1
|
Santos NL, Bustos SO, Reis PP, Chammas R, Andrade LNS. Extracellular Vesicle-Packaged miR-195-5p Sensitizes Melanoma to Targeted Therapy with Kinase Inhibitors. Cells 2023; 12:cells12091317. [PMID: 37174717 PMCID: PMC10177607 DOI: 10.3390/cells12091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Management of advanced melanoma remains challenging, with most BRAF (B-Raf proto-oncogene, serine/threonine kinase)-mutated metastatic patients relapsing within a few months upon MAPK inhibitors treatment. Modulation of tumor-derived extracellular vesicle (EVs) cargo with enrichment of antitumoral molecules is a promising strategy to impair tumor progression and increase treatment response. Herein, we report that restored expression of miR-195-5p, down-regulated in melanoma favoring drug resistance, increases the release of EVs enriched in the tumor suppressor miRNAs, miR-195-5p, miR-152-3p, and miR-202-3p. Incorporating these EVs by bystander tumor cells resulted in decreased proliferation and viability, accompanied by a reduction in CCND1 and YAP1 mRNA levels. Upon treatment with MAPK inhibitors, miR-195 EVs significantly decreased BCL2-L1 protein levels and increased cell death ratio and treatment efficacy. Additionally, EVs exogenously loaded with miR-195-5p by electroporation reduced tumor volume in vivo and impaired engraftment and growth of xenografts implanted with melanoma cells exposed to MAPK inhibitors. Our study shows that miR-195-5p antitumoral activity can be spread to bystander cells through EVs, improving melanoma response to targeted therapy and revealing a promising EV-based strategy to increase clinical response in patients harboring BRAF mutations.
Collapse
Affiliation(s)
- Nathalia L Santos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Silvina O Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Patricia P Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu 18618-687, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Luciana N S Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
2
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
3
|
Bcl-xL: A Focus on Melanoma Pathobiology. Int J Mol Sci 2021; 22:ijms22052777. [PMID: 33803452 PMCID: PMC7967179 DOI: 10.3390/ijms22052777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is the main mechanism by which multicellular organisms eliminate damaged or unwanted cells. To regulate this process, a balance between pro-survival and pro-apoptotic proteins is necessary in order to avoid impaired apoptosis, which is the cause of several pathologies, including cancer. Among the anti-apoptotic proteins, Bcl-xL exhibits a high conformational flexibility, whose regulation is strictly controlled by alternative splicing and post-transcriptional regulation mediated by transcription factors or microRNAs. It shows relevant functions in different forms of cancer, including melanoma. In melanoma, Bcl-xL contributes to both canonical roles, such as pro-survival, protection from apoptosis and induction of drug resistance, and non-canonical functions, including promotion of cell migration and invasion, and angiogenesis. Growing evidence indicates that Bcl-xL inhibition can be helpful for cancer patients, but at present, effective and safe therapies targeting Bcl-xL are lacking due to toxicity to platelets. In this review, we summarized findings describing the mechanisms of Bcl-xL regulation, and the role that Bcl-xL plays in melanoma pathobiology and response to therapy. From these findings, it emerged that even if Bcl-xL plays a crucial role in melanoma pathobiology, we need further studies aimed at evaluating the involvement of Bcl-xL and other members of the Bcl-2 family in the progression of melanoma and at identifying new non-toxic Bcl-xL inhibitors.
Collapse
|
4
|
BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers (Basel) 2020; 13:cancers13010078. [PMID: 33396645 PMCID: PMC7795116 DOI: 10.3390/cancers13010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary BCL2L10 is the sixth and less studied protein from the group of Bcl-2 anti-apoptotic proteins. These proteins are important therapeutic targets since they convey resistance to anticancer regimens. We describe here for the first time the role of BCL2L10 in melanoma. We found that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. This increased expression is due to the activity of the transcription factor STAT3 that positively regulate BCL2L10 transcription. We describe that Bcl2l10 is a pro-survival factor in melanoma, being able to protect cells from the cytotoxic effect of different drugs, including cisplatin, dacarbazine, and ABT-737. BCL2L10 also inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma. Abstract The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.
Collapse
|
5
|
Jaime-Sánchez P, Catalán E, Uranga-Murillo I, Aguiló N, Santiago L, M Lanuza P, de Miguel D, A Arias M, Pardo J. Antigen-specific primed cytotoxic T cells eliminate tumour cells in vivo and prevent tumour development, regardless of the presence of anti-apoptotic mutations conferring drug resistance. Cell Death Differ 2018; 25:1536-1548. [PMID: 29743559 DOI: 10.1038/s41418-018-0112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic CD8+ T (Tc) cells are the main executors of transformed and cancer cells during cancer immunotherapy. The latest clinical results evidence a high efficacy of novel immunotherapy agents that modulate Tc cell activity against bad prognosis cancers. However, it has not been determined yet whether the efficacy of these treatments can be affected by selection of tumoural cells with mutations in the cell death machinery, known to promote drug resistance and cancer recurrence. Here, using a model of prophylactic tumour vaccination based on the LCMV-gp33 antigen and the mouse EL4 T lymphoma, we analysed the molecular mechanism employed by Tc cells to eliminate cancer cells in vivo and the impact of mutations in the apoptotic machinery on tumour development. First of all, we found that Tc cells, and perf and gzmB are required to efficiently eliminate EL4.gp33 cells after LCMV immunisation during short-term assays (1-4 h), and to prevent tumour development in the long term. Furthermore, we show that antigen-pulsed chemoresistant EL4 cells overexpressing Bcl-XL or a dominant negative form of caspase-3 are specifically eliminated from the peritoneum of infected animals, as fast as parental EL4 cells. Notably, antigen-specific Tc cells control the tumour growth of the mutated cells, as efficiently as in the case of parental cells. Altogether, expression of the anti-apoptotic mutations does not confer any advantage for tumour cells neither in the short-term survival nor in long-term tumour formation. Although the mechanism involved in the elimination of the apoptosis-resistant tumour cells is not completely elucidated, neither necroptosis nor pyroptosis seem to be involved. Our results provide the first experimental proof that chemoresistant cancer cells with mutations in the main cell death pathways are efficiently eliminated by Ag-specific Tc cells in vivo during immunotherapy and, thus, provide the molecular basis to treat chemoresistant cancer cells with CD8 Tc-based immunotherapy.
Collapse
Affiliation(s)
- Paula Jaime-Sánchez
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Elena Catalán
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Nacho Aguiló
- Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Pilar M Lanuza
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Maykel A Arias
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain.
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain. .,Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain. .,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain. .,Aragon I+D Foundation, Zaragoza, Spain.
| |
Collapse
|
6
|
Yi DY, Su Q, Zhang FC, Fu P, Zhang Q, Cen YC, Zhao HY, Xiang W. Effect of microRNA-128 on cisplatin resistance of glioma SHG-44 cells by targeting JAG1. J Cell Biochem 2017; 119:3162-3173. [PMID: 29091297 DOI: 10.1002/jcb.26469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/31/2017] [Indexed: 12/29/2022]
Abstract
This current study intends to investigate the effect of microRNA-128 (miR-128) on cisplatin (DDP) resistance in glioma SHG-44 cells. SHG-44/DDP cells were transfected with miR-128 antisense oligonucleotide (ASO) and assigned into blank, resistance, NC, anti-miR-128, miR-128 mimic, si-JAG1, and anti-miR-128 + si-JAG1 groups. qRT-PCR and Western blotting were employed for determining expression of miR-128, JAG1, Bax and Bcl-2. MTT assay, Giemsa staining, and flow cytometry were applied to detect DDP resistance, cellular morphology, and cell cycle, respectively. JAG1 is targeted and negatively regulated by miR-128. In in vitro experiments, compared with the blank group, the rest groups exhibited declined miR-28 and Bax expression, lowered cell inhibition rate and apoptosis rate, but elevated JAG1 and Bcl-2 expression with cells arrested in the S phase. Compared with the resistance group, the anti-miR-128 group showed decreasedBax expression along with a lowered cell inhibition rate and apoptosis rate, but increased JAG1 and Bcl-2 expression with reduced cells arrested in the S phase; while the miR-128 mimic group showed an opposite trend; the si-JAG1 group showed decreased Bcl-2 expression and reduced cells in the S phase. In in vivo experiments, compared with the resistance group, the tumor growth rate, tumor volume, and weight as well as JAG1 expression accelerated in the anti-miR-128 group; whereas the miR-128 mimic and si-JAG1 groups exhibited an opposite trend. Our findings demonstrated that miR-128 ASO transfection might down-regulate the expression of miR-128 in SHG-44/DDP and up-regulate the DDP resistance in SHG-44/DDP cells, providing a potential treatment target for glioma.
Collapse
Affiliation(s)
- Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qing Su
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fang-Cheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yong-Cun Cen
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
7
|
Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ 2017; 25:56-64. [PMID: 29077093 PMCID: PMC5729538 DOI: 10.1038/cdd.2017.183] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
Intrinsic apoptosis is controlled by the BCL-2 family of proteins but the complexity of intra-family interactions makes it challenging to predict cell fate via standard molecular biology techniques. We discuss BCL-2 family regulation and how to determine cells’ readiness for apoptosis and anti-apoptotic dependence. Cancer cells often adopt anti-apoptotic defense mechanisms in response to oncogenic stress or anti-cancer therapy. However, by determining their anti-apoptotic addiction, we can use novel BH3 mimetics to overwhelm this apoptotic blockade. We outline the development and uses of these unique anti-apoptotic inhibitors and how to possibly combine them with other anti-cancer agents using dynamic BH3 profiling (DBP) to improve personalized cancer treatment.
