1
|
Zhuo T, Chai B, You XY. Modeling the spatiotemporal distribution, bioaccumulation, and ecological risk assessment of microplastics in aquatic ecosystems: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107210. [PMID: 39689501 DOI: 10.1016/j.aquatox.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Microplastic (MP) pollution poses a significant threat to aquatic ecosystems. Numerical modeling has emerged as an effective tool for predicting the distribution, accumulation, and risk assessment of MPs in aquatic ecosystems. However, published work has not systematically assessed the strengths and weaknesses of various modeling approaches. Therefore, we conducted a thorough review of the main modeling approaches for MPs over the past six years. We classified the approaches into three categories as: spatial and temporal distribution, bioaccumulation, and systematic ecological risk assessment. The review analyzed application scenarios, modeling methods, and the advantages and disadvantages of models. The results indicate that the accurate simulation of MPs spatial and temporal distribution requires reasonable parameterization and comprehensive transport considerations. Meanwhile, it is important to focus on coupling process models with other types of models. To enhance risk assessment models, expanding the relevant evaluation indicators is essential.
Collapse
Affiliation(s)
- Tianyu Zhuo
- Tianjin Engineering Center of Urban River Eco-purification Technology, School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin 300350, China
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China
| | - Xue-Yi You
- Tianjin Engineering Center of Urban River Eco-purification Technology, School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
2
|
Ashraf M, Siddiqui MT, Galodha A, Anees S, Lall B, Chakma S, Ahammad SZ. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176999. [PMID: 39427916 DOI: 10.1016/j.scitotenv.2024.176999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem. Emphasis is placed on critically evaluating and discussing the underlying principles, ongoing advancements, and applications of diverse multimedia models across geographically distinct regions. Furthermore, the review underscores the imperative of ensuring data quality, strategically planning monitoring initiatives, and leveraging cutting-edge modelling techniques in the quest for a more holistic understanding of PPCP dynamics. It also ventures into prospective developments, particularly the integration of Artificial Intelligence (AI) and Machine Learning (ML) methodologies, to enhance the precision and predictive capabilities of PPCP models. In addition, the broader implications of PPCP modelling on sustainability development goals (SDG) and the One Health approach are also discussed. GIS-based modelling offers a cost-effective approach for incorporating time-variable parameters, enabling a spatially explicit analysis of contaminant fate. Swin-Transformer model enhanced with Normalization Attention Modules demonstrated strong groundwater level estimation with an R2 of 82 %. Meanwhile, integrating Interferometric Synthetic Aperture Radar (InSAR) time-series with gravity recovery and climate experiment (GRACE) data has been pivotal for assessing water-mass changes in the Indo-Gangetic basin, enhancing PPCP fate and transport modelling accuracy, though ongoing refinement is necessary for a comprehensive understanding of PPCP dynamics. The review aims to establish a framework for the future development of a comprehensive PPCP modelling approach, aiding researchers and policymakers in effectively managing water resources impacted by increasing PPCP levels.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Mohammad Tahir Siddiqui
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Abhinav Galodha
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sanya Anees
- Department of Electronics and Communication Engineering, Netaji Subash University of Technology (NSUT), New Delhi 110078, India.
| | - Brejesh Lall
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, New Delhi e110016, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
3
|
Margiotta-Casaluci L, Owen SF, Winter MJ. Cross-Species Extrapolation of Biological Data to Guide the Environmental Safety Assessment of Pharmaceuticals-The State of the Art and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:513-525. [PMID: 37067359 DOI: 10.1002/etc.5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
4
|
Wilkinson JL, Thornhill I, Oldenkamp R, Gachanja A, Busquets R. Pharmaceuticals and Personal Care Products in the Aquatic Environment: How Can Regions at Risk be Identified in the Future? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:575-588. [PMID: 37818878 DOI: 10.1002/etc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are an indispensable component of a healthy society. However, they are well-established environmental contaminants, and many can elicit biological disruption in exposed organisms. It is now a decade since the landmark review covering the top 20 questions on PPCPs in the environment (Boxall et al., 2012). In the present study we discuss key research priorities for the next 10 years with a focus on how regions where PPCPs pose the greatest risk to environmental and human health, either now or in the future, can be identified. Specifically, we discuss why this problem is of importance and review our current understanding of PPCPs in the aquatic environment. Foci include PPCP occurrence and what drives their environmental emission as well as our ability to both quantify and model their distribution. We highlight critical areas for future research including the involvement of citizen science for environmental monitoring and using modeling techniques to bridge the gap between research capacity and needs. Because prioritization of regions in need of environmental monitoring is needed to assess future/current risks, we also propose four criteria with which this may be achieved. By applying these criteria to available monitoring data, we narrow the focus on where monitoring efforts for PPCPs are most urgent. Specifically, we highlight 19 cities across Africa, Central America, the Caribbean, and Asia as priorities for future environmental monitoring and risk characterization and define four priority research questions for the next 10 years. Environ Toxicol Chem 2024;43:575-588. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- John L Wilkinson
- Environment and Geography Department, University of York, York, UK
| | - Ian Thornhill
- School of Environment, Education and Development, The University of Manchester, Manchester, UK
| | - Rik Oldenkamp
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Anthony Gachanja
- Department of Food Science and Post-Harvest Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Rosa Busquets
- Department of Chemical and Pharmaceutical Sciences, Kingston University London, Kingston-upon-Thames, UK
| |
Collapse
|
5
|
Mo J, Guo J, Iwata H, Diamond J, Qu C, Xiong J, Han J. What Approaches Should be Used to Prioritize Pharmaceuticals and Personal Care Products for Research on Environmental and Human Health Exposure and Effects? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:488-501. [PMID: 36377688 DOI: 10.1002/etc.5520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released from multiple anthropogenic sources and thus have a ubiquitous presence in the environment. The environmental exposure and potential effects of PPCPs on biota and humans has aroused concern within the scientific community and the public. Risk assessments are commonly conducted to evaluate the likelihood of chemicals including PPCPs that pose health threats to organisms inhabiting various environmental compartments and humans. Because thousands of PPCPs are currently used, it is impractical to assess the environmental risk of all of them due to data limitations; in addition, new PPCPs are continually being produced. Prioritization approaches, based either on exposure, hazard, or risk, provide a possible means by which those PPCPs that are likely to pose the greatest risk to the environment are identified, thereby enabling more effective allocation of resources in environmental monitoring programs in specific geographical locations and ecotoxicological investigations. In the present review, the importance and current knowledge concerning PPCP occurrence and risk are discussed and priorities for future research are proposed, in terms of PPCP exposure (e.g., optimization of exposure modeling in freshwater ecosystems and more monitoring of PPCPs in the marine environment) or hazard (e.g., differential risk of PPCPs to lower vs. higher trophic level species and risks to human health). Recommended research questions for the next 10 years are also provided, which can be answered by future studies on prioritization of PPCPs. Environ Toxicol Chem 2024;43:488-501. © 2022 SETAC.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiuqiang Xiong
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
7
|
Miglino AN, Holmes CM. Applying weight of evidence methods to assessing exposure in aquatic environments: Comparing lines of evidence. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1207-1219. [PMID: 35253366 DOI: 10.1002/ieam.4602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Weight of evidence (WoE) is a useful approach to quantifying the relative relevance, strength, reliability, and uncertainty associated with estimates of exposure concentrations. WoE is often used in exposure assessments but rarely explored or discussed in detail. In this article, the utility of a WoE approach in aquatic exposure assessments is illustrated via two case studies using a tiered approach and the chemical triclosan. Each case study evaluates the same chemical and pathway to the environment but with substantially different data strength, reliability, and uncertainty. The collection and qualitative evaluation of relevant lines of evidence (LoE) using a three-tiered approach are discussed. Our results demonstrate how a higher tiered WoE approach can reduce uncertainty and improve decision-making based on predicted exposure concentrations. We also identify LoE that played a significant role in the final exposure determinations and describe a framework for conducting exposure assessments using WoE. Integr Environ Assess Manag 2023;19:1207-1219. © 2022 SETAC.
