1
|
Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges. Front Pharmacol 2024; 14:1260276. [PMID: 38264526 PMCID: PMC10803549 DOI: 10.3389/fphar.2023.1260276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.
Collapse
Affiliation(s)
| | | | | | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
2
|
Pinto N, Navarro SL, Rimorin C, Wurscher M, Hawkins DS, McCune JS. Pharmacogenomic associations of cyclophosphamide pharmacokinetic candidate genes with event-free survival in intermediate-risk rhabdomyosarcoma: A report from the Children's Oncology Group. Pediatr Blood Cancer 2021; 68:e29203. [PMID: 34245211 PMCID: PMC8719493 DOI: 10.1002/pbc.29203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND In vitro data suggest that the growth of rhabdomyosarcoma (RMS) cells is suppressed in a concentration-dependent manner by 4-hydroxycyclophosphamide (4HCY), the principal precursor to the cytotoxic metabolite of cyclophosphamide (CY). Various retrospective studies on the relationship between genes encoding proteins involved in the formation and elimination of 4HCY (i.e., 4HCY pharmacokinetics) and cyclophosphamide (CY) efficacy and toxicity have been conflicting. PROCEDURES We evaluated germline pharmacogenetics in 262 patients with newly diagnosed intermediate-risk RMS who participated in one prospective Children's Oncology Group clinical trial, ARST0531. Patients were treated with either vincristine/actinomycin/cyclophosphamide (VAC) or VAC alternating with vincristine/irinotecan (VAC/VI). We analyzed the associations between event-free survival and 394 single-nucleotide polymorphisms (SNP) in 14 drug metabolizing enzymes or transporters involved in 4HCY pharmacokinetics. RESULTS Eight SNPs were associated (p-value < .05 by univariate analysis) with 3-year event-free survival; no SNPs survived a false discovery rate < 0.05. CONCLUSIONS Our data suggest that a pharmacogenomic approach to therapy personalization of cyclophosphamide in intermediate-risk rhabdomyosarcoma is not viable. Other methods to personalize therapy should be explored.
Collapse
Affiliation(s)
- Navin Pinto
- Seattle Children’s Hospital, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christine Rimorin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Wurscher
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Douglas S. Hawkins
- Seattle Children’s Hospital, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jeannine S. McCune
- Department of Hematologic Malignances Translational Sciences, City of Hope, Duarte, California, USA
| |
Collapse
|
3
|
van der Perk MEM, Broer L, Yasui Y, Robison LL, Hudson MM, Laven JSE, van der Pal HJ, Tissing WJE, Versluys B, Bresters D, Kaspers GJL, de Vries ACH, Lambalk CB, Overbeek A, Loonen JJ, Beerendonk CCM, Byrne J, Berger C, Clemens E, Dirksen U, Falck Winther J, Fosså SD, Grabow D, Muraca M, Kaiser M, Kepák T, Kruseova J, Modan-Moses D, Spix C, Zolk O, Kaatsch P, Krijthe JH, Kremer LCM, Brooke RJ, Baedke JL, van Schaik RHN, van den Anker JN, Uitterlinden AG, Bos AME, van Leeuwen FE, van Dulmen-den Broeder E, van der Kooi ALLF, van den Heuvel-Eibrink MM. Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study. Cancers (Basel) 2021; 13:4598. [PMID: 34572825 PMCID: PMC8470074 DOI: 10.3390/cancers13184598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Female childhood cancer survivors (CCSs) carry a risk of therapy-related gonadal dysfunction. Alkylating agents (AA) are well-established risk factors, yet inter-individual variability in ovarian function is observed. Polymorphisms in CYP450 enzymes may explain this variability in AA-induced ovarian damage. We aimed to evaluate associations between previously identified genetic polymorphisms in CYP450 enzymes and AA-related ovarian function among adult CCSs. METHODS Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function in a discovery cohort of adult female CCSs, from the pan-European PanCareLIFE cohort (n = 743; age (years): median 25.8, interquartile range (IQR) 22.1-30.6). Using two additive genetic models in linear and logistic regression, nine genetic variants in three CYP450 enzymes were analyzed in relation to cyclophosphamide equivalent dose (CED) score and their impact on AMH levels. The main model evaluated the effect of the variant on AMH and the interaction model evaluated the modifying effect of the variant on the impact of CED score on log-transformed AMH levels. Results were validated, and meta-analysis performed, using the USA-based St. Jude Lifetime Cohort (n = 391; age (years): median 31.3, IQR 26.6-37.4). RESULTS CYP3A4*3 was significantly associated with AMH levels in the discovery and replication cohort. Meta-analysis revealed a significant main deleterious effect (Beta (95% CI): -0.706 (-1.11--0.298), p-value = 7 × 10-4) of CYP3A4*3 (rs4986910) on log-transformed AMH levels. CYP2B6*2 (rs8192709) showed a significant protective interaction effect (Beta (95% CI): 0.527 (0.126-0.928), p-value = 0.01) on log-transformed AMH levels in CCSs receiving more than 8000 mg/m2 CED. CONCLUSIONS Female CCSs CYP3A4*3 carriers had significantly lower AMH levels, and CYP2B6*2 may have a protective effect on AMH levels. Identification of risk-contributing variants may improve individualized counselling regarding the treatment-related risk of infertility and fertility preservation options.
Collapse
Affiliation(s)
- M. E. Madeleine van der Perk
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Linda Broer
- Department of Internal Medicine, Rotterdam, ErasmusMC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.B.); (A.G.U.)
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
- Department of Oncology, Division of Survivorship, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Joop S. E. Laven
- Department of Obstetrics and Gynecology, Erasmus MC–University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Helena J. van der Pal
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Wim J. E. Tissing
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Birgitta Versluys
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Gertjan J. L. Kaspers
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
- Department of Pediatric Oncology-Haematology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Andrica C. H. de Vries
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Cornelis B. Lambalk
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.B.L.); (A.O.)
| | - Annelies Overbeek
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.B.L.); (A.O.)
| | - Jacqueline J. Loonen
- Department of Haematology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Catharina C. M. Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Julianne Byrne
- Boyne Research Institute, 5 Bolton Square, East, Drogheda, A92 RY6K Co. Louth, Ireland;
| | - Claire Berger
- Department of Paediatric Oncology, University Hospital, 42 055 Saint-Etienne, France;
- Lyon University, Jean Monnet University, INSERM, U 1059, Sainbiose, 42023 Saint-Etienne, France
| | - Eva Clemens
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Uta Dirksen
- University Hospital Essen, Pediatrics III, West German Cancer Centre, 45147 Essen, Germany;
- German Cancer Research Centre, DKTK, Site Essen, 45147 Essen, Germany
| | - Jeanette Falck Winther
- Childhood Cancer Research Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, 8200 Aarhus, Denmark
| | - Sophie D. Fosså
- Department of Oncology, Oslo University Hospital, 0372 Oslo, Norway;
| | - Desiree Grabow
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Monica Muraca
- Epidemiology and Biostatistics Unit and DOPO Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Melanie Kaiser
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Tomáš Kepák
- University Hospital Brno, International Clinical Research Center (FNUSA-ICRC), Masaryk University, 656 91 Brno, Czech Republic;
| | | | - Dalit Modan-Moses
- The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Brandenburg Medical School Theodor Fontane, Immanuel Klinik Rüdersdorf, 16816 Neuruppin, Germany;
| | - Peter Kaatsch
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Jesse H. Krijthe
- Department of Intelligent Systems, Delft University of Technology, 2628 BL Delft, The Netherlands;
| | - Leontien C. M. Kremer
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Russell J. Brooke
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Jessica L. Baedke
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Ron H. N. van Schaik
- Department of clinical chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - John N. van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC 20010, USA;
| | - André G. Uitterlinden
- Department of Internal Medicine, Rotterdam, ErasmusMC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.B.); (A.G.U.)
| | - Annelies M. E. Bos
- Department of Reproductive Medicine and Gynecology, University Medical Center Utrecht, 3584 CS Utrecht, The Netherlands;
| | - Flora E. van Leeuwen
- Department of Epidemiology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Eline van Dulmen-den Broeder
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Anne-Lotte L. F. van der Kooi
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
- Department of Obstetrics and Gynecology, Erasmus MC–University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | | |
Collapse
|
4
|
Mlakar V, Curtis PHD, Armengol M, Ythier V, Dupanloup I, Hassine KB, Lesne L, Murr R, Mlakar SJ, Nava T, Ansari M. The analysis of GSTA1 promoter genetic and functional diversity of human populations. Sci Rep 2021; 11:5038. [PMID: 33658540 PMCID: PMC7930039 DOI: 10.1038/s41598-021-83996-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022] Open
Abstract
GSTA1 encodes a member of a family of enzymes that function to add glutathione to target electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTA1 has several functional SNPs within its promoter region that are responsible for a change in its expression by altering promoter function. This study aims to investigate distributions of GSTA1 promoter haplotypes across different human populations and to assess their impact on the expression of GSTA1. PHASE 2.1.1 was used to infer haplotypes and diplotypes of six GSTA1 promoter SNPs on 2501 individuals from 26 populations classified by the 1000 Genomes Project into five super-populations that included Africa (N = 660), America (N = 347), East Asia (N = 504), Europe (N = 502), and South Asia (N = 488). We used pairwise FST analysis to compare sub-populations and luciferase reporter assay (LRA) to evaluate the impact of each SNP on activation of transcription and interaction with other SNPs. The distributions of GSTA1 promoter haplotypes and diplotypes were significantly different among the different human populations. Three new promoter haplotypes were found in the African super-population. LRA demonstrated that SNPs at -52 and -69 has the most impact on GSTA1 expression, however other SNPs have a significant impact on transcriptional activity. Based on LRA, a new model of cis-elements interaction is presented. Due to the significant differences in GSTA1 diplotype population frequencies, future pharmacogenomics or disease-related studies would benefit from the inclusion of the complete GSTA1 promoter haplotype based on the newly proposed metabolic grouping derived from the LRA results.
