1
|
Doussan I, Barthélémy C, Berny P, Bureau-Point E, Corio-Costet MF, Le Perchec S, Mamy L. Regulatory framework for the assessment of the impacts of plant protection products on biodiversity: review of strengths and limits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36577-36590. [PMID: 38760600 DOI: 10.1007/s11356-024-33638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The placing of plant protection products (PPPs) on the market in the European Union is governed by numerous regulations. These regulations are among the most stringent in the world, however they have been the subject of criticisms especially because of the decline in biodiversity. The objectives of this work were to review (1) the functioning and actors involved in the PPP framework processes, (2) the construction of the environmental risk assessment focused on biodiversity, and (3) the suggested ways to respond to the identified limits. Both literature from social sciences and ecotoxicology were examined. Despite the protective nature of the European regulation on PPPs, the very imperfect consideration of biodiversity in the evaluation process was underlined. The main limits are the multiplicity of applicable rules, the routinization of the evaluation procedures, the lack of consideration of social data, and the lack of independence of the evaluation. Strengths of the regulation are the decision to integrate a systemic approach in the evaluation of PPPs, the development of modeling tools, and the phytopharmacovigilance systems. The avenues for improvement concern the realism of the risk assessment (species used, cocktail effects…), a greater transparency and independence in the conduct of evaluations, and the opening of the evaluation and decision-making processes to actors such as beekeepers or NGOs. Truly interdisciplinary reflections crossing the functioning of the living world, its alteration by PPPs, and how these elements question the users of PPPs would allow to specify social actions, public policies, and their regulation to better protect biodiversity.
Collapse
Affiliation(s)
- Isabelle Doussan
- GREDEG, CNRS, INRAE, Université Côte d'Azur, Valbonne, 06560, France
| | | | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire de Lyon, 69670, Marcy l'étoile, France
| | - Eve Bureau-Point
- Centre Norbert Elias, UMR 8562, CNRS, UAPV, 13002, Marseille, AMU, France
| | | | | | - Laure Mamy
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, France.
| |
Collapse
|
2
|
Kostić S, Kebert M, Teslić N, Stojanović DB, Zorić M, Kovačević B, Orlović S. Polycyclic aromatic hydrocarbon (PAH) phytoaccumulation in urban areas by Platanus × acerifolia, Celtis australis, and Tilia grandifolia leaves and branches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31273-31286. [PMID: 38632198 DOI: 10.1007/s11356-024-33280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations in the leaves and 1-year-old branches of three common tree species growing in a middle-sized city located in a moderate climate zone were estimated. For this purpose, PAH phytoaccumulation in Platanus × acerifolia, Celtis australis, and Tilia grandifolia species from highly urbanized, traffic congested, and highly PAH-contaminated streets was compared with trees from non-contaminated parks in the same urban core. The gathered data was used to define 17 PAH profiles, identify the main PAH pollution emission sources, and determine the organ and species specificity of PAHs accumulation. Due to the direct absorption of polluted air via stomata, the leaves accumulated up to 30% more PAHs compared to the 1-year-old branches. As expected, PAH concentrations were much higher in street trees, while heavy weight PAHs (with five and six rings) were accumulated in the highest concentrations. The highest foliar Σ17 PAH concentrations were detected in street-grown C. australis, followed by P. acerifolia and T. grandifolia (502.68, 488.45, and 339.47 ng g-1 dry weight (DW), respectively). The same pattern was noted for Σ17 PAHs in branches (414.89, 327.58, and 342.99 ng g-1 DW, respectively). Thus, T. grandifolia emerged as the least effective PAH sink as it accumulated up to ~ 40% less PAHs than P. acerifolia and C. australis leaves/branches. Among the 17 tracked PAHs, benzo[a]anthracene, benzo[a]pyrene, dibenzo[a,h]anthracene, and pyrene were found to have accumulated in the highest concentrations in all analyzed species irrespective of the site, and accounted for more than 50% of the total detected PAHs. Finally, a "black box" about species and organ specificity, as well as specific drivers that limit PAHs uptake capacity by trees, was opened, while this work provides insights into further PAH phytoremediation strategies.