Collapse
|
8
|
Yang Y, Yang H, Yang J, Li L, Xiang B, Wei Q. The genetically engineered drug rhCNB induces apoptosis via a mitochondrial route in tumor cells. Oncotarget 2017; 8:65876-65888. [PMID: 29029479 PMCID: PMC5630379 DOI: 10.18632/oncotarget.19507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/27/2017] [Indexed: 01/26/2023] Open
Abstract
The calcineurin B subunit (CNB) has antitumor activity. We showed previously that recombinant human CNB (rhCNB) also had strong anti-tumor activity in vivo, and was thus a promising candidate anti-tumor drug. It appeared to kill tumor cells via immunomodulation. Here, we show that rhCNB inhibits the proliferation of human hepatoma HepG-2 cells, resulting in their apoptosis. Exogenous CNB was found to localize to mitochondria in tumor cells and activate the mitochondrial apoptosis pathway, as indicated by a decrease of mitochondrial transmembrane potential, release of cytochrome C and activation of caspase-9, which then activates caspase-3. At the same time Bcl-2 &Bcl-xL expression decreased, Bim expression increased, and Bax was activated. Interaction between rhCNB and Bcl-xL was detected, which may inhibit the function of Bcl-xL. Long-term tumor targeting was also observed in nude mice. These data deepened our understanding of the anti-tumor mechanism of rhCNB and provided guidance for its drug development.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Huan Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Jinju Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Li Li
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Benqiong Xiang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| |
Collapse
|
9
|
Kim JH, Park B. Triptolide blocks the STAT3 signaling pathway through induction of protein tyrosine phosphatase SHP-1 in multiple myeloma cells. Int J Mol Med 2017; 40:1566-1572. [DOI: 10.3892/ijmm.2017.3122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
|
10
|
Sarosiek KA, Letai A. Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics - recent successes, current challenges and future promise. FEBS J 2017; 283:3523-3533. [PMID: 26996748 DOI: 10.1111/febs.13714] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Apoptosis within cancer cells is controlled by the BCL-2 family of proteins, making them powerful arbiters of cell fate in response to stress induced by neoplastic transformation as well as exposure to anti-cancer therapies. Many cancers evade pro-apoptotic stress signals by up-regulating anti-apoptotic proteins such as BCL-2, BCL-XL or MCL-1 to maintain their survival. However, this may come at a cost, as these cancers may also become dependent on these anti-apoptotic proteins for survival. The development and deployment of BCL-2 family inhibitors (drugs that mimic the activity of pro-apoptotic BH3-only proteins or 'BH3 mimetics') is based on this paradigm, and the first potent and specific molecules are now being evaluated in clinical trials. We review the recent successes in this field, the challenges currently being faced, and the promising future ahead.
Collapse
Affiliation(s)
- Kristopher A Sarosiek
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Al Sinani SS, Eltayeb EA, Coomber BL, Adham SA. Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int 2016; 16:11. [PMID: 26889092 PMCID: PMC4756414 DOI: 10.1186/s12935-016-0287-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous reports showed that the Steroidal Glycoalkaloid Solamargine inhibited proliferation of non-melanoma skin cancer cells. However, Solamargine was not tested systematically on different types of melanoma cells and was not simultaneously tested on normal cells either. In this study we aimed to investigate the effect of Solamargine and the mechanism involved in inhibiting the growth of different types of melanoma cells. METHODS Solamargine effect was tested on normal cells and on another three melanoma cell lines. Vertical growth phase metastatic and primary melanoma cell lines WM239 and WM115, respectively and the radial growth phase benign melanoma cells WM35 were used. The half inhibitory concentration IC50 of Solamargine was determined using Alamarblue assay. The cellular and subcellular changes were assessed using light and Transmission Electron Microscope, respectively. The percentage of cells undergoing apoptosis and necrosis were measured using Flow cytometry. The different protein expression was detected and measured using western blotting. The efficacy of Solamargine was determined by performing the clonogenic assay. The data collected was analyzed statistically on the means of the triplicate of at least three independent repeated experiments using one-way ANOVA test for parametric data and Kruskal-Wallis for non-parametric data. Differences were considered significant when the P values were less than 0.05. RESULTS Hereby, we demonstrate that Solamargine rapidly, selectively and effectively inhibited the growth of metastatic and primary melanoma cells WM239 and WM115 respectively, with minimum effect on normal and benign WM35 cells. Solamargine caused cellular necrosis to the two malignant melanoma cell lines (WM115, WM239), by rapid induction of lysosomal membrane permeabilization as confirmed by cathepsin B upregulation which triggered the extrinsic mitochondrial death pathway represented by the release of cytochrome c and upregulation of TNFR1. Solamargine disrupted the intrinsic apoptosis pathway as revealed by the down regulation of hILP/XIAP, resulting in caspase-3 cleavage, upregulation of Bcl-xL, and Bcl2, and down regulation of Apaf-1 and Bax in WM115 and WM239 cells only. Solamargine showed high efficacy in vitro particularly against the vertical growth phase melanoma cells. CONCLUSION Our findings suggest that Solamargine is a promising anti-malignant melanoma drug which warrants further attention.
Collapse
Affiliation(s)
- Sana S Al Sinani
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, 123 Muscat, Oman
| | - Elsadig A Eltayeb
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, 123 Muscat, Oman
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Sirin A Adham
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, 123 Muscat, Oman
| |
Collapse
|
12
|
Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ 2015; 22:2098-106. [PMID: 26045046 DOI: 10.1038/cdd.2015.73] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the second-most frequently diagnosed malignancy in US women. The triple-negative breast cancer (TNBC) subtype, which lacks expression of the estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, afflicts 15% of patients and is refractory to current targeted therapies. Like many cancers, TNBC cells often deregulate programmed cell death by upregulating anti-apoptotic proteins of the B-cell CLL/lymphoma 2 (Bcl-2) family. One family member, myeloid cell leukemia-1 (Mcl-1), is commonly amplified in TNBC and correlates with a poor clinical prognosis. Here we show the effect of silencing Mcl-1 and Bcl-2-like protein 1 isoform 1 (Bcl-xL) expression on viability in a panel of seventeen TNBC cell lines. Cell death was observed in a subset upon Mcl-1 knockdown. In contrast, Bcl-xL knockdown only modestly reduced viability, indicating that Mcl-1 is a more important survival factor. However, dual silencing of both Mcl-1 and Bcl-xL reduced viability in most cell lines tested. These proliferation results were recapitulated by BH3 profiling experiments. Treatment with a Bcl-xL and Bcl-2 peptide had only a moderate effect on any of the TNBC cell lines, however, co-dosing an Mcl-1-selective peptide with a peptide that inhibits Bcl-xL and Bcl-2 was effective in each line tested. Similarly, the selective Bcl-xL inhibitor WEHI-539 was only weakly cytotoxic across the panel, but sensitization by Mcl-1 knockdown markedly improved its EC50. ABT-199, which selectively inhibits Bcl-2, did not synergize with Mcl-1 knockdown, indicating the relatively low importance of Bcl-2 in these lines. Mcl-1 sensitivity is not predicted by mRNA or protein levels of a single Bcl-2 family member, except for only a weak correlation for Bak and Bax protein expression. However, a more comprehensive index composed of Mcl-1, Bcl-xL, Bim, Bak and Noxa protein or mRNA expression correlates well with Mcl-1 sensitivity in TNBC and can also predict Mcl-1 dependency in non-small cell lung cancer cell lines.