Collapse
Affiliation(s)
- Vid Mlakar
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Patricia Huezo-Diaz Curtis
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Marc Armengol
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Victor Ythier
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
| | | | - Khalil Ben Hassine
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Laurence Lesne
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Rabih Murr
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Tiago Nava
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Marc Ansari
- Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Pediatric Oncology and Hematology Unit, Department of Women, Children and Adolescents, Geneva University Hospital, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
5
|
Frequencies of glutathione S-transferase A1 rs3957357 polymorphism in a Turkish population. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.871071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Attia DHS, Eissa M, Samy LA, Khattab RA. Influence of glutathione S transferase A1 gene polymorphism (-69C > T, rs3957356) on intravenous cyclophosphamide efficacy and side effects: a case-control study in Egyptian patients with lupus nephritis. Clin Rheumatol 2020; 40:753-762. [PMID: 32661806 DOI: 10.1007/s10067-020-05276-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a systemic autoimmune disease. Cyclophosphamide (CYC) is a cytotoxic drug of a narrow therapeutic window that is commonly used in lupus nephritis (LN) treatment. However, 30-40% of patients experience CYC resistance. CYC inactivation is mediated by the glutathione S transferases (GSTs) superfamily: GST class A (GSTA) has the greatest activity and contains 5 isoenzymes. Polymorphisms of genes involved in the drug metabolism could alter the drug pharmacokinetics and effectiveness. CYC pharmacokinetics and pharmacogenomics are extensively studied in malignancies; however, scarce data are available about this issue in the autoimmune rheumatic diseases. Prediction of the drug response helps the achievement of the highest benefit-to-risk ratio. The aim of this case-control study was to address the association between GSTA1 polymorphism (-69C > T, rs3957356), and the rate of response to and side effects of intravenous CYC in LN patients. METHODS Ninety-four patients were included and divided into matched groups: resistant and responsive. Genotyping was performed using restriction fragment length polymorphism method after amplification. RESULTS A significant association between the TT genotype, and CYC resistance and partial response was observed. Concerning the recessive model, none of the patients within the TT group achieved complete remission. CYC side effects were more common with the polymorphism under the genotype, recessive model, and allele distributions. When patients' pre- and post-treatment characteristics were compared, patients with the TT genotype did not show any significant improvement. CONCLUSION LN patients with GSTA1 (-69C > T, rs3957356) TT genotype have the highest risk of CYC unresponsiveness and toxicity. Key-Points • LN patients with the wild genotype of GSTA1 have the greatest probability of achieving a complete renal response to IV CYC. • The homozygous GSTA1 (-69C > T, rs3957356) TT genotype is associated with the highest risk of LN unresponsiveness to IV CYC. • The homozygous GSTA1 (-69C > T, rs3957356) TT genotype is associated with the highest risk of CYC-related side effects.
Collapse
Affiliation(s)
- Doaa H S Attia
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Giza, Egypt.
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University Hospitals, Saray El Manial Street, El Manial, Cairo, 11956, Egypt.
| | - Mervat Eissa
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Lamees A Samy
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rasha A Khattab
- Clinical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Charo LM, Homer MV, Natarajan L, Haunschild C, Chung K, Mao JJ, DeMichele AM, Su HI. Drug metabolising enzyme polymorphisms and chemotherapy-related ovarian failure in young breast cancer survivors. J OBSTET GYNAECOL 2020; 41:447-452. [PMID: 32496149 DOI: 10.1080/01443615.2020.1754369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cyclophosphamide is associated with chemotherapy-related ovarian failure (CROF) in breast cancer survivors, however little is known about predicting individual risks. We sought to identify genetic alleles as biomarkers for risk of CROF after cyclophosphamide treatment. One hundred fifteen premenopausal women with newly diagnosed breast cancer were genotyped for single nucleotide polymorphisms (SNPs) in genes involved in cyclophosphamide activation (CYP3A4 and CYP2C19) and detoxification (GSTP1 and GSTA1). Patients prospectively completed menstrual diaries. With median follow up of 808 days, 28% experienced CROF. Survivors homozygous for the GSTA1 minor allele had lower hazards for developing CROF (HR 0.22 [95% CI 0.05-0.94], p=.04), while survivors homozygous for the CYP2C19 minor allele had higher hazards for developing CROF (HR 4.5 [95% CI 1.5-13.4], p=.007) compared to patients with at least one major allele. In separate multivariable models adjusting for age and tamoxifen use, the associations were no longer statistically significant (GSTA1 HR 0.24 [95% CI 0.06-1.0], p=.05; CYP2C19 HR 2.5 [0.8-7.6], p=.11). CYP3A4 and GSTP1 SNPs were not significantly related to CROF. In younger breast cancer survivors undergoing cyclophosphamide-based chemotherapy, genetic variation in CYP2C19 and GSTA1 merits further study to determine its relationship with CROF.IMPACT STATEMENTWhat is already known on this subject? Young breast cancer survivors face important potential implications of chemotherapy-related ovarian failure (CROF). Little is known about individual risk for CROF. Cyclophosphamide, a particularly gonadotoxic drug commonly used in breast cancer treatment, is metabolised by various cytochrome p450 enzymes. Studies have shown genetic variation in p450 enzymes is associated with differential clinical outcomes after cyclophosphamide treatment: breast cancer patients homozygous for GSTA1 minor allele had improved overall survival; lupus patients homozygous for CYP2C19 minor allele had increased risk for CROF; and CYP3A4*1B I was associated with decreased risk for CROF.What do the results of this study add? We show a surprising opposite trend for the risk of CROF in breast cancer patients with GSTA1 and CYP2C19 variants, while we did not show a significant risk for genetic variation in CYP3A4 (which had previously been shown to have a protective effect) or GSTP1.What are the implications of these findings for clinical practice and/or further research? This study shows the complexity of genetic variation in predicting outcomes to treatment. We advocate for future replicative studies to potentially validate GSTA1 and CYP2C19 and definitively negate CYP3A4 and GSTP1 as biomarkers for risk of CROF after cyclophosphamide treatment. Understanding genetic variation in chemotherapy metabolism has the potential to individualise treatment regimens to maximise efficacy and minimise toxicity.
Collapse
Affiliation(s)
- Lindsey M Charo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, CA, USA.,Moores Cancer Center, University of California, San Diego, CA, USA
| | - Michael V Homer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Loki Natarajan
- Moores Cancer Center, University of California, San Diego, CA, USA.,Reproductive Division of Biostatistics and Bioinformatics, University of California, San Diego, CA, USA
| | - Carolyn Haunschild
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Karine Chung
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Jun J Mao
- Integrative Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela M DeMichele
- Department of Internal Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - H Irene Su
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, CA, USA.,Moores Cancer Center, University of California, San Diego, CA, USA
| |
Collapse
|
8
|
Kalra S, Kaur RP, Ludhiadch A, Shafi G, Vashista R, Kumar R, Munshi A. Association of CYP2C19*2 and ALDH1A1*1/*2 variants with disease outcome in breast cancer patients: results of a global screening array. Eur J Clin Pharmacol 2018; 74:1291-1298. [DOI: 10.1007/s00228-018-2505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
9
|
Abstract
Pulsed low-dose cyclophosphamide (CTX) therapy has become a very effective approach in improving the clinical outcomes of lupus nephritis (LN) patients. However, variations of CTX therapeutic outcomes in LN patients are incompletely understood. We investigated the contributions of known allelic variants to CTX therapy outcomes in 77 LN patients. Then, 22 out of the 77 patients were randomly enrolled to evaluate the pharmacokinetic profiles. LN patients with a GSTA1*A mutation (CT heterozygous) had more risk of non-remission (44% vs. 20%, P=0.005). Pharmacokinetic data indicated that patients with a GSTA1*A heterozygous variant had a lower exposure to 4-hydroxycyclophosphamide (4OHCTX) compared to wild-type patients (AUC4OHCTX: 12.8 (9.8, 19.5) vs. 27.5 (18.1, 32.8) h mg/l, P=0.023). Clinical remission was significantly related to higher exposure of 4OHCTX (P=0.038). In conclusion, LN patients with GSTA1*A heterozygous genotypes had poor CTX treatment remission due to less exposure to activated metabolites of CTX.
Collapse
|
10
|
Vulsteke C, Pfeil AM, Schwenkglenks M, Pettengell R, Szucs TD, Lambrechts D, Peeters M, van Dam P, Dieudonné AS, Hatse S, Neven P, Paridaens R, Wildiers H. Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel. Breast Cancer Res Treat 2014; 147:557-70. [PMID: 25168315 DOI: 10.1007/s10549-014-3105-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/16/2014] [Indexed: 01/26/2023]
Abstract
To assess the impact of patient-related factors, including genetic variability in genes involved in the metabolism of chemotherapeutic agents, on breast cancer-specific survival (BCSS) and recurrence-free interval (RFI). We selected early breast cancer patients treated between 2000 and 2010 with 4-6 cycles of (neo-)adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) or 3 cycles FEC followed by 3 cycles docetaxel. Tumor stage/subtype; febrile neutropenia and patient-related factors such as selected single nucleotide polymorphisms and baseline laboratory parameters were evaluated. Multivariable Cox regression was performed. Of 991 patients with a mean follow-up of 5.2 years, 152 (15.3 %) patients relapsed and 63 (6.4 %) patients died. Advanced stage and more aggressive subtype were associated with poorer BCSS and RFI in multivariable analysis (p < 0.0001). Associations with worse BCSS in multivariable analysis were: homozygous carriers of the rs1057910 variant C-allele in CYP2C9 (hazard ratio [HR] 30.4; 95 % confidence interval [CI] 6.1-151.5; p < 0.001) and higher white blood cell count (WBC) (HR 1.2; 95 % CI 1.0-1.3; p = 0.014). The GT genotype of the ABCB1 variant rs2032582 was associated with better BCSS (HR 0.5; 95 % CI 0.3-0.9, p = 0.021). Following associations with worse RFI were observed: higher WBC (HR 1.1; 95 % CI 1.0-1.2; p = 0.026), homozygous carriers of the rs1057910 variant C-allele in CYP2C9 (HR 10.9; 95 % CI 2.5-47.9; p = 0.002), CT genotype of the CYBA variant rs4673 (HR 1.8; 95 % CI 1.2-2.7; p = 0.006), and G-allele homozygosity for the UGT2B7 variant rs3924194 (HR 3.4; 95 % CI 1.2-9.7, p = 0.023). Patient-related factors including genetic variability and baseline white blood cell count, impacted on outcome in early breast cancer.
