1
|
Camino-Mera A, Pardo-Seco J, Bello X, Argiz L, Boyle RJ, Custovic A, Herberg J, Kaforou M, Arasi S, Fiocchi A, Pecora V, Barni S, Mori F, Bracamonte T, Echeverria L, O'Valle-Aísa V, Hernández-Martínez NL, Carballeira I, García E, Garcia-Magan C, Moure-González JD, Gonzalez-Delgado P, Garriga-Baraut T, Infante S, Zambrano-Ibarra G, Tomás-Pérez M, Machinena A, Pascal M, Prieto A, Vázquez-Cortes S, Fernández-Rivas M, Vila L, Alsina L, Torres MJ, Mangone G, Quirce S, Martinón-Torres F, Vázquez-Ortiz M, Gómez-Carballa A, Salas A. Whole Exome Sequencing Identifies Epithelial and Immune Dysfunction-Related Biomarkers in Food Protein-Induced Enterocolitis Syndrome. Clin Exp Allergy 2024; 54:919-929. [PMID: 39348862 DOI: 10.1111/cea.14564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/01/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Food protein-induced enterocolitis syndrome (FPIES) is a food allergy primarily affecting infants, often leading to vomiting and shock. Due to its poorly understood pathophysiology and lack of specific biomarkers, diagnosis is frequently delayed. Understanding FPIES genetics can shed light on disease susceptibility and pathophysiology-key to developing diagnostic, prognostic, preventive and therapeutic strategies. Using a well-characterised cohort of patients we explored the potential genome-wide susceptibility factors underlying FPIES. METHODS Blood samples from 41 patients with oral food challenge-proven FPIES were collected for a comprehensive whole exome sequencing association study. RESULTS Notable genetic variants, including rs872786 (RBM8A), rs2241880 (ATG16L1) and rs2289477 (ATG16L1), were identified as significant findings in FPIES. A weighted SKAT model identified six other associated genes including DGKZ and SIRPA. DGKZ induces TGF-β signalling, crucial for epithelial barrier integrity and IgA production; RBM8A is associated with thrombocytopenia absent radius syndrome, frequently associated with cow's milk allergy; SIRPA is associated with increased neutrophils/monocytes in inflamed tissues as often observed in FPIES; ATG16L1 is associated with inflammatory bowel disease. Coexpression correlation analysis revealed a functional correlation between RBM8A and filaggrin gene (FLG) in stomach and intestine tissue, with filaggrin being a known key pathogenic and risk factor for IgE-mediated food allergy. A transcriptome-wide association study suggested genetic variability in patients impacted gene expression of RBM8A (stomach and pancreas) and ATG16L1 (transverse colon). CONCLUSIONS This study represents the first case-control exome association study of FPIES patients and marks a crucial step towards unravelling genetic susceptibility factors underpinning the syndrome. Our findings highlight potential factors and pathways contributing to FPIES, including epithelial barrier dysfunction and immune dysregulation. While these results are novel, they are preliminary and need further validation in a second cohort of patients.
Collapse
Affiliation(s)
- Alba Camino-Mera
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Laura Argiz
- Allergy Section, Clinica Universidad de Navarra, Madrid, Spain
| | - Robert J Boyle
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Adnan Custovic
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jethro Herberg
- Department of Infectious Disease, Imperial College London, London, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Stefania Arasi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valentina Pecora
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Teresa Bracamonte
- Paediatric Allergy Section, Severo Ochoa University Hospital, Madrid, Spain
| | - Luis Echeverria
- Paediatric Allergy Section, Severo Ochoa University Hospital, Madrid, Spain
| | - Virginia O'Valle-Aísa
- Clinical Analysis and Clinical Biochemistry Service, Severo Ochoa University Hospital, Madrid, Spain
| | | | - Iria Carballeira
- Paediatric Allergy Section, Arquitecto Marcide Hospital, Ferrol, A Coruña in Galicia, Spain
| | - Emilio García
- Paediatric Allergy Section, Arquitecto Marcide Hospital, Ferrol, A Coruña in Galicia, Spain
| | - Carlos Garcia-Magan
- Paediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Coruña, Galicia, Spain
| | | | | | - Teresa Garriga-Baraut
- Paediatric Allergy Section, Vall D'Hebron University Hospital, Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Sonsoles Infante
- Pediatric Allergy Unit, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Gabriela Zambrano-Ibarra
- Pediatric Allergy Unit, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Margarita Tomás-Pérez
- Pediatric Allergy Unit, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Adrianna Machinena
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona, Barcelona, Spain
- IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Ana Prieto
- Paediatric Allergy Section, General University Hospital, Malaga, Spain
| | - Sonia Vázquez-Cortes
- Allergy Department, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Montserrat Fernández-Rivas