Collapse
|
13
|
Wang X, Li S. Protein mislocalization: mechanisms, functions and clinical applications in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:13-25. [PMID: 24709009 PMCID: PMC4141035 DOI: 10.1016/j.bbcan.2014.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/20/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
14
|
Nikolaou V, Stratigos A, Bafaloukos D, Katsambas A. Antiangiogenic and antiapoptotic treatment in advanced melanoma. Clin Dermatol 2013; 31:257-63. [DOI: 10.1016/j.clindermatol.2012.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Hartman ML, Czyz M. Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett 2013; 331:24-34. [PMID: 23340174 DOI: 10.1016/j.canlet.2013.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 12/30/2022]
Abstract
Apoptosis plays a pivotal role in sustaining proper tissue development and homeostasis. Evading apoptosis by cancer cells is a part of their adaption to microenvironment and therapies. Cellular integrity is predominantly maintained by pro-survival members of Bcl-2 family and IAPs. Melanoma cells are characterized by a labile and stage-dependent phenotype. Pro-survival molecules can protect melanoma cells from apoptosis and mediate other processes, thus enhancing aggressive phenotype. The essential role of Bcl-2, Mcl-1, Bcl-X(L), livin, survivin and XIAP was implicated for melanoma, often in a tumor stage-dependent fashion. In this review, the current knowledge of pro-survival machinery in melanoma is discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Poland
| | | |
Collapse
|
16
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2012; 17:61-75. [PMID: 23173842 DOI: 10.1517/14728222.2013.733001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation. AREAS COVERED This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors (SMIs) and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics. EXPERT OPINION Strategies to specifically identify and inhibit critical determinants that promote therapy resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying SMIs with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
Collapse
Affiliation(s)
- Shibu Thomas
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A seven-marker signature and clinical outcome in malignant melanoma: a large-scale tissue-microarray study with two independent patient cohorts. PLoS One 2012; 7:e38222. [PMID: 22685558 PMCID: PMC3369875 DOI: 10.1371/journal.pone.0038222] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 05/01/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Current staging methods such as tumor thickness, ulceration and invasion of the sentinel node are known to be prognostic parameters in patients with malignant melanoma (MM). However, predictive molecular marker profiles for risk stratification and therapy optimization are not yet available for routine clinical assessment. METHODS AND FINDINGS Using tissue microarrays, we retrospectively analyzed samples from 364 patients with primary MM. We investigated a panel of 70 immunohistochemical (IHC) antibodies for cell cycle, apoptosis, DNA mismatch repair, differentiation, proliferation, cell adhesion, signaling and metabolism. A marker selection procedure based on univariate Cox regression and multiple testing correction was employed to correlate the IHC expression data with the clinical follow-up (overall and recurrence-free survival). The model was thoroughly evaluated with two different cross validation experiments, a permutation test and a multivariate Cox regression analysis. In addition, the predictive power of the identified marker signature was validated on a second independent external test cohort (n=225). A signature of seven biomarkers (Bax, Bcl-X, PTEN, COX-2, loss of β-Catenin, loss of MTAP, and presence of CD20 positive B-lymphocytes) was found to be an independent negative predictor for overall and recurrence-free survival in patients with MM. The seven-marker signature could also predict a high risk of disease recurrence in patients with localized primary MM stage pT1-2 (tumor thickness ≤2.00 mm). In particular, three of these markers (MTAP, COX-2, Bcl-X) were shown to offer direct therapeutic implications. CONCLUSIONS The seven-marker signature might serve as a prognostic tool enabling physicians to selectively triage, at the time of diagnosis, the subset of high recurrence risk stage I-II patients for adjuvant therapy. Selective treatment of those patients that are more likely to develop distant metastatic disease could potentially lower the burden of untreatable metastatic melanoma and revolutionize the therapeutic management of MM.
Collapse
|
18
|
Rosner K, Kasprzak MF, Horenstein ACJ, Thurston HL, Abrams J, Kerwin LY, Mehregan DA, Mehregan DR. Engineering a waste management enzyme to overcome cancer resistance to apoptosis: adding DNase1 to the anti-cancer toolbox. Cancer Gene Ther 2011; 18:346-57. [PMID: 21233855 DOI: 10.1038/cgt.2010.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer treatment is often complicated by resistance to conventional anti-cancer treatment and to more recently developed immunotherapy and gene therapy. These therapeutic modalities aim at activating death pathways within cancer cells. Attempts to activate the apoptotic death pathway, by overexpressing proapoptotic signals, are compromised by cancer defense mechanisms, which disrupt the apoptotic-signaling cascade downstream of the overexpressed component. Here, we describe a therapeutic option of triggering apoptosis without activating the apoptotic-signaling cascade or using the native apoptosis executioner nuclease. We have engineered Deoxyribonuclease-1 (DNase1), a waste-management enzyme, by deleting its signal peptide, adding a nuclear localization signal, and mutating its actin-binding site. Apoptosis studies and colony-forming assay for assessing cell viability were conducted in apoptosis-resistant Mel-Juso human melanoma cells. The modified DNase1 reduced cell viability by 77% relative to controls. It also induced typical microscopic features of cellular apoptosis, such as Terminal Transferase dUTP Nick-End Labeling-positive cells and DNA fragmentation. Quantification of apoptosis by Laser scanning cytometry demonstrated high-killing efficiency of 70-100%. The results suggest that this modified DNase1 can efficiently eliminate apoptosis-resistant cancer cells through apoptosis. Coupled to different tissue-specific gene expression elements, this recombinant DNase1 may serve as a platform for eliminating a variety of cancer types.
Collapse
Affiliation(s)
- K Rosner
- Laboratory for Molecular Dermatology, Program in Molecular Biology and Genetics, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Karnak D, Xu L. Chemosensitization of prostate cancer by modulating Bcl-2 family proteins. Curr Drug Targets 2010; 11:699-707. [PMID: 20298153 DOI: 10.2174/138945010791170888] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/27/2009] [Indexed: 01/16/2023]
Abstract
A major challenge in oncology is the development of chemoresistance. This often occurs as cancer progresses and malignant cells acquire mechanisms to resist insults that would normally induce apoptosis. The onset of androgen independence in advanced prostate cancer is a prime example of this phenomenon. Overexpression of the pro-survival/anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 are hallmarks of this transition. Here we outline the evolution of therapeutics designed to either limit the source or disrupt the interactions of these pro-survival proteins. By either lessening the stoichiometric abundance of Bcl-2/xL/Mcl-1 in reference to their pro-apoptotic foils or freeing these pro-apoptotic proteins from their grip, these treatments aim to sensitize cells to chemotherapy by priming cells for death. DNA anti-sense and RNA interference have been effectively employed to decrease Bcl-2 family mRNA and protein levels in cell culture models of advanced prostate cancer. However, clinical studies are lagging due to in vivo delivery challenges. The burgeoning field of nanoparticle delivery holds great promise in helping to overcome the challenge of administering highly labile nucleic acid based therapeutics. On another front, small molecule inhibitors that block the hetero-dimerization of pro-survival with pro-apoptotic proteins have significant clinical advantages and have advanced farther in clinical trials with promising early results. Most recently, a peptide has been discovered that can convert Bcl-2 from a pro-survival to a pro-apoptotic protein. The future may lie in targeting multiple steps of the apoptotic pathway, including Bcl-2/xL/Mcl-1, to debilitate the survival capacity of cancer cells and make chemotherapy induced death their only option.
Collapse
Affiliation(s)
- David Karnak
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5637, USA
| | | |
Collapse
|
20
|
Medic S, Ziman M. PAX3 expression in normal skin melanocytes and melanocytic lesions (naevi and melanomas). PLoS One 2010; 5:e9977. [PMID: 20421967 PMCID: PMC2858648 DOI: 10.1371/journal.pone.0009977] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/04/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cutaneous Malignant Melanoma is an aggressive form of skin cancer, arising in cutaneous melanocytes. The transcription factor PAX3 regulates melanocyte specification from neural crest cells during development but expression in differentiated melanocytes is uncertain. By contrast it is frequently found in melanomas and naevi and is a marker for melanoma staging and detection. In this study we analysed the expression of PAX3 across the spectrum of melanocytic cells, from normal melanocytes to cells of benign and malignant lesions to better assess its function in these various tissues. Pax3 and PAX3 (italicized) refer to the mouse and human gene, respectively; whereas Pax3 and PAX3 (non-italicized) refer to the corresponding mouse and human protein. METHODOLOGY AND PRINCIPAL FINDINGS PAX3 expression was analysed by immunohistochemistry and qRT-PCR. Immunofluorescence was used for co-expression with differentiation, migration and survival markers. As expected PAX3 expression was observed in naevi and melanoma cells. It was also found in melanocytes of normal skin where it co-expressed with melanocyte markers, MITF and MLANA. Co-expression with its downstream target, antiapoptotic factor BCL2L1 confirms PAX3 as a cell survival regulator. PAX3 was also co-expressed with melanoma cell migration marker MCAM in dermal naevi and melanoma cell nests, but this downstream target of PAX3 was not present in normal epidermal melanocytes, suggesting differential roles for PAX3 in normal epidermal melanocytes and melanoma cells. Most interestingly, a proportion of PAX3-positive epidermal melanocytes in normal skin show HES1 and Ki67 co-expression, indicating their less differentiated proliferative phenotype. CONCLUSIONS AND SIGNIFICANCE Our results suggest that a previously identified role for PAX3, that of regulator of an undifferentiated plastic state, may operate in melanocytes of normal skin. This role, possibly required for cellular response to environmental stimuli, may contribute to formation and development of melanocytic lesions in which PAX3 expression is prominent.
Collapse
Affiliation(s)
- Sandra Medic
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Mel Ziman
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
21
|
Hyun JH, Kim SC, Kang JI, Kim MK, Boo HJ, Kwon JM, Koh YS, Hyun JW, Park DB, Yoo ES, Kang HK. Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol Pharm Bull 2009; 32:1760-4. [PMID: 19801840 DOI: 10.1248/bpb.32.1760] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The antitumor activity of fucoidan from Fucus vesiculosus was investigated in human colon carcinoma cells. The crude fucoidan, a polysaccharide composed predominantly of sulfated fucose, markedly inhibited the growth of HCT-15 cells (human colon carcinoma cells). After HCT-15 cells were treated with fucoidan, several apoptotic events such as DNA fragmentation, chromatin condensation and increase of the population of sub-G1 hypodiploid cells were observed. In the mechanism of fucoidan-induced apoptosis, we examined changes in Bcl-2 and Bax protein expression levels and activation of caspases. Fucoidan decreased Bcl-2 expression, whereas the expression of Bax was increased in a time-dependent manner compared to the control. In addition, the active forms of caspase-9 and caspase-3 were increased, and the cleavage of poly(ADP-ribose) polymerase (PARP), a vital substrate of effector caspase, was observed. Furthermore, the induction of apoptosis was also accompanied by a strong activation of extracellular signal-regulated kinase (ERK) and p38 kinase and an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt in a time-dependent manner. These findings provide evidence demonstrating that the pro-apoptotic effect of fucoidan is mediated through the activation of ERK, p38 and the blocking of the PI3K/Akt signal pathway in HCT-15 cells. These data support the hypothesis that fucoidan may have potential in colon cancer treatment.
