1
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
2
|
Gao J, Tian X, Zhou J, Cui MZ, Zhang HF, Gao N, Wen Q, Qiao HL. From Genotype to Phenotype: Cytochrome P450 2D6-Mediated Drug Clearance in Humans. Mol Pharm 2017; 14:649-657. [DOI: 10.1021/acs.molpharmaceut.6b00920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Gao
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Tian
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Zhou
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ming-Zhu Cui
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hai-Feng Zhang
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Na Gao
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qiang Wen
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hai-Ling Qiao
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
3
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
4
|
Park JW, Reed JR, Backes WL. The Localization of Cytochrome P450s CYP1A1 and CYP1A2 into Different Lipid Microdomains Is Governed by Their N-terminal and Internal Protein Regions. J Biol Chem 2015; 290:29449-60. [PMID: 26468279 DOI: 10.1074/jbc.m115.687103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/06/2022] Open
Abstract
In cellular membranes, different lipid species are heterogeneously distributed forming domains with different characteristics. Ordered domains are tightly packed with cholesterol, sphingomyelin, and saturated fatty acids, whereas disordered domains contain high levels of unsaturated fatty acids. Our laboratory has shown that membrane heterogeneity affects the organization of cytochrome P450s and their cognate redox partner, the cytochrome P450 reductase (CPR). Despite the high degree of sequence similarity, CYP1A1 was found to localize to disordered regions, whereas CYP1A2 resided in ordered domains. We hypothesized that regions of amino acid sequence variability may contain signal motifs that direct CYP1A proteins into ordered or disordered domains. Thus, chimeric constructs of CYP1A1 and CYP1A2 were created, and their localization was tested in HEK293T cells. CYP1A2, containing the N-terminal regions from CYP1A1, no longer localized in ordered domains, whereas the N terminus of CYP1A2 partially directed CYP1A1 into ordered regions. In addition, intact CYP1A2 containing a 206-302-residue peptide segment of CYP1A1 had less affinity to bind to ordered microdomains. After expression, the catalytic activity of CYP1A2 was higher than that of the CYP1A1-CYP1A2 chimera containing the N-terminal end of CYP1A1 with subsaturating CPR concentrations, but it was approximately equal with excess CPR suggesting that the localization of the CYP1A enzyme in ordered domains favored its interaction with CPR. These data demonstrate that both the N-terminal end and an internal region of CYP1A2 play roles in targeting CYP1A2 to ordered domains, and domain localization may influence P450 function under conditions that resemble those found in vivo.
Collapse
Affiliation(s)
- Ji Won Park
- From the Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| | - James R Reed
- From the Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| | - Wayne L Backes
- From the Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| |
Collapse
|
5
|
Fleming I. The Pharmacology of the Cytochrome P450 Epoxygenase/Soluble Epoxide Hydrolase Axis in the Vasculature and Cardiovascular Disease. Pharmacol Rev 2014; 66:1106-40. [DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Selective induction of hepatic cytochrome P450 2B activity by leelamine in vivo, as a potent novel inducer. Arch Pharm Res 2014; 38:725-33. [DOI: 10.1007/s12272-014-0443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/02/2014] [Indexed: 01/20/2023]
|
7
|
Cyclic adenosine monophosphate involvement in low-dose cyclophosphamide-reversed immune evasion in a mouse lymphoma model. Cell Mol Immunol 2012; 9:482-8. [PMID: 23000689 DOI: 10.1038/cmi.2012.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphoma cells mobilize many mechanisms to evade the immune system. There is substantial evidence that CD4(+)CD25(+) regulatory T cells (Tregs) play a key role in the control of immune evasion. Tregs can transfer cyclic adenosine monophosphate (cAMP) to effector T cells, suggesting an association between Tregs' immune-evasion role and the intracellular cAMP pathway. In this study, we used A20 B-cell lymphoma mice as aggressive tumor models to investigate the mechanism of the depletion of Tregs by low-dose cyclophosphamide (CY, 20 mg/kg). The tumor-bearing mice had longer survival times and slower tumor growth rates following treatment with CY, but its effects were temporary. Along with the depletion of Tregs by low-dose CY treatment, the expression of interleukin-2 (IL-2) in T effector cells increased, and intracellular cAMP concentrations in immune cells decreased. Our study demonstrates the ability of low-dose CY to reverse Tregs-mediated immune evasion in a mouse model. The changes in intracellular cAMP concentrations correlated with the upregulation of effector T cells and the downregulation of Tregs, indicating the close association of cAMP analogs and low-dose CY in the immune therapy of B-cell lymphoma.
