1
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2024. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Marotta C, Giorgi E, Binacchi F, Cirri D, Gabbiani C, Pratesi A. An overview of recent advancements in anticancer Pt(IV) prodrugs: New smart drug combinations, activation and delivery strategies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
4
|
Yoo E, Lee J, Lertpatipanpong P, Ryu J, Kim CT, Park EY, Baek SJ. Anti-proliferative activity of A. Oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells. BMC Cancer 2020; 20:881. [PMID: 32928152 PMCID: PMC7491188 DOI: 10.1186/s12885-020-07379-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background A. oxyphylla extract is known to possess a wide range of pharmacological activites. However, the molecular mechanism of A. oxyphylla and its bioactive compound nootkatone in colorectal cancer is unknown. Methods Our study aims to examine the role of A. oxyphylla and its bioactive compound nootkatone, in tumor suppression using several in vitro assays. Results Both A. oxyphylla extract and nootkatone exhibited antiproliferative activity in colorectal cancer cells. A. oxyphylla displayed antioxidant activity in colorectal cancer cells, likely mediated via induction of HO-1. Furthermore, expression of pro-apoptotic protein NAG-1 and cell proliferative protein cyclin D1 were increased and decreased respectively in the presence of A. oxyphylla. When examined for anticancer activity, nootkatone treatment resulted in the reduction of colony and spheroid formation. Correspondingly, nootkatone also led to increased NAG-1 expression and decreased cyclin D1 expression. The mechanism by which nootkatone suppresses cyclin D1 involves protein level regulation, whereas nootkatone increases NAG-1 expression at the transcriptional level. In addition to having PPARγ binding activity, nootkatone also increases EGR-1 expression which ultimately results in enhanced NAG-1 promoter activity. Conclusion In summary, our findings suggest that nootkatone is an anti-tumorigenic compound harboring antiproliferative and pro-apoptotic activity.
Collapse
Affiliation(s)
- Eunsu Yoo
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Jaehak Lee
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Pattawika Lertpatipanpong
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Chong-Tai Kim
- R&D Center, EastHill Co. 33, Omokcheon-ro 132 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16642, South Korea
| | - Eul-Yong Park
- R&D Center, EastHill Co. 33, Omokcheon-ro 132 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16642, South Korea
| | - Seung Joon Baek
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Patel SS, Tripathi R, Chavda VK, Savjani JK. Anticancer Potential of Mefenamic Acid Derivatives with Platelet-Derived Growth Factor Inhibitory Property. Anticancer Agents Med Chem 2020; 20:998-1008. [DOI: 10.2174/1871520620666200415100614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/25/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Background:
Numerous studies suggest that non-steroidal anti-inflammatory drugs reduce cancer
cell proliferation, progression, angiogenesis, apoptosis, and invasiveness.
Objective:
The current study focuses on the evaluation of novel mefenamic acid derivatives for the treatment of
hepatocellular carcinoma.
Methods:
Derivatives were subjected to molecular modeling for prediction of pharmacological activity using
software, followed by synthesis and in vitro assay. In in vivo study, disease was induced with N-Nitrosodiethylamine
followed by 2-acetylaminofluorene orally for 2 weeks. After 12 weeks of induction, treatment was given for a
period of one week. At the end of the treatment, determination of liver weight, a number of nodules, biochemical
parameters, immunohistochemistry, histopathology, and gene expression studies, were carried out.
Results:
Based on molecular docking score for PDGF-α (Platelet-Derived Growth Factor) and IC50 values in
HepG2 cell line study, JS-PFA was selected for the in vivo study where JS-PFA showed a statistically significant
reduction in a number of nodules and liver weight. Protective role of JS-PFA has been observed in tumorspecific
markers like α-fetoprotein, carcinoembryonic antigen, and lactate dehydrogenase levels. The JS-PFA
has shown a significant reduction in PDGF-α levels as well as liver markers and total bilirubin levels. Histopathological
analysis also showed a protective effect. The results of immunohistochemical analysis of P53 and
down-regulation of vascular endothelial growth factor and matrix metalloproteinases-9 genes suggest that derivative
inhibits PDGF mediated tumor growth and leads to apoptosis, inhibition of angiogenesis, and metastasis.
Conclusion:
The effectiveness of JS-PFA in our studies suggests targeting PDGF by COX 2 inhibitor can serve
as a novel treatment strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad-382 481, Gujarat, India
| | - Richa Tripathi
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad-382 481, Gujarat, India
| | - Vishal K. Chavda
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad-382 481, Gujarat, India
| | - Jignasa K. Savjani
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad-382 481, Gujarat, India
| |
Collapse
|
6
|
Pal S, Garg M, Pandey AK. Deciphering the Mounting Complexity of the p53 Regulatory Network in Correlation to Long Non-Coding RNAs (lncRNAs) in Ovarian Cancer. Cells 2020; 9:E527. [PMID: 32106407 PMCID: PMC7140525 DOI: 10.3390/cells9030527] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Amongst the various gynecological malignancies affecting female health globally, ovarian cancer is one of the predominant and lethal among all. The identification and functional characterization of long non-coding RNAs (lncRNAs) are made possible with the advent of RNA-seq and the advancement of computational logarithm in understanding human disease biology. LncRNAs can interact with deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins and their combinations. Moreover, lncRNAs regulate orchestra of diverse functions including chromatin organization and transcriptional and post-transcriptional regulation. LncRNAs have conferred their critical role in key biological processes in human cancer including tumor initiation, proliferation, cell cycle, apoptosis, necroptosis, autophagy, and metastasis. The interwoven function of tumor-suppressor protein p53-linked lncRNAs in the ovarian cancer paradigm is of paramount importance. Several lncRNAs operate as p53 regulators or effectors and modulates a diverse array of functions either by participating in various signaling cascades or via interaction with different proteins. This review highlights the recent progress made in the identification of p53 associated lncRNAs while elucidating their molecular mechanisms behind the altered expression in ovarian cancer tumorigenesis. Moreover, the development of novel clinical and therapeutic strategies for targeting lncRNAs in human cancers harbors great promise.