Collapse
Affiliation(s)
- Andrew N Miglino
- US Food and Drug Administration, Center for Veterinary Medicine, Rockville, MD, USA
| | | |
Collapse
|
8
|
Burns EE, Roush KS, Csiszar SA, Davies IA. Freshwater Environmental Risk Assessment of Down-the-Drain Octinoxate Emissions in the United States. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3116-3124. [PMID: 36148933 PMCID: PMC9828718 DOI: 10.1002/etc.5488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Organic ultraviolet (UV) filters are used in a variety of cosmetic and personal care products (CPCPs), including sunscreens, due to their ability to absorb solar radiation. These UV filters can be washed down the drain through bathing, cleansing, or the laundering of clothing, therefore UV filters can enter the freshwater environment via wastewater treatment plant effluent, and so a freshwater risk assessment is necessary to establish the environmentally safe use of these important CPCP ingredients. In the present study, an environmental safety assessment for a UV filter of regulatory concern, octinoxate, was conducted. An established risk assessment framework designed specifically for CPCPs released to the freshwater environment in the United States was used for the assessment. A distribution of predicted environmental concentrations (PECs) representative of conditions across the region was calculated using the spatially resolved probabilistic exposure model iSTREEM. A review of available hazard data was conducted to derive a predicted no-effect concentration (PNEC). The safety assessment was conducted by comparing the PEC distribution to the PNEC. A substantial margin of safety was found between the 90th percentile PEC, which is representative of the reasonable worst-case environmental exposure, and the PNEC. Owing to this finding of negligible risk, further refinement of the risk assessment through the generation of experimental data or refinement of conservative assumptions is not prioritized. These results are critical for demonstrating the environmental safety of UV filters in the US freshwater environment and will help guide future work. Environ Toxicol Chem 2022;41:3116-3124. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Emily E. Burns
- Personal Care Products CouncilWashingtonDistrict of ColumbiaUSA
| | | | | | - Iain A. Davies
- Personal Care Products CouncilWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
9
|
Fuchsman P, Fetters K, O'Connor A, Bock M, Henning M, Brown L, Mrdjen I, Stanton K. Ecological Risk Analysis for Benzalkonium Chloride, Benzethonium Chloride, and Chloroxylenol in US Disinfecting and Sanitizing Products. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3095-3115. [PMID: 36349534 PMCID: PMC9827944 DOI: 10.1002/etc.5484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Use of three topical antiseptic compounds-benzalkonium chloride (BAC), benzethonium chloride (BZT), and chloroxylenol (PCMX)-has recently increased because of the phaseout of other antimicrobial ingredients (such as triclosan) in soaps and other disinfecting and sanitizing products. Further, use of sanitizing products in general increased during the coronavirus (COVID-19) pandemic. We assessed the environmental safety of BAC, BZT, and PCMX based on best available environmental fate and effects data from the scientific literature and privately held sources. The ecological exposure assessment focused on aquatic systems receiving effluent from wastewater-treatment plants (WWTPs) and terrestrial systems receiving land-applied WWTP biosolids. Recent exposure levels were characterized based on environmental monitoring data supplemented by modeling, while future exposures were modeled based on a hypothetical triclosan replacement scenario. Hazard profiles were developed based on acute and chronic studies examining toxicity to aquatic life (fish, invertebrates, algae, vascular plants) and terrestrial endpoints (plants, soil invertebrates, and microbial functions related to soil fertility). Risks to higher trophic levels were not assessed because these compounds are not appreciably bioaccumulative. The risk analysis indicated that neither BZT nor PCMX in any exposure media is likely to cause adverse ecological effects under the exposure scenarios assessed in the present study. Under these scenarios, total BAC exposures are at least three times less than estimated effect thresholds, while margins of safety for freely dissolved BAC are estimated to be greater than an order of magnitude. Because the modeling did not specifically account for COVID-19 pandemic-related usage, further environmental monitoring is anticipated to understand potential changes in environmental exposures as a result of increased antiseptic use. The analysis presented provides a framework to interpret future antiseptic monitoring results, including monitoring parameters and modeling approaches to address bioavailability of the chemicals of interest. Environ Toxicol Chem 2022;41:3095-3115. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
10
|
McDonough K, Csiszar SA, Fan M, Kapo K, Menzies J, Vamshi R. Spatial modeling framework for aquatic exposure assessments of chemicals disposed down the drain: Case studies for China and Japan. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:722-733. [PMID: 34331738 DOI: 10.1002/ieam.4506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
A modeling framework was created for the development of spatially explicit aquatic exposure models for any region or country of interest for chemicals disposed of down the drain. The framework relies on globally available data sets for river flow and population, and locally available data sets for wastewater treatment infrastructure and domestic water use, and leverages the iSTREEM® chemical routing algorithm. The framework was applied to China and Japan as case study countries. Spatially explicit population data were obtained from WorldPop. River flows covering the spatial extent of the two countries were derived from a high-resolution surface runoff gridded data set that was based on the Curve Number approach and combined with the hydrology network for catchments and rivers from HydroBASINS and HydroSHEDS data sets. Publicly available data from government sources were used for estimating per capita water use and wastewater treatment infrastructure. To demonstrate the framework, the China model was used to predict the levels of the antifungal agent climbazole in rivers across the country, and the Japan model was used to predict river concentrations of linear alkylbenzene sulfonate. For both chemicals, the comparison of measured to modeled values showed good agreement, using linear regression analysis (R2 ≥ 0.96). The framework presented in this study provides a systematic and robust approach to develop spatially resolved exposure models that can be extrapolated to any country or region, allowing more accurate risk assessment of chemicals disposed down the drain by leveraging concentration distributions generated by the model. Integr Environ Assess Manag 2022;18:722-733. © 2021 SETAC.
