1
|
Prado Y, Aravena D, Gatica S, Llancalahuen FM, Aravena C, Gutiérrez-Vera C, Carreño LJ, Cabello-Verrugio C, Simon F. From genes to systems: The role of food supplementation in the regulation of sepsis-induced inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166909. [PMID: 37805092 DOI: 10.1016/j.bbadis.2023.166909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Systemic inflammation includes a widespread immune response to a harmful stimulus that results in extensive systemic damage. One common example of systemic inflammation is sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Under the pro-inflammatory environment of sepsis, oxidative stress contributes to tissue damage due to dysfunctional microcirculation that progressively causes the failure of multiple organs that ultimately triggers death. To address the underlying inflammatory condition in critically ill patients, progress has been made to assess the beneficial effects of dietary supplements, which include polyphenols, amino acids, fatty acids, vitamins, and minerals that are recognized for their immuno-modulating, anticoagulating, and analgesic properties. Therefore, we aimed to review and discuss the contribution of food-derived supplementation in the regulation of inflammation from gene expression to physiological responses and summarize the precedented potential of current therapeutic approaches during systemic inflammation.
Collapse
Affiliation(s)
- Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
2
|
Li X, Holtrop T, Jansen FAC, Olson B, Levasseur P, Zhu X, Poland M, Schalwijk W, Witkamp RF, Marks DL, van Norren K. Lipopolysaccharide-induced hypothalamic inflammation in cancer cachexia-anorexia is amplified by tumour-derived prostaglandin E2. J Cachexia Sarcopenia Muscle 2022; 13:3014-3027. [PMID: 36303458 PMCID: PMC9745464 DOI: 10.1002/jcsm.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cachexia-anorexia syndrome is a complex metabolic condition characterized by skeletal muscle wasting, reduced food intake and prominent involvement of systemic and central inflammation. Here, the gut barrier function was investigated in pancreatic cancer-induced cachexia mouse models by relating intestinal permeability to the degree of cachexia. We further investigated the involvement of the gut-brain axis and the crosstalk between tumour, gut and hypothalamus in vitro. METHODS Two distinct mouse models of pancreatic cancer cachexia (KPC and 4662) were used. Intestinal inflammation and permeability were assessed through fluorescein isothiocyanate dextran (FITC-dextran) and lipopolysaccharide (LPS), and hypothalamic and systemic inflammation through mRNA expression and plasma cytokines, respectively. To simulate the tumour-gut-brain crosstalk, hypothalamic (HypoE-N46) cells were incubated with cachexia-inducing tumour secretomes and LPS. A synthetic mimic of C26 secretome was produced based on its secreted inflammatory mediators. Each component of the mimic was systematically omitted to narrow down the key mediator(s) with an amplifying inflammation. To substantiate its contribution, cyclooxygenase-2 (COX-2) inhibitor was used. RESULTS In vivo experiments showed FITC-dextran was enhanced in the KPC group (362.3 vs. sham 111.4 ng/mL, P < 0.001). LPS was increased to 140.9 ng/mL in the KPC group, compared with sham and 4662 groups (115.8 and 115.8 ng/mL, P < 0.05). Hypothalamic inflammatory gene expression of Ccl2 was up-regulated in the KPC group (6.3 vs. sham 1, P < 0.0001, 4662 1.3, P < 0.001), which significantly correlated with LPS concentration (r = 0.4948, P = 0.0226). These data suggest that intestinal permeability is positively related to the cachexic degree. Prostaglandin E2 (PGE2) was confirmed to be present in the plasma and PGE2 concentration (log10) in the KPC group was much higher than in 4662 group (1.85 and 0.56 ng/mL, P < 0.001), indicating a role for PGE2 in pancreatic cancer-induced cachexia. Parallel to in vivo findings, in vitro experiments revealed that the cachexia-inducing tumour secretomes (C26, LLC, KPC and 4662) amplified LPS-induced hypothalamic IL-6 secretion (419%, 321%, 294%, 160%). COX-2 inhibitor to the tumour cells reduced PGE2 content (from 105 to 102 pg/mL) in the secretomes and eliminated the amplified hypothalamic IL-6 production. Moreover, results could be reproduced by addition of PGE2 alone, indicating that the increased hypothalamic inflammation is directly related to the PGE2 from tumour. CONCLUSIONS PGE2 secreted by the tumour may play a role in amplifying the effects of bacteria-derived LPS on the inflammatory hypothalamic response. The cachexia-inducing potential of tumour mice models parallels the loss of intestinal barrier function. Tumour-derived PGE2 might play a key role in cancer-related cachexia-anorexia syndrome via tumour-gut-brain crosstalk.