- Allergy Department, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Leticia Vila
- Paediatric Allergy Section, Teresa Herrera Hospital, Coruna, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu and Universitat de Barcelona, Barcelona, Spain
| | - María José Torres
- Allergy Department, General University Hospital, Málaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Universidad de Málaga (UMA), Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Giusi Mangone
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Marta Vázquez-Ortiz
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| |
Collapse
|
2
|
Bandyopadhyay C, Schecterson L, Gumbiner BM. E-cadherin activating antibodies limit barrier dysfunction and inflammation in mouse inflammatory bowel disease. Tissue Barriers 2021; 9:1940741. [PMID: 34402758 PMCID: PMC8794503 DOI: 10.1080/21688370.2021.1940741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
Deficits in gastrointestinal (GI) paracellular permeability has been implicated in etiology of Inflammatory Bowel Disease (IBD), and E-cadherin, a key component of the epithelial junctional complex, has been implicated in both barrier function and IBD. We have previously described antibodies against E-cadherin that activate cell adhesion, and in this study, we show that they increase transepithelial electrical resistance in epithelial cell monolayers in vitro. We therefore tested the hypothesis that adhesion activating E-cadherin mAbs will enhance epithelial barrier function in vivo and limit progression of inflammation in IBD. Activating mAbs to mouse E-cadherin were tested in different mouse models of IBD including the IL10-/- and adoptive T cell transfer models of colitis. Previously established histological and biomarker measures of inflammation were evaluated to monitor disease progression. Mouse E-cadherin activating mAb treatment reduced total colitis score, individual histological measures of inflammation, and other hallmarks of inflammation compared to control treatment. Activating mAbs also reduced the fecal accumulation lipocalin2 and albumin content, consistent with enhanced barrier function. Therefore, E-cadherin activation could be a potential strategy for limiting inflammation in UC.
Collapse
Affiliation(s)
- Chirosree Bandyopadhyay
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States
| | - Barry M Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, United States
- Department of Biochemistry, University of Washington, Seattle, United States
| |
Collapse
|
3
|
Deng Q, Shao Y, Wang Q, Li J, Li Y, Ding X, Huang P, Yin J, Yang H, Yin Y. Effects and interaction of dietary electrolyte balance and citric acid on the intestinal function of weaned piglets. J Anim Sci 2020; 98:skaa106. [PMID: 32253427 PMCID: PMC7199884 DOI: 10.1093/jas/skaa106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022] Open
Abstract
Fifty-six piglets (6.26 ± 0.64 kg BW) were weaned at 21 d and randomly assigned to one of the eight dietary treatments with seven replicate pens for a 14-d experimental period. The eight experimental diets were prepared via a 2 × 4 factorial arrangement with citric acid (CA; 0% and 0.3%) and dietary electrolyte balance (dEB, Na + K - Cl mEq/kg of the diet; -50, 100, 250, and 400 mEq/kg). Varying dEB values were obtained by altering the contents of calcium chloride and sodium bicarbonate. An interaction (P < 0.05) between dEB and CA in diarrhea score and the number of goblet cell in jejunum were observed. Ileum pH significantly decreased in weaned piglets fed 250 mEq/kg dEB diet compared with those fed -50 and 400 mEq/kg dEB diets (P < 0.05). Supplementation of 0.3% CA decreased the number of goblet cell in the ileal crypt (P < 0.05) and the relative mRNA expression of cystic fibrosis transmembrane conductance regulator, tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1β (IL-1β), interleukin-10 (IL-10), zona occludens-1, and Claudin-1 (P < 0.05). Increasing dEB values increased the number of goblet cells in the jejunal crypt (P < 0.05). A 250-mEq/kg dEB diet decreased the relative mRNA expression of IFN-γ, IL-1β, and IL-10 (P < 0.05) than 100-mEq/kg dEB diet. The interaction between dEB and CA on the relative abundances of Cyanobacteria and Saccharibacteria was observed (P < 0.05). Supplementation of 0.3% CA increased relative abundances of and Streptococcus hyointestinalis. Piglets fed 250-mEq/kg diet increased relative abundances of Firmicutes and Lactobacillus rennini, and decreased the relative abundance of Proteobacteria, Veillonella, Actinobacillus minor, and Escherichia-Shigella.In conclusion, supplementation of 0.3% CA resulted in differential expression of inflammatory cytokines, ion transporters, and tight junction proteins, and changes in the microbial community composition. A 250-mEq/kg dEB diet reduced gastrointestinal pH and promoted the enrichment of beneficial microbes in the gut microbiota, thereby suppressing inflammation and harmful bacteria. However, the addition of CA to diets with different dEB values did not promote intestinal function in weaned piglets.
