1
|
Lin W, Peng L, Li H, Xiao T, Wang J, Wang N, Zhang X, Zhang H. Antimony(V) behavior during the Fe(II)-induced transformation of Sb(V)-bearing natural multicomponent secondary iron mineral under acidic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169592. [PMID: 38154637 DOI: 10.1016/j.scitotenv.2023.169592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Fe(II)-induced phase transformations of secondary iron minerals have attracted considerable attention due to their influence on antimony (Sb) mobility. However, Fe(II)-induced natural multicomponent secondary iron mineral (nmSIM) transformations and the corresponding repartitioning of Sb on nmSIM under acidic conditions upon Fe(II) exposure have not been systematically examined. Herein, we investigated the effect of Fe(II) on nmSIM mineralogy and Sb mobility in Sb(V)-bearing nmSIM at pH 3.8 and 5.6 at various Fe(II) concentrations over 15 d. The Sb(V)-bearing nmSIM phase transformation occurred under both strongly and weakly acidic conditions without Fe(II) exposure, while the presence of Fe(II) significantly intensified the transformation, and substantial amounts of intermediary minerals, including jarosite, ferrihydrite, lepidocrocite and fougerite, formed during the initial reaction stage, especially at pH 5.6. X-ray diffraction (XRD) analyses confirmed that goethite and hematite were the primary final-stage transformation products of Sb(V)-bearing nmSIM, regardless of Fe(II) exposure. Throughout the Sb(V)-bearing nmSIM transformation at pH 3.8, Sb release was inversely related to the Fe(II) concentration in the initial stage, and after maximum release was achieved, Sb was gradually repartitioned onto the nmSIM. No Sb repartitioning occurred in the absence of Fe(II) at pH 5.6, but the introduction of Fe(II) suppressed Sb release and improved Sb repartitioning on nmSIM. This transformation was conducive to Sb reimmobilization on Sb(V)-bearing nmSIM due to the structural incorporation of Sb into the highly crystalline goethite and hematite generated by the Sb(V)-bearing nmSIM transformation, and no reduction of Sb(V) occurred. These results imply that Fe(II) can trigger mineralogical changes in Sb(V)-bearing nmSIM and have important impacts on Sb partitioning under acidic conditions. These new insights are essential for assessing the mobility and availability of Sb in acid mine drainage areas.
Collapse
Affiliation(s)
- Wangjun Lin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hui Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hanmo Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Zhang L, Xiao P, Che B, Yang J, Cai Z, Wang H, Gao J, Liang W, Wu C, Chen T. Mechanistic Study of the Transition from Antimony Oxide to Antimony Sulfide in the Hydrothermal Process to Obtain Highly Efficient Solar Cells. CHEMSUSCHEM 2023; 16:e202202049. [PMID: 36628923 DOI: 10.1002/cssc.202202049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Obtaining high-quality absorber layers is a major task for constructing efficient thin-film solar cells. Hydrothermal deposition is considered a promising method for preparing high-quality antimony sulfide (Sb2 S3 ) films for solar cell applications. In the hydrothermal process, the precursor reactants play an important role in controlling the film formation process and thus the film quality. In this study, Sb2 O3 is applied as a new Sb source to replace the traditional antimony potassium tartrate to modulate the growth process of the Sb2 S3 film. The reaction mechanism of the transition from Sb2 O3 to Sb2 S3 in the hydrothermal process is revealed. Through controlling the nucleation and deposition processes, high-quality Sb2 S3 films are prepared with longer carrier lifetimes and lower deep-level defect densities than those prepared from the traditional Sb source of antimony potassium tartrate. Consequently, a solar cell device based on this improved Sb2 S3 delivers a high power conversion efficiency of 6.51 %, which is in the top tier for Sb2 S3 -based solar devices using hydrothermal methods. This research provides a new and competitive Sb source for hydrothermal growth of high-quality antimony chalcogenide films for solar cell applications.