Collapse
Affiliation(s)
- C Vulsteke
- Integrated Cancer Center Ghent, AZ Maria Middelares, Ghent, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gelderblom H, Blay J, Seddon B, Leahy M, Ray-Coquard I, Sleijfer S, Kerst J, Rutkowski P, Bauer S, Ouali M, Marreaud S, van der Straaten R, Guchelaar HJ, Weitman S, Hogendoorn P, Hohenberger P. Brostallicin versus doxorubicin as first-line chemotherapy in patients with advanced or metastatic soft tissue sarcoma: An European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group randomised phase II and pharmacogenetic study. Eur J Cancer 2014; 50:388-96. [DOI: 10.1016/j.ejca.2013.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 11/29/2022]
|
12
|
YAMAMOTO YUSUKE, KONISHI HIROTAKA, ICHIKAWA DAISUKE, ARITA TOMOHIRO, SHODA KATSUTOSHI, KOMATSU SHUHEI, SHIOZAKI ATSUSHI, IKOMA HISASHI, FUJIWARA HITOSHI, OKAMOTO KAZUMA, OCHIAI TOSHIYA, INOUE JUN, INAZAWA JOHJI, OTSUJI EIGO. Significance of GSTP1 for predicting the prognosis and chemotherapeutic efficacy in esophageal squamous cell carcinoma. Oncol Rep 2013; 30:1687-94. [DOI: 10.3892/or.2013.2606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/12/2013] [Indexed: 11/05/2022] Open
|
13
|
Brooks JD, Teraoka SN, Bernstein L, Mellemkjær L, Malone KE, Lynch CF, Haile RW, Concannon P, Reiner AS, Duggan DJ, Schiermeyer K, Bernstein JL, Figueiredo JC. Common variants in genes coding for chemotherapy metabolizing enzymes, transporters, and targets: a case-control study of contralateral breast cancer risk in the WECARE Study. Cancer Causes Control 2013; 24:1605-14. [PMID: 23775025 PMCID: PMC3709075 DOI: 10.1007/s10552-013-0237-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 05/21/2013] [Indexed: 11/27/2022]
Abstract
Purpose Women who receive chemotherapy for a first primary breast cancer have been observed to have a reduced risk of contralateral breast cancer (CBC), however, whether the genetic profile of a patient modifies this protective effect is currently not understood. The purpose of this study is to investigate the impact of germline genetic variation in genes coding for drug metabolizing enzymes, transporters, and targets on the association between chemotherapy and risk of CBC. Methods From the population-based Women’s Environment Cancer and Radiation Epidemiology (WECARE) Study, we included 636 Caucasian women with CBC (cases) and 1,224 women with unilateral breast cancer (controls). The association between common chemotherapeutic regimens, CMF and FAC/FEC, and risk of CBC stratified by genotype of 180 single nucleotide polymorphisms in 14 genes selected for their known involvement in metabolism, action, and transport of breast cancer chemotherapeutic agents, were determined using conditional logistic regression. Results CMF (RR = 0.5, 95 % CI 0.4, 0.7) and FAC/FEC (RR = 0.7, 95 % CI 0.4, 1.0) are associated with lower CBC risk relative to no chemotherapy in multivariable-adjusted models. Here we show that genotype of selected genes involved in the metabolism and uptake of these therapeutic agents does not significantly alter the protective effect of either CMF or FAC/FEC on risk of CBC. Conclusion The results of this study show that germline genetic variation in selected gene does not significantly alter the protective effect of CMF, FAC, and FEC on risk of CBC. Electronic supplementary material The online version of this article (doi:10.1007/s10552-013-0237-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer D Brooks
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 307 E 63rd Street, 3rd Floor, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sohail A, Kanwal N, Ali M, Sadia S, Masood AI, Ali F, Iqbal F, Crickmore N, Shaikh RS, Sayyed AH. Effects of glutathione-S-transferase polymorphisms on the risk of breast cancer: a population-based case-control study in Pakistan. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:143-153. [PMID: 23376175 DOI: 10.1016/j.etap.2012.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/17/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
Cancer is widely accepted as one of the major health issues. Diet composition and exposure to environmental genotoxic and carcinogenic agents such as polycyclic aromatic hydrocarbons (PAHs) are among the causative factors for various types of cancers, including breast cancer. Low penetrance genes including glutathione S transferases (GST) in association with environmental factors can contribute greatly in the development of breast cancer. We were interested to investigate the association of the polymorphisms of GSTM1, GSTT1, GSTP1 and GSTO2 with the risk of breast cancer in the Pakistani population. One hundred women visiting the Department of Radiology and Oncology, Nishter Hospital, Multan with pathologically confirmed breast cancer, and 100 healthy volunteers from central Pakistan were enrolled in the present study. The strength of the association of various factors with breast cancer was measured by calculating odd ratios (ORs) which were determined by logistic regression. All P values cited are two-sided; differences resulting in a P value of less or equal to 0.05 were declared statistically significant. The Hardy Weinberg equilibrium was tested for the genotype proportions in the control group, as a measure of quality control. Those aged 36-45, in menopause or with a history of cancer in the family had a significantly higher prevalence of breast cancer compared with controls. The frequency of GSTM1 and GSTT1 was similar in both control and patients suggesting no association with the risk of cancer development, however GSTM1 and GSTT1 were significantly linked with the risk of breast cancer in smokers and in women with a history of breast cancer in the family respectively. Similarly women homozygous for GSTP1 or GSTO2 and with a history of breast cancer, or in menopause, were at greater risk of breast cancer than wild type or heterozygotes. Our data suggest that genetic differences in some GST genes may be linked with an increased susceptibility to breast cancer. Furthermore it also gives an insight into the interaction between the GST polymorphisms and pre-menopausal diagnosis of breast cancer.
Collapse
Affiliation(s)
- Asma Sohail
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vulsteke C, Lambrechts D, Dieudonné A, Hatse S, Brouwers B, van Brussel T, Neven P, Belmans A, Schöffski P, Paridaens R, Wildiers H. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC). Ann Oncol 2013; 24:1513-25. [PMID: 23396606 DOI: 10.1093/annonc/mdt008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To assess the impact of single-nucleotide polymorphisms (SNPs) on predefined severe adverse events in breast cancer (BC) patients receiving (neo-)adjuvant 5-fluorouracil (FU), epirubicin and cyclophosphamide (FEC) chemotherapy. PATIENTS AND METHODS Twenty-six SNPs in 16 genes of interest, including the drug transporter gene ABCC1/MRP1, were selected based on a literature survey. An additional 33 SNPs were selected in these genes, as well as in 12 other genes known to be involved in the metabolism of the studied chemotherapeutics. One thousand and twelve female patients treated between 2000 and 2010 with 3-6 cycles of (neo-)adjuvant FEC were genotyped for these SNPs using Sequenom MassARRAY. Severe adverse events were evaluated through an electronic chart review for febrile neutropenia (FN, primary end point), FN first cycle, prolonged grade 4 or deep (<100/µl) neutropenia, anemia grade 3-4, thrombocytopenia grade 3-4 and non-hematological grade 3-4 events (secondary end points). RESULTS Carriers of the rs4148350 variant T-allele in ABCC1/MRP1 were associated with FN relative to homozygous carriers of the G-allele [P = 0.0006; false discovery rate (FDR) = 0.026]. Strong correlations with secondary end points such as prolonged grade 4 neutropenia (P = 0.002, FDR = 0.046) were also observed. Additionally, two other SNPs in ABCC1/MRP1 (rs45511401 and rs246221) correlated with FN (P = 0.007 and P = 0.01, respectively; FDR = 0.16 and 0.19), as well as two SNPs in UGT2B7 and FGFR4 (P = 0.024 and P = 0.04; FDR = 0.28 and 0.38). CONCLUSION Genetic variability in ABCC1/MRP1 was associated with severe hematological toxicity of FEC.