Collapse
Affiliation(s)
- Sonali Pal
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India;
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| |
Collapse
|
7
|
Ravera M, Zanellato I, Gabano E, Perin E, Rangone B, Coppola M, Osella D. Antiproliferative Activity of Pt(IV) Conjugates Containing the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Ketoprofen and Naproxen †. Int J Mol Sci 2019; 20:E3074. [PMID: 31238499 PMCID: PMC6627341 DOI: 10.3390/ijms20123074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Cisplatin and several non-steroidal anti-inflammatory drugs (NSAIDs) have been proven to act synergistically or at least additively on several tumor cell lines. Dual-action cisplatin-based Pt(IV) combos containing ketoprofen and naproxen offer good antiproliferative performance on a panel of human tumor cell lines, including a malignant pleural mesothelioma (MPM) one, a very chemoresistant tumor. The main reason of the increased activity relies on the enhanced lipophilicity of these Pt(IV) conjugates that in turn promotes increased cellular accumulation. A quick Pt(IV)→Pt(II) reduction generates the active cisplatin metabolite. The NSAID adjuvant action seems to be almost independent from cyclooxygenase-2 (COX-2) expression in the tumor cells under investigation (lung A-549, colon HT-29, HCT 116, SW480, ovarian A2780, and biphasic MPM MSTO-211H), but it seems to rely (at least in part) on the activation of the NSAID activated gene, NAG-1 (a member of the transforming growth factor beta, TGF-β, superfamily), which has been suggested to be involved in NSAID antiproliferative activity.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Beatrice Rangone
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Marco Coppola
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
8
|
Zhang X, Kang Y, Huo T, Tao R, Wang X, Li Z, Guo Q, Zhao L. GL-V9 induced upregulation and mitochondrial localization of NAG-1 associates with ROS generation and cell death in hepatocellular carcinoma cells. Free Radic Biol Med 2017; 112:49-59. [PMID: 28697922 DOI: 10.1016/j.freeradbiomed.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023]
Abstract
We have previously reported that a newly synthesized compound, GL-V9 could induce mitochondria-mediated apoptosis in HepG2 cells. However, the underlying mechanisms have not been fully understood yet. In current study, we further showed that GL-V9 exhibited significant inhibitory effect on growth of several hepatocellular carcinoma cell lines. Moreover, GL-V9-induced growth inhibition was coincident with the strong upregulation of nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a TGFβ superfamily member, which has been linked with tumor suppression. Further analysis uncovered that GL-V9-activated p38 MAPK pathway contributed to enhancement of NAG-1 mRNA stability. Interestingly, we observed that the intracellular NAG-1 protein induced by GL-V9 could, at least in part, localize in mitochondria where it might affect protein expression, thereby resulting in dissipation of mitochondria membrane potential (MMP) and accumulation of mitochondrial superoxide, eventually facilitating to apoptosis events. Silence of NAG-1 could attenuate mitochondria related apoptosis caused by GL-V9. Moreover, GL-V9 suppressed tumor growth in xenograft model accompanied with upregulation of NAG-1 in tumor tissues. Collectively, these data demonstrated that NAG-1 could play an important role in mitochondria apoptosis triggered by GL-V9, thus providing novel mechanistic explanations and potential target for using GL-V9 as a chemotherapeutic agent against human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaobo Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yue Kang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Tongxin Huo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ran Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Li W, Wang Y, Li C, Ding M, Zhang H, Lai M. The H6D genetic variation of GDF15 is associated with genesis, progress and prognosis in colorectal cancer. Pathol Res Pract 2015; 211:845-50. [PMID: 26365480 DOI: 10.1016/j.prp.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/09/2015] [Accepted: 08/14/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) plays important roles in the carcinogenesis of many types of tumors. The aim of this study was to investigate whether H6D polymorphism is contributed to the genesis, progress and prognosis of colorectal cancer (CRC) in Chinese population. METHODS Pyrosequencing was used to determine the H6D genotypes. The relationship between the genotypes and clinical characteristics was analyzed. RESULTS The frequency of CG+GG genotype in the GDF15 H6D polymorphism was significantly increased in CRC patients when compared with controls [odds ratio (OR), 1.543; 95% confidence interval (95% CI), 1.138-2.094, P=0.005]. We also found that the patients with CG+GG genotype had an increased risk of death from colon cancer than those carrying homozygote CC [hazard ratio (HR), 2.472; 95% CI, 1.172-5.214; P=0.017] and the patients with CG+GG genotype of colon cancer also have a positive correlation with distant metastasis than those carrying homozygote CC (χ(2)=4.087, P=0.043). For the first time, H6D was also identified as somatic mutation when compared the H6D genotype in tumor tissues and their matched normal tissues, and the mutation rate is 7.2%. The male CRC patients with the H6D mutation were susceptible to distant metastasis (P=0.028, χ(2)=4.820) and had a relatively poor prognosis. CONCLUSION Our results suggest that the H6D genetic variant may be considered as a biomarker of tumorgenesis, metastasis and prognosis in colorectal cancer in Chinese population.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Pathology, School of Medicine, Zhejiang University, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang, PR China; Department of Pathology, the First Hospital of Jiaxing, Zhejiang, PR China.
| | - Wenfeng Li
- Department of Chemoradiotherapy, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China.
| | - Yuqi Wang
- Department of Pathology, School of Medicine, Zhejiang University, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang, PR China.
| | - Chen Li
- Department of Pathology, School of Medicine, Zhejiang University, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang, PR China.
| | - Meiman Ding
- The Criminal Investigation Detachment of Jiaxing Public Security Bureau, Zhejiang, PR China.
| | - Honghe Zhang
- Department of Pathology, School of Medicine, Zhejiang University, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang, PR China.
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang, PR China.
| |
Collapse
|
10
|
Abourashed EA, Abraha A, Khan SI, McCants T, Awan S. Potential of Horse Apple Isoflavones in Targeting Inflammation and Tau Protein Fibrillization. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In our ongoing search for anti-inflammatory and neuroprotective agents of natural origin, the total methanolic extract (MPE) of horse apple (Maclura pomifera) and its two major prenylated isoflavones, osajin (OSA) and pomiferin (POM), were evaluated in vitro for their ability to affect four mediators of inflammation and to inhibit tau protein fibrillization. The two isoflavones were effective in enhancing the activity of NSAID activated gene (NAG-1) at 2.5 μg/mL (1.5 – 1.8 fold increase) and inhibiting iNOS and NF-κB activity with IC50 values in the range of 6 – 13 μg/mL. Pomiferin also inhibited intracellular oxidative stress with IC50 of 3.3 μg/mL, while osajin did not show any effect. The extract activated NAG-1 and inhibited iNOS and oxidative stress without affecting NF-κB. As observed by transmission electron microscopy (TEM), MPE, OSA and POM also inhibited arachidonic acid-induced tau fibrillization in a concentration-dependent manner.
Collapse
Affiliation(s)
- Ehab A. Abourashed
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Aida Abraha
- Department of Chemistry & Physics, College of Arts and Sciences; Chicago State University, Chicago, IL 60628, USA
| | - Shabana I. Khan
- National Center for Natural Products Research, and Division of Pharmacognosy, School of Pharmacy, University of Mississippi, MS 38677, USA
- Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Tanika McCants
- Department of Chemistry & Physics, College of Arts and Sciences; Chicago State University, Chicago, IL 60628, USA
| | - Saad Awan
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| |
Collapse
|
11
|
Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
|
12
|
Holmgren G, Synnergren J, Bogestål Y, Améen C, Åkesson K, Holmgren S, Lindahl A, Sartipy P. Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells. Toxicology 2014; 328:102-11. [PMID: 25529476 PMCID: PMC4326176 DOI: 10.1016/j.tox.2014.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 01/17/2023]
Abstract
Doxorubicin is a chemotherapeutic agent indicated for the treatment of a variety of cancer types, including leukaemia, lymphomas, and many solid tumours. The use of doxorubicin is, however, associated with severe cardiotoxicity, often resulting in early discontinuation of the treatment. Importantly, the toxic symptoms can occur several years after the termination of the doxorubicin administration. In this study, the toxic effects of doxorubicin exposure have been investigated in cardiomyocytes derived from human embryonic stem cells (hESC). The cells were exposed to different concentrations of doxorubicin for up to 2 days, followed by a 12 day recovery period. Notably, the cell morphology was altered during drug treatment and the cells showed a reduced contractile ability, most prominent at the highest concentration of doxorubicin at the later time points. A general cytotoxic response measured as Lactate dehydrogenase leakage was observed after 2 days’ exposure compared to the vehicle control, but this response was absent during the recovery period. A similar dose-dependant pattern was observed for the release of cardiac specific troponin T (cTnT) after 1 day and 2 days of treatment with doxorubicin. Global transcriptional profiles in the cells revealed clusters of genes that were differentially expressed during doxorubicin exposure, a pattern that in some cases was sustained even throughout the recovery period, suggesting that these genes could be used as sensitive biomarkers for doxorubicin-induced toxicity in human cardiomyocytes. The results from this study show that cTnT release can be used as a measurement of acute cardiotoxicity due to doxorubicin. However, for the late onset of doxorubicin-induced cardiomyopathy, cTnT release might not be the most optimal biomarker. As an alternative, some of the genes that we identified as differentially expressed after doxorubicin exposure could serve as more relevant biomarkers, and may also help to explain the cellular mechanisms behind the late onset apoptosis associated with doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Gustav Holmgren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden.
