(s)
- Kiriaki Peitsidou
- Colorectal Unit, 1st Department of Propaedeutic Surgery, Athens Medical School, Athens, Greece
| | | | | |
Collapse
|
40
|
Abstract
The healthy human gut supports a complex and diverse microbiota, dominated by bacterial phylotypes belonging to Bacteroidetes and Firmicutes. In the inflamed gut, overall diversity decreases, coincident with a greater representation of Proteobacteria. There is growing evidence supporting an important role for human gut bacteria in mucosal immunity; interactions at the level of both intestinal and colonic epithelial cells, dendritic cells, and T and B immune cells have been documented. These interactions influence gut barrier and defense mechanisms that include antimicrobial peptide and secretory IgA synthesis. The functional effects of commensal bacteria on T helper cell differentiation have led to the emerging concept that microbiota composition determines T effector- and T regulatory-cell balance, immune responsiveness, and homeostasis. The importance of this biology in relation to immune homeostasis, inflammatory bowel disease, and the rising incidence of autoimmune diseases will be discussed. The detailed description of the human gut microbiota, integrated with evidence-based mechanisms of immune modulation, provides an exciting platform for the identification of next-generation probiotics and related pharmaceutical products.
Collapse
Affiliation(s)
- Denise Kelly
- Rowett Institute of Nutrition & Health, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | |
Collapse
|
41
|
Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med 2012; 4:137rv5. [PMID: 22674555 DOI: 10.1126/scitranslmed.3004183] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The connection between disease and the disruption of homeostatic interactions between the host and its microbiota is now well established. Drug developers and clinicians are starting to rely more heavily on therapies that directly target the microbiota and on the ecology of the microbiota to understand the outcomes of these treatments. The effects of those microbiota-targeted therapies that alter community composition range in scale from eliminating individual strains of a single species (for example, with antibacterial conjugate vaccines) to replacing the entire community with a new intact microbiota (for example, by fecal transplantation). Secondary infections linked to antibiotic use provide a cautionary tale of the unintended consequences of perturbing a microbial species network and highlight the need for new narrow-spectrum antibiotics with rapid companion diagnostics. Insights into microbial ecology will also benefit the development of probiotics, whose therapeutic prospects will depend on rigorous clinical testing. Future probiotics may take the form of a consortium of long-term community residents: "a fecal transplant in a capsule." The efficacy of microbiota-targeted therapies will need to be assessed using new diagnostic tools that measure community function rather than composition, including the temporal response of a microbial community to a defined perturbation such as an antibiotic or probiotic.
Collapse
Affiliation(s)
- Katherine P Lemon
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA 02142, USA.
| | | | | | | |
Collapse
|
42
|
Mariman R, Kremer B, van Erk M, Lagerweij T, Koning F, Nagelkerken L. Gene expression profiling identifies mechanisms of protection to recurrent trinitrobenzene sulfonic acid colitis mediated by probiotics. Inflamm Bowel Dis 2012; 18:1424-33. [PMID: 22162025 DOI: 10.1002/ibd.22849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/08/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Host-microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis model and gain more insight into protective mechanisms. METHODS Moderate chronic inflammation of the colon was induced in BALB/c mice by repetitive intrarectal challenges with TNBS. Administration of probiotics started 2 weeks before colitis induction and was continued throughout colitis development. RESULTS Long-term administration of Lactobacillus plantarum NCIMB8826 or the probiotic mixture VSL#3 reduced intestinal inflammation induced by TNBS, evident from improved colon morphology and less influx of innate (CD11b(+) ) and adaptive (CD4(+) /CD8(+) ) immune cells in the intestinal mucosa and decreased proinflammatory serum cytokines (interferon-gamma [IFN-γ], interleukin [IL]-17, IL-1β, monocyte chemoattractant protein [MCP]-1) in probiotic-treated mice. Genomewide expression analysis of colonic tissues using microarrays revealed differences in expression of genes related to inflammation and immune processes between untreated and probiotic treated mice. Principal component analysis revealed that probiotic treatment resulted in a shift of gene expression profiles toward those of healthy controls. Effects of probiotics on colonic gene expression were most profound during active inflammation, in particular on gene clusters related to mast cells and antimicrobial peptides. The results were substantiated by suppression of chemokine gene expression. CONCLUSIONS Our data are in favor of a model in which probiotics downregulate expression of chemokines in the colon, thereby decreasing influx of inflammatory cells and rendering mice resistant to the induction of colitis.