Collapse
Affiliation(s)
- Lijian Zhang
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Peng Xiao
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bo Che
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junjie Yang
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiyuan Cai
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haolin Wang
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinxiang Gao
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenhao Liang
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chunyan Wu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo, Zhejiang, 315201, P. R. China
| | - Tao Chen
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
He X, Min X, Peng T, Ke Y, Zhao F, Sillanpää M, Wang Y. Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16484-16495. [PMID: 32124299 DOI: 10.1007/s11356-020-08163-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Ball-milling is considered as an economical and simple technology to produce novel engineered materials. The ball-milled microscale zero valent iron/pyrite composite (BM-ZVI/FeS2) had been synthesized through ball-milling technology and applied for highly efficient sequestration of antimonate (Sb(V)) in aqueous solution. BM-ZVI/FeS2 exhibited good Sb(V) removal efficiency (≥ 99.18%) at initial concentration less than 100 mg Sb(V)/L. Compared to ball-milled zero valent iron (ZVI) and pyrite (FeS2), BM-ZVI/FeS2 exhibited extremely higher removal efficiency due to the good synergistic adsorption effect. BM-ZVI/FeS2 showed efficient removal performance at broad pH (2.6-10.6). Moreover, the coexisting anions had negligible inhibition influence on the Sb(V) removal. The antimony mine wastewater can be efficiently remediated by BM-ZVI/FeS2, and the residual Sb(V) concentrations (< 0.96 μg/L) can meet the mandatory discharge limit in drinking water (5 μg Sb/L). Experimental and model results demonstrated that endothermic reaction and chemisorption were involved in Sb(V) removal by BM-ZVI/FeS2. The XRD and XPS analyses confirmed that the complete corrosion of ZVI occurred on BM-ZVI/FeS2 after Sb(V) adsorption, resulting in the enhanced Sb(V) sequestration. Mechanism analyses showed that the excellent removal performance of BM-ZVI/FeS2 was ascribed to the high coverage of iron (hydr)oxide oxidized from ZVI. Because of the advantages of economical cost, high Sb(V) removal capacity and easy availability, BM-ZVI/FeS2 offers a promising adsorbent for Sb(V) remediation.
Collapse
Affiliation(s)
- Xingyu He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, Hunan, China
| | - Tianyu Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
| | - Yong Ke
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, Hunan, China.
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, Hunan, China.
- Department of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland.
| | - Mika Sillanpää
- Department of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, Hunan, China
| |
Collapse
|
4
|
Burton GA, Hudson ML, Huntsman P, Carbonaro RF, Rader KJ, Waeterschoot H, Baken S, Garman E. Weight-of-Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1839-1849. [PMID: 31099932 DOI: 10.1002/etc.4470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/30/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The United Nations and the European Union have developed guidelines for the assessment of long-term (chronic) chemical environmental hazards. This approach recognizes that these hazards are often related to spillage of chemicals into freshwater environments. The goal of the present study was to examine the concept of metal ion removal from the water column in the context of hazard assessment and classification. We propose a weight-of-evidence approach that assesses several aspects of metals including the intrinsic properties of metals, the rate at which metals bind to particles in the water column and settle, the transformation of metals to nonavailable and nontoxic forms, and the potential for remobilization of metals from sediment. We developed a test method to quantify metal removal in aqueous systems: the extended transformation/dissolution protocol (T/DP-E). The method is based on that of the Organisation for Economic Co-operation and Development (OECD). The key element of the protocol extension is the addition of substrate particles (as found in nature), allowing the removal processes to occur. The present study focused on extending this test to support the assessment of metal removal from aqueous systems, equivalent to the concept of "degradability" for organic chemicals. Although the technical aspects of our proposed method are different from the OECD method for organics, its use for hazard classification is equivalent. Models were developed providing mechanistic insight into processes occurring during the T/DP-E method. Some metals, such as copper, rapidly decreased (within 96 h) under the 70% threshold criterion, whereas others, such as strontium, did not. A variety of method variables were evaluated and optimized to allow for a reproducible, realistic hazard classification method that mimics reasonable worst-case scenarios. We propose that this method be standardized for OECD hazard classification via round robin (ring) testing to ascertain its intra- and interlaboratory variability. Environ Toxicol Chem 2019;38:1839-1849. © 2019 SETAC.