Collapse
Affiliation(s)
- Xiaolin Li
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Tosca Holtrop
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Fleur A C Jansen
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Pete Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mieke Poland
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Winni Schalwijk
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Klaske van Norren
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
3
|
The burning furnace: Alteration in lipid metabolism in cancer-associated cachexia. Mol Cell Biochem 2022; 477:1709-1723. [DOI: 10.1007/s11010-022-04398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
4
|
Thibaut MM, Sboarina M, Roumain M, Pötgens SA, Neyrinck AM, Destrée F, Gillard J, Leclercq IA, Dachy G, Demoulin JB, Tailleux A, Lestavel S, Rastelli M, Everard A, Cani PD, Porporato PE, Loumaye A, Thissen JP, Muccioli GG, Delzenne NM, Bindels LB. Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle 2021; 12:70-90. [PMID: 33350058 PMCID: PMC7890151 DOI: 10.1002/jcsm.12652] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 μM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.
Collapse
Affiliation(s)
- Morgane M Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martina Sboarina
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Sarah A Pötgens
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Florence Destrée
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Guillaume Dachy
- Experimental Medicine Unit, de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Experimental Medicine Unit, de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sophie Lestavel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
LPS immune challenge reduces arcuate nucleus TSHR and CART mRNA and elevates plasma CART peptides. BMC Neurosci 2019; 20:59. [PMID: 31829131 PMCID: PMC6907259 DOI: 10.1186/s12868-019-0539-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023] Open
Abstract
Background The aim was to examine the impact of lipopolysaccharide-induced systemic inflammation on expression of mRNA for cocaine- and amphetamine-regulated transcript (CART) and the thyrotropin receptor (TSHR) and its ligands in CNS areas of relevance for feeding controls and metabolism. Lipopolysaccharide effects on plasma levels of TSH and CART peptides were also examined. Methods Lipopolysaccharide (150–200 μg/mouse) was injected in C57BL/6J mice and tissue and plasma samples taken after 24 h. To establish if plasma increase in CART peptide levels were prostanoid dependent, indomethacin was given via the drinking water beginning 48 h prior to LPS. We evaluated mRNA expression for CART, TSHR, TSHβ, and thyrostimulin in brain and pituitary extracts. Plasma levels of TSH, CARTp, and serum amyloid P component were analyzed by ELISA. Results Lipopolysaccharide suppressed TSHR mRNA expression in the arcuate nucleus and the pituitary. CART mRNA expression was reduced in the arcuate nucleus but elevated in the pituitary of mice treated with Lipopolysaccharide, whereas plasma TSH remained unchanged. Plasma CART peptide concentration increased after LPS treatment in a prostanoid-independent manner, and CART peptide levels correlated positively to degree of inflammation. Conclusions Our findings suggest that central and peripheral CART is affected by acute inflammation. Considering the role of the arcuate nucleus in feeding controls, our data highlight TSHR and CART as putative neuroendocrine signaling components that respond to inflammation, perhaps to maintain weight and metabolic homeostasis during states of disease.