| | - Yalda Bogestål
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden
| | - Caroline Améen
- Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| | - Karolina Åkesson
- Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| | - Sandra Holmgren
- Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | - Peter Sartipy
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden; Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
13
|
Abstract
AbstractColitis-associated colorectal cancer (CACRC) constitutes a severe complication of inflammatory bowel diseases (IBD) and occurs in more than one third of IBD patients. In this short review we focus on the mechanisms underlying CACRC pathogenesis, and discuss the approaches for prevention and therapy in CACRC.
Collapse
|
14
|
Abstract
AbstractThe Growth Differentiation Factor-15 gene (GDF15) is a member of TGF-b superfamily and this cytokine family is considered to be a promising target for cancer therapy. The purpose of this study was to investigate the effect of tumor derived GDF15 on proliferation and radiosensitivity of breast cancer cells in vitro and in vivo. A mouse breast cancer LM2 cell line with stable transfection of full-length mouse GDF15 cDNA was established. Cell growth and proliferation was observed using WST assay and impedance-based method. Radiation induced GDF15 and TGF-b1 expression was determined by qRT-PCR. Radiosensitivity was measured by a colony formation assay in vitro and by a tumor growth delay assay in vivo. Cells with more than a 10-fold increase in GDF15 expression had a higher growth rate than parental control cells in vitro and in vivo. The radiation induced elevation of the expression of TGFb1 was reduced in GDF15 overexpressing cells. GDF15 may play a role in the radiation response of breast cancer cells by effecting cell survival, inhibiting radiation-induced cell death, and inhibiting the TGF-b1 related cytotoxic action.
Collapse
|
15
|
Yang MH, Kim J, Khan IA, Walker LA, Khan SI. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci 2014; 100:75-84. [DOI: 10.1016/j.lfs.2014.01.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/08/2014] [Accepted: 01/24/2014] [Indexed: 12/28/2022]
|
16
|
Kanik EA, Canbaz H, Colak T, Aydin S. Chemopreventive effect of nonsteroidal anti-inflammatory drugs on the development of a new colorectal polyp or adenoma in a high-risk population: a meta-analysis. Curr Ther Res Clin Exp 2014; 65:345-52. [PMID: 24672089 DOI: 10.1016/j.curtheres.2004.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2004] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although many experimental, epidemiologic, and clinical studies have suggested that aspirin or other nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in reducing and preventing colorectal adenomas, randomized, controlled trials (RCTs) are still being carried out to obtain statistically reliable results. OBJECTIVE The aim of this meta-analysis was to review long-term, prospective RCTs investigating the effect of NSAIDs on the relative risk (RR) for developing ≥1 new colorectal polyp or adenoma in a high-risk population. METHODS We conducted a comprehensive search of MEDLINE, PubMed, and other electronic databases (including Inter-Science, Science Direct, Ebsco, Synergy, and Proquest) (key terms: nonsteroidal anti-inflammatory drugs, aspirin, colorectal, and polyps; years: 1974-2004) for English-language articles. Eligible studies were analyzed in terms of demographic data, adverse effects, and effect of NSAIDs on the RRs. RESULTS Four long-term, prospective RCTs were used in the statistical analysis. A total of 2069 high-risk patients were enrolled; 1880 patients completed the studies, and 1127 were in active-treatment groups (aspirin 81-325 mg/d or sulindac 150-300 mg/d). Our meta-analysis of these studies revealed that the overall RR for developing ≥ 1 new colorectal polyp or adenoma was significantly reduced by using aspirin or other NSAIDs (RR = 0.809; 95% CI, 0.718-0.912). CONCLUSIONS The results of this meta-analysis suggest that regular use of aspirin 81 to 325 mg/d or sulindac 150 to 300 mg/d for ≥1 year was associated with a decrease in the RR for developing ≥ 1 new colorectal polyp or adenoma to 0.80 (95% CI, 0.718-0.912) in patients at high risk.
Collapse
Affiliation(s)
| | - Hakan Canbaz
- Department of General Surgery, Mersin University, Mersin, Turkey
| | - Tahsin Colak
- Department of General Surgery, Mersin University, Mersin, Turkey
| | - Suha Aydin
- Department of General Surgery, Mersin University, Mersin, Turkey
| |
Collapse
|
17
|
Silibinin induces apoptosis of HT29 colon carcinoma cells through early growth response-1 (EGR-1)-mediated non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) up-regulation. Chem Biol Interact 2014; 211:36-43. [DOI: 10.1016/j.cbi.2014.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/31/2013] [Accepted: 01/08/2014] [Indexed: 12/29/2022]
|
18
|
Chang JW, Kang SU, Choi JW, Shin YS, Baek SJ, Lee SH, Kim CH. Tolfenamic acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive oxygen species generation. Free Radic Biol Med 2014; 67:115-30. [PMID: 24216474 DOI: 10.1016/j.freeradbiomed.2013.10.818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/27/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are usually used for the treatment of inflammatory diseases. However, certain NSAIDs also have antitumor activities in various cancers, including head and neck cancer, through cyclooxygenase-dependent or independent pathways. Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a TGF-β superfamily protein, is induced by NSAIDs and has been shown to be induced by several antitumorigenic compounds and to exhibit proapoptotic and antitumorigenic activities. In this report, we demonstrate for the first time that tolfenamic acid (TA) transcriptionally induced the expression of NAG-1 during TA-induced apoptosis of anaplastic thyroid cancer (ATC) cells. TA reduced the viability of ATC cells in a dose-dependent manner and induced apoptosis, findings that were coincident with NAG-1 expression. Overexpression of the NAG-1 gene using cDNA enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. Subsequently, we found that intracellular ROS generation plays an important role in activating the proapoptotic protein NAG-1. Then, we confirmed antitumorigenic effects of TA in a nude mouse orthotopic ATC model, and this result accompanied the augmentation of NAG-1 expression and ROS generation in tumor tissue. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression and ROS generation in in vitro and in vivo ATC models, providing a novel mechanistic explanation and indicating a potential chemotherapeutic approach for treatment of ATC.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- Growth Differentiation Factor 15/agonists
- Growth Differentiation Factor 15/antagonists & inhibitors
- Growth Differentiation Factor 15/genetics
- Growth Differentiation Factor 15/metabolism
- Humans
- Male
- Mice
- Mice, Nude
- Neoplasm Transplantation
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Thyroid Carcinoma, Anaplastic/drug therapy
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/metabolism
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea.