Collapse
|
8
|
Koochekpour S. Androgen receptor signaling and mutations in prostate cancer. Asian J Androl 2010; 12:639-57. [PMID: 20711217 PMCID: PMC3006239 DOI: 10.1038/aja.2010.89] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/02/2010] [Accepted: 07/14/2010] [Indexed: 12/19/2022] Open
Abstract
Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pathway that leads to transcriptional activity of AR target genes. Alternatively, cytoplasmic signaling crosstalk of AR by growth factors, neurotrophic peptides, cytokines or nonandrogenic hormones may have important roles in prostate carcinogenesis and in metastatic or androgen-independent (AI) progression of the disease. In addition, cross-modulation by various nuclear transcription factors acting through basal transcriptional machinery could positively or negatively affect the AR or AR target genes expression and activity. Androgen ablation leads to an initial favorable response in a significant number of patients; however, almost invariably patients relapse with an aggressive form of the disease known as castration-resistant or hormone-refractory prostate cancer (PCa). Understanding critical molecular events that lead PCa cells to resist androgen-deprivation therapy is essential in developing successful treatments for hormone-refractory disease. In a significant number of hormone-refractory patients, the AR is overexpressed, mutated or genomically amplified. These genetic alterations maintain an active presence for a highly sensitive AR, which is responsive to androgens, antiandrogens or nonandrogenic hormones and collectively confer a selective growth advantage to PCa cells. This review provides a brief synopsis of the AR structure, AR coregulators, posttranslational modifications of AR, duality of AR function in prostate epithelial and stromal cells, AR-dependent signaling, genetic changes in the form of somatic and germline mutations and their known functional significance in PCa cells and tissues.
Collapse
Affiliation(s)
- Shahriar Koochekpour
- Department of Urology and Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
Oesch F. Importance of knowledge on drug metabolism for the safe use of drugs in humans. Drug Metab Rev 2009; 41:298-300. [DOI: 10.1080/10837450902890958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Redlich G, Zanger UM, Riedmaier S, Bache N, Giessing ABM, Eisenacher M, Stephan C, Meyer HE, Jensen ON, Marcus K. Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry. J Proteome Res 2008; 7:4678-88. [PMID: 18828626 DOI: 10.1021/pr800231w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In mammals, Cytochrome P450 (CYP) enzymes are bound to membranes of the endoplasmic reticulum and mitochondria, where they are responsible for the oxidative metabolism of many xenobiotics as well as organic endogenous compounds. In humans, 57 isoforms were identified which are classified based on sequence homology. In the present work, we demonstrate the performance of a mass spectrometry-based strategy to simultaneously detect and differentiate distinct human Cytochrome P450 (CYP) isoforms including the highly similar CYP3A4, CYP3A5, CYP3A7, as well as CYP2C8, CYP2C9, CYP2C18, CYP2C19, and CYP4F2, CYP4F3, CYP4F11, CYP4F12. Compared to commonly used immunodetection methods, mass spectrometry overcomes limitations such as low antibody specificity and offers high multiplexing possibilities. Furthermore, CYP phosphorylation, which may affect various biochemical and enzymatic properties of these enzymes, is still poorly analyzed, especially in human tissues. Using titanium dioxide resin combined with tandem mass spectrometry for phosphopeptide enrichment and sequencing, we discovered eight human P450 phosphorylation sites, seven of which were novel. The data from surgical human liver samples establish that the isoforms CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C8, CYP2D6, CYP3A4, CYP3A7, and CYP8B1 are phosphorylated in vivo. These results will aid in further investigation of the functional significance of protein phosphorylation for this important group of enzymes.