Collapse
|
6
|
Tsuji T, Yamaguchi K, Kikuchi R, Nakamura H, Misaka R, Nagai A, Aoshiba K. Improvement of metabolic disorders by an EP 2 receptor agonist via restoration of the subcutaneous adipose tissue in pulmonary emphysema. Prostaglandins Other Lipid Mediat 2017; 130:16-22. [PMID: 28263859 DOI: 10.1016/j.prostaglandins.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is often associated with co-morbidities. Metabolic disorders like hyperlipidemia and diabetes occur also in underweight COPD patients, although the mechanism is uncertain. Subcutaneous adipose tissue (SAT) plays an important role in energy homeostasis, since restricted capacity to increase fat cell number with increase in fat cell size occurring instead, is associated with lipotoxicity and metabolic disorders. The aim of this study is to show the protective role of SAT for the metabolic disorders in pulmonary emphysema of a murine model. We found ectopic fat accumulation and impaired glucose homeostasis with wasting of SAT in a murine model of elastase-induced pulmonary emphysema (EIE mice) reared on a high-fat diet. ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, improved angiogenesis and subsequently adipogenesis, and finally improved ectopic fat accumulation and glucose homeostasis with restoration of the capacity for storage of surplus energy in SAT. These results suggest that metabolic disorders like hyperlipidemia and diabetes occured in underweight COPD is partially due to the less capacity for storage of surplus energy in SAT, though the precise mechanism is uncertained. Our data pave the way for the development of therapeutic interventions for metabolic disorders in emphysema patients, e.g., use of pro-angiogenic agents targeting the capacity for storage of surplus energy in the subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Takao Tsuji
- Institute of Geriatrics, Tokyo Women's Medical University, 2-15-1 Shibuya, Shibuya, Tokyo 150-0002, Japan; Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Kazuhiro Yamaguchi
- Division of Comprehensive Sleep Medicine, Tokyo Women's Medical University, 8-1,Kawada-cho, Sinjuku, Tokyo 162-8666, Japan.
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Ryoichi Misaka
- Institute of Geriatrics, Tokyo Women's Medical University, 2-15-1 Shibuya, Shibuya, Tokyo 150-0002, Japan.
| | - Atsushi Nagai
- Reserch Institute for Respiratory Diseases, Shin-yurigaoka GeneralHospital, 255 Asou, Kawasaki, Kanagawa 215-0026, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| |
Collapse
|
7
|
Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea. Sci Rep 2017; 7:44693. [PMID: 28300223 PMCID: PMC5353645 DOI: 10.1038/srep44693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2.
Collapse
|
8
|
Jiang F, Zhang Z, Zhang Y, Wu J, Yu L, Liu S. L-carnitine ameliorates the liver inflammatory response by regulating carnitine palmitoyltransferase I-dependent PPARγ signaling. Mol Med Rep 2015; 13:1320-8. [PMID: 26647854 DOI: 10.3892/mmr.2015.4639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/28/2015] [Indexed: 11/05/2022] Open
Abstract
The liver is crucial for systemic inflammation in cancer cachexia. Previous studies have shown that L-carnitine, as the key regulator of lipid metabolism, exerts an anti-inflammatory effect in several diseases, and ameliorates the symptoms of cachexia by regulating the expression and activity of carnitine palmitoyltransferase (CPT) in the liver. However, the effect of L-carnitine on the liver inflammatory response in cancer cachexia remains to be elucidated. The aim of the present study was to examine the role of the CPT I-dependent peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in the ameliorative effect of L-carnitine on the liver inflammatory response. This was investigated in a colon-26 tumor-bearing mouse model with cancer cachexia. Liver sections were immunohistochemically analyzed, and mRNA and protein levels of representative molecules of the CPT-associated PPARγ signaling pathway were assessed using PCR and western blot analysis, respectively. The results showed that oral administration of L-carnitine in these mice improved hepatocyte necrosis, liver cell cord derangement and hydropic or fatty degeneration of the liver cells in the liver tissues, decreased serum levels of malondialdehyde, increased serum levels of superoxide dismutase and glutathione peroxidase, and elevated the expression levels of PPARα and PPARγ at the mRNA and protein levels. These changes induced by L-carnitine were reversed by treatment with etomoxir, an inhibitor of CPT I. The inhibitory effect of L-carnitine on the increased expression level of nuclear factor (NF)-κB p65 in the peripheral blood mononuclear cells was markedly weakened by GW9662, a selective inhibitor of PPAR-γ. GW9662 also eliminated the inhibitory effect of L-carnitine on the expression of cyclooxygenase-2 (Cox-2) in the liver, and on the serum expression levels of pro-inflammatory prostaglandin E2, C-reactive protein, tumor necrosis factor-α and interleukin-6 in the cancer cachexia model mice. This reversing effect of GW9662 on L-carnitine was restored by pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB signaling. Taken together, these results demonstrated that L-carnitine ameliorated liver inflammation and serum pro-inflammatory markers in cancer cachexia through regulating CPT I-dependent PPARγ signaling, including the downstream molecules of NF-κB p65 and Cox-2.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Zongqi Zhang