Collapse
Affiliation(s)
- Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia.
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Dejan B Stojanović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Martina Zorić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Branislav Kovačević
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000, Novi Sad, Serbia
| |
Collapse
|
3
|
Wohlleben W, Mehling A, Landsiedel R. Lessons Learned from the Grouping of Chemicals to Assess Risks to Human Health. Angew Chem Int Ed Engl 2023; 62:e202210651. [PMID: 36254879 DOI: 10.1002/anie.202210651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
In analogy to the periodic system that groups elements by their similarity in structure and chemical properties, the hazard of chemicals can be assessed in groups having similar structures and similar toxicological properties. Here we review case studies of chemical grouping strategies that supported the assessment of hazard, exposure, and risk to human health. By the EU-REACH and the US-TSCA New Chemicals Program, structural similarity is commonly used as the basis for grouping, but that criterion is not always adequate and sufficient. Based on the lessons learned, we derive ten principles for grouping, including: transparency of the purpose, criteria, and boundaries of the group; adequacy of methods used to justify the group; and inclusion or exclusion of substances in the group by toxicological properties. These principles apply to initial grouping to prioritize further actions as well as to definitive grouping to generate data for risk assessment. Both can expedite effective risk management.
Collapse
Affiliation(s)
- Wendel Wohlleben
- Department of Analytical and Material Science, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Annette Mehling
- Dept. of Advanced Formulation and Performance Technology, BASF Personal Care and Nutrition GmbH, 40589, Duesseldorf, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Free University of Berlin, Biology, Chemistry and Pharmacy-Pharmacology and Toxicology, 14195, Berlin, Germany
| |
Collapse
|
4
|
Busquet F, Laperrouze J, Jankovic K, Krsmanovic T, Ignasiak T, Leoni B, Apic G, Asole G, Guigó R, Marangio P, Palumbo E, Perez-Lluch S, Wucher V, Vlot AH, Anholt R, Mackay T, Escher BI, Grasse N, Huchthausen J, Massei R, Reemtsma T, Scholz S, Schüürmann G, Bondesson M, Cherbas P, Freedman JH, Glaholt S, Holsopple J, Jacobson SC, Kaufman T, Popodi E, Shaw JJ, Smoot S, Tennessen JM, Churchill G, von Clausbruch CC, Dickmeis T, Hayot G, Pace G, Peravali R, Weiss C, Cistjakova N, Liu X, Slaitas A, Brown JB, Ayerbe R, Cabellos J, Cerro-Gálvez E, Diez-Ortiz M, González V, Martínez R, Vives PS, Barnett R, Lawson T, Lee RG, Sostare E, Viant M, Grafström R, Hongisto V, Kohonen P, Patyra K, Bhaskar PK, Garmendia-Cedillos M, Farooq I, Oliver B, Pohida T, Salem G, Jacobson D, Andrews E, Barnard M, Čavoški A, Chaturvedi A, Colbourne JK, Epps DJT, Holden L, Jones MR, Li X, Müller F, Ormanin-Lewandowska A, Orsini L, Roberts R, Weber RJM, Zhou J, Chung ME, Sanchez JCG, Diwan GD, Singh G, Strähle U, Russell RB, Batista D, Sansone SA, Rocca-Serra P, Du Pasquier D, Lemkine G, Robin-Duchesne B, Tindall A. The Precision Toxicology Initiative. Toxicol Lett 2023:S0378-4274(23)00180-7. [PMID: 37211341 DOI: 10.1016/j.toxlet.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The goal of PrecisionTox is to overcome conceptual barriers to replacing traditional mammalian chemical safety testing by accelerating the discovery of evolutionarily conserved toxicity pathways that are shared by descent among humans and more distantly related animals. An international consortium is systematically testing the toxicological effects of a diverse set of chemicals on a suite of five model species comprising fruit flies, nematodes, water fleas, and embryos of clawed frogs and zebrafish along with human cell lines. Multiple forms of omics and comparative toxicology data are integrated to map the evolutionary origins of biomolecular interactions, which are predictive of adverse health effects, to major branches of the animal phylogeny. These conserved elements of adverse