1
|
Potential Toxicity of Natural Fibrous Zeolites: In Vitro Study Using Jurkat and HT22 Cell Lines. MINERALS 2022. [DOI: 10.3390/min12080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An emerging problem for human health is the exposure to non-regulated mineral fibers with an asbestos-like crystal habit, particularly fibrous zeolites. This study aimed to determine if and how selected fibrous zeolites (erionite, mesolite, and thomsonite) induce toxicity effects on two different in vitro cellular models, the adherent murine hippocampal (HT22) and human immortalized T lymphocyte (Jurkat) cell lines. Before proceeding with the cellular tests, the three zeolite samples were investigated using scanning electron microscopy–energy-dispersive spectroscopy and X-ray powder diffraction techniques. The cells were treated with 0.1 µM and 1 µM of fibrous erionite, mesolite, and thomsonite for 12, 24, and 48 h. Results showed a cytotoxic effect of erionite in both cellular models and revealed different toxic behaviors of the mesolite and thomsonite fibers, suggesting other potential mechanisms of action. The outcome of this study would be a first step for further research on fine biochemical interactions of zeolite fibers with cells and future in vivo investigations.
Collapse
|
2
|
Naselsky W, Adhikary G, Shrestha S, Chen X, Ezeka G, Xu W, Friedberg JS, Eckert RL. Transglutaminase 2 enhances hepatocyte growth factor signaling to drive the mesothelioma cancer cell phenotype. Mol Carcinog 2022; 61:537-548. [PMID: 35319795 PMCID: PMC10074999 DOI: 10.1002/mc.23399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022]
Abstract
Transglutaminase 2 (TG2) is an important mesothelioma cancer cell survival protein. However, the mechanism whereby TG2 maintains mesothelioma cell survival is not well understood. We present studies showing that TG2 drives hepatocyte growth factor (HGF)-dependent MET receptor signaling to maintain the aggressive mesothelioma cancer phenotype. TG2 increases HGF and MET messenger RNA and protein levels to enhance MET signaling. TG2 inactivation reduces MET tyrosine kinase activity to reduce cancer cell spheroid formation, invasion and migration. We also confirm that HGF/MET signaling is a biologically important mediator of TG2 action. Reducing MET level using genetic methods or treatment with MET inhibitors reduces spheroid formation, invasion and migration and this is associated with reduced MEK1/2 and ERK1/2. In addition, MEK1/2 and ERK1/2 inhibitors suppress the cancer phenotype. Moreover, MET knockout mesothelioma cells form 10-fold smaller tumors compared to wild-type cells and these tumors display reduced MET, MEK1/2, and ERK1/2 activity. These findings suggest that TG2 maintains HGF and MET levels in cultured mesothelioma cells and tumors to drive HGF/MET, MEK1/2, and ERK1/2 signaling to maintain the aggressive mesothelioma cancer phenotype.
Collapse
Affiliation(s)
- Warren Naselsky
- Department of Surgery, Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Suruchi Shrestha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Geraldine Ezeka
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph S Friedberg
- Department of Surgery, Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Berry TA, Belluso E, Vigliaturo R, Gieré R, Emmett EA, Testa JR, Steinhorn G, Wallis SL. Asbestos and Other Hazardous Fibrous Minerals: Potential Exposure Pathways and Associated Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4031. [PMID: 35409711 PMCID: PMC8998304 DOI: 10.3390/ijerph19074031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
There are six elongate mineral particles (EMPs) corresponding to specific dimensional and morphological criteria, known as asbestos. Responsible for health issues including asbestosis, and malignant mesothelioma, asbestos has been well researched. Despite this, significant exposure continues to occur throughout the world, potentially affecting 125 million people in the workplace and causing thousands of deaths annually from exposure in homes. However, there are other EMPS, such as fibrous/asbestiform erionite, that are classified as carcinogens and have been linked to cancers in areas where it has been incorporated into local building materials or released into the environment through earthmoving activities. Erionite is a more potent carcinogen than asbestos but as it is seldom used for commercial purposes, exposure pathways have been less well studied. Despite the apparent similarities between asbestos and fibrous erionite, their health risks and exposure pathways are quite different. This article examines the hazards presented by EMPs with a particular focus on fibrous erionite. It includes a discussion of the global locations of erionite and similar hazardous minerals, a comparison of the multiple exposure pathways for asbestos and fibrous erionite, a brief discussion of the confusing nomenclature associated with EMPs, and considerations of increasing global mesothelioma cases.