Collapse
Affiliation(s)
| | | | - Ming Fan
- Procter and Gamble, Cincinnati, Ohio, USA
| | | | | | - Raghu Vamshi
- Waterborne Environmental Inc., Leesburg, Virginia, USA
| |
Collapse
|
11
|
Dawson D, Fisher H, Noble AE, Meng Q, Doherty AC, Sakano Y, Vallero D, Tornero-Velez R, Cohen Hubal EA. Assessment of Non-Occupational 1,4-Dioxane Exposure Pathways from Drinking Water and Product Use. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5266-5275. [PMID: 35380802 PMCID: PMC9364908 DOI: 10.1021/acs.est.1c06996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane is a persistent and mobile organic chemical that has been found by the United States Environmental Protection Agency (USEPA) to be an unreasonable risk to human health in some occupational contexts. 1,4-Dioxane is released into the environment as industrial waste and occurs in some personal-care products as an unintended byproduct. However, limited exposure assessments have been conducted outside of an occupational context. In this study, the USEPA simulation modeling tool, Stochastic Human Exposure and Dose Simulator-High Throughput (SHEDS-HT), was adapted to estimate the exposure and chemical mass released down the drain (DTD) from drinking water consumption and product use. 1,4-Dioxane concentrations measured in drinking water and consumer products were used by SHEDS-HT to evaluate and compare the contributions of these sources to exposure and mass released DTD. Modeling results showed that compared to people whose daily per capita exposure came from only products (2.29 × 10-7 to 2.92 × 10-7 mg/kg/day), people exposed to both contaminated water and product use had higher per capita median exposures (1.90 × 10-6 to 4.27 × 10-6 mg/kg/day), with exposure mass primarily attributable to water consumption (75-91%). Last, we demonstrate through simulation that while a potential regulatory action could broadly reduce DTD release, the proportional reduction in exposure would be most significant for people with no or low water contamination.
Collapse
Affiliation(s)
- Daniel Dawson
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Hunter Fisher
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
- Oak Ridge Institutes for Science and Education, Oak Ridge, Tennessee 37830, United States
| | - Abigail E Noble
- Safer Consumer Products Program, California Department of Toxic Substances Control, 1001 I Street, Sacramento, California 95814, United States
| | - Qingyu Meng
- Safer Consumer Products Program, California Department of Toxic Substances Control, 1001 I Street, Sacramento, California 95814, United States
| | - Anne Cooper Doherty
- Safer Consumer Products Program, California Department of Toxic Substances Control, 1001 I Street, Sacramento, California 95814, United States
| | - Yuko Sakano
- Safer Consumer Products Program, California Department of Toxic Substances Control, 1001 I Street, Sacramento, California 95814, United States
| | - Daniel Vallero
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Rogelio Tornero-Velez
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Elaine A Cohen Hubal
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
12
|
Duarte DJ, Niebaum G, Lämmchen V, van Heijnsbergen E, Oldenkamp R, Hernández‐Leal L, Schmitt H, Ragas AMJ, Klasmeier J. Ecological Risk Assessment of Pharmaceuticals in the Transboundary Vecht River (Germany and The Netherlands). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:648-662. [PMID: 33818825 PMCID: PMC9290585 DOI: 10.1002/etc.5062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 03/31/2021] [Indexed: 05/16/2023]
Abstract
Millions of people rely on active pharmaceutical ingredients (APIs) to prevent and cure a wide variety of illnesses in humans and animals, which has led to a steadily increasing consumption of APIs across the globe and concurrent releases of APIs into the environment. In the environment, APIs can have a detrimental impact on wildlife, particularly aquatic wildlife. Therefore, it is essential to assess their potential adverse effects to aquatic ecosystems. The European Water Framework Directive sets out that risk assessment should be performed at the catchment level, crossing borders where needed. The present study defines ecological risk profiles for surface water concentrations of 8 APIs (carbamazepine, ciprofloxacin, cyclophosphamide, diclofenac, erythromycin, 17α-ethinylestradiol, metformin, and metoprolol) in the Vecht River, a transboundary river that crosses several German and Dutch regions. Ultimately, 3 main goals were achieved: 1) the geo-referenced estimation of API concentrations in surface water using the geography-referenced regional exposure assessment tool for European rivers; 2) the derivation of new predicted-no-effect concentrations for 7 of the studied APIs, of which 3 were lower than previously derived values; and 3) the creation of detailed spatially explicit ecological risk profiles of APIs under 2 distinct water flow scenarios. Under average flow conditions, carbamazepine, diclofenac, and 17α-ethinylestradiol were systematically estimated to surpass safe ecological concentration thresholds in at least 68% of the catchment's water volume. This increases to 98% under dry summer conditions. Environ Toxicol Chem 2022;41:648-662. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel J. Duarte
- Institute for Water & Wetland Research, Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Gunnar Niebaum
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| | - Volker Lämmchen
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| | - Eri van Heijnsbergen
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - Rik Oldenkamp
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lucia Hernández‐Leal
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
- Department of Infectious Diseases and ImmunologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Ad M. J. Ragas
- Institute for Water & Wetland Research, Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
- Department of Environmental Sciences, Faculty of ScienceOpen UniversityHeerlenThe Netherlands
| | - Jörg Klasmeier
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| |
Collapse
|
13
|
Burns EE, Csiszar SA, Roush KS, Davies IA. National scale down-the-drain environmental risk assessment of oxybenzone in the United States. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:951-960. [PMID: 33913597 PMCID: PMC8453704 DOI: 10.1002/ieam.4430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 04/15/2021] [Indexed: 05/05/2023]
Abstract
Organic ultraviolet (UV) filters are used in cosmetic and personal care products (CPCPs) and over-the-counter (OTC) sunscreens, due to their ability to absorb solar radiation. When OTC and CPCP ingredients are washed down the drain, they can then enter freshwaters that receive wastewater treatment plant effluents. This paper presents a freshwater environmental safety assessment of a key UV filter, oxybenzone, used in OTC sunscreens and CPCPs in the United States. Exposure was characterized using iSTREEM® , a spatially resolved aquatic exposure model developed for chemicals disposed of down the drain. iSTREEM® provides a comprehensive exposure assessment of oxybenzone concentrations in United States receiving waters through predicted environmental concentration (PEC) distributions representative of conditions across the region. A review of available hazard data was used to derive a predicted no-effect concentration (PNEC) using aquatic toxicity data and assessment factors. A safety assessment was conducted by comparing the PEC distribution with the PNEC. The results indicate that oxybenzone is of low concern and there is a significant margin of safety as the 90th percentile PEC is two orders of magnitude below the PNEC. These results are instrumental in demonstrating the environmental safety of key organic UV filters in the U.S. freshwater environment and will help prioritize future work. Integr Environ Assess Manag 2021;17:951-960. © 2021 Personal Care Products Council. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Emily E. Burns
- Personal Care Products CouncilWashingtonDistrict of ColumbiaUSA
| | | | | | - Iain A. Davies
- Personal Care Products CouncilWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
14
|
Austin TJ, Comber S, Forrester E, Gardner M, Price OR, Oldenkamp R, Ragas AMJ, Hendriks AJ. The importance of over-the-counter-sales and product format in the environmental exposure assessment of active pharmaceutical ingredients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141624. [PMID: 32892036 DOI: 10.1016/j.scitotenv.2020.141624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
When assessing the environmental exposure of active pharmaceutical ingredients (APIs), the mass contributed from over the counter (OTC) sales are often not included due to difficulty obtaining this data and topical formats are overlooked completely. This study presents a comprehensive approach, investigating the significance of OTC and topical applications as sources of API releases to wastewater, in addition to temporal and subnational variations in use in the UK. The study provides methods to obtain and make use of OTC sales data which can be applied widely. The calculated releases to wastewater compared well with influent concentrations measured at several UK wastewater treatment plants (WWTPs). Consistent overestimation was observed, attributed to a number of factors, including in-sewer removal. OTC sales were found to make up a large proportion of the mass of ibuprofen (76%) and diclofenac (35%) consumed and topical formats were also found to be vital, contributing disproportionately to wastewater loadings per unit mass of ibuprofen and diclofenac used (43% and 99% of the total mass released, respectively). Releases of the APIs investigated did not vary temporally, but regional variation was significant and where possible should be considered for the most accurate exposure assessment of pharmaceuticals.