Collapse
Affiliation(s)
- Qingqing Deng
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qiye Wang
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Xueqin Ding
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Jia Yin
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
4
|
Rios-Arce ND, Collins FL, Schepper JD, Steury MD, Raehtz S, Mallin H, Schoenherr DT, Parameswaran N, McCabe LR. Epithelial Barrier Function in Gut-Bone Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:151-183. [PMID: 29101655 DOI: 10.1007/978-3-319-66653-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as cytokines, diet, and diseases, can affect this barrier. These factors have been shown to increase intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory bowel disease. Our lab and others have also shown that barrier disruption can have systemic effects including bone loss. In this chapter, we will discuss the current literature to understand the link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis, and metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current suggested mechanism between intestinal barrier and bone.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Heather Mallin
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Danny T Schoenherr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Narayanan Parameswaran
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA. .,Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Laura R McCabe
- Department of Physiology and Department of Radiology, Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J Allergy Clin Immunol 2017; 141:951-963.e8. [PMID: 29074456 DOI: 10.1016/j.jaci.2017.08.039] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/19/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is characterized by mucosal inflammation, driven by activated immune cells. Mast cells and TH2 cells might decrease epithelial barrier integrity in AR, maintaining a leaky epithelial barrier. OBJECTIVE We sought to investigate the role of histamine and TH2 cells in driving epithelial barrier dysfunction in AR. METHODS Air-liquid interface cultures of primary nasal epithelial cells were used to measure transepithelial electrical resistance, paracellular flux of fluorescein isothiocyanate-dextran 4 kDa, and mRNA expression of tight junctions. Nasal secretions were collected from healthy control subjects, AR patients, and idiopathic rhinitis patients and were tested in vitro. In addition, the effect of activated TH1 and TH2 cells, mast cells, and neurons was tested in vitro. The effect of IL-4, IL-13, IFN-γ, and TNF-α on mucosal permeability was tested in vivo. RESULTS Histamine as well as nasal secretions of AR but not idiopathic rhinitis patients rapidly decreased epithelial barrier integrity in vitro. Pretreatment with histamine receptor-1 antagonist, azelastine prevented the early effect of nasal secretions of AR patients on epithelial integrity. Supernatant of activated TH1 and TH2 cells impaired epithelial integrity, while treatment with anti-TNF-α or anti-IL-4Rα monoclonal antibodies restored the TH1- and TH2-induced epithelial barrier dysfunction, respectively. IL-4, IFN-γ, and TNF-α enhanced mucosal permeability in mice. Antagonizing IL-4 prevented mucosal barrier disruption and tight junction downregulation in a mouse model of house dust mite allergic airway inflammation. CONCLUSIONS Our data indicate a key role for allergic inflammatory mediators in modulating nasal epithelial barrier integrity in the pathophysiology in AR.
Collapse
|
6
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel diseases (IBDs) are idiopathic chronic relapsing disorders of the gastrointestinal tract of unknown origin, characterized by heterogeneity and a multifactorial nature of their pathogenesis. Despite the recent improved options for treatment, patients with IBD still have an impaired quality of life, and require hospitalization and surgery. This review examines the contribution of animal models to the understanding and treatment of IBD. RECENT FINDINGS During the last decades, a large number of experimental models of intestinal inflammation have been developed. These models have proved to be helpful tools for obtaining new insights in the pathogenesis of the disease and for the preclinical evaluation of new therapies. However, even with the development of many new animal models in recent years, there are still limitations in the study of IBD because of lack of suitable animal models to cover all the requirements of basic research and preclinical studies. SUMMARY There is a need for a better interpretation of the data we obtain from the study of IBD animal models, in order to better understand the underlying pathogenetic mechanisms and improve the quality of the preclinical studies, and to develop more appropriate models to cover the research requirements.
