1
|
Ihedioha OC, Marcarian HQ, Sivakoses A, Beverley SM, McMahon-Pratt D, Bothwell ALM. Leishmania major surface components and DKK1 signalling via LRP6 promote migration and longevity of neutrophils in the infection site. Front Immunol 2024; 15:1473133. [PMID: 39502693 PMCID: PMC11534728 DOI: 10.3389/fimmu.2024.1473133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background Host-related factors highly regulate the increased circulation of neutrophils during Leishmania infection. Platelet-derived Dickkopf-1 (DKK1) is established as a high-affinity ligand to LRP6. Recently, we demonstrated that DKK1 upregulates leukocyte-platelet aggregation, infiltration of neutrophils to the draining lymph node and Th2 differentiation during Leishmania infection, suggesting the potential involvement of the DKK1-LRP6 signalling pathway in neutrophil migration in infectious diseases. Results In this study, we further explored the potential role of DKK1-LRP6 signalling in the migration and longevity of activated neutrophils in the infection site using BALB/c mice with PMNs deficient in LRP6 (LRP6NKO) or BALB/c mice deficient in both PMN LRP6 and platelet DKK1 (LRP6NKO DKK1PKO). Relative to the infected wild-type BALB/c mice, reduced neutrophil activation at the infection site of LRP6NKO or LRP6NKO DKK1PKO mice was noted. The neutrophils obtained from either infected LRP6NKO or LRP6NKO DKK1PKO mice additionally showed a high level of apoptosis. Notably, the level of LRP6 expressing neutrophils was elevated in infected BALB/c mice. Relative to infected BALB/c mice, a significant reduction in parasite load was observed in both LRP6NKO and LRP6NKO DKK1PKO infected mice. Notably, DKK1 levels were comparable in the LRP6NKO and BALB/c mice in response to infection, indicating that PMN activation is the major pathway for DKK1 in promoting parasitemia. Parasite-specific components also play a crucial role in modulating neutrophil circulation in Leishmania disease. Thus, we further determine the contribution of Leishmania membrane components in the migration of neutrophils to the infection site using null mutants deficient in LPG synthesis (Δlpg1- ) or lacking all ether phospholipids (plasmalogens, LPG, and GIPLs) synthesis (Δads1- ). Relative to the WT controls, Δads1- parasite-infected mice showed a sustained decrease in neutrophils and neutrophil-platelet aggregates (for at least 14 days PI), while neutrophils returned to normal in Δlpg1- parasite-infected mice after day 3 PI. Conclusion Our results suggest that DKK1 signalling and Leishmania pathogen-associated molecular patterns appear to regulate the migration and sustenance of viable activated neutrophils in the infection site resulting in chronic type 2 cell-mediated inflammation.
Collapse
Affiliation(s)
- Olivia C. Ihedioha
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Haley Q. Marcarian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Anutr Sivakoses
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, MO, United States
| | - Diane McMahon-Pratt
- Department of Epidemiology of Infectious Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Alfred L. M. Bothwell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Bejoy J, Farry JM, Qian ES, Dearing CH, Ware LB, Bastarache JA, Woodard LE. Ascorbate protects human kidney organoids from damage induced by cell-free hemoglobin. Dis Model Mech 2023; 16:dmm050342. [PMID: 37942584 PMCID: PMC10695115 DOI: 10.1242/dmm.050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin M. Farry
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eddie S. Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis H. Dearing
- Vanderbilt Experimental Research Training Inclusion Community Engagement Skills (VERTICES) program, Vanderbilt University, Nashville, TN 37232, USA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie A. Bastarache
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Lauren E. Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| |
Collapse
|
4
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
5
|