outcome pathways (AOPs) and their biomarkers are expect to provide mechanistic insight useful for regulating groups of chemicals based on their shared modes of action. PrecisionTox also aims to quantify risk variation within populations by recognizing susceptibility as a heritable trait that varies with genetic diversity. This initiative incorporates legal experts and collaborates with risk managers to address specific needs within European chemicals legislation, including the uptake of new approach methodologies (NAMs) for setting precise regulatory limits on toxic chemicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nico Grasse
- Helmholtz Centre for Environmental Research, DE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pistocchi A, Alygizakis NA, Brack W, Boxall A, Cousins IT, Drewes JE, Finckh S, Gallé T, Launay MA, McLachlan MS, Petrovic M, Schulze T, Slobodnik J, Ternes T, Van Wezel A, Verlicchi P, Whalley C. European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157124. [PMID: 35792263 DOI: 10.1016/j.scitotenv.2022.157124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.
Collapse
Affiliation(s)
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Alistair Boxall
- Environment and Geography Department, University of York, Heslington York YO10 5NG, UK
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jörg E Drewes
- Urban Water Systems Engineering, Technical University of Munich, D-85748 Garching, Germany
| | - Saskia Finckh
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tom Gallé
- LIST, Environmental Research and Innovation Dept., 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Marie A Launay
- Micropollutants Competence Centre Baden-Württemberg, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569 Stuttgart, Germany
| | - Michael S McLachlan
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Girona, and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | - Annemarie Van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
6
|
Gilles L, Govarts E, Rodriguez Martin L, Andersson AM, Appenzeller BMR, Barbone F, Castaño A, Coertjens D, Den Hond E, Dzhedzheia V, Eržen I, López ME, Fábelová L, Fillol C, Franken C, Frederiksen H, Gabriel C, Haug LS, Horvat M, Halldórsson TI, Janasik B, Holcer NJ, Kakucs R, Karakitsios S, Katsonouri A, Klánová J, Kold-Jensen T, Kolossa-Gehring M, Konstantinou C, Koponen J, Lignell S, Lindroos AK, Makris KC, Mazej D, Morrens B, Murínová ĽP, Namorado S, Pedraza-Diaz S, Peisker J, Probst-Hensch N, Rambaud L, Rosolen V, Rucic E, Rüther M, Sarigiannis D, Tratnik JS, Standaert A, Stewart L, Szigeti T, Thomsen C, Tolonen H, Eiríksdóttir Á, Van Nieuwenhuyse A, Verheyen VJ, Vlaanderen J, Vogel N, Wasowicz W, Weber T, Zock JP, Sepai O, Schoeters G. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6787. [PMID: 35682369 PMCID: PMC9180444 DOI: 10.3390/ijerph19116787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL® DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll® DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed.
Collapse
Affiliation(s)
- Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | - Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | | | - Fabio Barbone
- Department of Medicine—DAME, University of Udine, Via Colugna 50, 33100 Udine, Italy;
| | - Argelia Castaño
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.C.); (M.E.L.); (S.P.-D.)
| | - Dries Coertjens
- Department of Sociology, University of Antwerp, 2020 Antwerp, Belgium; (D.C.); (B.M.)
| | - Elly Den Hond
- Provincial Institute for Hygiene, 2000 Antwerp, Belgium; (E.D.H.); (C.F.)
| | - Vazha Dzhedzheia
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Ivan Eržen
- National Institute of Public Health, 1000 Ljubljana, Slovenia;
| | - Marta Esteban López
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.C.); (M.E.L.); (S.P.-D.)
| | - Lucia Fábelová
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.F.); (Ľ.P.M.)
| | - Clémence Fillol
- Santé Publique France, Environmental and Occupational Health Division, 94415 Saint-Maurice, France; (C.F.); (L.R.)
| | - Carmen Franken
- Provincial Institute for Hygiene, 2000 Antwerp, Belgium; (E.D.H.); (C.F.)