Collapse
Affiliation(s)
- Terri-Ann Berry
- Environmental Solutions Research Centre, Unitec Institute of Technology, Auckland 1025, New Zealand; (T.-A.B.); (G.S.)
| | - Elena Belluso
- Department of Earth Sciences and Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10124 Turin, Italy; (E.B.); (R.V.)
| | - Ruggero Vigliaturo
- Department of Earth Sciences and Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10124 Turin, Italy; (E.B.); (R.V.)
| | - Reto Gieré
- Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Edward A. Emmett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Joseph R. Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Gregor Steinhorn
- Environmental Solutions Research Centre, Unitec Institute of Technology, Auckland 1025, New Zealand; (T.-A.B.); (G.S.)
| | - Shannon L. Wallis
- Environmental Solutions Research Centre, Unitec Institute of Technology, Auckland 1025, New Zealand; (T.-A.B.); (G.S.)
| |
Collapse
|
4
|
Giordani M, Mattioli M, Cangiotti M, Fattori A, Ottaviani MF, Betti M, Ballirano P, Pacella A, Di Giuseppe D, Scognamiglio V, Hanuskova M, Gualtieri AF. Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. CHEMOSPHERE 2022; 291:133067. [PMID: 34838598 DOI: 10.1016/j.chemosphere.2021.133067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Alberto Fattori
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | | | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Miriam Hanuskova
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| |
Collapse
|
5
|
Prismatic to Asbestiform Offretite from Northern Italy: Occurrence, Morphology and Crystal-Chemistry of a New Potentially Hazardous Zeolite. MINERALS 2018. [DOI: 10.3390/min8020069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Cangiotti M, Salucci S, Battistelli M, Falcieri E, Mattioli M, Giordani M, Ottaviani MF. EPR, TEM and cell viability study of asbestiform zeolite fibers in cell media. Colloids Surf B Biointerfaces 2018; 161:147-155. [DOI: 10.1016/j.colsurfb.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
|
7
|
Singh A, Pruett N, Hoang CD. In vitro experimental models of mesothelioma revisited. Transl Lung Cancer Res 2017; 6:248-258. [PMID: 28713670 DOI: 10.21037/tlcr.2017.04.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a biologically unusual, highly aggressive cancer that defies current multimodality treatments. Epidemiologic data suggest that this malignancy has not abated despite increasingly strict environmental regulations on asbestos, the putative causative agent for sporadic cases. An incomplete understanding of all the factors mechanistically driving mesothelioma is largely responsible for the current lack of curative treatments. Many approaches have been employed to ascertain the step-by-step molecular events involved in mesothelioma oncogenesis including in vitro, small animal in vivo, and human experimental models; though clearly defined, druggable mechanisms still are elusive. Importantly, the foundation of the latest accepted model of tumor initiation is derived from in vitro systems. A thorough review of in vitro mesothelioma oncogenesis models may suggest further opportunities for discovery.
Collapse
Affiliation(s)
- Anand Singh
- Section of Thoracic Surgery, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathanael Pruett
- Section of Thoracic Surgery, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D Hoang
- Section of Thoracic Surgery, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Cangiotti M, Battistelli M, Salucci S, Falcieri E, Mattioli M, Giordani M, Ottaviani MF. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:171-187. [PMID: 28277034 DOI: 10.1080/15287394.2016.1275901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1<BV12<MD8<GF1, may be related to the structural modifications of the model membranes when interacting with these zeolite fibers.
Collapse
Affiliation(s)
- Michela Cangiotti
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Michela Battistelli
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Sara Salucci
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Elisabetta Falcieri
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | | |
Collapse
|
9
|
Giordani M, Mattioli M, Dogan M, Dogan AU. Potential carcinogenic erionite from Lessini Mounts, NE Italy: Morphological, mineralogical and chemical characterization. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:808-824. [PMID: 27434646 DOI: 10.1080/15287394.2016.1182453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure of humans to erionite fibers of suitable morphology and dimension has been unambiguously linked to the occurrence of malignant mesothelioma. For this reason, a morphological, morphometrical, mineralogical, and chemical investigation was performed on two representative samples of potential carcinogenic, fibrous erionite from Lessini Mounts, northeastern (NE) Italy, which has not apparently been examined previously. The first sample is erionite-Ca with an extremely fibrous, hair-like and flexible appearance, and growth in intimate association with levyne. The second sample is erionite-Ca with prismatic to acicular crystals and rigid behavior, enriched in K(+) and Ca(2+) extra-framework cations. Although erionite is a nominally Fe-free phase, iron (Fe) was detected in low amounts in all the analyzed crystals. In both the investigated samples, erionite is present as individual fibers of respirable size. Considering that the toxicity and carcinogenic potential of erionite is associated with its size parameters, together with its in vivo durability and high surface area, most of the investigated fibers may also be potentially carcinogenic. The presence of erionite in extensively quarried and largely employed volcanic rocks, suggesting the need for detailed health-based studies in the region.