Collapse
|
8
|
Steelant B, Farré R, Wawrzyniak P, Belmans J, Dekimpe E, Vanheel H, Van Gerven L, Kortekaas Krohn I, Bullens DMA, Ceuppens JL, Akdis CA, Boeckxstaens G, Seys SF, Hellings PW. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol 2016; 137:1043-1053.e5. [PMID: 26846377 DOI: 10.1016/j.jaci.2015.10.050] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tight junction (TJ) defects have recently been associated with asthma and chronic rhinosinusitis. The expression, function, and regulation of nasal epithelial TJs remain unknown in patients with allergic rhinitis (AR). OBJECTIVE We investigated the expression, function, and regulation of TJs in the nasal epithelium of patients with house dust mite (HDM)-induced AR and in an HDM-induced murine model of allergic airway disease. METHODS Air-liquid interface cultures of primary nasal epithelial cells of control subjects and patients with HDM-induced AR were used for measuring transepithelial resistance and passage to fluorescein isothiocyanate-dextran 4 kDa (FD4). Ex vivo transtissue resistance and FD4 permeability of nasal mucosal explants were measured. TJ expression was evaluated by using real-time quantitative PCR and immunofluorescence. In addition, the effects of IL-4, IFN-γ, and fluticasone propionate (FP) on nasal epithelial cells were investigated in vitro. An HDM murine model was used to study the effects of allergic inflammation and FP treatment on transmucosal passage of FD4 in vivo. RESULTS A decreased resistance in vitro and ex vivo was found in patients with HDM-induced AR, with increased FD4 permeability and reduced occludin and zonula occludens-1 expression. AR symptoms correlated inversely with resistance in patients with HDM-induced AR. In vitro IL-4 decreased transepithelial resistance and increased FD4 permeability, whereas IFN-γ had no effect. FP prevented IL-4-induced barrier dysfunction in vitro. In an HDM murine model FP prevented the allergen-induced increased mucosal permeability. CONCLUSION We found impaired nasal epithelial barrier function in patients with HDM-induced AR, with lower occludin and zonula occludens-1 expression. IL-4 disrupted epithelial integrity in vitro, and FP restored barrier function. Better understanding of nasal barrier regulation might lead to a better understanding and treatment of AR.
Collapse
Affiliation(s)
- Brecht Steelant
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research in Gastro Intestinal Disorders, KU Leuven, Leuven, Belgium
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jochen Belmans
- Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Emily Dekimpe
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Vanheel
- Translational Research in Gastro Intestinal Disorders, KU Leuven, Leuven, Belgium
| | - Laura Van Gerven
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Inge Kortekaas Krohn
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Jan L Ceuppens
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Guy Boeckxstaens
- Translational Research in Gastro Intestinal Disorders, KU Leuven, Leuven, Belgium
| | - Sven F Seys
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Peter W Hellings
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, University Hospitals Ghent, Ghent, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Wang H, Dong J, Shi P, Liu J, Zuo L, Li Y, Gong J, Gu L, Zhao J, Zhang L, Zhang W, Zhu W, Li N, Li J. Anti-mouse CD52 monoclonal antibody ameliorates intestinal epithelial barrier function in interleukin-10 knockout mice with spontaneous chronic colitis. Immunology 2015; 144:254-62. [PMID: 25087772 DOI: 10.1111/imm.12366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 01/01/2023] Open
Abstract
Intestinal inflammation causes tight junction changes and death of epithelial cells, and plays an important role in the development of Crohn's disease (CD). CD52 monoclonal antibody (CD52 mAb) directly targets the cell surface CD52 and is effective in depleting mature lymphocytes by cytolytic effects in vivo, leading to long-lasting changes in adaptive immunity. The aim of this study was to investigate the therapeutic effect of CD52 mAb on epithelial barrier function in animal models of IBD. Interleukin-10 knockout mice (IL-10(-/-) ) of 16 weeks with established colitis were treated with CD52 mAb once a week for 2 weeks. Severity of colitis, CD4(+) lymphocytes and cytokines in the lamina propria, epithelial expression of tight junction proteins, morphology of tight junctions, tumour necrosis factor-α (TNF-α)/TNF receptor 2 (TNFR2) mRNA expression, myosin light chain kinase (MLCK) expression and activity, as well as epithelial apoptosis in proximal colon were measured at the end of the experiment. CD52 mAb treatment effectively attenuated colitis associated with decreased lamina propria CD4(+) lymphocytes and interferon-γ/IL-17 responses in colonic mucosa in IL-10(-/-) mice. After CD52 mAb treatment, attenuation of colonic permeability, increased epithelial expression and correct localization of tight junction proteins (occludin and zona occludens protein-1), as well as ameliorated tight junction morphology were observed in IL-10(-/-) mice. CD52 mAb treatment also effectively suppressed the epithelial apoptosis, mucosa TNF-α mRNA expression, epithelial expression of long MLCK, TNFR2 and phosphorylation of MLC. Our results indicated that anti-CD52 therapy may inhibit TNF-α/TNFR2-mediated epithelial apoptosis and MLCK-dependent tight junction permeability by depleting activated T cells in the gut mucosa.