ALTINIŞIK HB, ALTINIŞIK U, AŞIK M. SIRS tanılı hastalarda enflamasyon ve kemik döngüsü arasındaki ilişkinin sklerostin ve Dickkopf-1 (DKK-1) düzeyleri ile değerlendirilmesi. FAMILY PRACTICE AND PALLIATIVE CARE 2022. [DOI: 10.22391/fppc.1102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: In intensive care units (ICU), patients remain bedridden for a long time. In addition, severe infections are frequently seen in ICUs. Both prolonged immobilization and serious infections are associated with bone tissue loss. The Wnt pathway has recently been focused on evaluating bone tissue loss. The Wnt pathway participates in both infections and the formation of bone tissue. Wnt pathway inhibitors sclerostin and Dickkopf-1 (DKK-1) inhibit bone formation and increase osteoclastic activity. In this study, we aimed to examine bone turnover by the Wnt inhibitors sclerostin and DKK-1 and their possible associations with inflammation in SIRS patients.Methods: We included 30 patients diagnosed with systemic inflammatory response syndrome (SIRS) in the study group and 16 in the control group. Serum sclerostin, DKK-1, white blood cell (WBC), and C-Reactive Protein (CRP) levels on the day of SIRS diagnosis (basal), the 7th, 14th, and 21stdays were evaluated in the study group, and the results were compared with the control group.Results: When the control group was compared with the basal SIRS, there was a significant elevation in both sclerostin (p=0.003) and DKK-1 (p=0.001). Statistical analysis showed significant decreases in sclerostin levels between basal and the 7th, 14th, and 21st days (p=0.033, p=0.003, p=0.002, respectively). Similarly, significant decreases in DKK-1 levels between basal and the 7th and 21st days (p=0.015, p=0.001, respectively) and an insignificant decrease on the 14th day (p=0.191) was observed. Sclerostin was positively and significantly correlated with WBC and CRP in basal and 7th-day measurements and WBC in 7th and 14th days. DKK-1 is positively and significantly correlated with WBC in basal and 7th-daymeasurements, while DKK-1 negatively correlates with CRP in basal-7th-day measurements.Conclusion: In this study, it was shown for the first time that the Wnt antagonists sclerostin and DKK-1 values are high in SIRS patients in ICU. Both biomarker levels decreased in parallel with the treatment. However, it could not be associated with disease severity and inflammatory marker levels. We believe that monitoring the change of Wnt antagonists will be useful in demonstrating bone turnover in patients with SIRS.Keywords: Dickkopf-1, Intensive care unit, Sclerostin, Systemic inflammatory response syndrome, Wnt signaling pathway, Bone turnover
Collapse
Affiliation(s)
- Hatice Betül ALTINIŞIK
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale
| | - Uğur ALTINIŞIK
- Department of Anesthesiology and Reanimation, Birinci International Hospital, Istanbul
| | - Mehmet AŞIK
- Department of Endocrinology And Metabolic Diseases, Mugla
| |
Collapse
|
6
|
Assessment of Systemic and Maxillary Bone Loss in Cancer Patients with Endo-Periodontal Lesions Using Dkk-1 Biomarker and Dental Radiological Examinations. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of our study was to correlate systemic bone loss by evaluating human Dickkopf-related protein 1 (Dkk-1) biomarker compared to horizontal bone loss as well as the presence and size of periapical lesions assessed by dental X-ray (ortopantomography—OPT) and cone beam computed tomography (CBCT) in patients with cancer in the ears, nose and throat (ENT) region vs. healthy controls. The study included 63 subjects divided into a study group of 33 cancer patients with ENT cancer (larynx/oropharynx/sinuses) and a control group of 30 healthy individuals. Blood samples were collected from both groups to assess Dkk-1 level using a sandwich enzyme immunoassay. The dental radiological examination consisted of a panoramic X-ray and a CBCT in order to appraise the horizontal bone loss, the presence and size of the periapical lesions in 2D vs. 3D images. The panoramic X-ray showed that in the control group, the maximum bone loss reached 13.2 mm, with an average of 4.930 ± 3.258 mm, while in the study group, the maximum horizontal bone loss was 11.3 mm, with an average of 5.191 ± 2.109 mm. The CBCT 3D investigation, when compared to the OPT, showed increased values for horizontal bone loss, both in the control group and in the study group; in the control group, the maximum bone loss reached 14.10 mm, with an average of 5.736 ± 3.471 mm, and in the study group, the maximum value was 12.40 mm, and the average was again slightly higher (6.152 ± 2.519 mm). The mean value for Dkk-1 in cancer patients was 1.209 ± 0.110 ng/mL, significantly lower than the value observed in healthy patients (1.712 ± 0.100 ng/mL). CBCT revealed higher values for the investigated parameters when compared to panoramic X-rays. Taking into account the preliminary nature of our study, we observed a significant correlation between the level of bone loss recorded by the Dkk-1 biomarker and radiological dental examination in patients with ENT cancer when compared to the control group.