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Line Småstuen Haug
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway; (L.S.H.); (C.T.)
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.H.); (D.M.); (J.S.T.)
| | | | - Beata Janasik
- Nofer Institute of Occupational Medicine (NIOM), 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Nataša Janev Holcer
- Croatian Institute of Public Health, Division for Environmental Health, 1000 Zagreb, Croatia;
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Réka Kakucs
- National Public Health Center, 1097 Budapest, Hungary; (R.K.); (T.S.)
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Andromachi Katsonouri
- Cyprus State General Laboratory, Ministry of Health , P.O. Box 28648, 2081 Nicosia, Cyprus;
| | - Jana Klánová
- Masaryk University Research Centre for Toxic Compounds in the Environment (RECETOX), 625 00 Bohunice, Czech Republic;
| | - Tina Kold-Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Marike Kolossa-Gehring
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3603 Limassol, Cyprus; (C.K.); (K.C.M.)
| | - Jani Koponen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, 00271 Helsinki, Finland;
| | - Sanna Lignell
- Swedish Food Agency, 751 26 Uppsala, Sweden; (S.L.); (A.K.L.)
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3603 Limassol, Cyprus; (C.K.); (K.C.M.)
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.H.); (D.M.); (J.S.T.)
| | - Bert Morrens
- Department of Sociology, University of Antwerp, 2020 Antwerp, Belgium; (D.C.); (B.M.)
| | | | - Sónia Namorado
- National Institute of Health, 1649-016 Lisbon, Portugal;
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Susana Pedraza-Diaz
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.C.); (M.E.L.); (S.P.-D.)
| | - Jasmin Peisker
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4051 Basel, Switzerland
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94415 Saint-Maurice, France; (C.F.); (L.R.)
| | - Valentina Rosolen
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Enrico Rucic
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Maria Rüther
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
- Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto—Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.H.); (D.M.); (J.S.T.)
| | - Arnout Standaert
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | | | - Tamás Szigeti
- National Public Health Center, 1097 Budapest, Hungary; (R.K.); (T.S.)
| | - Cathrine Thomsen
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway; (L.S.H.); (C.T.)
| | - Hanna Tolonen
- Department of Health Security, Finnish Institute for Health and Welfare (THL), P.O. Box 95, 70701 Kuopio, Finland;
| | - Ása Eiríksdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland; (T.I.H.); (Á.E.)
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire National de Santé, 3555 Dudelange, Luxembourg;
| | - Veerle J. Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
- Department of Biomedical Sciences, University of Antwerp, 2020 Antwerp, Belgium
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TC Utrecht, The Netherlands;
| | - Nina Vogel
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine (NIOM), 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Till Weber
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Jan-Paul Zock
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands;
| | - Ovnair Sepai
- UK Health Security Agency, London SE1 8UG, UK; (L.S.); (O.S.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
- Department of Biomedical Sciences, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
7
|
Scholz S, Brack W, Escher BI, Hackermüller J, Liess M, von Bergen M, Wick LY, Zenclussen AC, Altenburger R. The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment. Arch Toxicol 2022; 96:2381-2386. [PMID: 35543751 PMCID: PMC9217765 DOI: 10.1007/s00204-022-03313-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Werner Brack
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438, Frankfurt, Germany
- Department of effect directed analysis, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Faculty of Mathematics and Informatics, University of Leipzig, 04109, Leipzig, Germany
| | - Matthias Liess
- Department Systems Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Martin von Bergen
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstraße 34, 04103, Leipzig, Germany
| | - Lukas Y Wick
- Department Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Ana C Zenclussen
- Department Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| |
Collapse
|