Collapse
Affiliation(s)
- Honggang Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Intestinal mucosal barrier function is the capacity of the intestine to provide adequate containment of luminal microorganisms and molecules while preserving the ability to absorb nutrients. The central element is the epithelial layer, which physically separates the lumen and the internal milieu and is in charge of vectorial transport of ions, nutrients, and other substances. The secretion of mucus-forming mucins, sIgA, and antimicrobial peptides reinforces the mucosal barrier on the extraepithelial side, while a variety of immune cells contributes to mucosal defense in the inner side. Thus, the mucosal barrier is of physical, biochemical, and immune nature. In addition, the microbiota may be viewed as part of this system because of the mutual influence occurring between the host and the luminal microorganisms. Alteration of the mucosal barrier function with accompanying increased permeability and/or bacterial translocation has been linked with a variety of conditions, including inflammatory bowel disease. Genetic and environmental factors may converge to evoke a defective function of the barrier, which in turn may lead to overt inflammation of the intestine as a result of an exacerbated immune reaction toward the microbiota. According to this hypothesis, inflammatory bowel disease may be both precipitated and treated by either stimulation or downregulation of the different elements of the mucosal barrier, with the outcome depending on timing, the cell type affected, and other factors. In this review, we cover briefly the elements of the barrier and their involvement in functional defects and the resulting phenotype.
Collapse
|
11
|
Konstantinou GN, Bencharitiwong R, Grishin A, Caubet JC, Bardina L, Sicherer SH, Sampson HA, Nowak-Węgrzyn A. The role of casein-specific IgA and TGF-β in children with food protein-induced enterocolitis syndrome to milk. Pediatr Allergy Immunol 2014; 25:651-6. [PMID: 25283440 PMCID: PMC4349359 DOI: 10.1111/pai.12288] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Food protein-induced enterocolitis syndrome (FPIES) is a gastrointestinal hypersensitivity disorder with a poorly understood pathophysiology and no biomarkers to aid in diagnosis. OBJECTIVE To investigate humoral and cellular responses to casein in children with milk-FPIES, including the role of casein-specific (cs) IgA and T-cell mediated TGF-β responses. PATIENTS AND METHODS Thirty-one children previously diagnosed with milk-FPIES were challenged with milk. Twelve age-matched children with FPIES to other foods and 6 milk-tolerant children without a history of FPIES were used as controls. Casein-specific IgE, IgG, IgG4, and IgA were measured in serum and TGF-β levels in supernatants of casein-stimulated PBMCs. RESULT Twenty-six children with milk-FPIES reacted (active milk-FPIES) and five tolerated milk (milk-FPIES resolved) during food challenge. All of them had significantly lower levels of csIgG, csIgG4, and csIgA than control children (p-value<0.001). There were no TGF-β responses in supernatants of active milk-FPIES children. CONCLUSION Children with milk-FPIES have low levels of csIgG, csIgG4, and csIgA. In particular, children with active FPIES to cow's milk have deficient T-cell mediated TGF-β responses to casein, rendering TGF-β a promising biomarker in identifying children who are likely to experience FPIES reactions to this allergen. Prospective studies are needed to validate these findings, elucidate their role in FPIES pathophysiology, and establish the diagnostic utility of TGF-β in milk-induced FPIES.
Collapse
Affiliation(s)
- George N Konstantinou
- Division of Allergy & Immunology and The Jaffe Food Allergy Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Waluga M, Hartleb M, Boryczka G, Kukla M, Żwirska-Korczala K. Serum adipokines in inflammatory bowel disease. World J Gastroenterol 2014; 20:6912-6917. [PMID: 24944482 PMCID: PMC4051931 DOI: 10.3748/wjg.v20.i22.6912] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/18/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate serum adipokine levels in inflammatory bowel disease (IBD) patients before treatment and after achieving clinical remission.
METHODS: Serum concentrations of six adipokines (tissue growth factor-β1, adiponectin, leptin, chemerin, resistin, and visfatin) were studied in 40 subjects with active IBD [24 subjects with Crohn’s disease (CD) and in 16 subjects with ulcerative colitis (UC)] before and after three months of therapy with corticosteroids and/or azathioprine. Clinical diagnoses were based on ileocolonoscopy, computed tomography or magnetic resonance enterography and histological examination of mucosal biopsies sampled during endoscopy. Serum levels of adipokines were assessed by an indirect enzyme-linked immunosorbent assay. The control group was comprised of 16 age- and sex-matched healthy volunteers.