Collapse
Affiliation(s)
- C Vulsteke
- Department of General Medical Oncology and Laboratory of Experimental Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vianna-Jorge R, Festa-Vasconcellos JS, Goulart-Citrangulo SMT, Leite MS. Functional polymorphisms in xenobiotic metabolizing enzymes and their impact on the therapy of breast cancer. Front Genet 2013; 3:329. [PMID: 23346096 PMCID: PMC3551254 DOI: 10.3389/fgene.2012.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/29/2012] [Indexed: 01/21/2023] Open
Abstract
Breast cancer is the top cancer among women, and its incidence is increasing worldwide. Although the mortality tends to decrease due to early detection and treatment, there is great variability in the rates of clinical response and survival, which makes breast cancer one of the most appealing targets for pharmacogenomic studies. The recognition that functional CYP2D6 polymorphisms affect tamoxifen pharmacokinetics has motivated the attempts of using CYP2D6 genotyping for predicting breast cancer outcomes. In addition to tamoxifen, the chemotherapy of breast cancer includes combinations of cytotoxic drugs, which are substrates for various xenobiotic metabolizing enzymes. Because of these drugs’ narrow therapeutic window, it has been postulated that impaired biotransformation could lead to increased toxicity. In the present review, we performed a systematic search of all published data exploring associations between polymorphisms in xenobiotic metabolizing enzymes and clinical outcomes of breast cancer. We retrieved 43 original articles involving either tamoxifen or other chemotherapeutic protocols, and compiled all information regarding response or toxicity. The data indicate that, although CYP2D6 polymorphisms can indeed modify tamoxifen pharmacokinetics, CYP2D6 genotyping alone is not enough for predicting breast cancer outcomes. The studies involving other chemotherapeutic protocols explored a great diversity of pharmacogenetic targets, but the number of studies for each functional polymorphism is still very limited, with usually no confirmation of positive associations. In conclusion, the application of pharmacogenetics to predict breast cancer outcomes and to select one individual’s chemotherapeutic protocol is still far from clinical routine. Although some very interesting results have been produced, no clear practical recommendations are recognized yet.
Collapse
Affiliation(s)
- Rosane Vianna-Jorge
- Programa de Farmacologia, Coordenação de Pesquisa, Instituto Nacional do Câncer Rio de Janeiro, Brazil ; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
17
|
Hassan M, Andersson BS. Role of pharmacogenetics in busulfan/cyclophosphamide conditioning therapy prior to hematopoietic stem cell transplantation. Pharmacogenomics 2013; 14:75-87. [PMID: 23252950 DOI: 10.2217/pgs.12.185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative treatment for several malignant and nonmalignant disorders. Busulfan (Bu) and cyclophosphamide (Cy) are the most commonly used alkylators in high-dose pretransplant conditioning for HSCT; a treatment that is correlated with drug-related toxicity and relapse. Pharmacogenetic investigations have shown that CYP450, as well as aldehyde dehydrogenase, are clearly involved with Cy metabolism and are associated with altered treatment response, Cy metabolism and the unique stem-cell sparing capacity. Moreover, glutathione-S-transferase isoenzymes have been associated with cellular outward transport of various alkylating agents, including Cy metabolites, melphalan, Bu and chlorambucil. A shift from genetic-based studies to whole-genome-based investigations of Cy- and Bu-associated markers may contribute to personalizing the conditioning therapy and enhancing the clinical outcome of HSCT.
Collapse
Affiliation(s)
- Moustapha Hassan
- Experimental Cancer Medicine (ECM), Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
18
|
González-Neira A. Pharmacogenetics of chemotherapy efficacy in breast cancer. Pharmacogenomics 2012; 13:677-90. [PMID: 22515610 DOI: 10.2217/pgs.12.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Large differences are observed in chemotherapy response between breast cancer patients, with a substantial part of this variability being explained by genetic factors. Polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters and drug targets influence the pharmacokinetics and pharmacodynamics of these anticancer drugs, leading to differences in therapeutic efficacy. Pharmacogenetic investigations of breast cancer therapeutics focused on these candidate loci have been performed. This article summarizes the status of research to identify polymorphisms in genes that influence response to the chemotherapeutic agents used in breast cancer treatment and suggests future directions for this line of research. Understanding the genetic factors that predispose patients to poor treatment outcomes will help guide individualized therapeutic strategies to obtain maximal benefit.
Collapse
Affiliation(s)
- Anna González-Neira
- Human Genotyping Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.
| |
Collapse
|
19
|
Tengström M, Mannermaa A, Kosma VM, Hirvonen A, Kataja V. SULT1A1 rs9282861 polymorphism-a potential modifier of efficacy of the systemic adjuvant therapy in breast cancer? BMC Cancer 2012; 12:257. [PMID: 22708928 PMCID: PMC3388009 DOI: 10.1186/1471-2407-12-257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 06/18/2012] [Indexed: 12/16/2022] Open
Abstract
Background Sulfotransferase 1A1 (SULT1A1) participates in the elimination of 4-hydroxy-tamoxifen (4-OH-TAM), which is one of the major active metabolites of tamoxifen (TAM). Homozygous SULT1A1 variant allele genotype has been associated with lower catalytic activity and thermostability of the enzyme. Previous clinical studies suggest that the SULT1A1 rs9282861 polymorphism may influence the survival of breast cancer patients treated with TAM in the adjuvant setting. We investigated the effect of rs9282861 genotypes on the survival of Finnish breast cancer patients treated with adjuvant chemotherapy or TAM. Methods The rs9282861 genotypes of 412 Finnish breast cancer patients with early breast cancer were identified by using PCR-RFLP method. Seventy six patients were treated with adjuvant cyclophosphamide based chemotherapy only, 65 patients received adjuvant TAM, and four patients were treated with both adjuvant chemotherapy and TAM. Overall long-term survival (OS), breast cancer specific survival (BCSS), and relapse-free survival (RFS) by rs9282861 genotypes were evaluated by the Kaplan-Meier method and Cox regression analysis. Results The multivariate analysis of 145 patients receiving either adjuvant TAM or chemotherapy showed a statistically significantly improved OS in patients with the rs9282861 homozygous variant AA genotype (hazard ratio [HR] = 0.50, 95% confidence interval [CI] = 0.29-0.88, P = 0.015). In the separate analyses of patients receiving only chemotherapy or adjuvant TAM, there were no statistically significant differences in survival. Conclusions In this prospective study, we observed a previously unreported association between the SULT1A1 rs9282861 genotype and OS of breast cancer patients treated with adjuvant chemotherapy or TAM. This novel finding suggests that the rs9282861 polymorphism modifies the long-term clinical outcome of patients receiving adjuvant TAM or chemotherapy.
Collapse
Affiliation(s)
- Maria Tengström
- Cancer Center, Kuopio University Hospital, P,O,BOX 1777, 70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
20
|
Yri OE, Ekstrøm PO, Hilden V, Gaudernack G, Liestøl K, Smeland EB, Holte H. Polymorphisms in genes encoding interleukin-10 and drug metabolizing enzymes GSTP1, GSTT1, GSTA1 and UGT1A1 influence risk and outcome in Hodgkin lymphoma. Leuk Lymphoma 2012; 53:1934-44. [DOI: 10.3109/10428194.2012.682307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Romero A, Martín M, Oliva B, de la Torre J, Furio V, de la Hoya M, García-Sáenz JA, Moreno A, Román JM, Diaz-Rubio E, Caldés T. Glutathione S-transferase P1 c.313A > G polymorphism could be useful in the prediction of doxorubicin response in breast cancer patients. Ann Oncol 2011; 23:1750-6. [PMID: 22052985 DOI: 10.1093/annonc/mdr483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Identification of predicting factors for anthracyclines-based chemotherapy remains a clinical challenge. Glutathione S-transferase (GSTs) enzymes detoxify chemotherapy drugs and their metabolites. Several polymorphisms in GST genes result in reduced or no activity of the enzymes. Specifically, GSTM1 and GSTT1 genes are polymorphically deleted, the polymorphism GSTP1 c.313A>G (rs1695) determines the amino acid substitution Ile105Val, where the Val-containing enzyme has reduced activity. Also, GSTA1*B allele has reduced levels of GSTA1 enzyme. Several polymorphisms in GSTs have been associated with differences in survival for cancer patients treated with chemotherapy. PATIENTS AND METHODS We genotyped a total of five polymorphisms in GSTM1, GSTT1, GSTP1 and GSTA1 genes in 159 patients with locally advanced breast cancer, treated with single-agent doxorubicin or docetaxel (Taxotere). Gene expression microarrays were performed in 67 breast tumor samples. We correlate this data with treatment outcome. RESULTS In multivariate analysis, patients homozygous GG for GSTP1 c.313A>G SNP had a lower risk of chemoresistance when treated with doxorubicin (odds ratio 0.106; confidence interval 0.012-0.898; P=0.040). No association was found in the docetaxel arm. Also, we found that GSTP1 expression varied significantly among breast cancer molecular subtypes. CONCLUSIONS GSTP1 may constitute another tool contributing to individualized anthracycline-based therapy.
Collapse
Affiliation(s)
- A Romero
- Medical Oncology Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Maekawa K, Hamaguchi T, Saito Y, Tatewaki N, Kurose K, Kaniwa N, Eguchi Nakajima T, Kato K, Yamada Y, Shimada Y, Yoshida T, Kamatani N, Ura T, Saito M, Muro K, Fuse N, Yoshino T, Doi T, Otsu A, Saijo N, Sawada JI, Okuda H, Matsumura Y. Genetic variation and haplotype structures of the glutathione S-transferase genes GSTA1 and GSTA2 in Japanese colorectal cancer patients. Drug Metab Pharmacokinet 2011; 26:646-58. [PMID: 21844655 DOI: 10.2133/dmpk.dmpk-11-sc-050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutathione S-transferases (GSTs) play a vital role in the phase II biotransformation of many chemicals, including anticancer drugs. In this study, to elucidate the haplotype structures of the two closely related alpha-class genes GSTA1 and GSTA2, we screened for genetic variation in 214 Japanese colorectal cancer patients who received oxaliplatin-based chemotherapy. By direct resequencing of the 5'-flanking region, all the exons, and their flanking introns for 107 patients, 29 and 27 variants were identified in GSTA1 and GSTA2, respectively. The known functional single nucleotide polymorphisms (SNPs) -567T>G, -69C>T, and -52G>A in GSTA1*B were found at allele frequencies of 0.140. Of the four major GSTA2 allelic variants reported previously (GSTA2*A, *B, *C, and *E), only GSTA2*B (frequency = 0.154), *C (0.706), and *E (0.140) were detected. Following linkage disequilibrium analysis, haplotypes of both genes were separately estimated. Then, rapid genotyping methods for 7 and 6 SNPs tagging common haplotypes of GSTA1 and GSTA2, respectively, were developed using the single-base extension assay, and an additional 107 patients were genotyped. Finally, haplotype combinations of both genes were classified into 3 major types: GSTA1*A-GSTA2*C, GSTA1*A-GSTA2*B, and GSTA1*B-GSTA2*E. These findings will be useful in pharmacogenomic studies on xenobiotics including anticancer drugs.