Collapse
Affiliation(s)
| | - Sean Comber
- Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | | | - Mike Gardner
- Atkins Limited, 500, Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | | | - Rik Oldenkamp
- Department of Environmental Science, Radboud University Nijmegen, 6500GL Nijmegen, the Netherlands
| | - Ad M J Ragas
- Department of Environmental Science, Radboud University Nijmegen, 6500GL Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud University Nijmegen, 6500GL Nijmegen, the Netherlands
| |
Collapse
|
15
|
van Gils J, Posthuma L, Cousins IT, Brack W, Altenburger R, Baveco H, Focks A, Greskowiak J, Kühne R, Kutsarova S, Lindim C, Markus A, van de Meent D, Munthe J, Schueder R, Schüürmann G, Slobodnik J, de Zwart D, van Wezel A. Computational material flow analysis for thousands of chemicals of emerging concern in European waters. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122655. [PMID: 32388089 DOI: 10.1016/j.jhazmat.2020.122655] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of exposure to a wide range of chemicals, and the spatio-temporal variability thereof, is urgently needed in the context of protecting and restoring aquatic ecosystems. This paper discusses a computational material flow analysis to predict the occurrence of thousands of man-made organic chemicals on a European scale, based on a novel temporally and spatially resolved modelling framework. The goal was to increase understanding of pressures by emerging chemicals and to complement surface water monitoring data. The ambition was to provide a first step towards a "real-life" mixture exposure situation accounting for as many chemicals as possible. Comparison of simulated concentrations and chemical monitoring data for 226 substance/basin combinations showed that the simulated concentrations were accurate on average. For 65% and 90% of substance/basin combinations the error was within one and two orders of magnitude respectively. An analysis of the relative importance of uncertainties revealed that inaccuracies in use volume or use type information contributed most to the error for individual substances. To resolve this, we suggest better registration of use types of industrial chemicals, investigation of presence/absence of industrial chemicals in wastewater and runoff samples and more scientific information exchange.
Collapse
Affiliation(s)
- Jos van Gils
- Deltares, P.O. Box 177, 2600 MH, Delft, The Netherlands.
| | - Leo Posthuma
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Department of Environmental Science, Radboud University, P.O. Box 9102, 6500 HC Nijmegen, The Netherlands
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, ABBt-Aachen Biology, Worringerweg 1, 52074 Aachen, Germany
| | - Rolf Altenburger
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, ABBt-Aachen Biology, Worringerweg 1, 52074 Aachen, Germany
| | - Hans Baveco
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Andreas Focks
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Janek Greskowiak
- Carl Von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, D-26129 Oldenburg, Germany
| | - Ralph Kühne
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stela Kutsarova
- Laboratory of Mathematical Chemistry, "Prof. Assen Zlatarov" University, 1 Yakimov Str., Bourgas 8010, Bulgaria
| | - Claudia Lindim
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Arjen Markus
- Deltares, P.O. Box 177, 2600 MH, Delft, The Netherlands
| | - Dik van de Meent
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Department of Environmental Science, Radboud University, P.O. Box 9102, 6500 HC Nijmegen, The Netherlands; Mermayde, Harrie Kuijtenweg 1, 1873 HL Groet, The Netherlands; Association of Retired Environmental Scientists ARES, Odijk, The Netherlands
| | - John Munthe
- IVL Swedish Environmental Research Institute, P.O. Box 53201, 400 15 Gothenburg, Sweden
| | - Rudy Schueder
- Deltares, P.O. Box 177, 2600 MH, Delft, The Netherlands
| | - Gerrit Schüürmann
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; Technical University Bergakademie Freiberg, Institute of Organic Chemistry, Leipziger Straße 29, 09599 Freiberg, Germany
| | | | - Dick de Zwart
- Mermayde, Harrie Kuijtenweg 1, 1873 HL Groet, The Netherlands; Association of Retired Environmental Scientists ARES, Odijk, The Netherlands
| | - Annemarie van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
16
|
Khan HK, Rehman MYA, Malik RN. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111030. [PMID: 32778310 DOI: 10.1016/j.jenvman.2020.111030] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 05/05/2023]
Abstract
Pharmaceutically active compounds are newly recognized micropollutants which are ubiquitous in aquatic environment mainly due to direct discharge of treated and untreated wastewater from wastewater treatment plants. These contaminants have attracted mounted attention due to their toxic effects on aquatic life. They disrupt biological processes in non-target lower organisms upon exposure. Biodegradation, photo-degradation, and sorption are key processes which determine their fate in the environment. A variety of conventional and advanced treatment processes had been extensively investigated for the removal of pharmaceuticals from wastewater. However, due to structural complexity and varying operating parameters, complete removal seems ideal. Generally, due to high energy requirement of advanced treatment technology, it is considered cost ineffective. Transport of pharmaceutical compounds occurs via aquatic channels whereas sediments and aquatic colloids play a significant role as sinks for these contaminants. The current review provides a critical understanding of fate and toxicity of pharmaceutical compounds and highlights their vulnerability and occurrence in South Asia. Antibiotics, analgesics, and psychiatric drugs were found predominantly in the water environment of South Asian regions. Despite significant advances in understanding pharmaceuticals fate, toxicity, and associated risks since the 1990s, still substantial data gaps in terms of monitoring, human health risks, and legislation exist which presses the need to develop a more in-depth and interdisciplinary understanding of the subject.
Collapse
Affiliation(s)
- Hudda Khaleeq Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
17
|
Posthuma L, Zijp MC, De Zwart D, Van de Meent D, Globevnik L, Koprivsek M, Focks A, Van Gils J, Birk S. Chemical pollution imposes limitations to the ecological status of European surface waters. Sci Rep 2020; 10:14825. [PMID: 32908203 PMCID: PMC7481305 DOI: 10.1038/s41598-020-71537-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/18/2020] [Indexed: 11/25/2022] Open
Abstract
Aquatic ecosystems are affected by man-made pressures, often causing combined impacts. The analysis of the impacts of chemical pollution is however commonly separate from that of other pressures and their impacts. This evolved from differences in the data available for applied ecology vis-à-vis applied ecotoxicology, which are field gradients and laboratory toxicity tests, respectively. With this study, we demonstrate that the current approach of chemical impact assessment, consisting of comparing measured concentrations to protective environmental quality standards for individual chemicals, is not optimal. In reply, and preparing for a method that would enable the comprehensive assessment and management of water quality pressures, we evaluate various quantitative chemical pollution pressure metrics for mixtures of chemicals in a case study with 24 priority substances of Europe-wide concern. We demonstrate why current methods are sub-optimal for water quality management prioritization and that chemical pollution currently imposes limitations to the ecological status of European surface waters. We discuss why management efforts may currently fail to restore a good ecological status, given that to date only 0.2% of the compounds in trade are considered in European water quality assessment and management.