Collapse
Affiliation(s)
- Jae-Hee Hyun
- School of Medicine, Institute of Medical Sciences, Jeju National University, South Kore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Melanoma genetics and therapeutic approaches in the 21st century: moving from the benchside to the bedside. J Invest Dermatol 2008; 128:2575-2595. [PMID: 18927540 DOI: 10.1038/jid.2008.226] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastatic melanoma is notoriously one of the most difficult cancers to treat. Although many therapeutic regimens have been tested, very few achieve response rates greater than 25%. Given the rising incidence of melanoma and the paucity of effective treatments, there is much hope and excitement in leveraging recent genetic and molecular insights for therapeutic advantage. Over the past 30 years, elegant studies by many groups have helped decipher the complex genetic networks involved in melanoma proliferation, progression and survival, as well as several genes involved in melanocyte development and survival. Many of these oncogenic loci and pathways have become crucial targets for pharmacological development. In this article we review: (1) our current understanding of melanoma genetics within the context of signaling networks; (2) targeted therapies, including an extensive discussion of promising agents that act in the Bcl-2 signaling network; (3) future areas of research.
Collapse
|
24
|
Eberle J, Hossini AM. Expression and function of bcl-2 proteins in melanoma. Curr Genomics 2008; 9:409-19. [PMID: 19506730 PMCID: PMC2691663 DOI: 10.2174/138920208785699571] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/20/2008] [Accepted: 05/27/2008] [Indexed: 01/22/2023] Open
Abstract
Bcl-2 proteins are critical regulators of mitochondrial membrane permeability and the proapoptotic mitochondrial pathway. The family encloses pro- and antiapoptotic factors encoded by over 15 genes, which frequently give rise to alternative splice products. Antiapoptotic, proapoptotic multidomain, and proapoptotic BH3-only proteins are characterized by the presence of at least one of four Bcl-2 homology domains (BH 1-4). Their expression and activities are controlled by survival pathways as MAP kinases and protein kinase B/Akt, which are in touch with a number of transcription factors. In melanoma, the mitochondrial apoptosis pathways and Bcl-2 proteins appear of particular importance for apoptosis resistance, which has been addressed in clinical trials applying antisense-Bcl-2. Overexpression or induction of proapoptotic Bcl-2 proteins as well as the use of small molecule mimetics for the proapoptotic BH3 domain are further promising strategies.
Collapse
Affiliation(s)
- Jürgen Eberle
- Charité - Universitätsmedizin Berlin, Department of Dermatology and Allergy, Skin Cancer Center Charité, Berlin, Germany
| | | |
Collapse
|
25
|
Sekulic A, Haluska P, Miller AJ, Genebriera De Lamo J, Ejadi S, Pulido JS, Salomao DR, Thorland EC, Vile RG, Swanson DL, Pockaj BA, Laman SD, Pittelkow MR, Markovic SN. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc 2008; 83:825-46. [PMID: 18613999 PMCID: PMC2739389 DOI: 10.4065/83.7.825] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant melanoma presents a substantial clinical challenge. Current diagnostic methods are limited in their ability to diagnose early disease and accurately predict individual risk of disease progression and outcome. The lack of adequate approaches to properly define disease subgroups precludes rational treatment design and selection. Better tools are urgently needed to provide more accurate and personalized melanoma patient management. Recent progress in the understanding of the molecular aberrations that underlie melanoma oncogenesis will likely advance the diagnosis, prognosis, and treatment of melanoma. The emerging pattern of molecular complexity in melanoma tumors mirrors the clinical diversity of the disease and highlights the notion that melanoma, like other cancers, is not a single disease but a heterogeneous group of disorders that arise from complex molecular changes. Understanding of molecular aberrations involving important cellular processes, such as cellular signaling networks, cell cycle regulation, and cell death, will be essential for better diagnosis, accurate assessment of prognosis, and rational design of effective therapeutics. Defining an individual patient's unique tumor characteristics may lead to personalized prediction of outcomes and selection of therapy. We review the emerging molecular landscape of melanoma and its implications for better management of patients with melanoma.
Collapse
|
26
|
Chetoui N, Sylla K, Gagnon-Houde JV, Alcaide-Loridan C, Charron D, Al-Daccak R, Aoudjit F. Down-regulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to fas-mediated apoptosis. Mol Cancer Res 2008; 6:42-52. [PMID: 18234961 DOI: 10.1158/1541-7786.mcr-07-0080] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance of malignant melanoma cells to Fas-mediated apoptosis is among the mechanisms by which they escape immune surveillance. However, the mechanisms contributing to their resistance are not completely understood, and it is still unclear whether antiapoptotic Bcl-2-related family proteins play a role in this resistance. In this study, we report that treatment of Fas-resistant melanoma cell lines with cycloheximide, a general inhibitor of de novo protein synthesis, sensitizes them to anti-Fas monoclonal antibody (mAb)-induced apoptosis. The cycloheximide-induced sensitization to Fas-induced apoptosis is associated with a rapid down-regulation of Mcl-1 protein levels, but not that of Bcl-2 or Bcl-xL. Targeting Mcl-1 in these melanoma cell lines with specific small interfering RNA was sufficient to sensitize them to both anti-Fas mAb-induced apoptosis and activation of caspase-9. Furthermore, ectopic expression of Mcl-1 in a Fas-sensitive melanoma cell line rescues the cells from Fas-mediated apoptosis. Our results further show that the expression of Mcl-1 in melanoma cells is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and not by phosphatidylinositol 3-kinase/AKT signaling pathway. Inhibition of ERK signaling with the mitogen-activated protein/ERK kinase-1 inhibitor or by expressing a dominant negative form of mitogen-activated protein/ERK kinase-1 also sensitizes resistant melanoma cells to anti-Fas mAb-induced apoptosis. Thus, our study identifies mitogen-activated protein kinase/ERK/Mcl-1 as an important survival signaling pathway in the resistance of melanoma cells to Fas-mediated apoptosis and suggests that its targeting may contribute to the elimination of melanoma tumors by the immune system.
Collapse
Affiliation(s)
- Nizar Chetoui
- Centre de Recherche en Rhumatologie et Immunologie, CHUQ Pavillon CHUL, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. ACTA ACUST UNITED AC 2008; 14:1386-92. [PMID: 18096507 DOI: 10.1016/j.chembiol.2007.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/18/2007] [Accepted: 11/02/2007] [Indexed: 12/27/2022]
Abstract
Exon 2 of the Bcl-x gene undergoes alternative splicing in which the Bcl-xS splice variant promotes apoptosis in contrast to the anti-apoptotic splice variant Bcl-xL. In this study, the regulation of the alternative splicing of pre-mRNA of Bcl-x was examined in response to emetine. Treatment of different types of cancer cells with emetine dihydrochloride downregulated the level of Bcl-xL mRNA with a concomitant increase in the mRNA level of Bcl-xS in a dose- and time-dependent manner. Pretreatment with calyculin A, an inhibitor of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), blocked emetine-induced alternative splicing in contrast to okadaic acid, a specific inhibitor of PP2A in cells, demonstrating a PP1-mediated mechanism. Our finding on the regulation of RNA splicing of members of the Bcl-2 family in response to emetine presents a potential target for cancer treatment.
Collapse
|
28
|
Hyun JH, Kang JI, Kim SC, Kim E, Kang JH, Kwon JM, Park DB, Lee YJ, Yoo ES, Kang HK. The Effects of Crinum asiaticum on the Apoptosis Induction and the Reversal of Multidrug Resistance in HL-60/MX2. Toxicol Res 2008; 24:29-36. [PMID: 32038774 PMCID: PMC7006299 DOI: 10.5487/tr.2008.24.1.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 01/18/2008] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the anti-proliferative and chemosensitizing effects of Crinum asiaticum var. japonicum against multi-drug resistant (MDR) cancer cells. The 80% methanol extract, chloroform (CHCI3) fraction and butanol (BuOH) fraction of C asiaticum inhibited the growth of mitoxantrone (MX) resistant HL-60 (HL-60/MX2) cells. When HL-60/MX2 cells were treated with the CHCI3 and BuOH fractions, DNA ladder and sub-G1 hypodiploid cells were observed. Furthermore, the fractions reduced Bcl-2 mRNA levels, whereas Bax mRNA levels were increased. These results suggest that the inhibitory effect of C. asiaticum on the growth of the HL-60/MX2 cells might arise from the induction of apoptosis. Treatment of HL-60/MX2 cells with the fractions markedly decreased the mRNA levels of the multi-drug resistance protein-1 and breast cancer resistance protein. The CHCI3 fraction and hexane fraction increased MX accumulation in HL-60/MX2 cells. These results imply that the CHCI3 fraction of C asiaticum plays a pivotal role as a chemosensitizer. We suggest that components of C asiaticum might have a therapeutic potential for the treatment of MDR leukemia.