Collapse
Affiliation(s)
- Keiko Maekawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Koumaravelou K, Shoaib Z, Adithan C, Charron D, Srivastava A, Tamouza R, Krishnamoorthy R. Analysis of human glutathione S-transferase alpha 1 (hGSTA1) gene promoter polymorphism using Denaturing High Performance Liquid Chromatography (DHPLC). Clin Chim Acta 2011; 412:1465-8. [DOI: 10.1016/j.cca.2011.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/04/2011] [Accepted: 04/14/2011] [Indexed: 11/16/2022]
|
24
|
Deenen MJ, Cats A, Beijnen JH, Schellens JHM. Part 3: Pharmacogenetic variability in phase II anticancer drug metabolism. Oncologist 2011; 16:992-1005. [PMID: 21659608 DOI: 10.1634/theoncologist.2010-0260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Equivalent drug doses may lead to wide interpatient variability in drug response to anticancer therapy. Known determinants that may affect the pharmacological response to a drug are, among others, nongenetic factors, including age, gender, use of comedication, and liver and renal function. Nonetheless, these covariates do not explain all the observed interpatient variability. Differences in genetic constitution among patients have been identified to be important factors that contribute to differences in drug response. Because genetic polymorphism may affect the expression and activity of proteins encoded, it is a key covariate that is responsible for variability in drug metabolism, drug transport, and pharmacodynamic drug effects. We present a series of four reviews about pharmacogenetic variability. This third part in the series of reviews is focused on genetic variability in phase II drug-metabolizing enzymes (glutathione S-transferases, uridine diphosphoglucuronosyl transferases, methyltransferases, sulfotransferases, and N-acetyltransferases) and discusses the effects of genetic polymorphism within the genes encoding these enzymes on anticancer drug therapy outcome. Based on the literature reviewed, opportunities for patient-tailored anticancer therapy are proposed.
Collapse
Affiliation(s)
- Maarten J Deenen
- The Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Valachis A, Mauri D, Neophytou C, Polyzos NP, Tsali L, Garras A, Papanikolau EG. Translational medicine and reliability of single-nucleotide polymorphism studies: can we believe in SNP reports or not? Int J Med Sci 2011; 8:492-500. [PMID: 21897762 PMCID: PMC3167098 DOI: 10.7150/ijms.8.492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/09/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The number of genetic association studies is increasing exponentially. Nonetheless, genetic association reports are prone to potential biases which may influence the reported outcome. AIM We hypothesized that positive outcome for a determined polymorphism might be over-reported across genetic association studies analysing a small number of polymorphisms, when compared to studies analysing the same polymorphism together with a high number of other polymorphisms. METHODS We systematically reviewed published reports on the association of glutathione s-transferase (GST) single-nucleotide polymorphisms (SNPs) and cancer outcome. RESULT We identified 79 eligible trials. Most of the studies examined the GSTM1, theGSTP1 Ile105Val mutation, and GSTT1polymorphisms (n = 54, 57 and 46, respectively). Studies analysing one to three polymorphisms (n = 39) were significantly more likely to present positive outcomes, compared to studies examining more than 3 polymorphisms (n=40) p = 0.004; this was particularly evident for studies analysing the GSTM1polymorphism (p =0.001). We found no significant associations between journal impact factor, number of citations, and probability of publishing positive studies or studies with 1-3 polymorphisms examined. CONCLUSIONS We propose a new subtype of publication bias in genetic association studies. Positive results for genetic association studies analysing a small number of polymorphisms (n = 1-3) should be evaluated extremely cautiously, because a very large number of such studies are inconclusive and statistically under-powered. Indeed, publication of misleading reports may affect harmfully medical decision-making and use of resources, both in clinical and pharmacological development setting.
Collapse
|
26
|
Gor PP, Su HI, Gray RJ, Gimotty PA, Horn M, Aplenc R, Vaughan WP, Tallman MS, Rebbeck TR, DeMichele A. Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res 2010; 12:R26. [PMID: 20459744 PMCID: PMC2917014 DOI: 10.1186/bcr2570] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 03/24/2010] [Accepted: 05/10/2010] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Cyclophosphamide-based adjuvant chemotherapy is a mainstay of treatment for women with node-positive breast cancer, but is not universally effective in preventing recurrence. Pharmacogenetic variability in drug metabolism is one possible mechanism of treatment failure. We hypothesize that functional single nucleotide polymorphisms (SNPs) in drug metabolizing enzymes (DMEs) that activate (CYPs) or metabolize (GSTs) cyclophosphamide account for some of the observed variability in disease outcomes. METHODS We performed a retrospective cohort study of 350 women enrolled in a multicenter, randomized, adjuvant breast cancer chemotherapy trial (ECOG-2190/INT-0121). Subjects in this trial received standard-dose cyclophosphamide, doxorubicin and fluorouracil (CAF), followed by either observation or high-dose cyclophosphamide and thiotepa with stem cell rescue. We used bone marrow stem cell-derived genomic DNA from archival specimens to genotype CYP2B6, CYP2C9, CYP2D6, CYP3A4, CYP3A5, GSTM1, GSTT1, and GSTP1. Cox regression models were computed to determine associations between genotypes (individually or in combination) and disease-free survival (DFS) or overall survival (OS), adjusting for confounding clinical variables. RESULTS In the full multivariable analysis, women with at least one CYP3A4 *1B variant allele had significantly worse DFS than those who were wild-type *1A/*1A (multivariate hazard ratio 2.79; 95% CI 1.52, 5.14). CYP2D6 genotype did not impact this association among patients with estrogen receptor (ER) -positive tumors scheduled to receive tamoxifen. CONCLUSIONS These data support the hypothesis that genetic variability in cyclophosphamide metabolism independently impacts outcome from adjuvant chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Priya P Gor
- Center for Cancer and Hematologic Disease, 1930 E. Route 70, Cherry Hill, NJ 08003, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pinto N, Ludeman SM, Dolan ME. Drug focus: Pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 2010; 10:1897-903. [PMID: 19958089 DOI: 10.2217/pgs.09.134] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclophosphamide is a cornerstone in the treatment of many pediatric and adult malignancies, as well as in the treatment of refractory autoimmune conditions. Genetic factors are thought to play a role in the interindividual variation in both response and toxicities associated with cyclophosphamide-based therapies. This drug focus reviews the most compelling studies conducted on the pharmacogenetics of cyclophosphamide-based therapies. Broader pharmacogenomic studies are needed and may reveal additional factors important in susceptibility to toxicity and/or response to therapy.
Collapse
Affiliation(s)
- Navin Pinto
- University of Chicago, 900 East 57th Street, Room 7100, Chicago, IL 60637, USA
| | | | | |
Collapse
|
28
|
Afsar NA, Haenisch S, Mateen A, Usman A, Ufer M, Ahmed KZ, Ahmad HR, Cascorbi I. Genotype Frequencies of Selected Drug Metabolizing Enzymes and ABC Drug Transporters among Breast Cancer Patients on FAC Chemotherapy. Basic Clin Pharmacol Toxicol 2010; 107:570-6. [DOI: 10.1111/j.1742-7843.2009.00531.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Khrunin AV, Moisseev A, Gorbunova V, Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. THE PHARMACOGENOMICS JOURNAL 2009; 10:54-61. [PMID: 19786980 DOI: 10.1038/tpj.2009.45] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platinum drugs are among the most active and widely used agents in the treatment of different cancers. However, the great individual variability in both outcome and toxicity of platinum chemotherapy requires the identification of genetic markers that can be used to screen patients before treatment. In this study, 21 polymorphisms in 10 genes, the protein activities of which may be addressed in different aspects of cisplatin metabolism, were tested for correlations with efficacy and toxicity of cisplatin-cyclophosphamide regimen in 104 ovarian cancer patients. The glutathione S-transferase P1 (GSTP1) Ile105Val polymorphism was strongly associated with progression-free survival (chi(2)=12.12, P=0.002). The allelic status of the GSTA1 -69 C>T polymorphism correlated with the overall survival: patients with T/T genotype survived longer than C/C carriers (P=0.044). Thrombocytopenia, anemia and neuropathy were less frequent among patients with the GSTM1-null or GSTM3 intron 6 AGG/AGG genotypes. Severe neutropenia was associated with the TP53 72 Pro/Pro, XPD 312 Asp/Asn and XRCC1 399 Arg/Arg genotypes. A higher risk of nephrotoxicity was noted for patients with the heterozygous ERCC1 19007 T/C and 8092 C/A genotypes. No correlations were found between genotypes and complete tumor responses.