Collapse
Affiliation(s)
- Gorden Redlich
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr. 150, ZKF, D-44801 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oesch-Bartlomowicz B, Oesch F. Phosphorylation of xenobiotic-metabolizing cytochromes P450. Anal Bioanal Chem 2008; 392:1085-92. [PMID: 18704375 DOI: 10.1007/s00216-008-2315-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/30/2022]
Abstract
The regulation of cytochromes P450 (CYPs) by induction mediated by xenobiotics is well known. Our team has discovered an additional important regulation of xenobiotic-metabolizing CYPs by phosphorylation. Individual CYPs are phosphorylated by different protein kinases, leading to CYP isoenzyme-selective changes in the metabolism of individual substrates and consequent profound changes in the control of mutagenic and cytotoxic metabolites. Some CYPs are phosphorylated by protein kinase C and some by the cyclic adenosine monophosphate (cAMP) dependent protein kinase A. We found that cAMP not only leads to drastic changes in the activity of individual CYPs, but also drastic changes in the nuclear localization of the CYP-related transcription factor Ah receptor (AHR). The consequences are very different from those of AHR nuclear translocation mediated by its classic ligands (such as dioxin and many polycyclic aromatic hydrocarbons) and may represent the long-sought physiological function of the AHR. The disturbance of this physiological function of AHR by extremely persistent high-affinity xenobiotic ligands such as dioxin may represent the most important contributing factor for their potent toxicity.
Collapse
|
12
|
Effects of coffee and its chemopreventive components kahweol and cafestol on cytochrome P450 and sulfotransferase in rat liver. Food Chem Toxicol 2007; 46:1230-8. [PMID: 17983700 DOI: 10.1016/j.fct.2007.09.094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/05/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Coffee drinking appears to reduce cancer risk in liver and colon. Such chemoprevention may be caused by the diterpenes kahweol and cafestol (K/C) contained in unfiltered beverage. In animals, K/C treatment inhibited the mutagenicity/tumorigenicity of several carcinogens, likely explicable by beneficial modifications of xenobiotic metabolism, particularly by stimulation of carcinogen-detoxifying phase II mechanisms. In the present study, we investigated the influence of K/C on potentially carcinogen-activating hepatic cytochrome P450 (CYP450) and sulfotransferase (SULT). Male F344 rats received 0.2% K/C (1:1) in the diet for 10 days or unfiltered and/or filtered coffee as drinking fluid. Consequently, K/C decreased the metabolism of four resorufin derivatives representing CYP1A1, CYP1A2, CYP2B1, and CYP2B2 activities by approximately 50%. For CYP1A2, inhibition was confirmed at the mRNA level, accompanied by decreased CYP3A9. In contrast to K/C, coffee increased the metabolism of the resorufin derivatives up to 7-fold which was only marginally influenced by filtering. CYP2E1 activity and mRNA remained unchanged by K/C and coffee. K/C but not coffee decreased SULT by approximately 25%. In summary, K/C inhibited CYP450s by tendency but not universally. Inhibition of CYP450 and SULT may contribute to chemoprevention with K/C but involvement in the protection of coffee drinkers is unlikely. The data confirm that the effects of complex mixtures may deviate from those of their putatively active components.
Collapse
|
13
|
Sunder‐Plassmann R. Cytochrome P450: Another Player in the Myocardial Infarction Game? Adv Clin Chem 2007. [DOI: 10.1016/s0065-2423(06)43008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Fleming I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat 2007; 82:60-7. [PMID: 17164133 DOI: 10.1016/j.prostaglandins.2006.05.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/05/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are generated from arachidonic acid by cytochrome P450 (CYP) epoxygenases the expression of which is determined by hemodynamic and pharmacological stimuli as well as by hypoxia. The activation of CYP epoxygenases in endothelial cells is an important step in the vasodilatation that has been attributed to the endothelium-derived hyperpolarizing factor. However, in addition to regulating vascular tone EETs modulate several signaling cascades and affect cell proliferation, cell migration and angiogenesis. These include the epidermal growth factor receptor, tyrosine kinases and phosphatases, mitogen-activated protein kinases, protein kinase A, cyclooxygenase-2 and several transcription factors. To-date however, the importance of EETs in vascular homeostasis has been largely underestimated because of the labile nature of the EET-forming enzymes in cell culture. This also means that the contribution of CYP-derived products in the vast majority of the experimental models based on cell culture systems to address topics related to vascular signaling/homeostasis and angiogenesis has been overlooked.