RESULTS: Baseline leptin concentrations were significantly decreased in both types of IBD compared to controls (8.0 ± 9.1 in CD and 8.6 ± 6.3 in UC vs 16.5 ± 10.1 ng/mL in controls; P < 0.05), and significantly increased after treatment only in subjects with CD (14.9 ± 15.1 ng/mL; P < 0.05). Baseline serum resistin concentrations were significantly higher in CD (19.3 ± 12.5 ng/mL; P < 0.05) and UC subjects (23.2 ± 11.0 ng/mL; P < 0.05) than in healthy controls (10.7 ± 1.1 ng/mL). Treatment induced a decrease in the serum resistin concentration only in UC subjects (14.5 ± 4.0 ng/mL; P < 0.05). Baseline serum concentrations of visfatin were significantly higher in subjects with CD (23.2 ± 3.2 ng/mL; P < 0.05) and UC (18.8 ± 5.3 ng/mL; P < 0.05) than in healthy controls (14.1 ± 5.3 ng/mL). Treatment induced a decrease in the serum visfatin concentrations only in CD subjects (20.4 ± 4.8 ng/mL; P < 0.05). Serum levels of adiponectin, chemerin and tissue growth factor-β1 did not differ between CD and UC subjects compared to healthy controls and also were not altered by anti-inflammatory therapy. Clinical indices of IBD activity did not correlate with adipokine levels.
CONCLUSION: IBD modulates serum adipokine levels by increasing resistin and visfatin release and suppressing leptin production.
Collapse
|
13
|
Kominsky DJ, Campbell EL, Ehrentraut SF, Wilson KE, Kelly CJ, Glover LE, Collins CB, Bayless AJ, Saeedi B, Dobrinskikh E, Bowers BE, MacManus CF, Müller W, Colgan SP, Bruder D. IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia. THE JOURNAL OF IMMUNOLOGY 2013; 192:1267-76. [PMID: 24367025 DOI: 10.4049/jimmunol.1301757] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytokines secreted at sites of inflammation impact the onset, progression, and resolution of inflammation. In this article, we investigated potential proresolving mechanisms of IFN-γ in models of inflammatory bowel disease. Guided by initial microarray analysis, in vitro studies revealed that IFN-γ selectively induced the expression of IL-10R1 on intestinal epithelia. Further analysis revealed that IL-10R1 was expressed predominantly on the apical membrane of polarized epithelial cells. Receptor activation functionally induced canonical IL-10 target gene expression in epithelia, concomitant with enhanced barrier restitution. Furthermore, knockdown of IL-10R1 in intestinal epithelial cells results in impaired barrier function in vitro. Colonic tissue isolated from murine colitis revealed that levels of IL-10R1 and suppressor of cytokine signaling 3 were increased in the epithelium and coincided with increased tissue IFN-γ and IL-10 cytokines. In parallel, studies showed that treatment of mice with rIFN-γ was sufficient to drive expression of IL-10R1 in the colonic epithelium. Studies of dextran sodium sulfate colitis in intestinal epithelial-specific IL-10R1-null mice revealed a remarkable increase in disease susceptibility associated with increased intestinal permeability. Together, these results provide novel insight into the crucial and underappreciated role of epithelial IL-10 signaling in the maintenance and restitution of epithelial barrier and of the temporal regulation of these pathways by IFN-γ.
Collapse
Affiliation(s)
- Douglas J Kominsky
- Department of Anesthesiology and Perioperative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zuhl MN, Lanphere KR, Kravitz L, Mermier CM, Schneider S, Dokladny K, Moseley PL. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol (1985) 2013; 116:183-91. [PMID: 24285149 DOI: 10.1152/japplphysiol.00646.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objectives of this study are threefold: 1) to assess whether 7 days of oral glutamine (GLN) supplementation reduces exercise-induced intestinal permeability; 2) whether supplementation prevents the proinflammatory response; and 3) whether these changes are associated with upregulation of the heat shock response. On separate occasions, eight human subjects participated in baseline testing and in GLN and placebo (PLA) supplementation trials, followed by a 60-min treadmill run. Intestinal permeability was higher in the PLA trial compared with baseline and GLN trials (0.0604 ± 0.047 vs. 0.0218 ± 0.008 and 0.0272 ± 0.007, respectively; P < 0.05). IκBα expression in peripheral blood mononuclear cells was higher 240 min after exercise in the GLN trial compared with the PLA trial (1.411 ± 0.523 vs. 0.9839 ± 0.343, respectively; P < 0.05). In vitro using the intestinal epithelial cell line Caco-2, we measured effects of GLN supplementation (0, 4, and 6 mM) on heat-induced (37° or 41.8°C) heat shock protein 70 (HSP70), heat shock factor-1 (HSF-1), and occludin expression. HSF-1 and HSP70 levels increased in 6 mM supplementation at 41°C compared with 0 mM at 41°C (1.785 ± 0.495 vs. 0.6681 ± 0.290, and 1.973 ± 0.325 vs. 1.133 ± 0.129, respectively; P < 0.05). Occludin levels increased after 4 mM supplementation at 41°C and 6 mM at 41°C compared with 0 mM at 41°C (1.236 ± 0.219 and 1.849 ± 0.564 vs. 0.7434 ± 0.027, respectively; P < 0.001). GLN supplementation prevented exercise-induced permeability, possibly through HSF-1 activation.