Collapse
Affiliation(s)
- A V Khrunin
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
30
|
Sergentanis TN, Economopoulos KP. GSTT1 and GSTP1 polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2009; 121:195-202. [PMID: 19760040 DOI: 10.1007/s10549-009-0520-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 08/18/2009] [Indexed: 12/14/2022]
Abstract
Cytosolic glutathione S-transferase comprises multiple isoenzymes; studies have principally examined mu-1 (GSTM1: null/present), theta-1 (GSTT1: null/present) and pi-1 (GSTP1 Ile105Val) gene polymorphisms concerning breast cancer risk. Regarding GSTT1 and GSTP1 polymorphisms, studies remain controversial and no recent meta-analysis has appeared. This meta-analysis aims to examine whether GSTT1 and GSTP1 polymorphisms are associated with breast cancer risk. Separate analyses were performed on Chinese and non-Chinese populations, in an attempt to investigate race-specific effects. Eligible articles were identified by a search of MEDLINE bibliographic database for the period up to August 2009. Regarding GSTT1 null/present genotype, 41 case-control studies were eligible (16,589 breast cancer cases and 19,995 controls); 30 case-control studies were eligible for GSTP1 Ile105Val (16,908 cases and 20,016 controls). Pooled odds ratios (ORs) were appropriately derived from fixed-effects or random-effects models. At the overall analysis, the null GSTT1 genotype was associated with elevated breast cancer risk (pooled OR = 1.114, 95% CI: 1.035-1.199, random effects). However, the association seemed confined to non-Chinese populations (33 studies, pooled OR = 1.128, 95% CI: 1.042-1.221, random effects), given that the association was not significant in the subset of Chinese studies (eight studies, pooled OR = 1.061, 95% CI: 0.875-1.286, random effects). Regarding GSTP1 Ile105Val, no statistically significant associations were detected in non-Chinese populations (25 studies). On the other hand, the GG genotype was associated with increased breast cancer risk in Chinese populations (five studies, pooled OR = 1.297, 95% CI: 1.023-1.645, fixed effects); accordingly, the recessive model yielded statistically significant results (pooled OR = 1.273, 95% CI: 1.006-1.610, fixed effects). In conclusion, polymorphisms of both GSTT1 and GSTP1 genes seem associated with elevated breast cancer risk in a race-specific manner. Given the small number of Chinese studies, the finding on GSTP1 Ile105Val merits further investigation.
Collapse
|
31
|
Su HI, Sammel MD, Velders L, Horn M, Stankiewicz C, Matro J, Gracia CR, Green J, DeMichele A. Association of cyclophosphamide drug-metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. Fertil Steril 2009; 94:645-54. [PMID: 19376514 DOI: 10.1016/j.fertnstert.2009.03.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine if genetic variation in chemotherapy metabolism are associated with risk of ovarian failure in breast cancer patients after adjuvant chemotherapy. DESIGN Prospective cohort study. SETTING Comprehensive cancer center. PATIENT(S) Early-stage breast cancer patients who were premenopausal at cancer diagnosis and treatment. INTERVENTION(S) None. MAIN OUTCOMES MEASURE(S) Chemotherapy-related ovarian failure (CROF). RESULT(S) A total of 127 breast cancer subjects who were premenopausal at cancer diagnosis and underwent cyclophosphamide-based chemotherapy were genotyped for nine single-nucleotide polymorphisms (SNPs) in enzymes involved in cyclophosphamide activation (CYP3A4, CYP2B6, CYP3A5) and detoxification (GSTA1, GSTM1, GSTP1, GSTT1). Median age at chemotherapy was 43.2 years. Median follow-up after chemotherapy was 5.2 years. For the entire cohort, there was no significant association between CROF and SNPs. However, the association between CROF and SNPs was modified by age at chemotherapy. In subjects younger than 45 years old at chemotherapy, CYP3A4 *1B variants had significantly longer time to CROF than CYP3A4 *1A homozygotes in an adjusted multivariable Cox model. Age and tamoxifen use were also independently associated with CROF. CONCLUSION(S) A common SNP in a cyclophosphamide drug-metabolizing enzyme appears to be related to ovarian failure after cyclophosphamide-based chemotherapy in young women with breast cancer. Larger prospective studies to validate these results should be directed toward women younger than 45 years of age at chemotherapy.
Collapse
Affiliation(s)
- H Irene Su
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19146, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Relations between polymorphisms in drug-metabolising enzymes and toxicity of chemotherapy with cyclophosphamide, thiotepa and carboplatin. Pharmacogenet Genomics 2009; 18:1009-15. [PMID: 18854779 DOI: 10.1097/fpc.0b013e328313aaa4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE High-dose chemotherapy with cyclophosphamide, thiotepa and carboplatin (CTC) has been developed as a possible curative treatment modality in several solid tumours. However, a large interindividual variability in toxicity is encountered in high-dose chemotherapy. A priori identification of patients at risk for toxicity could be an attractive prospect. Genotyping of genes encoding drug-metabolising enzymes might provide such a tool. EXPERIMENTAL DESIGN We assessed 16 selected polymorphisms in nine genes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) of putative relevance in CTC metabolism using polymerase chain reaction and DNA sequencing in 113 patients who were treated with high-dose chemotherapy regimens based on CTC. RESULTS Patients heterozygous for the ALDH3A1*2 allele (allelic frequency 21.2%) had an increased risk of haemorrhagic cystitis when compared with patients with wild-type alleles [5/38 vs. 1/70; odds ratio (OR): 11.95, 95% confidence interval (CI): 1.18-120.56; P=0.04]. Furthermore, patients heterozygous for the ALDH1A1*2 allele (allelic frequency 5.8%) had an increased risk of liver toxicity when compared with patients with wild-type alleles (6/13 vs. 19/99; OR: 5.13, 95% CI: 1.30-20.30; P=0.02). No other relations reached significance. CONCLUSION Patients heterozygous for the ALDH3A1*2 and ALDH1A1*2 allele have an increased risk of haemorrhagic cystitis and liver toxicity, respectively, compared with patients with wild-type alleles when treated with a high-dose chemotherapy combination of CTC. Pharmacogenetic approaches can identify patients who are at risk of experiencing toxic side effects in high-dose chemotherapy.
Collapse
|
33
|
Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009; 35:18-31. [DOI: 10.1016/j.ctrv.2008.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 11/16/2022]
|
34
|
Rossi D, Rasi S, Franceschetti S, Capello D, Castelli A, De Paoli L, Ramponi A, Chiappella A, Pogliani EM, Vitolo U, Kwee I, Bertoni F, Conconi A, Gaidano G. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. Leukemia 2009; 23:1118-26. [PMID: 19448608 DOI: 10.1038/leu.2008.398] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowledge on the impact of pharmacogenetics in predicting outcome and toxicity in diffuse large B-cell lymphoma (DLBCL) is scant. We tested 106 consecutive DLBCL treated with R-CHOP21 for 19 single nucleotide polymorphisms (SNPs) from 15 genes potentially relevant to rituximab-CHOP (R-CHOP) pharmacogenetics. Associations of SNPs with event-free survival (EFS) and toxicity were controlled for multiple testing. Genotypic variants of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase p22phox (CYBA rs4673) and alpha1 class glutathione S-transferase (GSTA1 rs3957357) were independent predictors of EFS (CYBA rs4673 TT genotype: HR 2.06, P=0.038; GSTA1 rs3957357 CT/TT genotypes: HR 0.38, P=0.003), after adjusting for International Prognostic Index (IPI). CYBA rs4673 and GSTA1 rs3957357 also predicted outcome in DLBCL subgroups by IPI. Impact of SNPs on toxicity was evaluated in 658 R-CHOP21 courses utilizing generalized estimating equations. NCF4 rs1883112 was an independent predictor against hematologic (odds ratios (OR): 0.45; P=0.018), infectious (OR: 0.46; P=0.003) and cardiac toxicity (OR: 0.37; P=0.023). Overall, host SNPs affecting doxorubicin pharmacodynamics (CYBA rs4673) and alkylator detoxification (GSTA1 rs3957357) may predict outcome in R-CHOP21-treated DLBCL. Also, NCF4 rs1883112, a SNP of NAD(P)H oxidase p40phox, may have a function in protecting against hematologic and nonhematologic toxicity. These results highlight the need to improve characterization of the host genetic background for a better prognostication of DLBCL.
Collapse
Affiliation(s)
- D Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine and BRMA, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ekhart C, Doodeman VD, Rodenhuis S, Smits PHM, Beijnen JH, Huitema ADR. Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa. Br J Clin Pharmacol 2008; 67:50-60. [PMID: 19076156 DOI: 10.1111/j.1365-2125.2008.03321.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS Thiotepa is widely used in high-dose chemotherapy. Previous studies have shown relations between exposure and severe organ toxicity. Thiotepa is metabolized by cytochrome P450 and glutathione S-transferase enzymes. Polymorphisms of these enzymes may affect elimination of thiotepa and tepa, its main metabolite. The purpose of this study was to evaluate effects of known allelic variants in CYP2B6, CYP3A4, CYP3A5, GSTA1 and GSTP1 genes on pharmacokinetics of thiotepa and tepa. METHODS White patients (n = 124) received a high-dose regimen consisting of cyclophosphamide, thiotepa and carboplatin as intravenous infusions. Genomic DNA was analysed using polymerase chain reaction and sequencing. Plasma concentrations of thiotepa and tepa were determined using validated GC and LC-MS/MS methods. Relations between allelic variants and elimination pharmacokinetic parameters were evaluated using nonlinear mixed effects modelling (nonmem). RESULTS The polymorphisms CYP2B6 C1459T, CYP3A4*1B, CYP3A5*3, GSTA1 (C-69T, G-52A) and GSTP1 C341T had a significant effect on clearance of thiotepa or tepa. Although significant, most effects were generally not large. Clearance of thiotepa and tepa was predominantly affected by GSTP1 C341T polymorphism, which had a frequency of 9.3%. This polymorphism increased non-inducible thiotepa clearance by 52% [95% confidence interval (CI) 41, 64, P < 0.001] and decreased tepa clearance by 32% (95% CI 29, 35, P < 0.001) in heterozygous patients, which resulted in an increase in combined exposure to thiotepa and tepa of 45% in homozygous patients. CONCLUSIONS This study indicates that the presently evaluated variant alleles explain only a small part of the substantial interindividual variability in thiotepa and tepa pharmacokinetics. Patients homozygous for the GSTP1 C341T allele may have enhanced exposure to thiotepa and tepa.