| |
Collapse
|
19
|
Yang G, Tan Q, Xie Y, Wei B, Chen Z, Tang C, Li S, Wang C. Variations in NAG-1 expression of human gastric carcinoma and normal gastric tissues. Exp Ther Med 2013; 7:241-245. [PMID: 24348798 PMCID: PMC3861384 DOI: 10.3892/etm.2013.1361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/21/2013] [Indexed: 02/05/2023] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a member of the transforming growth factor β (TGF-β) superfamily, has been demonstrated to possess antitumorigenic and proapoptotic activities in gastric cancer cells. In the present study, the expression of NAG-1 was assessed in human gastric carcinoma, tumor-adjacent normal tissues and normal gastric mucosa, with the aim to investigate the role of NAG-1 in the carcinogenesis and development of gastric carcinoma. NAG-1 protein expression was evaluated using immunohistochemical staining, while the expression of NAG-1 mRNA was evaluated using reverse transcription-polymerase chain reaction. It was observed that adenocarcinoma tissues had a lower expression of NAG-1 than normal gastric tissues. Furthermore, moderately and well-differentiated adenocarcinoma tissues expressed more NAG-1 protein than the poorly differentiated adenocarcinoma tissues. The expression of NAG-1 protein in adenocarcinoma tissues did not correlate with tumor-node-metastasis staging, infiltration degree or tumor size. The NAG-1 mRNA expression in adenocarcinoma tissues was also lower than that in normal gastric tissues. In conclusion, NAG-1 was poorly expressed in adenocarcinoma tissues and inversely correlated with the degree of tumor differentiation. These results indicate that NAG-1 may have an anti-oncogenic function in the carcinogenesis and development of gastric carcinoma, and that its attenuated or absent expression may lead to gastric carcinogenesis.
Collapse
Affiliation(s)
- Gongli Yang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China ; Department of Gastroenterology, Taihe Hospital, Hubei Medical University, Shiyan, Hubei 442000, P.R. China
| | - Qinhua Tan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Xie
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bin Wei
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhixin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chengwei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shengbao Li
- Department of Gastroenterology, Taihe Hospital, Hubei Medical University, Shiyan, Hubei 442000, P.R. China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Potential Therapeutic Role of Hispidulin in Gastric Cancer through Induction of Apoptosis via NAG-1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:518301. [PMID: 24159347 PMCID: PMC3789485 DOI: 10.1155/2013/518301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 01/05/2023]
Abstract
Gastric cancer is one of the most common malignant cancers due to poor prognoses and high mortality rates worldwide. However, an effective chemotherapeutic drug without side effects remains lacking. Saussurea involucrata (SI) Kar. et Kir., also known as snow lotus, grows in mountainous rocky habitats at 2600 m elevation in the Tian Shan and A'er Tai regions of China. The ethyl acetate extract of SI had been shown to inhibit proliferation and induce apoptosis in various tumor cells. In this study, we demonstrated that Hispidulin, active ingredients in SI, inhibits the growth of AGS gastric cancer cells. After Hispidulin treatment, NAG-1 remained highly expressed, whereas COX-2 expression was downregulated. Flow cytometric analysis indicated that Hispidulin induces G1/S phase arrest and apoptosis in time- and concentration-dependent manners. G1/S arrest correlated with upregulated p21/WAF1 and p16 and downregulated cyclin D1 and cyclin E, independent of p53 pathway. In addition, Hispidulin can elevate Egr-1 expression and ERK1/2 activity, whereas ERK1/2 inhibitor markedly attenuated NAG-1 mediated apoptosis. Taken together, Hispidulin can efficiently activate ERK1/2 signaling followed by NAG-1 constitutive expression and trigger cell cycle arrest as well as apoptosis in cancer cell. It can be a potential compound for combination therapy of gastric cancer in the future.
Collapse
|
21
|
Sun Y, Gao C, Luo M, Wang W, Gu C, Zu Y, Li J, Efferth T, Fu Y. Aspidin PB, a phloroglucinol derivative, induces apoptosis in human hepatocarcinoma HepG2 cells by modulating PI3K/Akt/GSK3β pathway. Chem Biol Interact 2013. [DOI: 10.1016/j.cbi.2012.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol 2012; 85:597-606. [PMID: 23220538 DOI: 10.1016/j.bcp.2012.11.025] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1, NAG-1, is a divergent member of the transforming growth factor-beta (TGF-β) superfamily that plays a complex but poorly understood role in several human diseases including cancer. NAG-1 expression is substantially increased during cancer development and progression especially in gastrointestinal, prostate, pancreatic, colorectal, breast, melanoma, and glioblastoma brain tumors. Aberrant increases in the serum levels of secreted NAG-1 correlate with poor prognosis and patient survival rates in some cancers. In contrast, the expression of NAG-1 is up-regulated by several tumor suppressor pathways including p53, GSK-3β, and EGR-1. NAG-1 expression is also induced by many drugs and dietary compounds which are documented to prevent the development and progression of cancer in mouse models. Studies with transgenic mice expressing human NAG-1 demonstrated that the expression of NAG-1 inhibits the development of intestinal tumors and prostate tumors in animal models. Laboratory and clinical evidence suggest that NAG-1, like other TGF-β family members, may have different or pleiotropic functions in the early and late stages of carcinogenesis. Upon understanding the molecular mechanism and function of NAG-1 during carcinogenesis, NAG-1 may serve as a potential biomarker for the diagnosis and prognosis of cancer and a therapeutic target for the inhibition and treatment of cancer development and progression.
Collapse
|
23
|
Kang SU, Lee BS, Lee SH, Baek SJ, Shin YS, Kim CH. Expression of NSAID-activated gene-1 by EGCG in head and neck cancer: involvement of ATM-dependent p53 expression. J Nutr Biochem 2012; 24:986-99. [PMID: 23017582 DOI: 10.1016/j.jnutbio.2012.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 01/11/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, possesses remarkable chemopreventive and therapeutic potential against various types of cancer, including head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanism involved is not completely understood. Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a transforming growth factor β superfamily protein, is shown to be induced by several antitumorigenic compounds and to exhibit proapoptotic and antitumorigenic activities. In this report, we demonstrate that EGCG transcriptionally induced the expression of NAG-1 during EGCG-induced apoptosis of HNSCC cells. Reporter assays, using the luciferase constructs containing the NAG-1 promoter, demonstrate that p53 is required for EGCG-mediated activation of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of EGCG, whereas suppression of NAG-1 expression by small interfering RNA attenuated EGCG-induced apoptosis in HNSCC cells. Subsequently, we found that ataxia-telangiectasia mutated (ATM) plays an important role in activating these proapoptotic proteins (NAG-1 and p53) and cell cycle inhibitor (p21). Furthermore, EGCG significantly inhibited tumor formation as assessed by xenograft models, and this result is accompanied with induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate for the first time that EGCG induces apoptosis via ATM/p53-dependent NAG-1 expression in HNSCC, providing an additional mechanistic explanation for the apoptotic activity of EGCG.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, 5 Wonchon-Dong, Yeongtong-Gu, Suwon 442-749, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines. Biochem Biophys Res Commun 2012; 427:392-7. [PMID: 22995316 DOI: 10.1016/j.bbrc.2012.09.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022]
Abstract
Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.