Collapse
Affiliation(s)
- Jae-Hee Hyun
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Jung-Il Kang
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Sang-Cheol Kim
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Elvira Kim
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Ji-Hoon Kang
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Jung-Mi Kwon
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Doek-Bae Park
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Young-Jae Lee
- Department of Veterinary Medicine, College of Applied Life Science, Cheju National University, Jeju, 690-756 Korea
| | - Eun-Sook Yoo
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| | - Hee-Kyoung Kang
- Department of Medicine, College of Medicine, Cheju National University, 66 Jejudaehakno, Jeju, 690-756 Korea
| |
Collapse
|
29
|
Eberle J, Fecker LF, Hossini AM, Kurbanov BM, Fechner H. Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol 2008; 17:1-11. [PMID: 18095940 DOI: 10.1111/j.1600-0625.2007.00655.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the last decades melanoma incidence has been increasing worldwide, while mortality remained on a high level. Until now, there is no suitable therapy for metastasized melanoma, which could lead to a significant increase in overall survival. Apoptosis deficiency is supposed to be a critical factor for therapy resistance, and previous work has characterized the basic mechanisms of apoptosis regulation in melanoma. Genes and strategies suitable for efficient induction of apoptosis in melanoma cells were identified, which are based on proapoptotic Bcl-2 proteins (Bcl-x(S), Bcl-x(AK), Bik/Nbk and Bax) as well as on tumor necrosis factor (TNF)-related death ligands (CD95L/Fas ligand and TNF-related apoptosis-inducing ligand, TRAIL). Proapoptotic genes may be employed in improved gene therapeutic strategies, based on conditional oncolytic adenoviral vectors.
Collapse
Affiliation(s)
- Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center, Charité- Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
30
|
Hersey P, Zhang XD, Mhaidat N. Overcoming Resistance to Apoptosis in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:105-26. [DOI: 10.1007/978-1-4020-6554-5_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Hilmi C, Larribere L, Giuliano S, Bille K, Ortonne JP, Ballotti R, Bertolotto C. IGF1 promotes resistance to apoptosis in melanoma cells through an increased expression of BCL2, BCL-X(L), and survivin. J Invest Dermatol 2007; 128:1499-505. [PMID: 18079751 DOI: 10.1038/sj.jid.5701185] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IGF1 plays a key role in the development and growth of multiple tumors and in the prevention of apoptosis. In melanoma cells, IGF1 has been shown to mediate resistance to anoikis-induced apoptosis. However, the effect of IGF1 on other proapoptotic stimuli has never been reported. Further, the molecular mechanisms by which IGF1 mediates its prosurvival properties in melanoma cells remain unknown. Here, we demonstrate that IGF1 impairs the onset of tumor necrosis factor-related apoptosis-inducing ligand and staurosporine-induced apoptosis in melanoma cells expressing either wild-type or oncogenic B-Raf. Further, we show that IGF1 inhibits mitochondrial damage that occurs during apoptosis, thereby indicating that IGF1 acts at the level of mitochondria to mediate its antiapoptotic stimuli. Accordingly, IGF1 increases the mRNA levels and protein expression of antiapoptotic members of the BCL2 family--BCL2 and BCL-X(L)--and that of the inhibitor of apoptosis protein, survivin. Further, their specific silencing by small interfering RNA prevents the protective effect of IGF1. These findings therefore delineate the molecular mechanisms by which IGF1 mediates its prosurvival properties and provide a basis for clinical strategies designed to neutralize IGF1 or its target genes.
Collapse
Affiliation(s)
- Caroline Hilmi
- Institut National de la Santé et de la Recherche Médicale U597, Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, Nice, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Updat 2007; 10:218-34. [PMID: 18054518 DOI: 10.1016/j.drup.2007.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
Abstract
The increased incidence of malignant melanoma in the last decades, its high mortality and pronounced therapy resistance pose an enormous challenge. Important therapeutic targets for melanoma are the induction of apoptosis and suppression of survival pathways. Preclinical studies have demonstrated the efficacy of pro-apoptotic Bcl-2 proteins and of death receptor ligands to trigger apoptosis in melanoma cells. In the clinical setting, BH3 domain mimics and death receptor agonists are therefore considered as promising, specific novel treatments to add to the conventional pro-apoptotic strategies such as chemo- or radiotherapy. However, constitutively activated survival pathways, in particular the mitogen-activated protein kinases, protein kinase B/Akt and nuclear factor (NF)-kappaB, all may work in concert to prevent effective therapy. Thus, selective biologicals developed with the aim to inhibit pro-survival signaling are currently tested in melanoma. For highly therapy-resistant tumors such as melanoma, development of novel drug combinations will be essential, and combinations of survival inhibitors and pro-apoptotic mediators appear most promising. The challenge of the near future will be to make a rational choice of the multiple possible combinations and protocols. This review gives a critical overview of proteins involved in melanoma chemoresistance, which are targets for current drug development leading to the best choice for future trials.
Collapse
Affiliation(s)
- Jürgen Eberle
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Apoptosis plays an important role in skin carcinogenesis. Bcl-X(L), an antiapoptotic Bcl-2 family member, is a key regulator in the process. Aberrant expression of Bcl-X(L) allows cells carrying mutations to survive and propagate. Overexpression of Bcl-X(L) is correlated with tumor malignancy and invasion. Importantly, deregulation of Bcl-X(L) confers drug resistance to chemotherapy. Therefore, targeting Bcl-X(L) in combination with conventional chemotherapy is a promising way to pursue cancer chemotherapy. Several compounds targeting Bcl-X(L) expression or function have shown their potential in chemoprevention and of chemotherapy of cancer.
Collapse
Affiliation(s)
- Jack Zhang
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell, Tucson, Arizona 85724, USA
| | | |
Collapse
|
34
|
Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Zhang XD, Thompson JF, Hersey P. Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol 2007; 20:416-26. [PMID: 17384650 DOI: 10.1038/modpathol.3800750] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Members of the Bcl-2 family of antiapoptotic proteins (Bcl-2, Bcl-XL and Mcl-1) are key regulators of apoptosis. The purpose of the present study was to examine and better define the role of Bcl-2, Bcl-XL and Mcl-1 in the progression of melanoma. Immunohistochemical staining for Bcl-2, Bcl-XL and Mcl-1 was performed on paraffin sections of 100 cases of benign nevi, primary melanoma and metastatic melanoma. Expression was correlated with histopathologic features, clinical progress and expression of transcription factors (AP-2, MITF and p-Stat3). Bcl-2 was expressed in 100% of benign nevi and thin melanoma (<or=1.0 mm) but was less in thick melanoma (>1.0 mm) (88%), subcutaneous (62%) and lymph node metastases (35%). In contrast, Bcl-XL and Mcl-1 were expressed at lower levels in nevi and thin melanoma compared to Bcl-2 but their expression was much higher in thick melanoma and in subcutaneous and lymph node metastases (P<0.0001). Bcl-2 expression was negatively associated with tumor thickness (P<0.05) but Bcl-XL expression increased with increasing tumor thickness (P<0.05) and dermal tumor mitotic rate (P<0.05). Similarly Mcl-1 expression increased with increasing tumor thickness (P<0.09) and dermal tumor mitotic rate (P<0.17). Bcl-2 expression was positively correlated with expression of the transcription factors microphthalmia transcription factor (MITF) and nuclear AP-2 whereas Bcl-XL (and Mcl-1) expression were positively correlated with p-Stat3. This study is the first to show a clear dissociation between changes in Bcl-2 expression (downregulation) and Bcl-XL, Mcl-1 expression (upregulation) during progression of melanoma. The results were also consistent with a role for AP-2 and MITF in regulation of Bcl-2 and pStat3 in regulation of Bcl-XL. These findings have important implications for the development of treatments targeting antiapoptotic proteins in patients with melanoma.