Collapse
Affiliation(s)
- Corine Ekhart
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Singh V, Parmar D, Singh MP. Do single nucleotide polymorphisms in xenobiotic metabolizing genes determine breast cancer susceptibility and treatment outcomes? Cancer Invest 2008; 26:769-83. [PMID: 18798070 DOI: 10.1080/07357900801953196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SNPs in CYP1A1, CYP2A1, CYP2B6, CYP2C, CYP2D6, CYP3A, GSTM1, GSTT1, GSTP1, SULT1A1, SULT1A2, UGT, and MTHFR are associated with breast cancer susceptibility; however, lack of such associations are also reported in some populations. The contradictory findings are explained on the basis of ethnic variation among populations and due to lack of proper sample size, detailed genotype-phenotype combinations and validation of gene expression studies at protein level. In this review, SNPs in these genes that have tremendous potential in identification of susceptible individuals, development of preventive strategies, treatment outcomes and their limitations are discussed.
Collapse
|
37
|
Monzo M, Navarro A, Ferrer G, Artells R. Pharmacogenomics: a tool for improving cancer chemotherapy. Clin Transl Oncol 2008; 10:628-37. [DOI: 10.1007/s12094-008-0263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Knight TR, Choudhuri S, Klaassen CD. Induction of hepatic glutathione S-transferases in male mice by prototypes of various classes of microsomal enzyme inducers. Toxicol Sci 2008; 106:329-38. [PMID: 18723825 DOI: 10.1093/toxsci/kfn179] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The underlying need for glutathione S-transferase (Gst) induction is thought to be an adaptive response to chemical stress within the cell. Classical microsomal enzyme inducers (MEIs) increase the expression of biotransformation enzymes (phase I and II) and transporters through transcription factors, such as the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor (PPAR) alpha, and nuclear factor erythroid-derived 2-related factor 2 (Nrf2). The effects of MEIs on the induction of hepatic Gsts in mice have not been comprehensively characterized. The purpose of this study was to determine the effects of 15 MEIs on the mRNA expression of 19 mouse Gsts. Male C57BL/6 mice were treated with three different activators each for AhR, CAR, PXR, PPARalpha, and Nrf2. In general, the Gsts are readily induced. All five transcription factors appear to play a role in Gst induction. The Nrf2 activators induced most Gsts (10), followed by the CAR, PXR, and PPARalpha activators (6-7), whereas the AhR ligands induced the least (1). Clofibrate, a PPARalpha agonist, induced most of the Gsts; however, all three PPARalpha agonists decreased Gstp1/2 mRNA. None of the 15 inducers was able to increase or only minimally increased eight of the Gsts (Gsta3, Gstk1, Gstm6, Gsto1, Gstp1/2, Gstt3, Gstz1, and MGst1). Thus, the protection afforded by a ligand for one of these transcription factors will depend on the activator, as well as which Gst that detoxifies the chemicals of interest.
Collapse
Affiliation(s)
- Tamara R Knight
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
39
|
Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 2008; 18:515-23. [PMID: 18496131 DOI: 10.1097/fpc.0b013e3282fc9766] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The anticancer agent, cyclophosphamide, is metabolized by cytochrome P450 (CYP), glutathione S-transferase (GST) and aldehyde dehydrogenase (ALDH) enzymes. Polymorphisms of these enzymes may affect the pharmacokinetics of cyclophosphamide and thereby its toxicity and efficacy. The purpose of this study was to evaluate the effects of known allelic variants in the CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1 genes on the pharmacokinetics of the anticancer agent, cyclophosphamide, and its active metabolite 4-hydroxycyclophosphamide. EXPERIMENTAL DESIGN A cohort of 124 Caucasian patients received a high-dose chemotherapy combination consisting of cyclophosphamide (4-6 g/m2), thiotepa (320-480 mg/m2) and carboplatin (area under the curve 13-20 mg x min/ml) as intravenous infusions over 4 consecutive days. Genomic DNA was analysed using PCR and sequencing. Liquid chromatography-tandem mass spectrometry was used to measure plasma concentrations of cyclophosphamide and 4-hydroxycyclophosphamide. The relationship between allelic variants and the elimination pharmacokinetic parameters noninducible cyclophosphamide clearance (CL(nonind)), inducible cyclophosphamide clearance (CL(ind)) and elimination rate constant of 4-hydroxycyclophosphamide (k(4OHCP)) were evaluated using nonlinear mixed effects modelling. RESULTS The interindividual variability in the noninducible cyclophosphamide clearance, inducible cyclophosphamide clearance and 4-hydroxycyclophosphamide clearance was 23, 27 and 31%, respectively. No effect of the allelic variants investigated on the clearance of cyclophosphamide or 4-hydroxycyclophosphamide could be demonstrated. CONCLUSION This study indicates that the presently evaluated variant alleles in the CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1 genes do not explain the interindividual variability in cyclophosphamide and 4-hydroxycyclophosphamide pharmacokinetics and are, probably, not the cause of the observed variability in toxicity.
Collapse
|
40
|
Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat. Toxicol Appl Pharmacol 2008; 231:384-92. [PMID: 18620719 DOI: 10.1016/j.taap.2008.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/16/2008] [Indexed: 01/23/2023]
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.
Collapse
|
41
|
Katoh T, Yamano Y, Tsuji M, Watanabe M. Genetic polymorphisms of human cytosol glutathione S-transferases and prostate cancer. Pharmacogenomics 2008; 9:93-104. [PMID: 18154451 DOI: 10.2217/14622416.9.1.93] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glutathione S-transferases (GSTs) are involved in the metabolism of a wide range of carcinogenic chemicals. In humans, cytosol GSTs are divided into eight classes: alpha (GSTA), mu (GSTM), pi (GSTP), theta (GSTT), tau (GSTZ), sigma (GSTS), omicron (GSTO) and kappa (GSTK). The allelic polymorphism of these enzymes is associated with variations in enzyme activity; hence, it may affect the concentration of activated carcinogenic chemicals in the body. In addition to the metabolism of chemical carcinogens, GSTs metabolize steroid hormones, compounds in the diet and other agents potentially involved in prostate carcinogenesis. Three genetic polymorphisms of GSTs, GSTM1*0 (null), GSTT1*0 (null) and GSTP1 A313G, have been well documented. No consistent associations between GSTM1, GSTT1 or GSTP1 genotypes and prostate cancer have been observed. Recent meta-analysis reports show that these polymorphisms of GSTM1, GSTT1 and GSTP1 are unlikely to be major determinants of susceptibility to prostate cancer.
Collapse
Affiliation(s)
- Takahiko Katoh
- Kumamoto University, Department of Public Health, Graduate school of Medical Sciences, Kumamoto 860-8556, Japan.
| | | | | | | |
Collapse
|
42
|
Influence of germline polymorphisms of GSTT1, GSTM1, and GSTP1 in familial versus sporadic breast cancer susceptibility and survival. Fam Cancer 2007; 7:213-20. [DOI: 10.1007/s10689-007-9177-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
|
43
|
Martinez V, Kennedy S, Doolan P, Gammell P, Joyce H, Kenny E, Prakash Mehta J, Ryan E, O'Connor R, Crown J, Clynes M, O'Driscoll L. Drug metabolism-related genes as potential biomarkers: analysis of expression in normal and tumour breast tissue. Breast Cancer Res Treat 2007; 110:521-30. [PMID: 17899366 DOI: 10.1007/s10549-007-9739-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/16/2007] [Indexed: 12/31/2022]
Abstract
The complex role of drug metabolism-related enzymes and their possible influence in cancer development, treatment and outcome has not yet been completely elucidated. There is evidence that these enzymes can activate certain environmental procarcinogens to more toxic derivatives and thus a role has been proposed for them in carcinogenesis. The fact that they can also inactivate a number of chemotherapeutic drugs has raised the possibility of these enzymes influencing the sensitivity of tumour cells to anticancer agents. In this report, we analyse the expression of drug metabolism-related genes within a whole genome microarray study of 104 breast cancer and 17 normal breast specimens. Kaplan-Meier survival curves, Chi-squared, and Cox Regression analyses were used to identify associations between expression of gene transcripts and patients' clinicopathological and survival data. Our results show that several of these genes are significantly expressed in both normal and tumour tissue; in many cases, expression is altered in the tumour specimens as compared to normal breast tissue. Moreover, expression of ARNT2 and GST A1 was correlated with prognosis. Kaplan-Meier analysis showed expression of ARNT2 mRNA to correlate significantly with favourable disease outcome for patients, in terms of both their disease-free survival (P = 0.0094) and overall survival (P = 0.0018) times from diagnosis, while detection of GST A1 mRNA correlated with shortened disease-free survival (P = 0.0131) and overall survival (P = 0.0028). Multivariate analysis indicated GST A1 expression to be an independent prognostic factor for overall survival (P = 0.045). Our results suggest a possible use of ARNT2 and GST A1 as prognostic breast cancer biomarkers.