Collapse
|
25
|
Jendželovský R, Koval J, Mikeš J, Papčová Z, Plšíková J, Fedoročko P. Inhibition of GSK-3β reverses the pro-apoptotic effect of proadifen (SKF-525A) in HT-29 colon adenocarcinoma cells. Toxicol In Vitro 2012; 26:775-82. [PMID: 22683934 DOI: 10.1016/j.tiv.2012.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/05/2012] [Accepted: 05/29/2012] [Indexed: 01/09/2023]
Abstract
Proadifen (SKF-525A) is a well-known inhibitor of cytochrome P450 monooxygenases. Besides the prevention of drug metabolism it affects the proliferation of cancer cells, although the mechanisms of possible anti-cancer activity of proadifen have not been fully understood yet. The aim of this study therefore was to evaluate the potential anti-proliferative effect of proadifen on HT-29 colon cancer cells. Our results show that proadifen inhibited the growth of HT-29 cells by the accumulation of cells in the G1 phase of the cell cycle, reduction of metabolic activity and colony formation and by the induction of apoptosis. Analyses of Western blots and flow cytometry revealed time- and dose-dependent phosphatidylserine externalization, caspase-3 activation and PARP cleavage. Intense upregulation of NAG-1 and ATF3 and downregulation of Mcl-1 and Egr-1 were also observed. Further investigation showed that NAG-1 gene silencing by siRNA had no effect on the pro-apoptotic action of proadifen. In contrast, we found that AR-A014418, the specific inhibitor of glycogen synthase kinase-3 β (GSK-3β), significantly decreased proadifen-induced apoptosis. Inactivation of GSK-3β (phosphorylation at serine 9) resulted in changes in phosphatidylserine externalization and caspase-3 activation. These data suggest that GSK-3β is an important factor in the induction of apoptosis in HT-29 colon cancer cells treated with proadifen.
Collapse
Affiliation(s)
- Rastislav Jendželovský
- Institute of Biology and Ecology, Department of Cellular Biology, Pavol Jozef Šafárik University in Košice, Slovakia
| | | | | | | | | | | |
Collapse
|
26
|
Kang SU, Shin YS, Hwang HS, Baek SJ, Lee SH, Kim CH. Tolfenamic acid induces apoptosis and growth inhibition in head and neck cancer: involvement of NAG-1 expression. PLoS One 2012; 7:e34988. [PMID: 22536345 PMCID: PMC3334943 DOI: 10.1371/journal.pone.0034988] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/08/2012] [Indexed: 12/24/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Center for Cell Death Regulating Biodrug, School of Medicine, Ajou University, Suwon, Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Center for Cell Death Regulating Biodrug, School of Medicine, Ajou University, Suwon, Korea
| | - Hye Sook Hwang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Center for Cell Death Regulating Biodrug, School of Medicine, Ajou University, Suwon, Korea
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Center for Cell Death Regulating Biodrug, School of Medicine, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
27
|
Lim JH, Woo SM, Min KJ, Park EJ, Jang JH, Seo BR, Iqbal T, Lee TJ, Kim SH, Choi YH, Kwon TK. Rottlerin induces apoptosis of HT29 colon carcinoma cells through NAG-1 upregulation via an ERK and p38 MAPK-dependent and PKC δ-independent mechanism. Chem Biol Interact 2012; 197:1-7. [DOI: 10.1016/j.cbi.2012.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 01/10/2023]
|
28
|
Bosotti R, Carpinelli P, Healy S, Locatelli G, Cappella P, Lanfrancone L, Calogero R, Moll J, Isacchi A. Transcriptional analysis of the Aurora inhibitor Danusertib leading to biomarker identification in TP53 wild type cells. Gene 2012; 494:202-8. [DOI: 10.1016/j.gene.2011.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/14/2011] [Accepted: 08/26/2011] [Indexed: 01/23/2023]
|
29
|
Nalbantsoy A, Nesil T, Yılmaz-Dilsiz O, Aksu G, Khan S, Bedir E. Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:574-81. [PMID: 22155389 DOI: 10.1016/j.jep.2011.11.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/08/2011] [Accepted: 11/25/2011] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus roots are used to treat leukemia and for their wound healing properties in Southeast Anatolia-Turkey. MATERIALS AND METHODS In vivo studies to investigate the effects of two Astragalus saponins were carried out on the immune response cytokines by using six to eight weeks old male Swiss albino mice. The production of IL-1β, TGF-1β, TNF-α, IL-2, IL-4 and IFN-γ cytokines was determined by ELISA. The spleen and lymph nodes, isolated from the mice subjects, were analyzed to realize induction of the surface antigen productions for IL-2Rα (CD25) and CD69. In addition, their effects on the targets of inflammation such as NF κB, iNOS and NAG-1 were investigated in cell-based assays. RESULTS The results suggested that AST VII and Mac B had positive effect on Th1 cytokine release (IL-2 and IFN-γ), and suppression on Th2 cytokine production (IL-4). The immunohistochemical results exhibited induction of both IL-Rα (CD25) and CD69 surface receptors justifying the Th1 cytokine release. The compounds did not affect NF-κB or NAG-1 activity but iNOS activity was inhibited by Mac B with an IC(50) of 156 μg/ml. CONCLUSIONS The results show that Ast VII and Mac B create powerful immunoregulatory effects without the stimulation of inflammatory cytokines in mice, and have no significant effect on the inflammatory cellular targets in vitro.
Collapse
Affiliation(s)
- Ayşe Nalbantsoy
- Ege University, Faculty of Engineering, Bioengineering Department, Bornova, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
30
|
Hughes A, Saunders FR, Wallace HM. Naproxen causes cytotoxicity and induces changes in polyamine metabolism independent of cyclo-oxygenase expression. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20018j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Wang X, Kingsley PJ, Marnett LJ, Eling TE. The role of NAG-1/GDF15 in the inhibition of intestinal polyps in APC/Min mice by sulindac. Cancer Prev Res (Phila) 2011; 4:150-60. [PMID: 21205743 DOI: 10.1158/1940-6207.capr-10-0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antitumor effects of nonsteroidal anti-inflammatory drugs (NSAID) are assumed to be due to the inhibition of COX activity, but COX-independent mechanisms may also play an important role. NSAID-activated gene (NAG-1/GDF15) is induced by NSAIDs and has antitumorigenic activities. To determine the contribution of COX-2 inhibition and NAG-1/GDF15 expression to the prevention of colon carcinogenesis by NSAIDs, we evaluated several sulindac derivatives [des-methyl (DM)-sulindac sulfide and its prodrug DM-sulindac] that do not inhibit COX-2 activity. Sulindac sulfide and DM-sulindac induced the expression of NAG-1/GDF15 in HCT116 cells as determined by quantitative real-time PCR and Western blot. We fed APC/Min mice with 320 ppm of sulindac and doses of DM-sulindac. Only sulindac significantly inhibited tumor formation inAPC/Min mice. To determine the pharmacokinetic properties of sulindac and DM-sulindac in vivo, wild-type C57/B6 mice were fed with sulindac and DM-sulindac at 80, 160, and 320 ppm. High-performance liquid chromatography analysis revealed that the conversion of DM-sulindac to DM-sulindac sulfide (active form) was less efficient than the conversion of sulindac to sulindac sulfide (active form) in the mice. Lower levels of DM-sulindac sulfide accumulated in intestinal and colon tissues in comparison with sulindac sulfide. In addition, NAG-1/GDF15 was induced in the liver of sulindac-fed mice but not in the DM-sulindac-fed mice. Collectively, our results suggest that the tumor-inhibitory effects of sulindac in APC/Min mice may be due to, in part, NAG-1/GDF15 induction in the liver. Our study also suggests that pharmacologic properties should be carefully evaluated when developing drug candidates.