Collapse
Affiliation(s)
- G Allen Burton
- Department of Earth and Environmental Sciences, School for Environment and Sustainability, University of Michigan, Arbor, Michigan, USA
| | - Michelle L Hudson
- Department of Earth and Environmental Sciences, School for Environment and Sustainability, University of Michigan, Arbor, Michigan, USA
| | | | - Richard F Carbonaro
- Chemical Engineering Department, Manhattan College, Riverdale, New York, USA
- Mutch Associates, Ramsey, New Jersey, USA
| | | | | | - Stijn Baken
- European Copper Institute, Brussels, Belgium
| | | |
Collapse
|
5
|
Huntsman P, Skeaff J, Pawlak M, Beaudoin R. Transformation/dissolution characterization of tungsten and tungsten compounds for aquatic hazard classification. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:498-508. [PMID: 29464838 DOI: 10.1002/ieam.4040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
The transformation/dissolution protocol (T/DP) for metals and sparingly soluble metal compounds was applied to determine the transformation/dissolution (T/D) characteristics of yellow tungsten trioxide, WO3 ; blue tungsten oxide, WOx, x taken as 2.9; tungsten disulphide, WS2 ; tungsten metal, W; 3 samples of tungsten carbide, WC; sodium tungstate, Na2 WO4 · 2H2 O; ammonium paratungstate (APT), (NH4 )10 (H2 W12 O42 ) · 4H2 O; and ammonium metatungstate (AMT) (NH4 )6 (H2 W12 O40 ) · 3H2 O. The T/D data were used to derive aquatic hazard classification outcomes under the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS) and European Union Classification, Labelling and Packaging of Substances and Mixtures (EU CLP) schemes by comparing the data with selected acute and chronic ecotoxicity reference values (ERVs) of 31 and 3.37 mg W/L, respectively. In addition to the concentration of total dissolved tungsten (W), the T/D solutions were analyzed for the concentration of the tungstate anion, because speciation can be an important factor in establishing the ecotoxicity of dissolved metals. Results show that the tungstate anion was the predominant W-bearing species in solution for all substances examined at pH 6 and 8.5. It was found that the 100 mg/L loadings of both the yellow WO3 and the blue WOx exceeded the 31 mg/L acute ERV, so they would classify as Acute 3-Chronic 3 under the UN GHS scheme but they would not classify under the EU CLP. An effect of pH on the reactivity of the W metal was observed with 3% and 16% W dissolution at pH 6 and 8.5, respectively. Tungsten metal would not classify under either the UN GHS or EU CLP schemes nor would the WS2 . The WCs were the least reactive in terms of the 1% or less dissolution of the contained W at pH 6. A critical surface area for WC was calculated. The sodium tungstate, APT and the AMT all yielded, at pH 8.5, total dissolved W concentrations that would result in UN GHS Acute 3-Chronic 3 classifications. Integr Environ Assess Manag 2018;14:498-508. © 2018 Her Majesty the Queen in Right of Canada. Integrated Environmental Assessment and Management © 2018 SETAC.
Collapse
Affiliation(s)
- Philippa Huntsman
- Environmental Risk Management Program, CanmetMINING, Natural Resources Canada, Ottawa
| | - Jim Skeaff
- Environmental Risk Management Program, CanmetMINING, Natural Resources Canada, Ottawa
- Present address: Retired
| | - Marcin Pawlak
- Analytical Services Group, CanmetMINING, Natural Resources Canada, Ottawa
| | - Robert Beaudoin
- Environmental Risk Management Program, CanmetMINING, Natural Resources Canada, Ottawa
| |
Collapse
|
6
|
Huntsman-Mapila P, Skeaff JM, Pawlak M, Beaudoin R. Addressing aquatic hazard classification for metals, metal compounds and alloys in marine systems. MARINE POLLUTION BULLETIN 2016; 109:550-557. [PMID: 27289283 DOI: 10.1016/j.marpolbul.2016.03.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
New International Maritime Organization regulations require shippers to classify all solid bulk cargo to indicate whether they are Harmful to the Marine Environment (HME). The objective of this work was to adapt the freshwater Transformation/Dissolution Protocol (T/DP) to marine water to provide a method to determine, when compared with marine Ecotoxicity Reference Values (ERVs), whether a metal-bearing substance is HME. The substances examined were: Cu2O powder; Ni metal powder; Co3O4 powder; and a Ni-Co-Fe alloy, as wire cuttings, which were the same substances examined in the freshwater T/D validation study and afforded comparisons of the reactivity, or measure of the rate and extent of metal release from the metal-bearing substances in freshwater versus marine conditions. The marine T/D method is suitable for conducting examinations of metal-bearing substances with a wide range of reactivities, from the relatively reactive Cu2O powder and the alloy to the Co3O4 powder, which was the least reactive.