Collapse
Affiliation(s)
- Vanesa Martinez
- National Institute for Cellular Biotechnology (NICB), Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tran A, Bournerias F, Le Beller C, Mir O, Rey E, Pons G, Delahousse M, Tréluyer JM. Serious haematological toxicity of cyclophosphamide in relation to CYP2B6, GSTA1 and GSTP1 polymorphisms. Br J Clin Pharmacol 2007; 65:279-80. [PMID: 17875191 PMCID: PMC2291223 DOI: 10.1111/j.1365-2125.2007.03020.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
45
|
Lo HW, Ali-Osman F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 2007; 7:367-74. [PMID: 17681492 DOI: 10.1016/j.coph.2007.06.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 01/02/2023]
Abstract
The human glutathione S-transferase, GSTs, possess both enzymatic and non-enzymatic functions and are involved in many important cellular processes, such as, phase II metabolism, stress response, cell proliferation, apoptosis, oncogenesis, tumor progression and drug resistance. The non-enzymatic functions of GSTs involve their interactions with cellular proteins, such as, JNK, TRAF, ASK, PKC, and TGM2, during which, either the interacting protein partner undergoes functional alteration or the GST protein itself is post-translationally modified and/or functionally altered. The majority of GST genes harbor polymorphisms that influence their transcription and/or function of their encoded proteins. This overview focuses on recent insights into the biology and pharmacogenetics of GSTs as a determinant of cancer drug resistance and response of cancer patients to therapy.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Department of Surgery, The Comprehensive Cancer Center and The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27707, United States
| | | |
Collapse
|
46
|
Kim I, Keam B, Lee KH, Kim JH, Oh SY, Ra EK, Yoon SS, Park SS, Kim CS, Park S, Hong YC, Kim BK. Glutathione S-transferase A1 polymorphisms and acute graft-vs.-host disease in HLA-matched sibling allogeneic hematopoietic stem cell transplantation. Clin Transplant 2007; 21:207-13. [PMID: 17425746 DOI: 10.1111/j.1399-0012.2006.00624.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Busulfan and the metabolites of cyclophosphamide are conjugated with glutathione and catabolized by enzymes of the cytosolic glutathione S-transferases family. There are clearly linked single nucleotide polymorphisms in the promoter region of the glutathione S-transferase A1 gene (i.e., GSTA1*A, -567T, -69C and -52G; GSTA1*B, -567G, -69T and -52A). We assessed whether the clinical outcomes, including acute graft-vs.-host disease, of 61 patients with hematological malignancies, following HLA-matched sibling allogeneic stem cell transplantation using busulfan/cyclophosphamide conditioning are altered by glutathione S-transferase A1 genotypes. Globally, grade II-IV acute graft-vs.-host disease developed in 13 patients (21%). Grade II-IV acute graft-vs.-host disease developed in 15.2% of 46 patients with GSTA1*A/*A diplotype and in 40.0% of 15 patients with GSTA1*A/*B or GSTA1*B/*B diplotype (p = 0.04). Moreover, this relationship between GSTA1*A/*A diplotypes and lower incidence of acute graft-vs.-host disease was independent of the age, gender, stem cell source, and disease status. The incidences of acute skin graft-vs.-host disease were 7% (3/46) in patients with GSTA1*A/*A and 27% (4/15) in patients without GSTA1*A/*A (p = 0.009, univariate; p = 0.01, multivariate). Acute hepatic graft-vs.-host disease developed in 6 (13%) of 46 patients with the GSTA1*A/*A diplotype and in 4 (27%) of 15 patients without this diplotype (p = 0.09, univariate; p = 0.12, multivariate). Ten patients (16%) developed hepatic veno-occlusive disease. No significant difference was found in the incidence of hepatic veno-occlusive disease between patients with and without the GSTA1*A/*A diplotype (19.6% vs. 6.7%; p = 0.24). We conclude that the GSTA1*A/*A diplotype is an independent protective factor against acute graft-vs.-host disease, especially for skin graft-vs.-host disease, and probably for hepatic graft-vs.-host disease, in patients using busulfan/cyclophosphamide conditioning. The identification of glutathione S-transferase A1 genotypes prior to allogeneic stem cell transplantation could allow conditioning regimens and graft-vs.-host disease prophylaxis to be modified to improve outcome.
Collapse
Affiliation(s)
- Inho Kim
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Choi JY, Nowell SA, Blanco JG, Ambrosone CB. The role of genetic variability in drug metabolism pathways in breast cancer prognosis. Pharmacogenomics 2006; 7:613-24. [PMID: 16753008 DOI: 10.2217/14622416.7.4.613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among patients receiving adjuvant therapy for breast cancer, there is variability in treatment outcomes, and it is unclear which patients will receive the most benefit from treatment and which will have better disease-free survival. To date, most studies of breast cancer prognosis have focused on tumor characteristics, but it is likely that pharmacogenetics, genetic variability in the metabolism of therapeutic agents, also plays a role in the prediction of survival. In this paper, we briefly discuss the metabolic pathways of drugs commonly used for the treatment of breast cancer (cyclophosphamide, doxorubicin, taxanes, tamoxifen and aromatase inhibitors) and describe the known genetic variants that may impact those pathways. Studies that have evaluated potential effects of these genetic variants on treatment outcomes are also discussed. It is likely that the application of pharmacogenetics, particularly in the setting of randomized clinical trials, will contribute to findings that may result in individualized therapeutic dosing.
Collapse
Affiliation(s)
- Ji-Yeob Choi
- Roswell Park Cancer Institute, Department of Epidemiology, Elm & Carlton Sts, Buffalo, NY, 14263, USA
| | | | | | | |
Collapse
|
48
|
Gasparini G, Longo R, Torino F, Gattuso D, Morabito A, Toffoli G. Is tailored therapy feasible in oncology? Crit Rev Oncol Hematol 2006; 57:79-101. [PMID: 16337806 DOI: 10.1016/j.critrevonc.2005.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 07/01/2005] [Accepted: 07/27/2005] [Indexed: 11/18/2022] Open
Abstract
Tailored therapy aims to cure a patient who suffers from a specific disease with an effective and safe drug, based on the complex interactions among patient's characteristics, disease physiopathology and drug metabolism. Genomic and proteomic technologies represent promising new useful tools to understand cancer biology and molecular basis of interindividual differences of anticancer drugs efficacy. Genomic profiling seems to be able to re-classifying cancer into new molecular and prognostic homogeneous subgroups. By individual polymorphisms it is possible to identify the patients at higher risk for severe toxicity from those that may gain benefit from a particular treatment. The clinical use of targeted therapy is hampered by several questions, including: optimal biological dose, availability of surrogate biomarkers predictive of activity, schedule of administration, tumor histotype and stage to treat and modalities of combination with chemo/radiotherapy. In addition, further efforts are needed to improve the reliability of genomic and proteomic technologies. These unsolved issues presently make tailored therapy an open challenge.
Collapse
Affiliation(s)
- Giampietro Gasparini
- Division of Medical Oncology, Azienda Complesso Ospedaliero di Rilevanza Nazionale S. Filippo Neri Hospital, via G. Martinotti 20, 00135 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Lee JM, Wu MT, Lee YC, Yang SY, Chen JS, Hsu HH, Huang PM, Kuo SW, Lee CJ, Chen CJ. Association of GSTP1 polymorphism and survival for esophageal cancer. Clin Cancer Res 2005; 11:4749-53. [PMID: 16000570 DOI: 10.1158/1078-0432.ccr-04-2333] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Activity of glutathione S-transferase (GST) is associated with detoxification of xenobiotics and the maintenance of cell viability. Genetically variant GSTs produce different enzymatic activities. The clinical significance of this variation is still puzzling. We investigated whether genetic polymorphisms of GST including GSTP1, GSTM1, and GSTT1 affect survival among esophageal cancer patients. EXPERIMENTAL DESIGN From 1996 to 2002, 233 patients with pathologically proven esophageal cancer were recruited from the Department of Surgery, National Taiwan University Hospital. GST genotypes, including GSTT1, GSTM1, and GSTP1, were determined by PCR or PCR-RFLP. The influence of the genetic polymorphisms on patient survival was estimated using the method of Kaplan-Meier survival function and Cox proportional hazards models. RESULTS The mean survival times (months) of the GSTP1 Ile/Ile, Ile/Val, and Val/Val were 11, 10, and 7, respectively (P < 0.05). The more the patients carried GSTP1 variant Val alleles, the poorer the survival rate (adjusted hazard ratio, 1.36; 95% confidence interval, 1.01-1.84; Ptrend = 0.045). In contrast, no association of GSTT1 or GSTM1 genotypes with survival rate was noted. CONCLUSION The presence of the GSTP1 variant allele (Val) is associated with a poorer prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Jang-Ming Lee
- Department of Surgery and Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The same doses of medication cause considerable heterogeneity in efficacy and toxicity across human populations. Genetic factors are thought to represent important determinants of drug efficacy and toxicity. Pharmacogenetics focuses on the prediction of the response of tumor and normal tissue to standard therapy by genetic profiling and, thereby, to select the most appropriate medication at optimal doses for each individual patient. In the present review, we discuss the relevance of single nucleotide polymorphisms (SNP) in genes, whose gene products act upstream of the actual drug target sites, that is, drug transporters and drug metabolizing phase I and II enzymes, or downstream of them, that is, apoptosis-regulating genes and chemokines. SNPs in relevant genes, which encode for proteins that interact with anticancer drugs, were also considered, that is, enzymes of DNA biosynthesis and metabolism, DNA repair enzymes, and proteins of the mitotic spindle. A significant body of evidence supports the concept of predicting drug efficacy and toxicity by SNP genotyping. As the efficacy of cancer chemotherapy, as well as the drug-related toxicity in normal tissues is multifactorial in nature, sophisticated approaches such as genome-wide linkage analyses and integrate drug pathway profiling may improve the predictive power compared with genotyping of single genes. The implementation of pharmacogenetics into clinical routine diagnostics including genotype-based recommendations for treatment decisions and risk assessment for practitioners represents a challenge for the future.
Collapse
Affiliation(s)
- Thomas Efferth
- German Cancer Research Center, M070, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | |
Collapse
|