Collapse
Affiliation(s)
- Leo Posthuma
- National Institute for Public Health and the Environment (Centre for Sustainability, Environment and Health, DMG), PO Box 1, 3720 BA, Bilthoven, The Netherlands. .,Department of Environmental Science, Radboud University Nijmegen, Heyendaalseweg, Nijmegen, The Netherlands.
| | - Michiel C Zijp
- National Institute for Public Health and the Environment (Centre for Sustainability, Environment and Health, DMG), PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Dick De Zwart
- DdZ-Ecotox, Odijk, The Netherlands.,Mermayde, Groet, the Netherlands
| | - Dik Van de Meent
- Department of Environmental Science, Radboud University Nijmegen, Heyendaalseweg, Nijmegen, The Netherlands.,Mermayde, Groet, the Netherlands
| | - Lidija Globevnik
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000, Ljubljana, Slovenia
| | - Maja Koprivsek
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000, Ljubljana, Slovenia
| | - Andreas Focks
- Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Jos Van Gils
- Deltares, P.O. Box 177, 2600 MH, Delft, The Netherlands
| | - Sebastian Birk
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Center for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
18
|
van de Meent D, de Zwart D, Posthuma L. Screening-Level Estimates of Environmental Release Rates, Predicted Exposures, and Toxic Pressures of Currently Used Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1839-1851. [PMID: 32539202 PMCID: PMC7496123 DOI: 10.1002/etc.4801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 05/27/2023]
Abstract
We describe a procedure to quantify emissions of chemicals for environmental protection, assessment, and management purposes. The procedure uses production and use volumes from registration dossiers and combines these with Specific Environmental Release Category data. The procedure was applied in a case study. Emission estimations were made for chemicals registered under the European Union chemicals regulations for industrial chemicals (Registration, Evaluation, Authorisation and Restriction of Chemicals [REACH]) and for the active ingredients of medicines and crop protection products. Emissions themselves cannot be validated. Instead, emission estimates were followed by multimedia fate modeling and mixture toxic pressure modeling to arrive at predicted environmental concentrations (PECs) and toxic pressures for a typical European water body at steady state, which were compared with other such data. The results show that screening-level assessments could be performed, and yielded estimates of emissions, PECs, and mixture toxic pressures of chemicals used in Europe. Steady-state PECs agreed fairly well with measured concentrations. The mixture toxic pressure at steady state suggests the presence of effects in aquatic species assemblages, whereby few compounds dominate the predicted impact. The study shows that our screening-level emission estimation procedure is sufficiently accurate and precise to serve as a basis for assessment of chemical pollution in aquatic ecosystems at the scale of river catchments. Given a recognized societal need to develop methods for realistic, cumulative exposures, the emission assessment procedure can assist in the prioritization of chemicals in safety policies (such as the European Union REACH regulation), where "possibility to be used safely" needs to be demonstrated, and environmental quality policies (such as the European Union Water Framework Directive), where "good environmental quality" needs to be reached. Environ Toxicol Chem 2020;39:1839-1851. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Dik van de Meent
- Association of Retired Environmental ScientistsOdijkThe Netherlands
- Mermayde, GroetThe Netherlands
- Department of Environmental ScienceInstitute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Dick de Zwart
- Association of Retired Environmental ScientistsOdijkThe Netherlands
- Mermayde, GroetThe Netherlands
- Department of Environmental ScienceInstitute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Leo Posthuma
- Department of Environmental ScienceInstitute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
- Center for SustainabilityEnvironment and Health, National Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| |
Collapse
|
19
|
Belton K, Schaefer E, Guiney PD. A Review of the Environmental Fate and Effects of Acesulfame-Potassium. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:421-437. [PMID: 32065497 PMCID: PMC7318193 DOI: 10.1002/ieam.4248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The use of low and no calorie sweeteners (LNCSs) has increased substantially the past several decades. Their high solubility in water, low absorption to soils, and reliable analytical methods facilitate their detection in wastewater and surface waters. Low and no calorie sweeteners are widely used in food and beverage products around the world, have been approved as food additives, and are considered safe for human consumption by the United States Food and Drug Administration (USFDA) and other regulatory authorities. Concerns have been raised, however, regarding their growing presence and potential aquatic toxicity. Recent studies have provided new empirical environmental monitoring, environmental fate, and ecotoxicity on acesulfame potassium (ACE-K). Acesulfame potassium is an important high-production LNCS, widely detected in the environment and generally reported to be environmentally persistent. Acesulfame-potassium was selected for this environmental fate and effects review to determine its comparative risk to aquatic organisms. The biodegradation of ACE-K is predicted to be low, based on available quantitative structure-activity relationship (QSAR) models, and this has been confirmed by several investigations, mostly published prior to 2014. More recently, there appears to be an interesting paradigm shift with several reports of the enhanced ability of wastewater treatment plants to biodegrade ACE-K. Some studies report that ACE-K can be photodegraded into potentially toxic breakdown products, whereas other data indicate that this may not be the case. A robust set of acute and chronic ecotoxicity studies in fish, invertebrates, and freshwater plants provided critical data on ACE-K's aquatic toxicity. Acesulfame-potassium concentrations in wastewater and surface water are generally in the lower parts per billion (ppb) range, whereas concentrations in sludge and groundwater are much lower (parts per trillion [ppt]). This preliminary environmental risk assessment establishes that ACE-K has high margins of safety (MOSs) and presents a negligible risk to the aquatic environment based on a collation of extensive ACE-K environmental monitoring, conservative predicted environmental concentration (PEC) and predicted no-effect concentration (PNEC) estimates, and prudent probabilistic exposure modeling. Integr Environ Assess Manag 2020;16:421-437. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Kerry Belton
- Grocery Manufacturers AssociationArlingtonVirginiaUSA
| | | | | |
Collapse
|
20
|
Moran K, Anderson B, Phillips B, Luo Y, Singhasemanon N, Breuer R, Tadesse D. Water Quality Impairments Due to Aquatic Life Pesticide Toxicity: Prevention and Mitigation in California, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:953-966. [PMID: 32102113 DOI: 10.1002/etc.4699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The management of pesticides to protect water quality remains a significant global challenge. Historically, despite regulatory frameworks intended to prevent, minimize, and manage off-site movement of pesticides, multiple generations of pesticide active ingredients have created a seemingly unending cycle of pesticide water pollution in both agricultural and urban watersheds. In California, the most populous and most agricultural US state, pesticide and water quality regulators realized in the 1990s that working independently of each other was not an effective approach to address pesticide water pollution. Over the years, these California agencies have developed a joint vision and have continued to develop a unified approach that has the potential to minimize pesticide risks to aquatic life through a combination of prevention, monitoring, and management actions, while maintaining pesticide availability for effective pest control. Key elements of the current California pesticide/water quality effort include: 1) pesticide and toxicity monitoring, coupled with watershed modeling, to maximize information obtained from monitoring; 2) predictive fate and exposure modeling to identify potential risks to aquatic life for new pesticide products when used as allowed by the label or to identify effective mitigation measures; and 3) management approaches tailored to the different pesticide uses, discharge sources, physical environments, and regulatory environments that exist for agricultural runoff, urban runoff, and municipal wastewater. Lessons from this effort may inform pesticide management elsewhere in the world as well as other chemical regulatory programs, such as the recently reformed US Toxic Substances Control Act and California's Safer Consumer Products regulatory program. Environ Toxicol Chem 2020;39:953-966. © 2020 SETAC.