Collapse
Affiliation(s)
- Liqing Zhuang
- Discipline of Pathology, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Masui T, Hosotani R, Ito D, Kami K, Koizumi M, Mori T, Toyoda E, Nakajima S, Miyamoto Y, Fujimoto K, Doi R. Bcl-XL antisense oligonucleotides coupled with antennapedia enhances radiation-induced apoptosis in pancreatic cancer. Surgery 2006; 140:149-60. [PMID: 16904964 DOI: 10.1016/j.surg.2006.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 03/07/2006] [Accepted: 03/24/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pancreatic cancer is highly resistant to radiation and chemotherapy, and its resistance reflects the enhancement of apoptosis inhibitory genes, including Bcl-2 family. Antennapedia (pAnt) is capable of almost 100% internalization into cells through the lipid bilayer without any cytotoxic effect. The aim of this study was to examine the effects of the Bcl-XL antisense oligonucleotide for radiosensitivity of in vitro and in vivo pancreatic cancer using oligonucleotide conjugated with antennapedia. METHODS In in vitro experiments, expression of Bcl-XL protein was examined in 5 pancreatic cancer cell lines. In AsPC-1 cells, internalization of the oligonucleotide was confirmed, and the effects of antennapedia-antisense (pAnt-AS) or antennapedia-scramble (pAnt-Scr) on Bcl-XL protein expression were examined. Cells were treated with pAnt-AS, pAnt-Scr or phosphorothioate antisense (S-AS) for 3 days, then the effects of irradiation on the cell survival, caspase-3 activity, and apoptotic index were evaluated. In AsPC-1 xenograft mice, pAnt-AS, pAnt-Scr, or S-AS was injected, and 5 or 10 Gy irradiation was added. Bcl-Xl protein expression was measured before irradiation. Apoptosis was evaluated at 48 hours after irradiation. On the 14th day after 10-Gy irradiation, tumor wet weight was measured, and tumor growth was estimated over 5 weeks. RESULTS In in vitro experiments, all pancreatic cancer cell lines expressed Bcl-XL protein. pAnt-AS was internalized into AsPC-1 cells within 2 hours. pAnt-AS at 10 mumol/L reduced more than 90% of the Bcl-XL protein in AsPC-1 cells, whereas pAnt-Scr or S-AS treatment at the same concentration reduced as much as 10% of the Bcl-XL protein. Treatment with pAnt-AS followed by irradiation significantly reduced cell viability when compared with that of pAnt-Scr or S-AS. Caspase-3 activity was significantly upregulated in the pAnt-AS-treated group (P = .033). The rate of nuclear fragmentation was significantly higher in the pAnt-AS group (P = .013). In in vivo experiments, Bcl-XL protein was reduced about 40% in the pAnt-AS-treated mice. Tumor doubling time of the pAnt-AS-treated mice was elongated by 10-Gy irradiation. The tumor wet weight of mice treated with pAnt-AS and 10-Gy irradiation was significantly reduced when compared with mice treated with pAnt-Scr and 10-Gy irradiation (P = .046). The apoptosis index at 48 hours after irradiation was significantly increased in pAnt-AS-treated mice (P < .01). CONCLUSIONS The results suggest that, when coupled with antennapedia, the antisense oligonucleotide against Bcl-XL could be a good therapeutic tool for radiosensitization of pancreatic cancer.
Collapse
Affiliation(s)
- Toshihiko Masui
- Department of Surgery and Surgical Basic Science, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schulze-Bergkamen H, Fleischer B, Schuchmann M, Weber A, Weinmann A, Krammer PH, Galle PR. Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction. BMC Cancer 2006; 6:232. [PMID: 17014711 PMCID: PMC1601962 DOI: 10.1186/1471-2407-6-232] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/02/2006] [Indexed: 01/03/2023] Open
Abstract
Background Hepatocelluar carcinoma (HCC) is one of the most common cancers worldwide and a major cause of cancer-related mortality. HCC is highly resistant to currently available chemotherapeutic drugs. Defects in apoptosis signaling contribute to this resistance. Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 protein family which interferes with mitochondrial activation. In a previous study we have shown that Mcl-1 is highly expressed in tissues of human HCC. In this study, we manipulated expression of the Mcl-1 protein in HCC cells by RNA interference and analyzed its impact on apoptosis sensitivity of HCC cells in vitro. Methods RNA interference was performed by transfecting siRNA to specifically knock down Mcl-1 expression in HCC cells. Mcl-1 expression was measured by quantitative real-time PCR and Western blot. Induction of apoptosis and caspase activity after treatment with chemotherapeutic drugs and different targeted therapies were measured by flow cytometry and fluorometric analysis, respectively. Results Here we demonstrate that Mcl-1 expressing HCC cell lines show low sensitivity towards treatment with a panel of chemotherapeutic drugs. However, treatment with the anthracycline derivative epirubicin resulted in comparatively high apoptosis rates in HCC cells. Inhibition of the kinase PI3K significantly increased apoptosis induction by chemotherapy. RNA interference efficiently downregulated Mcl-1 expression in HCC cells. Mcl-1 downregulation sensitized HCC cells to different chemotherapeutic agents. Sensitization was accompanied by profound activation of caspase-3 and -9. In addition, Mcl-1 downregulation also increased apoptosis rates after treatment with PI3K inhibitors and, to a lower extent, after treatment with mTOR, Raf I and VEGF/PDGF kinase inhibitors. TRAIL-induced apoptosis did not markedly respond to Mcl-1 knockdown. Additionally, knockdown of Mcl-1 efficiently enhanced apoptosis sensitivity towards combined treatment modalities: Mcl-1 knockdown significantly augmented apoptosis sensitivity of HCC cells towards chemotherapy combined with PI3K inhibition. Conclusion Our data suggest that specific downregulation of Mcl-1 by RNA interference is a promising approach to sensitize HCC cells towards chemotherapy and molecularly targeted therapies.
Collapse
Affiliation(s)
- Henning Schulze-Bergkamen
- First Department of Medicine, Johannes-Gutenberg-University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Binje Fleischer
- First Department of Medicine, Johannes-Gutenberg-University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Marcus Schuchmann
- First Department of Medicine, Johannes-Gutenberg-University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Achim Weber
- Institute of Pathology, Johannes-Gutenberg-University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Arndt Weinmann
- First Department of Medicine, Johannes-Gutenberg-University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Peter H Krammer
- German Cancer Research Center, Tumor Immunology Program, Heidelberg, Germany
| | - Peter R Galle
- First Department of Medicine, Johannes-Gutenberg-University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| |
Collapse
|
37
|
Hersey P. Apoptosis and melanoma: how new insights are effecting the development of new therapies for melanoma. Curr Opin Oncol 2006; 18:189-96. [PMID: 16462190 DOI: 10.1097/01.cco.0000208794.24228.9f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Melanoma has proven resistant to most available chemotherapy and immunotherapy. Despite a range of different biochemical targets, most agents kill cancer cells by induction of apoptosis. RECENT FINDINGS Investigation of this process has provided insights into the resistance mechanisms in cancer cells and to development of a range of new agents that target apoptosis pathways. These include agents which inhibit antiapoptotic B cell lymphoma-2 family proteins and inhibitor of apoptosis proteins. In addition, a range of signal pathway inhibitors have become available that are able to inhibit signal pathways known to be associated with resistance to apoptosis. SUMMARY Evaluation of most of these reagents are at a preclinical level but studies on some pathway inhibitors have passed from phase II into phase III studies. Similarly, evaluation of antisense reagents are at an advanced stage. These early trials show much promise and suggest this approach to development of new therapies will lead to much needed advances in treatment of this disease.
Collapse
Affiliation(s)
- Peter Hersey
- Oncology and Immunology Unit, David Maddison Clinical Sciences Building, Newcastle, New South Wales, Australia.
| |
Collapse
|
38
|
Habens F, Lapham AS, Dallman CL, Pickering BM, Michels J, Marcusson EG, Johnson PWM, Packham G. Distinct promoters mediate constitutive and inducible Bcl-XL expression in malignant lymphocytes. Oncogene 2006; 26:1910-9. [PMID: 16983335 DOI: 10.1038/sj.onc.1209979] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bcl-X(L) is a Bcl-2-related survival protein that is essential for normal development. Bcl-X(L) expression is rapidly induced by a wide range of survival signals and many cancer cells constitutively express high levels. The Bcl-X gene has a complex organization with multiple promoters giving rise to RNAs with alternate 5' non-coding exons. Here we have investigated the mechanisms that control basal and induced expression of Bcl-X(L) in B-lymphoma cells. Antisense experiments demonstrated that Bcl-X(L) was essential for survival of Akata6 B-lymphoma cells. The levels of RNAs containing the IB Bcl-X non-coding exon, derived from the distal 1B promoter, correlated with basal expression of Bcl-X(L) in primary malignant B cells and this promoter was highly active in B-cell lines. The activity of this promoter was largely dependent on a single Ets binding site and Ets family proteins were bound at this promoter in intact cells. CD40 ligand (CD40L)-induced cell survival was associated with increased Bcl-X(L) expression and accumulation of exon IA-containing RNAs, derived from the proximal 1A promoter. Nuclear factor-kappaB (NF-kappaB) inhibition prevented induction of Bcl-X(L) protein and exon IA-containing RNAs by CD40L. Therefore, the distal Bcl-X 1B promoter plays a critical role in driving constitutive expression-mediated via Ets family proteins in malignant B cells, whereas NF-kappaB plays a central role in the induction of Bcl-X(L) in response to CD40 signalling via the proximal 1A promoter.