Collapse
|
7
|
Park MH, Shin JH, Bothwell AL, Chae WJ. Dickkopf proteins in pathological inflammatory diseases. J Leukoc Biol 2022; 111:893-901. [PMID: 34890067 PMCID: PMC9889104 DOI: 10.1002/jlb.3ri0721-385r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
The human body encounters various challenges. Tissue repair and regeneration processes are augmented after tissue injury to reinstate tissue homeostasis. The Wnt pathway plays a crucial role in tissue repair since it induces target genes required for cell proliferation and differentiation. Since tissue injury causes inflammatory immune responses, it has become increasingly clear that the Wnt ligands can function as immunomodulators while critical for tissue homeostasis. The Wnt pathway and Wnt ligands have been studied extensively in cancer biology and developmental biology. While the Wnt ligands are being studied actively, how the Wnt antagonists and their regulatory mechanisms can modulate immune responses during chronic pathological inflammation remain elusive. This review summarizes DKK family proteins as immunomodulators, aiming to provide an overarching picture for tissue injury and repair. To this end, we first review the Wnt pathway components and DKK family proteins. Next, we will review DKK family proteins (DKK1, 2, and 3) as a new class of immunomodulatory protein in cancer and other chronic inflammatory diseases. Taken together, DKK family proteins and their immunomodulatory functions in chronic inflammatory disorders provide novel insights to understand immune diseases and make them attractive molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298,Massey Cancer Center, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
| | - Jae Hun Shin
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Alfred L.M. Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298,Massey Cancer Center, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
| |
Collapse
|
8
|
Dai L, Xu D, Wan C, Liu L, Wen F. DKK1 Positively Correlates with Lung Function in COPD Patients and Reduces Airway Inflammation. Int J Chron Obstruct Pulmon Dis 2022; 17:93-100. [PMID: 35027825 PMCID: PMC8749044 DOI: 10.2147/copd.s341249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose WNT/β-catenin signal pathway is a potential hope for lung tissue repair. We investigated the levels of Dickkopf‐1 (DKK1), an endogenous inhibitor of WNT/β-catenin signal pathway, in chronic obstructive pulmonary disease (COPD) patients and airway inflammation. Patients and Methods Collected the demographic and clinical characteristics of 36 healthy controls, 25 stable COPD patients and 10 acute exacerbation of COPD (AECOPD) patients, then performed pulmonary function and detected serum DKK1 levels. After over-expression of DKK1, detect the levels of DDK1, lipoprotein-related protein 6 (LRP6) and inflammatory factors in bronchial epithelial cells stimulated with cigarette smoke extract (CSE). Results Serum DKK1 were reduced in stable COPD patients compared to healthy controls (3866.72 ± 775.33 pg/mL vs 5317.61 ± 1317.20 pg/mL, p<0.0001), but there was no significant difference between stable and acutely exacerbated patients (3866.72 ± 775.33 pg/mL vs 3482.10 ± 841.25 pg/mL, p>0.05). DKK1 was positively correlated with FEV1 (r = 0.570, p<0.0001), FEV1/FVC (rho = 0.590, p<0.0001), FEV1/Pre (r = 0.517, p<0.0001). Multiple linear regression analysis also suggested that FEV1 levels were higher with increasing DKK1. In vitro, elevated IL-6, IL-8, TNF-α and decreased DKK1, LRP6 were found in Beas-2B cells after CSE treatments, and increased LRP6 and decreased inflammatory factors were found after overexpression of DKK1. Andrographolide restored the CSE-induced decrease in DKK1 and increase in IL-6 and IL-8. Conclusion DKK1 levels were decreased in COPD patients and positively correlated with lung function, overexpression of DKK1 and andrographolide attenuated airway cell inflammation, both suggesting a potential role in pathophysiology and providing a disease-specific biomarker pattern.