Collapse
Affiliation(s)
- Ingrid Fleming
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Michaelis UR, Fleming I. From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: Epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol Ther 2005; 111:584-95. [PMID: 16380164 DOI: 10.1016/j.pharmthera.2005.11.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 12/01/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are generated from arachidonic acid by cytochrome P450 (CYP) epoxygenases. The expression of CYP epoxygenases in endothelial cells is determined by a number of physical (fluid shear stress and cyclic stretch) and pharmacological stimuli as well as by hypoxia. The activation of CYP epoxygenases in endothelial cells is an important step in the nitric oxide and prostacyclin (PGI2)-independent vasodilatation of several vascular beds and EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs). However, in addition to regulating vascular tone, EETs modulate several signaling cascades and affect cell proliferation, cell migration, and angiogenesis. Signaling molecules modulated by EETs include tyrosine kinases and phosphatases, mitogen-activated protein kinases, protein kinase A (PKA), cyclooxygenase (COX)-2, and several transcription factors. This review summarizes the role of CYP-derived EETs in cell signaling and focuses particularly on their role as intracellular amplifiers of endothelial cell hyperpolarization as well as in cell proliferation and angiogenesis. The angiogenic properties of CYP epoxygenases and CYP-derived EETs implicate that these enzymes may well be accessible targets for anti-angiogenic as well as angiogenic therapies.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
16
|
Oesch-Bartlomowicz B, Oesch F. Phosphorylation of cytochromes P450: First discovery of a posttranslational modification of a drug-metabolizing enzyme. Biochem Biophys Res Commun 2005; 338:446-9. [PMID: 16137648 DOI: 10.1016/j.bbrc.2005.08.092] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Cytochromes P450 (CYP) are important components of xenobiotic-metabolizing monooxygenases (CYP-dependent monooxygenases). Their regulation by induction, most commonly by transcriptional activation, mediated by xenobiotics, normally substrates of the corresponding CYP, is well known and has been widely studied. Our team has discovered an additional important regulation of xenobiotic-metabolizing CYPs pertaining to posttranslational modification by phosphorylation. Individual CYPs are phosphorylated by different protein kinases, leading to CYP isoenzyme-selective changes in the metabolism of individual substrates and consequent drastic changes in the control of genotoxic metabolites. Best studied are the CYP phosphorylations by the cAMP-dependent protein kinase A. Most recently, we discovered that cAMP not only leads to drastic changes in the activity of individual CYPs, but also to drastic changes in the nuclear localization of the CYP-related transcription factor Ah receptor (AHR). The consequences are very different from those of AHR nuclear translocation mediated by the classical ligands (enzyme inducers such as dioxin) and are likely to represent the long-sought physiological function of the AHR, its persistent disturbance by long-lived ligands such as dioxin may well be the reason for its high toxicity.
Collapse
Affiliation(s)
- B Oesch-Bartlomowicz
- Institute of Toxicology, University of Mainz, Obere Zahlbacherstr. 67, D-55131 Mainz, Germany.
| | | |
Collapse
|
17
|
Gomes-Carneiro MR, Dias DMM, Paumgartten FJR. Study on the mutagenicity and antimutagenicity of beta-ionone in the Salmonella/microsome assay. Food Chem Toxicol 2005; 44:522-7. [PMID: 16223554 DOI: 10.1016/j.fct.2005.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/19/2005] [Accepted: 08/29/2005] [Indexed: 11/29/2022]
Abstract
beta-Ionone (BIO) is a degraded (C(13)) sesquiterpenoid compound found in a variety of edible and aromatic plants. BIO and other ionone derivatives have been used in fragrance products and as flavoring food additives. In this study we investigated the mutagenic and antimutagenic activities of BIO using the Salmonella/microsome assay. Mutagenicity was evaluated by two tests with Salmonella typhimurium strains TA100, TA98, TA97a and TA1535, without and with addition of S9 mixture. A first assay was performed by the plate incorporation procedure and a confirmation test by the pre-incubation method. In either test, no increase in the number of his(+) revertant colonies over the negative (solvent) control values was noted with any of the four tester strains thereby indicating that BIO was not genotoxic in the Salmonella assay. Antimutagenic activity was investigated by testing (by the plate incorporation method) different non-toxic doses of BIO against one or more non-toxic doses of direct-acting (sodium azide: SA, 4-nitroquinoline-N-oxide: 4-NQNO, 2-nitrofluorene: 2-NF and nitro-o-phenylenediamine: NPD) as well as indirect-acting (cyclophosphamide: CP, benzo[a]pyrene: B[a]P, aflatoxin B1: AFB1, 2-aminoanthracene: 2-AA, and 2-aminofluorene: 2-AF) mutagens. BIO did not alter the effects of any direct-acting mutagen or B[a]P and 2-AF. Mutagenic effects of AFB1 and CP, however, were markedly and dose-dependently antagonized by BIO. It has been reported that, in the rat liver, activation of B[a]P and 2-AF depend on CYP1A1 activity, and that CYP2B subfamily is involved in the metabolic activation of CP and AFB1. It has also been described that BIO is a potent inhibitor of CYP2B1/2 and a weaker inhibitor of CYP1A1. Therefore, antagonism of CP-and AFB1-induced mutagenic effects by BIO could have been mediated-at least in part-by the inhibition of CYP2B enzymes.