Collapse
Affiliation(s)
- Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Meral Dogan
- b Geological Engineering Department , Hacettepe University , Beytepe , Ankara , Turkey
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
| | - Ahmet Umran Dogan
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
- d Chemical and Biochemical Engineering Department , University of Iowa , Iowa City , Iowa , USA
| |
Collapse
|
10
|
Mattioli M, Giordani M, Dogan M, Cangiotti M, Avella G, Giorgi R, Dogan AU, Ottaviani MF. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:140-148. [PMID: 26707973 DOI: 10.1016/j.jhazmat.2015.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.
Collapse
Affiliation(s)
- Michele Mattioli
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Matteo Giordani
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy
| | - Meral Dogan
- Geological Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey & Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa 52242 USA
| | - Michela Cangiotti
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy
| | - Giuseppe Avella
- Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino, Italy
| | - Rodorico Giorgi
- Department of Chemistry, University of Florence, 50019 Firenze, Italy
| | - A Umran Dogan
- Chemical and Biochemical Engineering Department & Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa 52242 USA
| | | |
Collapse
|
11
|
Croce A, Allegrina M, Rinaudo C, Gaudino G, Yang H, Carbone M. Numerous Iron-Rich Particles Lie on the Surface of Erionite Fibers from Rome (Oregon, USA) and Karlik (Cappadocia, Turkey). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1341-1347. [PMID: 26286705 DOI: 10.1017/s1431927615014762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Erionite samples from Rome, Oregon (USA) and Karlik, Cappadocia (Turkey) were analyzed by environmental scanning electron microscopy (E-SEM) coupled with energy-dispersive spectroscopy (EDS) to verify the chemical composition of this mineral phase, and the presence of iron in particular. By means of backscattered electron images, a large number of particles/grains were observed on the surface of the erionite fibers from both locations. The particles were found to be micrometric on samples from Rome and submicrometric on samples from Karlik, and always lighter than the hosting crystal in appearance. In different areas of the same fiber or bundle of fibers, several EDS spectra were recorded. Iron was detected only when a light particle was lying in the path of the electron beam. Iron was never identified in the EDS spectra acquired on the flat erionite surface. The results from E-SEM/EDS were confirmed by micro-Raman spectroscopy, showing bands ascribing to hematite—Fe2O3, goethite—FeO(OH), or jarosite—KFe3(3+)(SO4)2(OH)6 when the laser beam was addressed on the light particles observed on the fiber surface. The evidence that iron is on the surface of erionite fibers, rather than being part of the crystalline structure, may be relevant for the carcinogenic potential of these fibers.
Collapse
Affiliation(s)
- Alessandro Croce
- 1Department of Science and Technological Innovation,Università del Piemonte Orientale "Amedeo Avogadro",Viale Teresa Michel 11,15121 Alessandria,Italy
| | - Mario Allegrina
- 1Department of Science and Technological Innovation,Università del Piemonte Orientale "Amedeo Avogadro",Viale Teresa Michel 11,15121 Alessandria,Italy
| | - Caterina Rinaudo
- 1Department of Science and Technological Innovation,Università del Piemonte Orientale "Amedeo Avogadro",Viale Teresa Michel 11,15121 Alessandria,Italy
| | - Giovanni Gaudino
- 2University of Hawai'i Cancer Center,University of Hawai'i,96813 Honolulu,HI,USA
| | - Haining Yang
- 2University of Hawai'i Cancer Center,University of Hawai'i,96813 Honolulu,HI,USA
| | - Michele Carbone
- 2University of Hawai'i Cancer Center,University of Hawai'i,96813 Honolulu,HI,USA
| |
Collapse
|
12
|
Gaudino G, Yang H, Carbone M. HGF/Met Signaling Is a Key Player in Malignant Mesothelioma Carcinogenesis. Biomedicines 2014; 2:327-344. [PMID: 28548074 PMCID: PMC5344271 DOI: 10.3390/biomedicines2040327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive cancer related to asbestos or erionite exposure and resistant to current therapies. Hepatocyte Growth Factor (HGF) and its tyrosine kinase receptor Met regulate cell growth, survival, motility/migration, and invasion. HGF and Met are expressed in MM cells, suggesting that the HGF/Met signaling plays a role in development and progression of this tumor, by autocrine and/or paracrine mechanisms. Upregulation and ligand-independent activation of Met, which is under suppressive control of miR-34 family members, correlate with enhanced invasion, migration and metastatic potential in several cancers, including MM. Moreover, Simian Virus 40 (SV40) Tag expression also induces a HGF autocrine circuit in an Rb-dependent manner in human mesothelial cells (HM) and possibly other cell types, enhancing cell adhesion, invasion and angiogenesis. The resulting activation of Met causes HM transformation and cell cycle progression, and contributes to virus particle assembling and infection of adjacent cells. The constitutive activation of Met, frequently occurring in MM, has been successfully targeted in preclinical models of MM. In conclusion, Met expression, activation state, subcellular localization and also HGF co-receptors expression, such as CD44, have clinical relevance for novel targeted therapies in a cancer for which no effective treatment is currently available.