Collapse
Affiliation(s)
- Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chun Wan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Chu HY, Chen Z, Wang L, Zhang ZK, Tan X, Liu S, Zhang BT, Lu A, Yu Y, Zhang G. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front Immunol 2021; 12:658097. [PMID: 34093545 PMCID: PMC8174842 DOI: 10.3389/fimmu.2021.658097] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zihao Chen
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zong-Kang Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinhuan Tan
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Shuangshuang Liu
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Bao-Ting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
10
|
Al-Dujaili AH, Mousa RF, Al-Hakeim HK, Maes M. High Mobility Group Protein 1 and Dickkopf-Related Protein 1 in Schizophrenia and Treatment-Resistant Schizophrenia: Associations With Interleukin-6, Symptom Domains, and Neurocognitive Impairments. Schizophr Bull 2020; 47:530-541. [PMID: 32971537 PMCID: PMC7965081 DOI: 10.1093/schbul/sbaa136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) and treatment-resistant schizophrenia (TRS) are associated with aberrations in immune-inflammatory pathways. Increased high mobility group protein 1 (HMGB1), an inflammatory mediator, and Dickkopf-related protein (DKK1), a Wnt/β-catenin signaling antagonist, affect the blood-brain barrier and induce neurotoxic effects and neurocognitive deficits. AIM The present study aims to examine HMGB1 and DDK1 in nonresponders to treatments (NRTT) with antipsychotics (n = 60), partial RTT (PRTT, n = 55), and healthy controls (n = 43) in relation to established markers of SCZ, including interleukin (IL)-6, IL-10, and CCL11 (eotaxin), and to delineate whether these proteins are associated with the SCZ symptom subdomains and neurocognitive impairments. RESULTS HMGB1, DKK1, IL-6, and CCL11 were significantly higher in SCZ patients than in controls. DKK1 and IL-6 were significantly higher in NRTT than in PRTT and controls, while IL-10 was higher in NRTT than in controls. Binary logistic regression analysis showed that SCZ was best predicted by increased DDK1 and HMGB1, while NRTT (vs PRTT) was best predicted by increased IL-6 and CCL11 levels. A large part of the variance in psychosis, hostility, excitation, mannerism, and negative (PHEMN) symptoms and formal thought disorders was explained by HMGB1, IL-6, and CCL11, while most neurocognitive functions were predicted by HMGB1, DDK1, and CCL11. CONCLUSIONS The neurotoxic effects of HMGB1, DKK1, IL-6, and CCL11 including the effects on the blood-brain barrier and the Wnt/β-catenin signaling pathway may cause impairments in executive functions and working, episodic, and semantic memory and explain, in part, PHEMN symptoms and a nonresponse to treatment with antipsychotic drugs.
Collapse
Affiliation(s)
| | - Rana Fadhil Mousa
- Faculty of Veterinary Medicine, University of Kerbala, Kerbala, Iraq
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
- To whom correspondence should be addressed; IMPACT Strategic Research Center, Barwon Health, School of Medicine, Deakin University, PO Box 281, Geelong, VIC3220, Australia; tel: 0066-930466001, e-mail:
| |
Collapse
|
11
|
Li J, Gao Y, Yue W. The Clinical Diagnostic and Prognostic Value of Dickkopf-1 in Cancer. Cancer Manag Res 2020; 12:4253-4260. [PMID: 32606922 PMCID: PMC7292247 DOI: 10.2147/cmar.s254596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
The Wnt signaling pathway extensively participates in diverse processes such as embryonic development, maintenance of homeostasis and tumor pathogenesis. Dickkopf-1 (DKK1), a Wnt inhibitor, plays a vital role for over the past decades regarding its role in the regulation of several types of cancers. However, studies have shown that DKK1 is expressed differently in cancer and plays a role as a cancer-promoting factor or a tumor suppressor, which is worthy of further exploration. We herein study whether DKK1 is highly expressed in all cancers and plays a crucial role in promoting cancer. Furthermore, we discussed as to which stages of cancer development it plays in. Finally, the present detection methods were introduced and indicated the clinical application of DKK1 in tumor development.
Collapse
Affiliation(s)
- Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of China
| |
Collapse
|
12
|
Chae WJ, Bothwell ALM. Dickkopf1: An immunomodulatory ligand and Wnt antagonist in pathological inflammation. Differentiation 2019; 108:33-39. [PMID: 31221431 DOI: 10.1016/j.diff.2019.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
The Wnt signaling pathway plays essential roles in tissue or organ homeostasis by regulating cell proliferation and differentiation. Upon tissue or organ injury, inflammation is coupled with tissue repair and regeneration process. The canonical Wnt signaling transduction pathway is crucial for cell proliferation, cell differentiation, and tissue regeneration. Dickkopf1 (DKK1) is a quintessential Wnt antagonist that inhibits the Wnt-mediated tissue repair process. Recent studies reported increased levels of DKK1 in many diseases such as cancer, infection, and musculoskeletal diseases. In many cases, the role of DKK1 has been identified as a pro-inflammatory ligand and the expression levels are associated with poor disease outcomes. A variety of cell types including platelets, endothelial cells, and cancer cells secrete DKK1 upon stimuli. This puts DKK1 in a unique place to view immune responses from multicellular interactions in tissue injury and repair process. In this review, we discuss recent efforts to address the underlying mechanism regarding the pro-inflammatory role of DKK1 in cancer, bone diseases, and other inflammatory diseases.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 Marshall Street, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA, 23298, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|