Collapse
Affiliation(s)
- Micah N Zuhl
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, New Mexico
| | | | | | | | | | | | | |
Collapse
|
15
|
Su L, Nalle SC, Shen L, Turner ES, Singh G, Breskin LA, Khramtsova EA, Khramtsova G, Tsai PY, Fu YX, Abraham C, Turner JR. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 2013; 145:407-15. [PMID: 23619146 PMCID: PMC3722284 DOI: 10.1053/j.gastro.2013.04.011] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Tight junction dysregulation and epithelial damage contribute to barrier loss in patients with inflammatory bowel disease. However, the mechanisms that regulate these processes and their relative contributions to disease pathogenesis are not completely understood. We investigated these processes using colitis models in mice. METHODS We induced colitis by adoptive transfer of CD4(+)CD45RB(hi) cells or administration of dextran sulfate sodium to mice, including those deficient in tumor necrosis factor receptor (TNFR) 1, TNFR2, or the long isoform of myosin light chain kinase (MLCK). Intestinal tissues and isolated epithelial cells were analyzed by immunoblot, immunofluorescence, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction assays. RESULTS Induction of immune-mediated colitis by CD4(+)CD45RB(hi) adoptive transfer increased intestinal permeability, epithelial expression of claudin-2, the long isoform of MLCK, and TNFR2 (but not TNFR1) and phosphorylation of the myosin II light chain. Long MLCK upregulation, myosin II light chain phosphorylation, barrier loss, and weight loss were attenuated in TNFR2(-/-) , but not TNFR1(-/-) , recipients of wild-type CD4(+)CD45RB(hi) cells. Similarly, long MLCK(-/-) mice had limited increases in myosin II light chain phosphorylation, claudin-2 expression, and intestinal permeability and delayed onset of adoptive transfer-induced colitis. However, coincident with onset of epithelial apoptosis, long MLCK(-/-) mice ultimately developed colitis. This indicates that disease progresses via apoptosis in the absence of MLCK-dependent tight junction regulation. In support of this conclusion, long MLCK(-/-) mice were not protected from epithelial apoptosis-mediated, damage-dependent dextran sulfate sodium colitis. CONCLUSIONS In immune-mediated inflammatory bowel disease models, TNFR2 signaling increases long MLCK expression, resulting in tight junction dysregulation, barrier loss, and induction of colitis. At advanced stages, colitis progresses by apoptosis and mucosal damage that result in tight junction- and MLCK-independent barrier loss. Therefore, barrier loss in immune-mediated colitis occurs via two temporally and morphologically distinct mechanisms. Differential targeting of these mechanisms can lead to improved inflammatory bowel disease therapies.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Apoptosis/physiology
- Claudin-2/metabolism
- Colitis/immunology
- Colitis/metabolism
- Colitis/physiopathology
- Dextran Sulfate
- Disease Models, Animal
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Epithelial Cells/physiology
- Inflammatory Bowel Diseases
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/physiopathology
- Mice
- Mice, Inbred C57BL
- Myosin Light Chains/metabolism
- Myosin Type II/metabolism
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/physiology
- Permeability
- Phosphorylation
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Signal Transduction
- Tight Junctions/metabolism
- Tight Junctions/physiology
- Up-Regulation
- Weight Loss
Collapse
Affiliation(s)
- Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Sam C. Nalle
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Le Shen
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Emily S. Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Gurminder Singh
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Lydia A. Breskin
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | | | - Galina Khramtsova
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Pei-Yun Tsai
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Yang-Xin Fu
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Clara Abraham
- Department of Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Jerrold R. Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Abstract