Collapse
Affiliation(s)
- Xingya Wang
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | |
Collapse
|
32
|
Kim IY, Park SY, Kang Y, Thapa D, Choi HG, Kim JA. Role of nonsteroidal anti-inflammatory drug-activated gene-1 in docetaxel-induced cell death of human colorectal cancer cells with different p53 status. Arch Pharm Res 2011; 34:323-30. [DOI: 10.1007/s12272-011-0219-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/10/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
|
33
|
Abstract
The apoptosis in gastric cancer cells induced by genistein and the relationship between this apoptosis and expression of NF-κB and Caspase-3 were studied. In vitro experiments, MTT assay was used to determine the cell growth inhibitory rate. Transmission fluorescence microscope, transmission electron microscopy, DNA-fragment assay were used to qualitively detect the apoptosis status of gastric cancer line SGC-7901 before and after the genistein treatment. Immunohistochemical staining and Western Blotting were performed to detect the expression of gene NF-κB and Caspase-3. The results showed that genistein inhibited the growth of gastric carcinoma cell line SGC-7901 in a dose-and time-dependent manner. Genistein induced SGC-7901 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. Genistein could reduce the expression of gene NF-κB, and improve the expression of gene Caspase-3.
Collapse
|
34
|
Baek SJ, Whitlock NC. Molecular Targets of Resveratrol in Carcinogenesis. EVIDENCE-BASED ANTICANCER MATERIA MEDICA 2011. [DOI: 10.1007/978-94-007-0526-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Molecular targets of apigenin in colorectal cancer cells: involvement of p21, NAG-1 and p53. Eur J Cancer 2010; 46:3365-74. [PMID: 20709524 DOI: 10.1016/j.ejca.2010.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/31/2022]
Abstract
Persuasive epidemiological and experimental evidence suggests that dietary flavonoids have anti-cancer activity. Since conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of most cancer types, including colorectal neoplasia, there is an urgent need to develop alternative approaches for the management of cancer. We sought to develop the best flavonoids for the inhibition of cell growth, and apigenin (flavone) proved to be the most promising compound in colorectal cancer cell growth arrest. Subsequently, we found that pro-apoptotic proteins (NAG-1 and p53) and cell cycle inhibitor (p21) were induced in the presence of apigenin, and kinase pathways, including PKCδ and ataxia telangiectasia mutated (ATM), play an important role in activating these proteins. The data generated by in vitro experiments were confirmed in an animal study using APC(MIN+) mice. Apigenin is able to reduce polyp numbers, accompanied by increasing p53 activation through phosphorylation in animal models. Our data suggest apparent beneficial effects of apigenin on colon cancer.
Collapse
|
36
|
Thapa D, Babu D, Park MA, Kwak MK, Lee YR, Kim JM, Kwon TK, Kim JA. Induction of p53-independent apoptosis by a novel synthetic hexahydrocannabinol analog is mediated via Sp1-dependent NSAID-activated gene-1 in colon cancer cells. Biochem Pharmacol 2010; 80:62-71. [PMID: 20230799 DOI: 10.1016/j.bcp.2010.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 01/18/2023]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) has received greater attention as a novel molecular target for anti-cancer therapeutics in recent years. We identified a novel synthetic hexahydrocannabinol analog, LYR-8 [(1-((9S)-1-hydroxy-6,6,9-trimethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-2-yl)ethanone)], as a potent NAG-1 and apoptosis inducer in a panel of human cancer cells. LYR-8 did not possess any affinity for cannabinoid receptor CB(1) or CB(2), which eliminates the concern about potential psychoactive side effects. LYR-8 dramatically induced NAG-1 expression and apoptosis in HCT116 (wild-type p53) and HT29 (mutant p53) colon cancer cells. The NAG-1 expression by LYR-8 was not blocked by pifithrin-alpha, a specific p53 inhibitor, which was different from doxorubicin that induced p53-dependent NAG-1 transcriptional activity. The induction of NAG-1 promoter activity by LYR-8 was strongly correlated with increased Sp1 activation as noted in various luc-promoter activities. Furthermore, pretreatment with the specific Sp1 inhibitor mithramycin A completely reversed the LYR-8-induced NAG-1 expression in both HCT116 and HT29 cells. Knockdown of NAG-1 using siRNA significantly reversed LYR-8-induced cell death in both wild-type and mutant p53-expressing colon cancer cells. Furthermore, sensitization with NAG-1 inducer sulindac sulfide synergized LYR-8-induced cell death in both colon cancer cells. These results suggest that induction of NAG-1 via Sp1 activation is a promising therapeutic approach in cancer treatment, and that a novel compound like LYR-8 could be a potent chemotherapeutic agent for colon cancers including p53-mutated cancer.
Collapse
Affiliation(s)
- Dinesh Thapa
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee SH, Krisanapun C, Baek SJ. NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 2010; 31:719-28. [PMID: 20110283 DOI: 10.1093/carcin/bgq016] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Capsaicin, a natural product of the Capsicum species of red peppers, is known to induce apoptosis and suppress growth. Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and antitumorigenic property in colorectal and lung cancer. Our data demonstrate that capsaicin leads to induction of apoptosis and up-regulates NAG-1 gene expression at the transcriptional level. Overexpression of CCAAT/enhancer binding protein beta (C/EBPbeta) caused a significant increase of basal and capsaicin-induced NAG-1 promoter activity. We subsequently identified C/EBPbeta binding sites in the NAG-1 promoter responsible for capsaicin-induced NAG-1 transactivation. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirmed binding of C/EBPbeta to the NAG-1 promoter. Capsaicin treatment resulted in an increase of phosphorylated serine/threonine residues on C/EBPbeta, and the immunoprecipitation study showed that capsaicin enhanced binding of C/EBPbeta with glycogen synthase kinase 3beta (GSK3beta) and activating transcription factor 3 (ATF3). The phosphorylation and interaction of C/EBPbeta with GSK3beta and ATF3 are decreased by the inhibition of the GSK3beta and Protein Kinase C pathways. Knockdown of C/EBPbeta, GSK3beta or ATF3 ameliorates NAG-1 expression induced by capsaicin treatment. These data indicate that C/EBPbeta phosphorylation through GSK3beta may mediate capsaicin-induced expression of NAG-1 and apoptosis through cooperation with ATF3 in human colorectal cancer cells.