- Department of Cardiology, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Yi Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianping Wu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Li Yu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Su Liu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| |
Collapse
|
9
|
Iresjö BM, Wang W, Nilsberth C, Andersson M, Lönnroth C, Smedh U. Food intake, tumor growth, and weight loss in EP2 receptor subtype knockout mice bearing PGE2-producing tumors. Physiol Rep 2015. [PMID: 26197930 PMCID: PMC4552524 DOI: 10.14814/phy2.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies in our laboratory have demonstrated that prostaglandin (PG) E2 is involved in anorexia/cachexia development in MCG 101 tumor-bearing mice. In the present study, we investigate the role of PGE receptor subtype EP2 in the development of anorexia after MCG 101 implantation in wild-type (EP2+/+) or EP2-receptor knockout (EP2−/−) mice. Our results showed that host absence of EP2 receptors attenuated tumor growth and development of anorexia in tumor-bearing EP2 knockout mice compared to tumor-bearing wild-type animals. Microarray profiling of the hypothalamus revealed a relative twofold change in expression of around 35 genes including mRNA transcripts coding for Phospholipase A2 and Prostaglandin D2 synthase (Ptgds) in EP2 receptor knockout mice compared to wild-type mice. Prostaglandin D2 synthase levels were increased significantly in EP2 receptor knockouts, suggesting that improved food intake may depend on altered balance of prostaglandin production in hypothalamus since PGE2 and PGD2 display opposing effects in feeding control.
Collapse
Affiliation(s)
- Britt-Marie Iresjö
- Surgical Metabolic Research Laboratory, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wenhua Wang
- Surgical Metabolic Research Laboratory, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Camilla Nilsberth
- Department of Geriatric Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marianne Andersson
- Surgical Metabolic Research Laboratory, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Lönnroth
- Surgical Metabolic Research Laboratory, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Smedh
- Surgical Metabolic Research Laboratory, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely consumed by athletes worldwide, despite growing evidence for a negative influence on the adaptation of skeletal muscle to exercise, at least in young healthy individuals. This review focuses on the potential of NSAIDs to alter the activity of satellite cells, the muscle stem cell responsible for repair and maintenance of skeletal muscle. The signaling pathways that are potentially modified by NSAID exposure are also considered. Growth factors as well as inflammatory cells and connective tissue appear to be key factors in the response of muscle under conditions where cyclooxygenase and prostaglandin activity are blocked through NSAID ingestion or infusion. Discrepancies in the literature regarding the response of young and old individuals are addressed, where it appears that the elderly may benefit from NSAID ingestion, although this clearly requires further study. The long-term implications for the muscle of the apparent inhibitory effect of NSAIDs on satellite cells in younger individuals are not clear, and it is possible these may first become apparent with chronic use in athletes training at a high level or with advancing age. Reports of the potential for NSAIDs to alter prostaglandin and growth factor signaling provide a basis for further study of the mechanism of NSAID action on satellite cells.
Collapse
Affiliation(s)
- Abigail L. Mackey
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Centre for Healthy Ageing, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ruud J, Nilsson A, Engström Ruud L, Wang W, Nilsberth C, Iresjö BM, Lundholm K, Engblom D, Blomqvist A. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1. Brain Behav Immun 2013; 29:124-135. [PMID: 23305935 DOI: 10.1016/j.bbi.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/17/2012] [Accepted: 12/30/2012] [Indexed: 11/29/2022] Open
Abstract
It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling.