Collapse
Affiliation(s)
- Kelly Moran
- TDC Environmental, LLC, San Mateo, California, USA
| | - Brian Anderson
- University of California, Davis, Monterey, California, USA
| | - Bryn Phillips
- University of California, Davis, Monterey, California, USA
| | - Yuzhou Luo
- California Department of Pesticide Regulation, Sacramento, California, USA
| | - Nan Singhasemanon
- California Department of Pesticide Regulation, Sacramento, California, USA
| | - Richard Breuer
- California State Water Resources Control Board, Sacramento, California, USA
| | - Dawit Tadesse
- California State Water Resources Control Board, Sacramento, California, USA
| |
Collapse
|
21
|
Holmes CM, Dyer SD, Vamshi R, Maples-Reynolds N, Davies IA. A National-Scale Framework for Visualizing Riverine Concentrations of Microplastics Released from Municipal Wastewater Treatment Incorporating Generalized Instream Losses. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:210-219. [PMID: 31597209 DOI: 10.1002/etc.4610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Down-the-drain exposure models provide a valuable tool for estimating environmental exposure to substances which are treated and discharged by municipal wastewater-treatment plants (WWTPs). Microplastics may enter WWTPs from consumer activities and disposal. An exposure framework was developed using the iSTREEM® model, which estimates spatially explicit concentrations of substances in riverine systems across the United States and portions of Ontario, Canada. One hundred simulations covering a range of WWTP removal and instream loss rates (proxy for net sedimentation) were incorporated into a Web-based visualization tool for user exploration of relative concentrations across simulations. Surface water concentrations specific to user-supplied tonnage were examined via interactive heat maps and cumulative distributions. Exploring the spatial aspect of iSTREEM results showed that modeling 90% WWTP removal and no instream loss resulted in 8.5% of the mass entering WWTPs discharged to marine estuaries (7.4%) or Great Lakes (1.1%) environments, with the remainder of the mass discharged (1.5%) in inland sinks or exiting the United States via rivers. Modeling an example instream loss of k = 0.1 d-1 (i.e., half-life = 7 d), terminal river segments contained 3.3% of influent mass (2.3% marine estuaries, 1.0% Great Lakes). Varying instream loss rates had substantial impacts on the total mass exported. The Web-based tool provided a user-based mechanism to visualize relative freshwater concentrations of microplastics across a large geographic area by varying simplified particle fate assumptions. Environ Toxicol Chem 2019;39:210-219. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Scott D Dyer
- Waterborne Environmental, Leesburg, Virginia, USA
- LeTourneau University, Longview, Texas, USA
| | - Raghu Vamshi
- Waterborne Environmental, Leesburg, Virginia, USA
| | | | | |
Collapse
|
22
|
Jolliet O, Wannaz C, Kilgallon J, Speirs L, Franco A, Lehner B, Veltman K, Hodges J. Spatial variability of ecosystem exposure to home and personal care chemicals in Asia. ENVIRONMENT INTERNATIONAL 2020; 134:105260. [PMID: 31765864 DOI: 10.1016/j.envint.2019.105260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
It is well recognized that there are currently limitations in the spatial and temporal resolution of environmental exposure models due to significant variabilities and uncertainties in model inputs and parameters. Here we present the updated Pangea multi-scale multimedia model based on the more spatially resolved, catchment-based hydrological HydroBASINS dataset covering the entire globe. We apply it to predict spatially-explicit exposure concentrations of linear alkylbenzene sulphonate (LAS) and triclosan (TCS) as two chemicals found in homecare (HC) and personal care (PC) products in river catchments across Asia, and test its potential for identifying/prioritizing catchments with higher exposure concentrations. In addition, we also identify the key parameters in the model framework driving higher concentrations and perform uncertainty analyses by applying Monte Carlo simulations on emissions and other non-spatial model inputs. The updated combination of Pangea with the HydroBASINS hydrological data represents a substantial improvement from the previous model with the gridded hydrological dataset (WWDRII) for modelling substance fate, with higher resolution and improved coverage in regions with lower flows, with the results demonstrating good agreement with monitored concentrations for TCS in both the freshwater (R2 = 0.55) and sediment (R2 = 0.81) compartments. The ranking of water basins by Predicted Environmental Concentrations (PECs) was similar for both TCS and LAS, with highest concentrations (Indus, Huang He, Cauvery, Huai He and Ganges) being one to two orders of magnitude greater than the water basins with lowest predicted PECs (Mekong and Brahmaputra). Emissions per unit volume of each catchment, chemical persistence, and river discharge were deemed to be the most influential factors on the variation of predicted PECs. Focusing on the Huang He (Yellow River) water basin, uncertainty confidence intervals (factor 31 for LAS and 6 for TCS) are much lower than the variability of predicted PECs across the Huang He catchments (factors 90,700 for LAS and 13,500 for TCS).
Collapse
Affiliation(s)
- Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Cedric Wannaz
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States; Eurisko Research, 3107 Village Circle, Ann Arbor, 48108 MI, United States
| | - John Kilgallon
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, United Kingdom
| | - Lucy Speirs
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, United Kingdom
| | - Antonio Franco
- Eurisko Research, 3107 Village Circle, Ann Arbor, 48108 MI, United States
| | - Bernhard Lehner
- Department of Geography, McGill University, Montreal, Quebec H3A 0B9, Canada
| | - Karin Veltman
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Juliet Hodges
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, United Kingdom
| |
Collapse
|
23
|
Nishioka T, Iwasaki Y, Ishikawa Y, Yamane M, Morita O, Honda H. Validation of AIST-SHANEL Model Based on Spatiotemporally Extensive Monitoring Data of Linear Alkylbenzene Sulfonate in Japan: Toward a Better Strategy on Deriving Predicted Environmental Concentrations. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:750-759. [PMID: 31050181 PMCID: PMC6852430 DOI: 10.1002/ieam.4167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/03/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Strategies for deriving predicted environmental concentrations (PECs) using environmental exposure models have become increasingly important in the environmental risk assessment of chemical substances. However, many strategies are not fully developed owing to uncertainties in the derivation of PECs across spatially extensive areas. Here, we used 3-year environmental monitoring data (river: 11 702 points; lake: 1867 points; sea: 12 points) on linear alkylbenzene sulfonate (LAS) in Japan to evaluate the ability of the National Institute of Advanced Industrial Science and Technology (AIST)-Standardized Hydrology-Based Assessment Tool for the Chemical Exposure Load (SHANEL) model developed to predict chemical concentrations in major Japanese rivers. The results indicate that the estimation ability of the AIST-SHANEL model conforms more closely to the actual measured values in rivers than it does for lakes and seas (correlation coefficient: 0.46; proportion within the 10× factor range: 82%). In addition, the 95th percentile, 90th percentile, 50th percentile, and mean values of the distributions of the measured values (14 µg/L, 8.2 µg/L, 0.88 µg/L, and 3.4 µg/L, respectively) and estimated values (19 µg/L, 13 µg/L, 1.4 µg/L, and 4.2 µg/L, respectively) showed high concordance. The results suggest that AIST-SHANEL may be useful in estimating summary statistics (e.g., 95th and 90th percentiles) of chemical concentrations in major rivers throughout Japan. Given its practical use and high accuracy, these environmental risk assessments are suitable for a wide range of regions and can be conducted using representative estimated values, such as the 95th percentile. Integr Environ Assess Manag 2019;15:750-759. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Tohru Nishioka
- R&D Safety Science Research, Kao CorporationTochigiJapan