Collapse
Affiliation(s)
- Seong-Ho Lee
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
38
|
Cho SD, Lee SO, Chintharlapalli S, Abdelrahim M, Khan S, Yoon K, Kamat AM, Safe S. Activation of nerve growth factor-induced B alpha by methylene-substituted diindolylmethanes in bladder cancer cells induces apoptosis and inhibits tumor growth. Mol Pharmacol 2009; 77:396-404. [PMID: 20023005 DOI: 10.1124/mol.109.061143] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nerve growth factor-induced B (NGFI-B) genes are orphan nuclear receptors, and NGFI-B alpha (Nur77, TR3) is overexpressed in bladder tumors and bladder cancer cells compared with nontumorous bladder tissue. 1,1-Bis(3'-indolyl)-1-(p-methoxyphenyl)-methane (DIM-C-pPhOCH(3)) and 1,1-bis(3'-indolyl)-1-(p-phenyl)methane have previously been identified as activators of Nur77, and both compounds inhibited growth and induced apoptosis of UC-5 and KU7 bladder cancer cells. The proapoptotic effects of methylene-substituted diindolylmethanes (C-DIMs) were unaffected by cotreatment with leptomycin B and were dependent on nuclear Nur77, and RNA interference with a small inhibitory RNA for Nur77 (iNur77) demonstrated that C-DIM-induced activation of apoptosis was Nur77-dependent. Microarray analysis of DIM-C-pPhOCH(3)-induced genes in UC-5 bladder cancer cells showed that this compound induced multiple Nur77-dependent proapoptotic or growth inhibitory genes including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), cystathionase, p21, p8, and sestrin-2. DIM-C-pPhOCH(3) (25 mg/kg/d) also induced apoptosis and inhibited tumor growth in athymic nude mice bearing KU7 cells as xenografts, demonstrating that Nur77-active C-DIMs exhibit potential for bladder cancer chemotherapy by targeting Nur77, which is overexpressed in this tumor type.
Collapse
Affiliation(s)
- Sung Dae Cho
- Department of Oral Pathology, School of Dentistry and Institute of Oral Biosciences, Brain Korea 21 Project, Chonbuk National University, Jeonju City, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Growth/differentiation factor-15 inhibits differentiation into osteoclasts—A novel factor involved in control of osteoclast differentiation. Differentiation 2009; 78:213-22. [DOI: 10.1016/j.diff.2009.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/03/2009] [Accepted: 07/30/2009] [Indexed: 01/16/2023]
|
40
|
Synergistic Cytotoxic Effects by Combination Treatment of Genistein and Daidzein in Human Colorectal Cancer Cell. ACTA ACUST UNITED AC 2009. [DOI: 10.5352/jls.2009.19.9.1294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Genistein sensitizes human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by enhancing Bid cleavage. Anticancer Drugs 2009; 20:713-22. [DOI: 10.1097/cad.0b013e32832e8998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Proutski I, Stevenson L, Allen WL, McCulla A, Boyer J, McLean EG, Longley DB, Johnston PG. Prostate-derived factor--a novel inhibitor of drug-induced cell death in colon cancer cells. Mol Cancer Ther 2009; 8:2566-74. [PMID: 19723892 DOI: 10.1158/1535-7163.mct-09-0158] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the role of the divergent transforming growth factor-beta superfamily member, prostate-derived factor (PDF), in regulating response to chemotherapies used in the treatment of colorectal cancer. A clear p53-dependent expression pattern of PDF was shown in a panel of colorectal cancer cell lines following acute exposure to oxaliplatin, 5-fluorouracil, and SN38. PDF gene silencing before chemotherapy treatment significantly sensitized cells expressing wild-type p53, but not p53-null or p53-mutant cells, to drug-induced apoptosis. Similarly, knockdown of PDF expression sensitized HCT116 drug-resistant daughter cell lines to their respective chemotherapies. Inducible PDF expression and treatment with recombinant PDF both significantly attenuated drug-induced apoptosis. Further analysis revealed that PDF activated the Akt but not the extracellular signal-regulated kinase 1/2 signaling pathway. Furthermore, cotreatment with the phosphatidylinositol 3-kinase inhibitor wortmannin abrogated PDF-mediated resistance to chemotherapy-induced apoptosis. Together, these data suggest that PDF may be a novel inhibitor of drug-induced cell death in colorectal cancer cells and that the mature secreted form of the protein activates the phosphatidylinositol 3-kinase/Akt pathway as an acute mechanism of chemoresistance.
Collapse
Affiliation(s)
- Irina Proutski
- Department of Oncology, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Auyeung KKW, Cho CH, Ko JKS. A novel anticancer effect of Astragalus saponins: Transcriptional activation of NSAID-activated gene. Int J Cancer 2009; 125:1082-91. [PMID: 19384947 DOI: 10.1002/ijc.24397] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Astragalus membranaceus has been used to ameliorate the side effects of antineoplastic drugs because of its immunomodulating nature. We had recently demonstrated that total Astragalus saponins (AST) possess anticarcinogenic and proapoptotic properties in human colon cancer cells and tumor xenograft. In this study, we identified NSAID-activated gene (NAG-1) as a potential molecular target of AST. The growth-inhibitory and proapoptotic effects of AST were assessed in a panel of human cancer cell lines. Hoechst 33342 nuclear staining, Annexin V-FITC/propidium iodide staining, Western immunoblotting, real-time PCR, luciferase reporter assay and electrophoretic mobility shift assay were conducted to determine the association of NAG-1 and related transcription factors with AST during its regulation of apoptotic activities. Moreover, the combined proapoptotic and NAG-1 promoting activities of AST and/or inhibitors of the PI3K-Akt pathway were also examined. AST caused overexpression of NAG-1, leading to PARP cleavage and apoptosis. The induction of NAG-1 promoter activity by the drug was associated with increased gene expression, in addition to prior increase in Egr-1 expression and DNA binding activity. AST-induced NAG-1 activation was intensified when PI3K inhibitor LY294002 or Akt inhibitor was co-treated and reversed by NAG-1 siRNA transfection. Nevertheless, the extent of NAG-1 induction could not be altered by the ERK inhibitor PD98059. Our results indicate that NAG-1 is a potential molecular target of AST in its antitumorigenic and proapoptotic actions, which would have additive effects when used along with PI3K-Akt inhibitors. The information obtained could facilitate future development of a novel target-specific chemotherapeutic agent with known molecular pathway.
Collapse
|
44
|
Yang H, Choi HJ, Park SH, Kim JS, Moon Y. Macrophage inhibitory cytokine-1 (MIC-1) and subsequent urokinase-type plasminogen activator mediate cell death responses by ribotoxic anisomycin in HCT-116 colon cancer cells. Biochem Pharmacol 2009; 78:1205-13. [PMID: 19540205 DOI: 10.1016/j.bcp.2009.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 12/26/2022]
Abstract
Ribosome-inactivating stresses possess a potent regulatory activity against tumor cell progression. In this study, we demonstrated that macrophage inhibitory cytokine-1 (MIC-1) and its associated signals determined the colon cancer cell response to the chemical ribotoxic stress. The ribotoxic stress agent anisomycin-induced MIC-1 gene expression which was involved in the ribotoxin-induced apoptotic pathway. MIC-1 was also a critical inducer of apoptosis-related gene products such as activated urokine-type plasminogen activator (PLAU) and PLAU receptor (uPAR). When MIC-1 or PLAU action was repressed in the tumor cells, the chemical ribotoxic stress triggered a survival-related MAP kinase such as ERK. Mechanistically, gene expression of apoptosis-mediator MIC-1 was enhanced by activating transcription factor 3 (ATF-3) via the p38 MAP kinase signaling pathway. Moreover, both promoter activity and mRNA stability of MIC-1 gene were up-regulated by ribotoxic anisomycin via the p38 MAP kinase signaling pathway. In conclusion, ribotoxic anisomycin-induced MIC-1 expression via p38-ATF3 pathway and subsequent apoptosis while suppressing survival ERK signal in the colon cancer cells. The results of this study provide mechanistic insight into tumor cell decision for death or survival pathways in response to ribosome-disrupting stresses from chemotherapeutics.