Collapse
Affiliation(s)
- F Habens
- Cancer Research UK Clinical Centre, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S, Bodingbauer M, Crevenna R, Monia BP, Peck-Radosavljevic M, Wacheck V. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol 2006; 44:151-7. [PMID: 16289418 DOI: 10.1016/j.jhep.2005.09.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/25/2005] [Accepted: 09/09/2005] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIMS Recently, the anti-apoptotic Mcl-1 protein has been reported as a resistance factor in various types of cancer. Here we investigated the presence of Mcl-1 protein in hepatocellular carcinoma (HCC) tissues and its potential role as a molecular drug target for HCC therapy. METHODS HCC specimens of 149 patients were examined by immunohistochemistry for Mcl-1 expression. Antisense oligonucleotides (ASO) targeting Mcl-1 were evaluated as monotherapy and in combination with cisplatin in the HCC cell lines HepG2 and Snu398. Protein regulation, cell viability, and apoptosis were assessed by western blotting, cell counting, and FACS analysis. RESULTS Mcl-1 protein is overexpressed in 51% of all cases irrespective of underlying disease. Targeting Mcl-1 by ASO specifically downregulated Mcl-1 protein expression and led to significant dose and time dependent single agent activity in HCC cells characterized by increased apoptosis and decreased cell viability. No significant target regulation or cell death was observed for control oligonucleotide treatment. Upon combination with cisplatin, Mcl-1 ASO revealed a significant chemosensitizing effect. CONCLUSIONS Mcl-1 is overexpressed in half of HCC-tissues. ASO targeting Mcl-1 revealed a prominent single agent and chemosensitizing activity against HCC in vitro. Targeting Mcl-1 might qualify as a promising novel approach in HCC therapy.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor
- Blotting, Western
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Count
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oligonucleotides, Antisense/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Treatment Outcome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wolfgang Sieghart
- Section of Experimental Oncology/Molecular Pharmacology, Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hersey P, Zhuang L, Zhang XD. Current strategies in overcoming resistance of cancer cells to apoptosis melanoma as a model. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:131-58. [PMID: 16939779 DOI: 10.1016/s0074-7696(06)51004-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most anticancer agents mediate their effects through common pathways which induce apoptosis or in some cases necrosis of cancer cells. The apoptotic pathways are regulated by Bcl-2 family proteins, which include both pro- and anti-apoptotic members. Much is known about the interactions of these proteins involved in apoptosis and this information is being utilized in the development of new reagents that may be used to treat patients with cancers. The inhibitor of apoptosis family of proteins constitute a second group of proteins which inhibit the effector caspases. Reagents that inhibit their activity are also under development. Resistance of cancer cells to treatment can in many instances be attributed to activation of intracellular signal pathways involved in survival, such as the Ras-Raf-MEK-ERK1/2 or the P13K-Akt pathway. Again, much has been learned about the control of these pathways and their activation of resistance mechanisms. Inhibitors of such pathways are being evaluated in preclinical and clinical studies and are showing promise as a new class of anticancer agents. Much of the progress in future studies will likely depend on the ability to target these new treatments to particular subgroups of patients with tumor characteristics that make them responsive to the agents in question.
Collapse
Affiliation(s)
- Peter Hersey
- Oncology and Immunology Unit, Newcastle Mater Misericordiae Hospital, Newcastle, New South Wales, Australia
| | | | | |
Collapse
|
41
|
Benimetskaya L, Lai JC, Khvorova A, Wu S, Hua E, Miller P, Zhang LM, Stein CA. Relative Bcl-2 independence of drug-induced cytotoxicity and resistance in 518A2 melanoma cells. Clin Cancer Res 2005; 10:8371-9. [PMID: 15623615 DOI: 10.1158/1078-0432.ccr-04-1294] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Inhibition of the function of Bcl-2 protein has been postulated to sensitize cells to cytotoxic chemotherapy. G3139 (Genasense) is a phosphorothioate anti-Bcl-2 antisense oligonucleotide, but its mechanism of action is uncertain. The aim of the present work is to investigate inhibition of Bcl-2 expression in 518A2 melanoma cells, the cell line on which recent phase II and phase III clinical trials employing this agent were based. EXPERIMENTAL DESIGN We down-regulated the expression of Bcl-2 protein by two different strategies in these cells: one employing G3139 and controls, and the other using a small interfering RNA approach. Cell viability after treatment with oligonucleotides or small interfering RNA and cytotoxic agents including gemcitibine, DDP, docetaxel, and thapsigargin was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. A 518A2 melanoma cell line stably overexpressing Bcl-2 protein was constructed and treated with either these cytotoxic agents or G3139. RESULTS The cytotoxic effects of either G3139 or small interfering RNA treatment of 518A2 melanoma cells are Bcl-2 independent. In addition, in the Bcl-2-overexpressing cells, only a modest increment in chemoresistance was observed, and treatment with G3139 not only did not down-regulate Bcl-2 expression but produced essentially identical toxicity as was observed in the wild-type or mock-transfected cells. CONCLUSIONS Our results suggest that the mechanism whereby G3139 produces drug-induced cytotoxicity in the 518A2 melanoma line is not dependent on levels of Bcl-2. These findings emphasize the nonsequence specific effects of this phosphorothioate oligonucleotide and call into question the validity of Bcl-2 as a target in this cell line.
Collapse
Affiliation(s)
- Luba Benimetskaya
- Albert Einstein-Montefiore Cancer Center, Department of Oncology, Montefiore Medical Center, Bronx, New York 10467, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
He SJ, Stevens G, Braithwaite AW, Eccles MR. Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity. Mol Cancer Ther 2005; 4:996-1003. [PMID: 15956257 DOI: 10.1158/1535-7163.mct-04-0252] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advanced melanoma is difficult to treat, in part because of greater resistance to therapy compared with other cancer types. The mechanisms underlying this resistance are not well-understood. One factor that is reported to be involved in melanoma cell survival is PAX3, a transcription factor normally expressed during embryonic development, and which is critically required for development of neural crest-derivatives, including skin melanocytes. PAX3 expression is deregulated in primary melanomas and most melanoma cell lines. Here we have investigated whether targeting PAX3 expression in melanoma cell lines together with chemotherapeutic treatment increases susceptibility to therapeutic cell death. Using PAX3-specific antisense oligodeoxynucleotides (PAX3-AS) to treat melanoma cell lines in vitro, we showed dose-dependent reduction of proliferation of melanoma cells, and induction of apoptosis compared with control treatments. Induction of apoptosis was accompanied by the induction of active caspase-3 in UACC62 and M14 cells, and p53 protein in UACC62 cells. Treatment of melanoma cells with cisplatin induces DNA damage and cytotoxicity, which is thought to be via p53-dependent and -independent mechanisms. Treatment of either p53 mutant (M14) or wild-type (UACC62) melanoma cells with cisplatin, and varying doses of PAX3-AS, resulted in percentages of cells undergoing apoptosis equivalent to the sum of the individual treatments, irrespective of mutation status [e.g., UACC62, 43.8% (1 micromol/L PAX3-AS), 30.1% (20 micromol/L cisplatin), 69.6% (PAX3-AS + cisplatin); M14, 12.6% (1 micromol/L PAX3-AS), 41.5% (40 micromol/L cisplatin), 50.2% (PAX3-AS + cisplatin)]. These data suggest that treatment of melanoma cells with PAX3-AS complements cytotoxicity induced by cisplatin.
Collapse
Affiliation(s)
- Shu-Jie He
- Department of Pathology, Dunedin School of Medicine, New Zealand
| | | | | | | |
Collapse
|
43
|
Simões-Wüst AP, Hopkins-Donaldson S, Sigrist B, Belyanskaya L, Stahel RA, Zangemeister-Wittke U. A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis. Oligonucleotides 2005; 14:199-209. [PMID: 15625915 DOI: 10.1089/oli.2004.14.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported the Bcl-2/Bcl-xL-bispecific activity of the 2'-O-(2-methoxy)ethyl (2'-MOE)-modified gapmer antisense oligonucleotide 4625. This oligonucleotide has 100% complementarity to Bcl-2 and three mismatches to Bcl-xL. In the present study, the isosequential locked nucleic acid (LNA)-modified oligonucleotide 5005 was generated, and its ability to further improve the downregulation of the two antiapoptotic targets in tumor cells was examined. We demonstrate that compared with 4625, 5005 more effectively decreased the expression of the mismatching Bcl-xL target gene in MDA-MB-231 breast and H125 lung cancer cells. In both cell lines, antisense activity caused decreased cell viability by induction of apoptosis. Moreover, in combination with various anticancer agents, 5005 reduced tumor cell viability more effectively than 4625. We describe for the first time the functional comparison of isosequential Bcl-2/Bcl-xL-bispecific 2'-MOE and LNA-modified antisense oligonucleotides and report that the LNA analog more effectively downregulated the two apoptosis inhibitors overexpressed in human tumors. Our data underscore the ability of LNA modifications to enhance the efficacy and favorably modulate the target specificity of antisense oligonucleotides.
Collapse
Affiliation(s)
- A Paula Simões-Wüst
- Molecular Oncology Laboratory, Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Andersen MH, Reker S, Kvistborg P, Becker JC, thor Straten P. Spontaneous Immunity against Bcl-xL in Cancer Patients. THE JOURNAL OF IMMUNOLOGY 2005; 175:2709-14. [PMID: 16081848 DOI: 10.4049/jimmunol.175.4.2709] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is well-established that peptide epitopes derived from human tumor-associated Ags can be recognized by CTL in the context of the MHC molecule. However, the vast majority of Ags described are not vital for survival and growth of the tumor cells, and immunoselection of Ag-loss variants during immunotherapy has been demonstrated in several cases. Malfunctions in death pathways observed in human cancers are often due to overexpression of antiapoptotic proteins in the Bcl-2 protein family, i.e., Bcl-2, Mcl-1, and Bcl-xL. These antiapoptotic proteins are implicated in cancer development, tumor progression, and drug resistance. The general overexpression of the antiapoptotic members of the Bcl-2 family in cancer and the fact that down-regulation or loss of expression of these proteins as a means of immune escape would impair sustained tumor growth makes them very attractive targets for anticancer immunotherapy. Recently, we identified spontaneous T cell responses against Bcl-2- and Mcl-1-derived peptides in patients suffering from cancers of different origin. In this study, we demonstrate that Bcl-xL is a target for T cell recognition in cancer patients. Thus, we describe spontaneous HLA-A2-restricted cytotoxic T cell responses against peptide epitopes derived from Bcl-xL by means of ELISPOT and flow cytometry stainings, whereas no responses were detected against any of the Bcl-xL epitopes in any healthy controls. Moreover, Bcl-xL-specific T cells are cytotoxic against HLA-matched cancer cells of different origin. Thus, cellular immune responses against apoptosis inhibitors like the Bcl-2 family proteins appear to represent a general feature in cancer.