Collapse
Affiliation(s)
- M R Gomes-Carneiro
- Laboratory of Environmental Toxicology, Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040-361, Brazil
| | | | | |
Collapse
|
18
|
Pustylnyak VO, Gulyaeva LF, Lyakhovich VV. CAR expression and inducibility of CYP2B genes in liver of rats treated with PB-like inducers. Toxicology 2005; 216:147-53. [PMID: 16153763 DOI: 10.1016/j.tox.2005.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 11/20/2022]
Abstract
The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca(2+)/calmodulin-dependent kinase II (W7) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Vladimir O Pustylnyak
- Institute of Molecular Biology and Biophysics, Timakova str. 2, Novosibirsk 630117, Russia.
| | | | | |
Collapse
|
19
|
Aguiar M, Masse R, Gibbs BF. Regulation of cytochrome P450 by posttranslational modification. Drug Metab Rev 2005; 37:379-404. [PMID: 15931769 DOI: 10.1081/dmr-46136] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytochrome P450s are a family of enzymes represented in all kingdoms with expression in many species. Over 3,000 enzymes have been identified in nature. Humans express 57 putatively functional enzymes with a variety of critical physiological roles. They are involved in the metabolic oxidation, peroxidation, and reduction of many endogenous and exogenous compounds including xenobiotics, steroids, bile acids, fatty acids, eicosanoids, environmental pollutants, and carcinogens [Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O. (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12(1):1-51.] The development of numerous diseases and disorders including cancer and cardiovascular and endocrine dysfunction has been linked to P450s. Several levels of regulation, including transcription, translation, and posttranslational modification, participate in maintaining the proper function of P450s. Modifications including phosphorylation, glycosylation, nitration, and ubiquitination have been described for P450s. Their physiological significance includes modulation of enzyme activity, targeting to specific cellular compartments, and tagging for proteasomal degradation. Knowledge of P450 posttranslational regulation is derived from studies with relatively few enzymes. In many cases, there is only enough evidence to suggest the occurrence and a possible role for the modification. Thus, many P450 enzymes have not been fully characterized. With the introduction of current proteomics tools, we are primed to answer many important questions regarding regulation of P450 in response to a posttranslational modification. This review considers regulation of P450 in a context that describes the potential role and physiological significance of each modification.
Collapse
Affiliation(s)
- Mike Aguiar
- Applied R&D, MDS Pharma Services, St. Laurent (Montreal), Quebec, Canada
| | | | | |
Collapse
|
20
|
Gomes-Carneiro MR, Dias DMM, De-Oliveira ACAX, Paumgartten FJR. Evaluation of mutagenic and antimutagenic activities of α-bisabolol in the Salmonella/microsome assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 585:105-12. [PMID: 15936245 DOI: 10.1016/j.mrgentox.2005.04.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 04/18/2005] [Accepted: 04/22/2005] [Indexed: 11/28/2022]
Abstract
alpha-Bisabolol (BISA) is a sesquiterpene alcohol found in the oils of chamomile (Matricaria chamomilla) and other plants. BISA has been widely used in dermatological and cosmetic formulations. This study was undertaken to investigate the mutagenicity and antimutagenicity of BISA in the Salmonella/microsome assay. Mutagenicity of BISA was evaluated with TA100, TA98, TA97a and TA1535 Salmonella typhimurium strains, without and with addition of S9 mixture. No increase in the number of his+ revertant colonies over the negative (solvent) control values was observed with any of the four tester strains. In the antimutagenicity assays, BISA was tested up to the highest nontoxic dose (i.e. 50 and 150 microg/plate, with and without S9 mix, respectively) against direct-acting (sodium azide, SA; 4-nitroquinoline-N-oxide, 4-NQNO; 2-nitrofluorene, 2-NF; and nitro-o-phenylenediamine, NPD) as well as indirect-acting (cyclophosphamide, CP; benzo[a]pyrene, B[a]P; aflatoxin B1, AFB1; 2-aminoanthracene, 2-AA; and 2-aminofluorene, 2-AF) mutagens. BISA did not alter mutagenic activity of SA and of NPD, and showed only a weak inhibitory effect on the mutagenicity induced by 4-NQNO and 2-NF. The mutagenic effects of AFB1, CP, B[a]P, 2-AA and 2-AF, on the other hand, were all markedly and dose-dependently reduced by BISA. It was also found that BISA inhibited pentoxyresorufin-o-depentylase (PROD, IC50 2.76 microM) and ethoxyresorufin-o-deethylase (EROD, 33.67 microM), which are markers for cytochromes CYP2B1 and 1A1 in rat liver microsomes. Since CYP2B1 converts AFB1 and CP into mutagenic metabolites, and CYP1A1 activates B[a]P, 2-AA and 2-AF, results suggest that BISA-induced antimutagenicity could be mediated by an inhibitory effect on the metabolic activation of these promutagens.