Collapse
Affiliation(s)
- Johan Ruud
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Anna Nilsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Linda Engström Ruud
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Wenhua Wang
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Camilla Nilsberth
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Britt-Marie Iresjö
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Kent Lundholm
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - David Engblom
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Anders Blomqvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| |
Collapse
|
12
|
Mantovani G, Macciò A, Madeddu C, Serpe R, Antoni G, Massa E, Dessì M, Panzone F. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med (Berl) 2009; 88:85-92. [PMID: 19802504 DOI: 10.1007/s00109-009-0547-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 12/29/2022]
Abstract
Chronic inflammation is one of the main features of cancer cachexia. Experimental and clinical studies showed that cyclooxygenase-2 inhibitors, such as celecoxib, may be beneficial in counteracting major symptoms of this devastating syndrome. We carried out a prospective phase II clinical trial to test the safety and effectiveness of an intervention with the COX-2 inhibitor celecoxib (300 mg/day for 4 months) on key variables of cachexia (lean body mass, resting energy expenditure, serum levels of proinflammatory cytokines, and fatigue) in patients with advanced cancer at different sites. A sample of 24 patients was enrolled from January to December 2008 and all were deemed assessable. A significant increase of lean body mass and a significant decrease of TNF-alpha were observed. Moreover, an improvement of grip strength, quality of life, performance status, and Glasgow prognostic score was shown. There were no grade 3/4 toxicities. Patient compliance was very good; no patient had to reduce the celecoxib dosage nor interrupt treatment. Our results showed that the COX-2 selective inhibitor celecoxib is an effective single agent for the treatment of cancer cachexia. Although the treatment of cancer cachexia, a multifactorial syndrome, is more likely to yield success with a multitargeted approach; in the present study, we were able to show that a treatment, such as celecoxib, addressing a single target, albeit very important as chronic inflammation, could have positive effects. Therefore, phase III clinical trials are warranted to test the efficacy and safety of celecoxib.
Collapse
Affiliation(s)
- Giovanni Mantovani
- Department of Medical Oncology, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cyclooxygenase-2 inhibitors and antioxidants in the treatment of cachexia. Curr Opin Support Palliat Care 2009; 2:275-81. [PMID: 19069312 DOI: 10.1097/spc.0b013e32830f47e4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Cancer cachexia is increasingly becoming a critical component in the comprehensive approach to cancer patients influencing morbidity, mortality and quality of life. Therefore its pathophysiology and the main contributing factors have been investigated with the aim of developing effective therapies. Reported findings highlight the role of chronic inflammation and oxidative stress in the onset of cancer cachexia. RECENT FINDINGS Chronic inflammation, one of the main features of cancer cachexia, triggers the overproduction of proinflammatory cytokines playing a major role in the pathogenesis of systemic symptoms of cachexia; therefore, antiinflammatory drugs such as cyclooxygenase-2 inhibitors could break the 'vicious circle' leading to the onset and worsening of this devastating syndrome. Likewise, oxidative stress, almost always accompanying cancer cachexia, may be counteracted by effective antioxidant treatments. The most relevant recent clinical approaches addressing these targets are reported. SUMMARY Fairly advanced clinical data on efficacy of cyclooxygenase-2 inhibitors and antioxidants in advanced cancer patients are promising, but the best way to administer and combine them with other agents, the optimal dose and timing remain uncertain. However, because cachexia is a multifactorial syndrome, therapeutic approaches targeting a single contributing factor may be inadequate. A rational treatment should thus be multitargeted addressing all key contributing factors.