BACKGROUND Bicarbonate loss into the lumen occurs during intestinal inflammation in different species. However, candidate pathways like CFTR or DRA are inhibited in the inflamed gut. This study addressed the question whether and how inflammation-associated increased intestinal permeability may result in epithelial HCO(3)(-) loss. METHODS Murine proximal colon was studied because it does not express functional DRA but is inflamed in the tumor necrosis factor α overexpressing mouse model (TNF(ΔARE)). Luminal alkalization, (3)H-mannitol fluxes, impedance spectroscopy, and dilution potentials were measured in Ussing chambers, whereas expression and localization of tight junction-associated proteins were analyzed by Western blots and immunohistochemistry. RESULTS Luminal alkalization rates and (3)H-mannitol fluxes were increased in TNF(+/ΔARE) proximal colon, whereas forskolin-stimulated I(sc) was not altered. Epithelial resistance was reduced, but subepithelial resistance increased. The epithelial lining was intact, and enterocyte apoptosis rate was not increased despite massively increased Th1 cytokine levels and lymphoplasmacellular infiltration. Measurement of dilution potentials suggested a loss of cation selectivity with increased anion permeability. Western analysis revealed a downregulation of occludin expression and an upregulation of both claudin-2 and claudin-5, with no change in ZO-1, E-cadherin, claudin-4, and claudin-8. Immunohistochemistry suggested correct occludin localization but reduced tight junction density in TNF(+/ΔARE) surface epithelium. CONCLUSIONS Inflammation during TNF-α overexpression leads to increased epithelial permeability in murine proximal colon, decreased tight junctional cation selectivity, and increased HCO(3)(-) loss into the lumen. Inflammation-associated colonic HCO(3)(-) loss may occur through leaky tight junctions rather than through HCO(3)(-) secreting ion transporters.
Collapse
|
17
|
Batra A, Heimesaat MM, Bereswill S, Fischer A, Glauben R, Kunkel D, Scheffold A, Erben U, Kühl A, Loddenkemper C, Lehr HA, Schumann M, Schulzke JD, Zeitz M, Siegmund B. Mesenteric fat - control site for bacterial translocation in colitis? Mucosal Immunol 2012; 5:580-91. [PMID: 22569302 DOI: 10.1038/mi.2012.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Crohn's disease bacteria could be detected in the adjacent mesenteric fat characterized by hypertrophy of unknown function. This study aimed to define effector responses of this compartment induced by bacterial translocation during intestinal inflammation. Dextran sulfate sodium-induced colitis served as a model of intestinal inflammation. Translocation of peptides and bacteria into mesenteric fat was evaluated. Innate functions of mesenteric fat and epithelium were characterized at whole tissue, cellular, and effector molecule levels. Orally applied peptides translocated in healthy wild-type (WT) mice. Bacterial translocation was not detected in healthy and acute but increased in chronic colitis. Mesenteric fat from colitic mice released elevated levels of cytokines and was infiltrated by immune cells. In MyD88(-/-) mice bacterial translocation occurred in health and increased in colitis. The exaggerated cytokine production in mesenteric fat accompanying colonic inflammation in WT mice was less distinct in MyD88(-/-) mice. In vitro studies revealed that fat not only increases cytokine production following contact with bacterial products, but also that preadipocytes are potent phagocytes. Colonic inflammation is accompanied by massive cytokine production and immune cell infiltration in adjacent adipose tissue. These effects can be considered as protective mechanisms of the mesenteric fat in the defense of bacterial translocation.
Collapse
Affiliation(s)
- A Batra
- Medical department I, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
CCR7 deficiency causes diarrhea associated with altered ion transport in colonocytes in the absence of overt colitis. Mucosal Immunol 2012; 5:377-87. [PMID: 22395421 DOI: 10.1038/mi.2012.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chemokine receptor CCR7 is a central regulator in the maintenance of cellular homeostasis of mucosal tissues. CCR7⁻/⁻ mice develop autoimmune gastritis and exocrinopathy accompanied by the formation of mucosal tertiary lymphoid follicles. Here we found that CCR7-deficient mice frequently suffered from chronic diarrhea linked with increased gastrointestinal motility and the development of severe anorectal prolapse. Enhanced formation of intestinal lymphoid follicles was associated with an elevated proportion of activated colonic T cells and increased production of the cytokine interleukin (IL)-1β. To uncover the pathomechanisms of diarrhea in CCR7⁻/⁻ mice, colonic epithelial barrier and ion channel activities were analyzed in Ussing chambers. Although overt acute colitis was absent, CCR7 deficiency resulted in reduced electrogenic sodium absorption and colonic chloride secretion. As it is known that IL-1β regulates epithelial sodium channel (ENaC) activity, these data imply a causal link between CCR7 expression, IL-1β level, and Na⁺ malabsorption owing to altered ENaC expression and diarrhea.
Collapse
|