Collapse
Affiliation(s)
- Hyun Yang
- Department of Microbiology and Immunology and Medical Research Institute, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Baek SJ, Mcentee MF, Legendre AM. Review Paper: Cancer Chemopreventive Compounds and Canine Cancer. Vet Pathol 2009; 46:576-88. [DOI: 10.1354/vp.08-vp-0238-b-rev] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Canine cancer has become more prevalent in recent years because of increased life expectancy and greater attention to the health of pets. The range of cancers seen in dogs is as diverse as that in human patients, and despite more intensive therapeutic interventions, fatality rates remain unacceptably high in both species. Chemoprevention is therefore an important means of confronting this disease. Because domestic pets share our environment, greater cross-application and study of the protumorigenic and antitumorigenic factors in our shared environment will benefit all species, leading to the development of new families of less toxic antitumorigenic compounds based on novel and established molecular targets. Currently, the most interesting cancer preventive agents are nonsteroidal anti-inflammatory drugs, peroxisome proliferator-activated receptor-γ ligands, and dietary compounds. This article provides an overview of what is known about how these agents affect molecular signaling in neoplastic disease, with reference to reported application and/or study in dogs where available.
Collapse
Affiliation(s)
- S. J. Baek
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - M. F. Mcentee
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - A. M. Legendre
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| |
Collapse
|
46
|
Shin DY, Kim GY, Li W, Choi BT, Kim ND, Kang HS, Choi YH. Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells. Biomed Pharmacother 2009; 63:86-94. [DOI: 10.1016/j.biopha.2008.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 08/05/2008] [Indexed: 11/16/2022] Open
|
47
|
Kelly JA, Lucia MS, Lambert JR. p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density, DNA damage and hypoxia through diverse mechanisms. Cancer Lett 2008; 277:38-47. [PMID: 19100681 DOI: 10.1016/j.canlet.2008.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 01/02/2023]
Abstract
The p53 tumor suppressor modulates cellular response to stress through both transcriptional and post-transcriptional mechanisms. Elucidation of the downstream targets of p53 following cell stress will aid in our understanding of the pathways involved in cellular adaptation to stressful stimuli. Here, we demonstrate that the TGF-beta superfamily member, and putative tumor suppressor, prostate-derived factor (PDF)/NSAID-activated gene (NAG)-1/macrophage inhibitory cytokine (MIC)-1 is induced in LNCaP human prostate cancer cells following treatment with the DNA-damaging agent, doxorubicin, culture under hypoxic conditions and by the hypoxia mimetic, cobalt chloride. Additionally, PDF expression was induced by increasing cell density. Expression of dominant negative p53 in LNCaP cells blocked induction of PDF mRNA and protein demonstrating the requirement for functional p53 in PDF induction by these stimuli. DNA damage and hypoxia resulted in increased p53 protein accumulation indicating that PDF expression may be controlled by cellular levels of p53. We also show the requirement for de novo protein synthesis in PDF induction by hypoxia and DNA damage. Increased PDF mRNA stability in response to hypoxia and cobalt chloride, but not doxorubicin, indicates that p53-dependent induction of PDF expression occurs via diverse mechanisms. Thus, PDF may represent a novel target of p53 in response to cell stress.
Collapse
Affiliation(s)
- Julie A Kelly
- Department of Pathology, University of Colorado-Denver, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
48
|
Yoshioka H, Kamitani H, Watanabe T, Eling TE. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1/GDF15) expression is increased by the histone deacetylase inhibitor trichostatin A. J Biol Chem 2008; 283:33129-37. [PMID: 18801729 DOI: 10.1074/jbc.m805248200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is a putative tumor suppressor whose expression can be increased by drug treatment. Glioblastoma is the most common central nervous system tumor, is associated with high morbidity and mortality, and responds poorly to surgical, chemical, and radiation therapy. The histone deacetylase inhibitors are under current consideration as therapeutic agents in treating glioblastoma. We investigated whether trichostatin A (TSA) would alter the expression of NAG-1 in glioblastoma cells. The DNA demethylating agent 5-aza-dC did not increase NAG-1 expression, but TSA up-regulated NAG-1 expression and acted synergistically with 5-aza-dC to induce NAG-1 expression. TSA indirectly increases NAG-1 promoter activity and increases NAG-1 mRNA and protein expression in the T98G human glioblastoma cell line. TSA also increases the expression of transcription factors Sp-1 and Egr-1. Small interfering RNA experiments link NAG-1 expression to apoptosis induced by TSA. Reporter gene assays, specific inhibition by small interfering RNA transfections, and chromatin immunoprecipitation assays indicate that Egr-1 and Sp-1 mediate TSA-induced NAG-1 expression. TSA also increases the stability of NAG-1 mRNA. TSA-induced NAG-1 expression involves multiple mechanisms at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
49
|
Shukitt-Hale B, Lau FC, Carey AN, Galli RL, Spangler EL, Ingram DK, Joseph JA. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutr Neurosci 2008; 11:172-82. [PMID: 18681986 PMCID: PMC5015125 DOI: 10.1179/147683008x301487] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cognitive impairment in age-related neurodegenerative diseases such as Alzheimer's disease may be partly due to long-term exposure and increased susceptibility to inflammatory insults. In the current study, we investigated whether polyphenols in blueberries can reduce the deleterious effects of inflammation induced by central administration of kainic acid by altering the expression of genes associated with inflammation. To this end, 4-month-old male Fischer-344 (F344) rats were fed a control, 0.015% piroxicam (an NSAID) or 2% blueberry diet for 8 weeks before either Ringer's buffer or kainic acid was bilaterally micro-infused into the hippocampus. Two weeks later, following behavioral evaluation, the rats were killed and total RNA from the hippocampus was extracted and used in real-time quantitative RT-PCR (qRT-PCR) to analyze the expression of inflammation-related genes. Kainic acid had deleterious effects on cognitive behavior as kainic acid-injected rats on the control diet exhibited increased latencies to find a hidden platform in the Morris water maze compared to Ringer's buffer-injected rats and utilized non-spatial strategies during probe trials. The blueberry diet, and to a lesser degree the piroxicam diet, was able to improve cognitive performance. Immunohistochemical analyses of OX-6 expression revealed that kainic acid produced an inflammatory response by increasing the OX-6 positive areas in the hippocampus of kainic acid-injected rats. Kainic acid up-regulated the expression of the inflammatory cytokines IL-1beta and TNF-alpha, the neurotrophic factor IGF-1, and the transcription factor NF-kappaB. Blueberry and piroxicam supplementations were found to attenuate the kainic acid-induced increase in the expression of IL-1beta, TNF-alpha, and NF-kappaB, while only blueberry was able to augment the increased IGF-1 expression. These results indicate that blueberry polyphenols attenuate learning impairments following neurotoxic insult and exert anti-inflammatory actions, perhaps via alteration of gene expression.
Collapse
Affiliation(s)
- Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lee SH, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog 2008; 47:197-208. [PMID: 18058799 DOI: 10.1002/mc.20374] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by beta-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G(1) cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of beta-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCepsilon and glycogen synthase kinase (GSK)-3beta pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G(1) cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as beta-catenin, PKCepsilon, and GSK-3beta pathways.
Collapse
Affiliation(s)
- Seong-Ho Lee
- The Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996-4542, USA
| | | | | |
Collapse
|