Collapse
Affiliation(s)
- Giovanni Gaudino
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Haining Yang
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Michele Carbone
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
13
|
Barlow CA, Lievense L, Gross S, Ronk CJ, Paustenbach DJ. The role of genotoxicity in asbestos-induced mesothelioma: an explanation for the differences in carcinogenic potential among fiber types. Inhal Toxicol 2014; 25:553-67. [PMID: 23905972 DOI: 10.3109/08958378.2013.807321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanism(s) underlying asbestos toxicity associated with the pathogenesis of mesothelioma has been a challenge to unravel for more than 60 years. A significant amount of research has focused on the characteristics of different fiber types and their potential to induce mesothelioma. These mechanistic studies of fiber toxicity have proceeded along two lines: those demonstrating biochemical mechanisms by which fibers induce disease and those investigating human susceptibility. Most recent studies focused on in vitro genotoxic effects induced by asbestos as the mechanism responsible for asbestos-induced disease. Although asbestos exerts a genotoxic effect at certain concentrations in vitro, a positive response in these tests does not indicate that the chemical is likely to produce an increased risk of carcinogenesis in exposed human populations. Thus far, findings from studies on the effects of fiber type in mesothelial cells are seriously flawed by a lack of a dose response relationship. The common limitation of these in vitro experiments is the lack of attention paid to the complexities of the human anatomy, biochemistry and physiology, which make the observed effects in these experimental systems difficult to extrapolate to persons in the workplace. Mechanistic differences between carcinogenic and genotoxic processes indicate why tests for genotoxicity do not provide much insight regarding the ability to predict carcinogenic potential in workers exposed to asbestos doses in the post-Occupational Safety and Health Administration era. This review discusses the existing literature on asbestos-induced genotoxicity and explains why these studies may or may not likely help characterize the dose-response curve at low dose.
Collapse
|
14
|
Favoni RE, Daga A, Malatesta P, Florio T. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma. Br J Pharmacol 2012; 166:532-53. [PMID: 22289125 PMCID: PMC3417486 DOI: 10.1111/j.1476-5381.2012.01873.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/01/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022] Open
Abstract
The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth.
Collapse
Affiliation(s)
- Roberto E Favoni
- IRCCS A.O.U. San Martino-IST, Laboratory of Gene Transfer, Genoa, Italy.
| | | | | | | |
Collapse
|
15
|
Dogan M. Quantitative characterization of the mesothelioma-inducing erionite series minerals by transmission electron microscopy and energy dispersive spectroscopy. SCANNING 2012; 34:37-42. [PMID: 21866558 DOI: 10.1002/sca.20276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Air-collected erionite series minerals from Cappadocia region of Turkey were characterized quantitatively by using transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). Field emission scanning electron microscopy aided identification of fibrous minerals. Quantitative characterization guidelines for positive identification of erionites proposed by Dogan and Dogan (2008) was applied and the modified balance error formula (E%<10) and Mg-content test <0.80 were performed for each analysis. Erionite species computation showed that the mineral is erionite-K and a mean chemical formula is proposed based upon the TEM-EDS results. Among the 60 analyses, 11 passed E% test (18.3%), 33 passed Mg-content test (55.0%), and only 3 passed both E% and Mg-content tests (5.0%). This shows difficulty of quantitative characterization of the erionite series minerals. However, as erionite is the most carcinogenic mineral known and is classified by IARC as a Group-I (human) carcinogen, it requires special attention from the mineralogical community to help establish its true mineralogical properties. Quantitatively characterized erionite data are very scarce in literature. Correctly identified erionite mineral types will be useful to medical researchers in their search to find a possible cure for the deadly disease of mesothelioma.