Collapse
Affiliation(s)
- M R Gomes-Carneiro
- Laboratory of Environmental Toxicology, Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil 4036, Rio de Janeiro, RJ 21040-361, Brazi1
| | | | | | | |
Collapse
|
21
|
Pustylnyak VO, Zakharova LY, Mikhailova ON, Rice RH, Gulyaeva LF, Lyakhovich VV. In vivo effects of protein kinase and phosphatase inhibitors on CYP2B induction in rat liver. Toxicology 2005; 207:315-22. [PMID: 15596261 DOI: 10.1016/j.tox.2004.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/13/2004] [Accepted: 10/13/2004] [Indexed: 10/26/2022]
Abstract
Effects of inhibiting protein kinases and phosphatases on induction of CYP2B by triphenyldioxane (TPD) and phenobarbital (PB) were investigated. Male Wistar rats were treated with test inhibitors before TPD or PB administration. Inhibitors of phosphatidylinositol-3-kinase (Wortmannin) and protein kinase C (bisindolylmaleimide I) did not have appreciable effects on TPD- or PB-induced pentoxyresorufin O-dealkylase (PROD) activity specific for CYP2B, although bisindolylmaleimide I did give substantial induction alone. W-7, an inhibitor of Ca2+/calmodulin-dependent kinase II, produced a 6-fold increase in the TPD-induced PROD activity and did not lead to a significant increase in basal PROD activity. Treatment of rats with okadaic acid (OA), an inhibitor of protein phosphatases PP1 and PP2A, caused considerable decreases in PROD activity during the induction by TPD and PB (8- and 2.5-fold, respectively). Results of multiplex RT-PCR showed that the increase in enzymatic activity from W7 and OA treatment reflected at least in part increased mRNA levels. CYP2B mRNA level in the liver of rats treated with W-7 and TPD was 1.5 times higher than in the liver of TPD-treated rats. This effect was not observed for PB-induction. OA treatment caused a decrease of the CYP2B mRNA levels of 44% and 33% respectively, for TPD- and PB-induction. Thus, our results are consistent with the hypothesis that phosphorylation/dephosphorylation signaling pathways are involved in regulation of CYP2B induction in rat liver.
Collapse
Affiliation(s)
- Vladimir O Pustylnyak
- Institute of Molecular Biology and Biophysics, Timakova str. 2, Novosibirsk 630117, Russia.
| | | | | | | | | | | |
Collapse
|
22
|
Oesch-Bartlmowicz B, Oesch F. Modulation of mutagenicity by phosphorylation of mutagen-metabolizing enzymes. Arch Biochem Biophys 2004; 423:31-6. [PMID: 14989261 DOI: 10.1016/j.abb.2003.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this Minireview, we discuss our findings on phosphorylation of cytochromes P450 (CYP) and influence of this modification on metabolic toxification and/or detoxification of a variety of mutagens. We show that phosphorylation drastically interferes with the mutagenicity of several classes of compounds which are of high human relevance (cytostatic drugs of the cyclophosphamide type, aromatic amines/amides, and nitrosamines). We illustrate this by describing the consequences of the stimulation of protein kinase A (with the example of CYP2B1 and CYP2E1), stimulation of protein kinase C, and inhibition of protein phosphatases PP1 and PP2A (with the example of CYP1A1 and CYP1A2). We discuss a possible mechanism governing these phosphorylation events.