Collapse
MESH Headings
- Breast Neoplasms/enzymology
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Cell Line
- Cell Line, Tumor
- Cytotoxicity Tests, Immunologic
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Flow Cytometry
- Granzymes
- HLA-A2 Antigen/biosynthesis
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunity, Cellular
- Immunity, Innate
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Melanoma/enzymology
- Melanoma/immunology
- Melanoma/metabolism
- Neoplasm Proteins/metabolism
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Serine Endopeptidases/metabolism
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- bcl-X Protein/immunology
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Mads Hald Andersen
- Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Improved understanding of the molecular mechanisms that mediate cancer progression and therapeutic resistance has identified many therapeutic gene targets that regulate apoptosis, proliferation and cell signalling. Antisense oligonucleotides offer one approach to target genes involved in cancer progression, especially those that are not amenable to small-molecule or antibody inhibition. Better chemical modifications of antisense oligonucleotides increase resistance to nuclease digestion, prolong tissue half-lives and improve scheduling. Indeed, recent clinical trials confirm the ability of this class of drugs to significantly suppress target-gene expression. The current status and future directions of several antisense drugs that have potential clinical use in cancer are reviewed.
Collapse
Affiliation(s)
- Martin E Gleave
- The Prostate Centre at Vancouver General Hospital, and Division of Urology, University of British Columbia D9, Canada, V5Z 355.
| | | |
Collapse
|
46
|
|
47
|
Thallinger C, Wolschek MF, Maierhofer H, Skvara H, Pehamberger H, Monia BP, Jansen B, Wacheck V, Selzer E. Mcl-1 is a novel therapeutic target for human sarcoma: synergistic inhibition of human sarcoma xenotransplants by a combination of mcl-1 antisense oligonucleotides with low-dose cyclophosphamide. Clin Cancer Res 2005; 10:4185-91. [PMID: 15217956 DOI: 10.1158/1078-0432.ccr-03-0774] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Little is known about the role that Mcl-1, an antiapoptotic Bcl-2 family member, plays in solid tumor biology and susceptibility to anticancer therapy. We observed that the Mcl-1 protein is widely expressed in human sarcoma cell lines of different histological origin (n = 7). Because the expression of antiapoptotic Bcl-2 family proteins can significantly contribute to the chemoresistance of human malignancies, we used an antisense strategy to address this issue in sarcoma. EXPERIMENTAL DESIGN SCID mice (n = 6/group) received s.c. injections of SW872 liposarcoma cells. After development of palpable tumors, mice were treated by s.c.-implanted miniosmotic pumps prefilled with saline or antisense or universal control oligonucleotides (20 mg/kg/day for 2 weeks). On days 2, 6, and 10, mice were treated with low-dose cyclophosphamide (35 mg/kg i.p) or saline control. During the experiments, tumor weight was assessed twice weekly by caliper measurements. On day 14, animals were sacrificed. Tumors were weighed and fixed in formalin for immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling analysis. RESULTS Mcl-1 antisense oligonucleotides specifically reduced Mcl-1 protein expression but produced no reduction in tumor weight compared with saline-treated control animals. Cyclophosphamide monotreatment caused only modest tumor weight reduction compared with saline control. However, use of Mcl-1 antisense oligonucleotides combined with cyclophosphamide clearly enhanced tumor cell apoptosis and significantly reduced tumor weight by more than two-thirds compared with respective control treatments. CONCLUSION A combination of Mcl-1 antisense oligonucleotides with low-dose cyclophosphamide provides a synergistic antitumor effect and might qualify as a promising strategy to overcome chemoresistance in human sarcoma.
Collapse
Affiliation(s)
- Christiane Thallinger
- Department of Clinical Pharmacology, Section of Experimental Oncology/Molecular Pharmacology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic Pathways and Therapy Resistance in Human Malignancies. Adv Cancer Res 2005; 94:143-96. [PMID: 16096001 DOI: 10.1016/s0065-230x(05)94004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis and necrosis are two morphologically distinct forms of cell death that are important for maintaining of cellular homeostasis. Almost all agents can provoke either response when applied to cells; however, the duration of treatment and the dose of the used agents determine which type of death (apoptosis or necrosis) is initiated. The response of tumors to chemo-, radio-, and hormone therapy or to treatment with biologically active agents may depend at least in part on the propensity of these tumors to undergo cell death. Some tumors, e.g., leukemias, small cell lung cancer, and seminomas, respond quickly to first-line therapy; this fast response is thought to result from induction of apoptosis. Solid tumors, on the other hand, usually respond slowly and less effectively, with cell death characterized not only by apoptosis but also by necrosis, or mitotic catastrophe. It is likely that resistance of tumors to treatment might be associated with defects in, or dysregulation of, different steps of the apoptotic pathways. Several attempts were undertaken to use the knowledge of these defects to design new drugs, which might either activate or re-activate the apoptotic machinery of tumor cells. Here we discuss the apoptotic pathways and their role in therapy resistance of human malignancies. Although such studies are still in progress, they offer great promise for future cancer therapy. We hope that some of these agents will turn out to be valuable additions to the future therapeutic arsenal, which will most probably include a combination of conventional cytotoxic drugs and molecular target-based pro-apoptotic drugs.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Unit of Medical Radiobiology, Department of Oncology/Pathology, Cancer Center Karolinska, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
49
|
Lora J, Alonso FJ, Segura JA, Lobo C, Márquez J, Matés JM. Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. ACTA ACUST UNITED AC 2004; 271:4298-306. [PMID: 15511236 DOI: 10.1111/j.1432-1033.2004.04370.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glutamine is an essential amino acid in cancer cells and is required for the growth of many other cell types. Glutaminase activity is positively correlated with malignancy in tumours and with growth rate in normal cells. In the present work, Ehrlich ascites tumour cells, and their derivative, 0.28AS-2 cells, expressing antisense glutaminase mRNA, were assayed for apoptosis induced by methotrexate and hydrogen peroxide. It is shown that Ehrlich ascites tumour cells, expressing antisense mRNA for glutaminase, contain lower levels of glutathione than normal ascites cells. In addition, 0.28AS-2 cells contain a higher number of apoptotic cells and are more sensitive to both methotrexate and hydrogen peroxide toxicity than normal cells. Taken together, these results provide insights into the role of glutaminase in apoptosis by demonstrating that the expression of antisense mRNA for glutaminase alters apoptosis and glutathione antioxidant capacity.
Collapse
Affiliation(s)
- Jorge Lora
- Departamento de Biología Molecular y Bioquímica, Laboratorio de Química de Proteínas, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Malignant melanoma is a life-threatening skin cancer due to its highly metastatic character and resistance to radio- and chemotherapy. It is believed that the ability to evade apoptosis is the key mechanism for the rapid growth of cancer cells. However, the exact mechanism for failure in the apoptotic pathway in melanoma cells is unclear. p53, the most frequently mutated tumour suppressor gene in human cancers, is a key apoptosis inducer. However, p53 mutation is only found in 15–20% of melanoma biopsies. Recently, it was found that Apaf-1, a downstream target of p53, is inactivated in metastatic melanoma. Specifically, loss of heterozygosity (LOH) of the Apaf-1 gene was found in 40% of metastatic melanoma. To determine if loss of Apaf-1 expression is indeed involved in melanoma progression, we employed the tissue microarray technology and examined Apaf-1 expression in 70 human primary malignant melanoma biopsies by immunohistochemistry. Our data showed that Apaf-1 expression is significantly reduced in melanoma cells compared with normal nevi (χ2=6.02, P=0.014). Our results also revealed that loss of Apaf-1 was not associated with the tumour thickness, ulceration or subtype, patient's gender, age and 5-year survival. In addition, our in vitro apoptosis assay revealed that overexpression of Apaf-1 can sensitise melanoma cells to anticancer drug treatment. Taken together, our data indicate that Apaf-1 expression is significantly reduced in human melanoma and that Apaf-1 may serve as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- D L Dai
- Department of Medicine, Division of Dermatology, Vancouver Hospital and Health Sciences Centre, University of British Columbia, Vancouver, BC, Canada V6H 3Z6
| | - M Martinka
- Department of Pathology, Vancouver Hospital and Health Sciences Centre, University of British Columbia, Vancouver, BC, Canada V6H 3Z6
| | - J A Bush
- Department of Medicine, Division of Dermatology, Vancouver Hospital and Health Sciences Centre, University of British Columbia, Vancouver, BC, Canada V6H 3Z6
| | - G Li
- Department of Medicine, Division of Dermatology, Vancouver Hospital and Health Sciences Centre, University of British Columbia, Vancouver, BC, Canada V6H 3Z6
- Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6. E-mail:
| |
Collapse
|