Collapse
Affiliation(s)
- Rob Mariman
- Department of Metabolic Health Research, TNO, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Wong CCM, Zhang L, Li ZJ, Wu WKK, Ren SX, Chen YC, Ng TB, Cho CH. Protective effects of cathelicidin-encoding Lactococcus lactis in murine ulcerative colitis. J Gastroenterol Hepatol 2012; 27:1205-12. [PMID: 22507188 DOI: 10.1111/j.1440-1746.2012.07158.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Intrarectal administration of mouse cathelin-related antimicrobial peptide (mCRAMP) reduced intestinal inflammation in mice. In the current study, we examined whether mCRAMP-transformed Lactococcus lactis given orally attained similar protective effects. METHOD mCRAMP was produced and secreted from the transformed L. lactis. Murine colitis was induced by ingestion of 3% dextran sulfate sodium (DSS) for 7 days. Eight or 10 log colony forming unit (cfu) L. lactis or the transformed strains with or without nisin induction were given orally as a parallel treatment with DSS. The body weight, fecal microbiota populations, clinical symptoms and histological examinations of colonic tissues were determined. Myeloperoxidase (MPO) activity and malondialdehyde (MDA) level were also evaluated to reflect the degree of inflammation. A prototype anti-inflammatory drug sulfasalazine was used as a reference drug to compare the efficacy and mechanisms of action for ulcerative colitis (UC). RESULT Compared with the control group with colitis, cathelicidin-transformed L. lactis could improve the clinical symptoms, maintain crypt integrity and preserve mucus content (P < 0.01). The number of apoptotic cells, MPO activity and MDA level were also significantly reduced (P < 0.05). The increases of fecal microbiota in colitis animals were markedly prevented (P < 0.001). Unlike mCRAMP-encoding L. lactis, effective doses of sulfasalazine only alleviated the clinical symptoms (P < 0.01) but not the mucosal damage in the colon. CONCLUSION mCRAMP-transformed L. lactis has been shown to produce mCRAMP, effectively preventing murine UC. Oral administration of this biological preparation is better than sulfasalazine for the treatment of UC.
Collapse
Affiliation(s)
- Clover Ching Man Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shimizu M, Iwasaki H, Mase S, Yachie A. Successful treatment of primary sclerosing cholangitis with a steroid and a probiotic. Case Rep Gastroenterol 2012; 6:249-53. [PMID: 22679413 PMCID: PMC3369409 DOI: 10.1159/000338834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a serious disease that not only affects quality of life but can also have a significant effect on patient survival. The treatment for PSC is primarily supportive with the aim of controlling cholestatic symptoms and preventing complications. Ursodeoxycholic acid may induce biochemical improvements in affected patients; however, long-term pediatric studies to determine its possible benefits in young patients are lacking. Thus, the treatment of pediatric PSC remains a significant clinical challenge. We describe a patient with PSC and undetermined colitis who was treated with a combination of a steroid, salazosulfapyridine, and a probiotic. This treatment provided benefits both for PSC and the undetermined colitis. These findings suggest that bacterial flora and gut inflammation are closely associated with the pathogenesis of inflammatory bowel disease-related PSC. Suppression of bowel inflammation and maintenance of bacterial homeostasis may be important for treating PSC.
Collapse
Affiliation(s)
- Masaki Shimizu
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | |
Collapse
|
45
|
Patil MVK, Kandhare AD, Bhise SD. Effect of aqueous extract of Cucumis sativus Linn. fruit in ulcerative colitis in laboratory animals. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60344-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
46
|
Mangold A, Hercher D, Hlavin G, Liepert J, Zimmermann M, Kollmann D, Feichtinger G, Lichtenauer M, Mitterbauer A, Ankersmit HJ. Anti-alpha-Gal antibody titres remain unaffected by the consumption of fermented milk containing Lactobacillus casei in healthy adults. Int J Food Sci Nutr 2011; 63:278-82. [PMID: 21970387 DOI: 10.3109/09637486.2011.622741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alpha-Gal is a glycoconjugate present on cell membranes of non-primate mammals and bacteria, but not in humans, who display anti-Gal antibodies (ABs) in high titres. Probiotics contain bacterial strains which colonize the intestinal tract. In the present study, we investigated whether intake of fermented milk containing Lactobacillus casei (FML) affects anti-Gal AB titres. Serum was drawn from healthy probands (n = 19) for 6 weeks. After the second week, the probands consumed 125 ml of FML per day. Anti-Gal ABs of all isotypes and cytokines were measured. Bacterial cultures were bred from FML and bacteria were stained for alpha-Gal. Concentration of bacteria in FML was manifold higher than in conventional yoghurt (2 × 10(5)/g yoghurt vs. 1.1 × 10(7)/g FML). Both stained highly positive for Alpha-Gal. Alpha-Gal-specific ABs and cytokines remained unaffected by FML intake. Our results indicated that the consumption of FML does not elicit a humoral immune response in healthy adults.
Collapse
Affiliation(s)
- Andreas Mangold
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Claes IJJ, De Keersmaecker SCJ, Vanderleyden J, Lebeer S. Lessons from probiotic-host interaction studies in murine models of experimental colitis. Mol Nutr Food Res 2011; 55:1441-53. [PMID: 21796777 DOI: 10.1002/mnfr.201100139] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/17/2011] [Accepted: 05/11/2011] [Indexed: 12/19/2022]
Abstract
In inflammatory bowel diseases (IBD), it is known that besides genetic and environmental factors (e.g. diet, drugs, stress), the microbiota play an important role in the pathogenesis. Patients with IBD have an altered microbiota (dysbiosis) and therefore, probiotics, defined as 'live micro-organisms that when administered in adequate amounts can confer a health benefit on the host', have been suggested as nutritional supplements to restore these imbalances. The best response on probiotics among the different types of IBD appears to be in the case of ulcerative colitis. Although probiotics show promise in IBD in both clinical and animal studies, further mechanistic studies are necessary to optimize the use of probiotics as supporting therapy in IBD. Murine models of experimental colitis have been used for decades to study this pathology, and these models have been proven useful to search for new therapeutic approaches. The purpose of this review is to summarize probiotic-host interaction studies in murine models of experimental colitis and to evaluate how these models can further help in understanding these complex interactions. Unraveling the molecular mechanisms behind the beneficial effects will assist in better and possibly more efficient probiotic formulations.