Collapse
|
14
|
Pecchi E, Dallaporta M, Jean A, Thirion S, Troadec JD. Prostaglandins and sickness behavior: old story, new insights. Physiol Behav 2009; 97:279-92. [PMID: 19275907 DOI: 10.1016/j.physbeh.2009.02.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 12/31/2022]
Abstract
Previous evidence has shown that prostaglandins play a key role in the development of sickness behavior observed during inflammatory states. In particular, prostaglandin E2 (PGE2) is produced in the brain by a variety of inflammatory signals such as endotoxins or cytokines. Its injection has been also shown to induce symptoms of sickness behavior. The role of cyclooxygenase enzymes (COX), the rate-limiting enzymes converting arachidonic acid into prostaglandins, in sickness behavior has been extensively studied, and it has been demonstrated that strategies aiming at inhibiting these enzymes limit anorexia, body weight loss and fever in animals with inflammatory diseases. However, inhibiting COX activity may lead to negative gastric or cardiovascular effects, since COX enzymes play a role in the synthesis of others prostanoids with various and sometimes contrasting properties. Recently, prostaglandin E synthases (PGES), which specifically catalyze the final step of PGE2 biosynthesis, were characterized. Among these enzymes, the microsomal prostaglandin E synthase-1 (mPGES-1) was of a particular interest since it was shown to be up-regulated by inflammatory signals in a variety of cell types. Moreover, mPGES-1 was shown to be crucial for correct immune-to-brain communication and induction of fever and anorexia by pro-inflammatory agents. This review takes stock of previous knowledge and recent advances in understanding the role of prostaglandins and of their specific synthesizing enzymes in the molecular mechanisms underlying sickness behavior. The review concludes with a short summary of key questions that remain to be addressed and points out therapeutic developments in this research field.
Collapse
Affiliation(s)
- Emilie Pecchi
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, UMR 6231 CNRS, USC INRA 2027, Université Paul Cézanne et Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
15
|
Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, Rossi Fanelli F, Seelaender M. Neural control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol Metab 2008; 295:E1000-8. [PMID: 18713954 DOI: 10.1152/ajpendo.90252.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anorexia-cachexia syndrome is a debilitating clinical condition characterizing the course of chronic diseases, which heavily impacts on patients' morbidity and quality of life, ultimately accelerating death. The pathogenesis is multifactorial and reflects the complexity and redundancy of the mechanisms controlling energy homeostasis under physiological conditions. Accumulating evidence indicates that, during disease, disturbances of the hypothalamic pathways controlling energy homeostasis occur, leading to profound metabolic changes in peripheral tissues. In particular, the hypothalamic melanocortin system does not respond appropriately to peripheral inputs, and its activity is diverted largely toward the promotion of catabolic stimuli (i.e., reduced energy intake, increased energy expenditure, possibly increased muscle proteolysis, and adipose tissue loss). Hypothalamic proinflammatory cytokines and serotonin, among other factors, are key in triggering hypothalamic resistance. These catabolic effects represent the central response to peripheral challenges (i.e., growing tumor, renal, cardiac failure, disrupted hepatic metabolism) that are likely sensed by the brain through the vagus nerve. Also, disease-induced changes in fatty acid oxidation within hypothalamic neurons may contribute to the dysfunction of the hypothalamic melanocortin system. Ultimately, sympathetic outflow mediates, at least in part, the metabolic changes in peripheral tissues. Other factors are likely involved in the pathogenesis of the anorexia-cachexia syndrome, and their role is currently being elucidated. However, available evidence shows that the constellation of symptoms characterizing this syndrome should be considered, at least in part, as different phenotypes of common neurochemical/metabolic alterations in the presence of a chronic inflammatory state.