| | - Yuichi Iwasaki
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
| | - Yuriko Ishikawa
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
| | | | - Osamu Morita
- R&D Safety Science Research, Kao CorporationTochigiJapan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao CorporationTochigiJapan
| |
Collapse
|
24
|
Douziech M, Oldenkamp R, van Zelm R, King H, Hendriks AJ, Ficheux AS, Huijbregts MAJ. Confronting variability with uncertainty in the ecotoxicological impact assessment of down-the-drain products. ENVIRONMENT INTERNATIONAL 2019; 126:37-45. [PMID: 30776748 DOI: 10.1016/j.envint.2019.01.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 05/07/2023]
Abstract
The use of down-the-drain products and the resultant release of chemicals may lead to pressures on the freshwater environment. Ecotoxicological impact assessment is a commonly used approach to assess chemical products but is still influenced by several uncertainty and variability sources. As a result, the robustness and reliability of such assessments can be questioned. A comprehensive and systematic assessment of these sources is, therefore, needed to increase their utility and credibility. In this study, we present a method to systematically analyse the uncertainty and variability of the potential ecotoxicological impact (PEI) of chemicals using a portfolio of 54 shampoo products. We separately quantified the influence of the statistical uncertainty in the prediction of physicochemical properties and freshwater toxicity as predicted from Quantitative Structure-Property Relationships (QSPRs) and Quantitative Structure-Activity Relationships (QSARs) respectively, and of various sources of spatial and technological variability as well as variability in consumer habits via 2D Monte Carlo simulations. Overall, the variation in the PEIs of shampoo use was mainly the result of uncertainty due to the use of toxicity data from three species only. All uncertainty sources combined resulted in PEIs ranging on average over seven orders of magnitude (ratio of the 90th to the 10th percentile) so that an absolute quantification of the ecological risk would not be meaningful. In comparison, variation in shampoo composition was the most influential source of variability, although less than compared to uncertainty, leading to PEIs ranging over three orders of magnitude. Increasing the number of toxicity data by increasing the number of species, either through additional measurements or ecotoxicological modelling (e.g. using Interspecies Correlation Equations), should get priority to improve the reliability of PEIs. These conclusions are not limited to shampoos but are applicable more generally to the down-the-drain products since they all have similar data limitations and associated uncertainties relating to the availability of ecotoxicity data and variability in consumer habits and use.
Collapse
Affiliation(s)
- Mélanie Douziech
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands.
| | - Rik Oldenkamp
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands; Environment Department, University of York, York, United Kingdom
| | - Rosalie van Zelm
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands
| | - Henry King
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire MK441LQ, United Kingdom
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands
| | - Anne-Sophie Ficheux
- Laboratoire d'Evaluation du Risque Chimique pour le Consommateur (LERCCo), Université Européenne de Bretagne e Université de Bretagne Occidentale (UEB-UBO), UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu, CS93837, 29238 Brest Cedex 3, France
| | - Mark A J Huijbregts
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands
| |
Collapse
|
25
|
Barber LB, Rapp JL, Kandel C, Keefe SH, Rice J, Westerhoff P, Bertolatus DW, Vajda AM. Integrated Assessment of Wastewater Reuse, Exposure Risk, and Fish Endocrine Disruption in the Shenandoah River Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3429-3440. [PMID: 30888795 DOI: 10.1021/acs.est.8b05655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reuse of municipal and industrial wastewater treatment plant (WWTP) effluent is used to augment freshwater supplies globally. The Shenandoah River Watershed (U.S.A.) was selected to conduct on-site exposure experiments to assess endocrine disrupting characteristics of different source waters. This investigation integrates WWTP wastewater reuse modeling, hydrological and chemical characterization, and in vivo endocrine disruption bioassessment to assess contaminant sources, exposure pathways, and biological effects. The percentage of accumulated WWTP effluent in each river reach (ACCWW%) was used to predict environmental concentrations for consumer product chemicals (boron), pharmaceutical compounds (carbamazepine), and steroidal estrogens (estrone, 17-β-estradiol, estriol, and 17-α-ethinylestradiol). Fish endocrine disruption was evaluated using vitellogenin induction in adult male or larval fathead minnows. Water samples were analyzed for >500 inorganic and organic constituents to characterize the complex contaminant mixtures. Municipal ACCWW% at drinking water treatment plant surface water intakes ranged from <0.01 to 2.0% under mean-annual streamflow and up to 4.5% under mean-August streamflow. Measured and predicted environmental concentrations resulted in 17-β-estradiol equivalency quotients ranging from 0.002 to 5.0 ng L-1 indicating low-to-moderate risk of fish endocrine disruption. Results from the fish exposure experiments showed low (0.5- to 3.2-fold) vitellogenin induction in adult males.
Collapse
Affiliation(s)
- Larry B Barber
- U.S. Geological Survey , 3215 Marine Street , Boulder , Colorado 80303 , United States
| | - Jennifer L Rapp
- U.S. Geological Survey , 1730 East Parham Road , Richmond , Virginia 23228 , United States
| | - Chintamani Kandel
- U.S. Geological Survey , 1730 East Parham Road , Richmond , Virginia 23228 , United States
| | - Steffanie H Keefe
- U.S. Geological Survey , 3215 Marine Street , Boulder , Colorado 80303 , United States
| | - Jacelyn Rice
- Department of Engineering Technology and Construction Management , University of North Carolina-Charlotte , Charlotte , North Carolina 28223 , United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85287-3005 , United States
| | - David W Bertolatus
- Department of Integrative Biology , University of Colorado Denver , CB 171, Denver , Colorado 80217 , United States
| | - Alan M Vajda
- Department of Integrative Biology , University of Colorado Denver , CB 171, Denver , Colorado 80217 , United States
| |
Collapse
|
26
|
Oldenkamp R, Hoeks S, Čengić M, Barbarossa V, Burns EE, Boxall AB, Ragas AMJ. A High-Resolution Spatial Model to Predict Exposure to Pharmaceuticals in European Surface Waters: ePiE. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12494-12503. [PMID: 30303372 PMCID: PMC6328286 DOI: 10.1021/acs.est.8b03862] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Environmental risk assessment of pharmaceuticals requires the determination of their environmental exposure concentrations. Existing exposure modeling approaches are often computationally demanding, require extensive data collection and processing efforts, have a limited spatial resolution, and have undergone limited evaluation against monitoring data. Here, we present ePiE (exposure to Pharmaceuticals in the Environment), a spatially explicit model calculating concentrations of active pharmaceutical ingredients (APIs) in surface waters across Europe at ∼1 km resolution. ePiE strikes a balance between generating data on exposure at high spatial resolution while having limited computational and data requirements. Comparison of model predictions with measured concentrations of a diverse set of 35 APIs in the river Ouse (UK) and Rhine basins (North West Europe), showed around 95% were within an order of magnitude. Improved predictions were obtained for the river Ouse basin (95% within a factor of 6; 55% within a factor of 2), where reliable consumption data were available and the monitoring study design was coherent with the model outputs. Application of ePiE in a prioritisation exercise for the Ouse basin identified metformin, gabapentin, and acetaminophen as priority when based on predicted exposure concentrations. After incorporation of toxic potency, this changed to desvenlafaxine, loratadine, and hydrocodone.