Collapse
Affiliation(s)
- Ingmar J J Claes
- Centre of Microbial and Plant Genetics, K.U. Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
48
|
Xue H, Sawyer MB, Wischmeyer PE, Baracos VE. Nutrition modulation of gastrointestinal toxicity related to cancer chemotherapy: from preclinical findings to clinical strategy. JPEN J Parenter Enteral Nutr 2011; 35:74-90. [PMID: 21224434 DOI: 10.1177/0148607110377338] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemotherapy-induced gut toxicity is a major dose-limiting toxicity for many anticancer drugs. Gastrointestinal (GI) complications compromise the efficacy of chemotherapy, promote overall malnutrition, aggravate cancer cachexia, and may contribute to worsened prognosis. The GI tract is an attractive target for nutrition modulation, owing to its direct exposure to the diet, participation in uptake and metabolism of nutrients, high rate of cell turnover, and plasticity to nutrition stimuli. Glutamine, ω-3 polyunsaturated fatty acids, and probiotics/prebiotics are therapeutic factors that potentially modulate GI toxicity related to cancer treatments. Preclinical and clinical evidence are reviewed to critically define plausible benefits of these factors and their potential development into adjuncts to cancer chemotherapy. Mechanisms underlying the action of these nutrients are being unraveled in the laboratory. Optimal strategies to translate these findings into clinical care still remain to be elucidated. Key questions that remain to be answered include the following: which nutrient or combination of nutrients is selected for which patient and chemotherapy regimen? What mechanisms are responsible for modulation, and how are nutrient(s) administered in a clinically optimal manner? Research exploring interactions between different nutrients in GI protection is ongoing and demands further understanding. How nutrition preparations given to chemotherapy-treated patients are formulated in terms of component selection and dose optimization should be carefully studied and justified.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
49
|
Abstract
This review summarizes the probiotic mechanisms of action of Saccharomyces boulardii (S. boulardii) against inflammatory and non-inflammatory diarrheal conditions. S. boulardii is distributed in lyophilized form in many countries and used for the prevention of diarrhea in children and adults, including Clostridium difficile (C. difficile) associated infection. The main mechanisms of action of S. boulardii include inhibition of activities of bacterial pathogenic products, trophic effects on the intestinal mucosa, as well as modification of host signaling pathways involved in inflammatory and non-inflammatory intestinal diseases. S. boulardii inhibits production of pro-inflammatory cytokines by inhibiting main regulators of inflammation, including nuclear factor κB (NF-κB), and mitogen-activated protein kinases (MAP kinases), ERK1/2 and p38, but stimulates production of anti-inflammatory molecules such as peroxisome proliferator-activated receptor-gamma (PPAR-γ). Moreover, S. boulardii suppresses bacterial infection by inhibiting adhesion and/or overgrowth of bacteria, produces a serine protease that cleaves C. difficile toxin A, and stimulates antibody production against this toxin. Furthermore, S. boulardii may interfere with pathogenesis of Inflammatory Bowel Disease (IBD) by acting on T cells and acts in diarrheal conditions by improving the fecal biostructure in patients with diarrhea. These diverse mechanisms exerted by S. boulardii provide molecular clues for its effectiveness in diarrheal diseases and intestinal inflammatory conditions with an inflammatory component.
Collapse
Affiliation(s)
- E Im
- Section of Inflammatory Bowel Disease and Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, United States
| | | |
Collapse
|
50
|
Dahan A, Amidon GL, Zimmermann EM. Drug targeting strategies for the treatment of inflammatory bowel disease: a mechanistic update. Expert Rev Clin Immunol 2010; 6:543-50. [PMID: 20594127 DOI: 10.1586/eci.10.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic management of inflammatory bowel disease (IBD) represents the perfect scenario for drug targeting to the site(s) of action. While existing formulation-based targeting strategies include rectal dosage forms and oral systems that target the colon by pH-, time-, microflora- and pressure-triggered drug release, novel approaches for site-specific delivery in IBD therapy will target the inflamed intestine per se rather than intestinal region. The purpose of this article is to present a mechanistic update on the strategies employed to achieve minimal systemic exposure accompanied by maximal drug levels in the inflamed intestinal tissue. The introduction of biological agents, micro/nanoparticulate carriers including liposomes, transgenic bacteria, and gene therapy opportunities are discussed, as well as the challenges remaining to be achieved in the targeted treatment of IBD.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | |
Collapse
|