Collapse
Affiliation(s)
- Alessandro Laviano
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nunes EA, Kuczera D, Brito GAP, Bonatto SJ, Yamazaki RK, Tanhoffer RA, Mund RC, Kryczyk M, Fernandes LC. β-Hydroxy-β-methylbutyrate supplementation reduces tumor growth and tumor cell proliferation ex vivo and prevents cachexia in Walker 256 tumor-bearing rats by modifying nuclear factor-κB expression. Nutr Res 2008; 28:487-93. [DOI: 10.1016/j.nutres.2008.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 04/04/2008] [Accepted: 04/20/2008] [Indexed: 12/28/2022]
|
17
|
Cerchietti LCA, Navigante AH, Castro MA. Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutr Cancer 2008; 59:14-20. [PMID: 17927497 DOI: 10.1080/01635580701365068] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Under the common denomination of Systemic Immune-Metabolic Syndrome (SIMS), we grouped many symptoms that share a similar pathophysiologic background. SIMS is the result of the dysfunctional interaction of tumor cells, stroma cells, and the immune system, leading to the release of cytokines and other systemic mediators such as eicosanoids. SIMS includes systemic syndromes such as paraneoplastic hemopathies, hypercalcemia, coagulopathies, fatigue, weakness, cachexia, chronic nausea, anorexia, and early satiety among others. Eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil can help in the management of persistent chronic inflammatory states, but treatment's compliance is generally poor. Preferentially, Cox-2 inhibition can create a favorable pattern of cytokines by decreasing the production of certain eicosanoids, although their role in SIMS is unknown. The aim of this study was to test the hypothesis that by modulating systemic inflammation through an eicosanoid-targeted approach, some of the symptoms of the SIMS could be controlled. We exclusively evaluated 12 patients for compliance. Patients were assigned 1 of the 4 treatment groups (15-, 12-, 9-, or 6-g dose, fractionated every 8 h). For patients assigned to 15 and 12 doses, the overall compliance was very poor and unsatisfactory for patients receiving the 9-g dose. The maximum tolerable dose was calculated to be around 2 capsules tid (6 g of fish oil per day). A second cohort of 22 patients with advanced lung cancer and SIMS were randomly assigned to receive either fish oil, 2 g tid, plus placebo capsules bid (n = 12) or fish oil, 2 g tid, plus celecoxib 200 mg bid (n = 10). All patients in both groups received oral food supplementation. After 6 wk of treatment, patients receiving fish oil + placebo or fish oil + celecoxib showed significantly more appetite, less fatigue, and lower C-reactive protein (C-RP) values than their respective baselines values (P < 0.02 for all the comparisons). Additionally, patients in the fish oil + celecoxib group also improved their body weight and muscle strength compared to baseline values (P < 0.02 for all the comparisons). Comparing both groups, patients receiving fish oil + celecoxib showed significantly lower C-RP levels (P = 0.005, t-test), higher muscle strength (P = 0.002, t-test) and body weight (P = 0.05, t-test) than patients receiving fish oil + placebo. The addition of celecoxib improved the control of the acute phase protein response, total body weight, and muscle strength. Additionally, the consistent nutritional support used in our patients could have helped to maximize the pharmacological effects of fish oil and/or celecoxib. This study shows that by modulating the eicosanoid metabolism using a combination of n-3 fatty acids and cyclooxygenase-2 inhibitor, some of the signs and symptoms associated with a SIMS could be ameliorated.
Collapse
Affiliation(s)
- Leandro C A Cerchietti
- Translational Research Unit, Angel H Roffo Cancer Institute, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
18
|
Hambek M, Baghi M, Wagenblast J, Schmitt J, Baumann H, Knecht R. Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head Neck 2007; 29:244-8. [PMID: 17123309 DOI: 10.1002/hed.20503] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Prostaglandin E2 (PGE2) serum levels have been shown previously to be increased in tumor bearing mice as well as in patients with solid tumors; however, the impact on the course or stage of disease has not been shown. We hypothesized that PGE2 is strictly required for aggressive and especially early-stage tumors of the head and neck to provoke invasion and angiogenesis. METHODS We analyzed the serum PGE2 levels of 100 patients with head and neck squamous cell carcinoma of different stages before and 1 year after treatment and compared the results with the serum levels of 40 healthy donors and the secretion profile of 8 different squamous cell carcinoma cell lines. RESULTS Our investigations showed a statistically significant inverse correlation between PGE2 serum levels and tumor stage. Furthermore, this effect has been reflected by the results of our cell culture analyses, which showed an inversely regulated PGE2 secretion into the medium during the process of proliferation. Interestingly, the serum levels of PGE2 were significantly downregulated 1 year after successful treatment. CONCLUSIONS We conclude that PGE2 serum level as an indicator for early-stage cancer of the head and neck may function as a tumor marker during the follow-up period.
Collapse
Affiliation(s)
- Markus Hambek
- ENT Department, Johann Wolfgang Goethe Universität Frankfurt/Main, Theodor Stern Kai 7, Frankfurt 60590, Germany.
| | | | | | | | | | | |
Collapse
|