Collapse
Affiliation(s)
- P Huntsman-Mapila
- Mine Closure and Ecosystem Risk Management Program, CanmetMINING, Natural Resources Canada, 555 Booth St., Ottawa K1A 0G1, Canada.
| | - J M Skeaff
- Mine Closure and Ecosystem Risk Management Program, CanmetMINING, Natural Resources Canada, 555 Booth St., Ottawa K1A 0G1, Canada.
| | - M Pawlak
- Analytical Services Group, CanmetMINING, Natural Resources Canada, 555 Booth St., Ottawa K1A 0G1, Canada.
| | - R Beaudoin
- Mine Closure and Ecosystem Risk Management Program, CanmetMINING, Natural Resources Canada, 555 Booth St., Ottawa K1A 0G1, Canada.
| |
Collapse
|
7
|
Liu R, Liu F, Hu C, He Z, Liu H, Qu J. Simultaneous removal of Cd(II) and Sb(V) by Fe-Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:847-854. [PMID: 26340552 DOI: 10.1016/j.jhazmat.2015.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe-Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Qmax,Sb(V)) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd(2+) exhibited a more significant positive effect than both calcium ion (Ca(2+)) and manganese ion (Mn(2+)). Cd(2+) showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca(2+) and Mn(2+). The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pHi) range from 2 to 9, and QSb(V) decreases whereas QCd(II) increases with elevated pHi. Their combined values, as expressed by QSb(V)+Cd(II), amount to about 2 mmol/g and vary slightly in the pHi range 4-9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).
Collapse
Affiliation(s)
- Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zan He
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Skeaff JM, Beaudoin R. Transformation/dissolution characteristics of a nickel matte and nickel concentrates for acute and chronic hazard classification. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:130-142. [PMID: 25103894 DOI: 10.1002/ieam.1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
For the purposes of aquatic hazard classification under the United Nations Globally Harmonized System of Classification (UNGHS), we have examined the transformation/dissolution (T/D) characteristics of a Ni matte and 4 Ni concentrates at pH 6 using the United Nations (UN) Transformation/Dissolution Protocol (T/DP) for metals and sparingly soluble metal compounds. Among the analytes Ni, Co, and Cu, Ni was released into the T/D solutions in the highest concentrations and was thus the main driver in establishing the hazard classification. We applied an extrapolation-scaling approach to obtain concentrations of total dissolved Ni at low loadings of 0.1 and 0.01 mg/L for derivation of chronic classification outcomes in the European Union (EU) classification, labeling, and packaging (CLP) scheme. The T/D data would classify the Ni matte as Acute 2-Chronic 2 under the Globally Harmonized System (GHS) scheme, and Chronic 1 under the EU CLP. Three of the 4 Ni concentrates would classify as GHS Acute 2-Chronic 2 and EU CLP Chronic 2, whereas the 4th would classify as GHS Acute 3-Chronic 3 and EU CLP Chronic 3. In applying the critical surface area (CSA) approach to the Ni concentrates, acute and chronic hazard classification outcomes were the same as those derived from direct application of the T/D data to the GHS and EU schemes. Such agreement provided confidence that the CSA approach could yield scientifically defensible acute and chronic hazard classification outcomes.
Collapse
Affiliation(s)
- James M Skeaff
- Mine Closure and Ecosystem Risk Management Program, CanmetMINING, Natural Resources Canada, Ottawa, K1A 0G1, Canada
| | | |
Collapse
|