Collapse
Affiliation(s)
- Rik Oldenkamp
- Department
of Environmental Science, Radboud University
Nijmegen, 6500GL, Nijmegen, The Netherlands
- Environment
Department, University of York, Heslington, York YO10 5DD, United Kingdom
- E-mail:
| | - Selwyn Hoeks
- Department
of Environmental Science, Radboud University
Nijmegen, 6500GL, Nijmegen, The Netherlands
| | - Mirza Čengić
- Department
of Environmental Science, Radboud University
Nijmegen, 6500GL, Nijmegen, The Netherlands
| | - Valerio Barbarossa
- Department
of Environmental Science, Radboud University
Nijmegen, 6500GL, Nijmegen, The Netherlands
| | - Emily E. Burns
- Environment
Department, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Alistair B.A. Boxall
- Environment
Department, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ad M. J. Ragas
- Department
of Environmental Science, Radboud University
Nijmegen, 6500GL, Nijmegen, The Netherlands
- Faculty
of Management, Science & Technology, Open Universiteit, Valkenburgerweg
177, 6419 AT Heerlen, The Netherlands
| |
Collapse
|
27
|
McCarty LS, Borgert CJ, Posthuma L. The regulatory challenge of chemicals in the environment: Toxicity testing, risk assessment, and decision-making models. Regul Toxicol Pharmacol 2018; 99:289-295. [PMID: 30291878 DOI: 10.1016/j.yrtph.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
Abstract
Environmental assessment for chemicals relies on models of fate, exposure, toxicity, risk, and impacts. Together, these models should provide scientific support for regulatory risk management decision-making, assuming that progress through the data-information-knowledge-wisdom (DIKW) hierarchy is both appropriate and sufficient. Improving existing regulatory processes necessitates continuing enhancement of interpretation and evaluation of key data for use in decision-making schemes, including ecotoxicity testing data, physical-chemical properties, and environmental fate processes. Yet, as environmental objectives also increase in scope and sophistication to encompass a safe chemical economy, testing, risk assessment, and decision-making are subject to additional complexity due to the ongoing interaction between science and policy models. Problems associated with existing design and implementation choices in science and policy have both limited needed development beyond chemo-centric environmental risk assessment modeling and constrained needed improvements in environmental decision-making. Without a thorough understanding of either the scientific foundations or the disparate evaluation processes for validation, quality, and relevance, this results in complex technical and philosophical problems that increase costs and decrease productivity. Both over- and under-management of chemicals are consequences of failure to validate key model assumptions, unjustified standardized views on data selection, and inordinate reification (i.e., abstract concepts are wrongly treated as facts).
Collapse
Affiliation(s)
- L S McCarty
- Scientific Research & Consulting, Newmarket, ON, L3X 3E2, Canada.
| | - C J Borgert
- Applied Pharmacology and Toxicology, Inc., Gainesville, FL, 32605, USA.
| | - L Posthuma
- National Institute of Public Health and the Environment (RIVM), NL-3720, BA, Bilthoven, the Netherlands; Radboud University Nijmegen, Department of Environmental Science, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Quinn SE, Dyer SD, Fan M, Keller VDJ, Johnson AC, Williams RJ. Predicting risks from down-the-drain chemicals in a developing country: Mexico and linear alkylbenzene sulfonate as a case study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2475-2486. [PMID: 29878446 DOI: 10.1002/etc.4181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/21/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
It is recognized that the amount of natural dilution available can make a significant difference in the exposure and risk assessment of chemicals that emanate from wastewater treatment plants (WWTPs). However, data availability is a common limiting factor in exposure assessments for emerging markets. In the present study, we used a novel approach to derive dilution factors for the receiving waters within 5 km of wastewater discharge points in Mexico by combining locally measured river volumes, ecoregion categorization, data on WWTP capacity, and global river network models. Distributions of wastewater effluent into receiving stream dilution factors were developed for the entire country and organized by ecoregion type to explore spatial differences. The distribution of dilution factors in Mexico ranged from >1000 in tropical and temperate ecoregions to 1 in desert ecoregions. To demonstrate its utility, dilution factors were used to develop a probabilistic model to explore the potential ecological risks of the high-volume surfactant linear alkylbenzene sulfonate (LAS), commonly used in down-the-drain cleaning products. The predicted LAS river exposure values were below the predicted no-effect concentration in all regions. The methodology developed for Mexico can be used to derive refined exposure assessments in other countries with emerging markets throughout the world, resulting in more realistic risk assessments. Environ Toxicol Chem 2018;37:2475-2486. © 2018 SETAC.
Collapse
Affiliation(s)
| | | | - Ming Fan
- Procter & Gamble, Cincinnati, Ohio, USA
| | | | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Richard J Williams
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom
| |
Collapse
|
29
|
Imaizumi Y, Suzuki N, Shiraishi F, Nakajima D, Serizawa S, Sakurai T, Shiraishi H. Development and validation of a simulation method, PeCHREM, for evaluating spatio-temporal concentration changes of paddy herbicides in rivers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:120-132. [PMID: 29328337 DOI: 10.1039/c7em00517b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In pesticide risk management in Japan, predicted environmental concentrations are estimated by a tiered approach, and the Ministry of the Environment also performs field surveys to confirm the maximum concentrations of pesticides with risk concerns. To contribute to more efficient and effective field surveys, we developed the Pesticide Chemicals High Resolution Estimation Method (PeCHREM) for estimating spatially and temporally variable emissions of various paddy herbicides from paddy fields to the environment. We used PeCHREM and the G-CIEMS multimedia environmental fate model to predict day-to-day environmental concentration changes of 25 herbicides throughout Japan. To validate the PeCHREM/G-CIEMS model, we also conducted a field survey, in which river waters were sampled at least once every two weeks at seven sites in six prefectures from April to July 2009. In 20 of 139 sampling site-herbicide combinations in which herbicides were detected in at least three samples, all observed concentrations differed from the corresponding prediction by less than one order of magnitude. We also compared peak concentrations and the dates on which the concentrations reached peak values (peak dates) between predictions and observations. The peak concentration differences between predictions and observations were less than one order of magnitude in 66% of the 166 sampling site-herbicide combinations in which herbicide was detected in river water. The observed and predicted peak dates differed by less than two weeks in 79% of these 166 combinations. These results confirm that the PeCHREM/G-CIEMS model can improve the efficiency and effectiveness of surveys by predicting the peak concentrations and peak dates of various herbicides.
Collapse
Affiliation(s)
- Yoshitaka Imaizumi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kapo KE. Author's response to Shappell (2016). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:615. [PMID: 27640409 DOI: 10.1002/ieam.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
|
31
|
Shappell NW. A transformational approach to improve interpretation of environmental data. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:613-614. [PMID: 27640408 DOI: 10.1002/ieam.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Nancy W Shappell
- Biosciences Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fargo, North Dakota.
| |
Collapse
|