Collapse
|
23
|
Watts M, Pankhurst NW, King HR. Maintenance of Atlantic salmon (Salmo salar) at elevated temperature inhibits cytochrome P450 aromatase activity in isolated ovarian follicles. Gen Comp Endocrinol 2004; 135:381-90. [PMID: 14723890 DOI: 10.1016/j.ygcen.2003.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atlantic salmon (Salmo salar) broodstock were transferred from natural (12-16 degrees C) to controlled temperatures of 14, 18 or 22 degrees C for 3 months during vitellogenesis. Fertility and survival were significantly reduced in eggs from broodstock held at 22 degrees C relative to 14 or 18 degrees C. Endocrine mechanisms were disrupted after only one month at 22 degrees C, as evidenced by decreased plasma vitellogenin (Vtg) and increased plasma testosterone (T) levels and, at later stages, decreased levels of plasma 17beta-estradiol (E2). In vitro incubations of isolated ovarian follicles were carried out at monthly intervals, with follicles exposed to human chorionic gonadotropin, N-2-0-dibutyryladenosine 3,5-cyclic monophosphate, and the gonadal steroid precursors 17-hydroxyprogesterone, androstenedione, and T. After one month of exposure to controlled temperature, T synthesis was generally enhanced in response to all treatments at all temperatures, but E2 synthesis was inhibited at 22 degrees C, suggesting temperature impairment of cytochrome P450 aromatase (P450arom) synthesis or activity. The effect became less marked as follicles matured suggesting that temperature sensitivity is stage dependent. The results of this study suggest that the inhibitory effects of elevated temperature on E2 and Vtg synthesis, and subsequent egg development found in the present and earlier studies, arise at least partly, from temperature modulation of P450arom.
Collapse
Affiliation(s)
- Marianne Watts
- School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia.
| | | | | |
Collapse
|
24
|
Abstract
Xenobiotic metabolizing cytochromes P450 (CYP) were shown to be phosphorylated in vitro (using purified protein kinases together with purified CYPs), in intact cells (in V79 cells after transfection of cDNAs coding for individual CYPs, in diagnostic mutants, in hepatocytes), and in whole organisms (rats). CYP phosphorylation is highly isoenzyme selective in that only some CYPs are phosphorylated. Protein kinase A (PKA) was identified as a major catalyst for the phosphorylation of CYPs. The PKA recognition motif Arg-Arg-X-Ser is present in several members of the CYP2 family, but is used by only some of them, most notably by CYP2B1/2B2 and CYP2E1. For CYP2B1 it was shown that a substantial portion but not the entire pool of CYP2B1 molecules is phosphorylated and that the phosphorylated portion is catalytically fully inactive. Phosphorylation of CYPs is a very fast process (visible at the earliest time point experimentally investigated after introduction of phosphorylation-supporting measures, which was 2.5min) and the phosphorylated protein is immediately inactive (i.e., the time curves of phosphorylation and inactivation are superimposable). Thus in contrast to the slower process controlling CYP activities by enzyme induction, CYP phosphorylation controls CYP function like a switch. The physical entity of the switch was identified by site-directed mutation as the phosphoryl acceptor Ser in the PKA recognition motif, which is Ser(138) in CYPs 2B (rat CYP2B1 and rabbit CYP2B4) and its homologous Ser(139) in CYP2E1. The function of this switch was demonstrated for the drastic changes in the control of the genotoxic metabolites of mutagenic carcinogens as well as for the control of effectiveness versus unwanted toxicity of cytostatic cancer drugs.
Collapse
|
25
|
Oesch-Bartlomowicz B, Oesch F. Fast regulation of cytochrome P450 activities by phosphorylation and consequences for drug metabolism and toxicity. Biol Chem 2002; 383:1587-92. [PMID: 12452435 DOI: 10.1515/bc.2002.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In contrast to the well-known regulation of cytochrome P450 (CYP) activity by enzyme induction, which represents a process with slow onset and slow offset, more recent studies revealed phosphorylation as a fast (within observation instantaneous) and isoenzyme-selective regulation. The phosphorylated enzyme (investigated isozyme: CYP2B1) was fully inactive. The phosphorylation is mediated by PKA and hence under control of hormones and drugs that alter cellular cAMP levels. The consequences for the metabolic control of toxic species derived from drugs and environmental carcinogens are discussed. This information will help to improve therapy with drugs metabolized by CYPs which are phosphorylated by PKA, especially if these drugs possess a narrow window between required effectiveness and unacceptable toxicity.
Collapse
|