Collapse
Affiliation(s)
- Meral Dogan
- Department of Geological Engineering, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
16
|
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare but aggressive asbestos-related cancer that develops by mesothelial cell transformation. At present, there are no effective therapies for MPM. Great efforts have been made in finding specific markers/mechanisms for MPM onset, including studies into microRNAs (miRNAs). Recent studies have shown the differential expression of mature miRNAs in several human cancers, suggesting their potential role as oncogenes or tumor suppressor genes. METHODS In this study, we investigated miRNAs profile in five human normal pleural mesothelial short-term cell cultures (HMCs) and five MPMs, with microarray approach. These results were confirmed by real-time quantitative reverse-transcriptase polymerase chain reaction and Western blotting. RESULTS A comparative analysis of miRNA expression in MPM and HMCs was carried out. Microarray profiling showed different miRNA expression between MPM and HMCs. Specifically, members of the oncomiRNA miR 17-92 cluster and its paralogs, namely miR 17-5p, 18a, 19b, 20a, 20b, 25, 92, 106a, 106b, were markedly upregulated. Besides, in our investigation, additional miRNAs, such as miR-7, miR-182, miR-214, and miR-497 were found to be dysregulated in MPM. CONCLUSIONS These data are in agreement with results that have previously been reported on dysregulated miRNAs for other solid human tumors. Moreover, in our investigation, additional miRNAs were found to be dysregulated in MPM. Interestingly, gene products that regulate the cell cycle are targets and predicted targets for these miRNAs. Our data suggest that specific miRNAs could be key players in MPM development/progression. In addition, some of these miRNAs may represent MPM markers and potential targets for new therapeutic approaches.
Collapse
|
17
|
Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc Natl Acad Sci U S A 2011; 108:13618-23. [PMID: 21788493 DOI: 10.1073/pnas.1105887108] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to erionite, an asbestos-like mineral, causes unprecedented rates of malignant mesothelioma (MM) mortality in some Turkish villages. Erionite deposits are present in at least 12 US states. We investigated whether increased urban development has led to erionite exposure in the United States and after preliminary exploration, focused our studies on Dunn County, North Dakota (ND). In Dunn County, ND, we discovered that over the past three decades, more than 300 miles of roads were surfaced with erionite-containing gravel. To determine potential health implications, we compared erionite from the Turkish villages to that from ND. Our study evaluated airborne point exposure concentrations, examined the physical and chemical properties of erionite, and examined the hallmarks of mesothelial cell transformation in vitro and in vivo. Airborne erionite concentrations measured in ND along roadsides, indoors, and inside vehicles, including school buses, equaled or exceeded concentrations in Boyali, where 6.25% of all deaths are caused by MM. With the exception of outdoor samples along roadsides, ND concentrations were lower than those measured in Turkish villages with MM mortality ranging from 20 to 50%. The physical and chemical properties of erionite from Turkey and ND are very similar and they showed identical biological activities. Considering the known 30- to 60-y latency for MM development, there is reason for concern for increased risk in ND in the future. Our findings indicate that implementation of novel preventive and early detection programs in ND and other erionite-rich areas of the United States, similar to efforts currently being undertaken in Turkey, is warranted.
Collapse
|
18
|
Below JE, Cox NJ, Fukagawa NK, Hirvonen A, Testa JR. Factors that impact susceptibility to fiber-induced health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:246-66. [PMID: 21534090 PMCID: PMC3118508 DOI: 10.1080/10937404.2011.556052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Asbestos and related fibers are associated with a number of adverse health effects, including malignant mesothelioma (MM), an aggressive cancer that generally develops in the surface serosal cells of the pleural, pericardial, and peritoneal cavities. Although approximately 80% of individuals with MM are exposed to asbestos, fewer than 5% of asbestos workers develop MM. In addition to asbestos, other mineralogical, environmental, genetic, and possibly viral factors might contribute to MM susceptibility. Given this complex etiology of MM, understanding susceptibility to MM needs to be a priority for investigators in order to reduce exposure of those most at risk to known environmental carcinogens. In this review, the current body of literature related to fiber-associated disease susceptibility including age, sex, nutrition, genetics, asbestos, and other mineral exposure is addressed with a focus on MM, and critical areas for further study are recommended.
Collapse
Affiliation(s)
- Jennifer E Below
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
19
|
Huang SXL, Jaurand MC, Kamp DW, Whysner J, Hei TK. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:179-245. [PMID: 21534089 PMCID: PMC3118525 DOI: 10.1080/10937404.2011.556051] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases. This article summarizes the findings from existing literature with a focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more convincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcinogenesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity. At the end of this review, a consensus statement of what is known, what is believed to be factual but requires confirmation, and existing data gaps, as well as future research needs and directions, is provided.
Collapse
Affiliation(s)
- Sarah X. L. Huang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marie-Claude Jaurand
- INSERM (Institut National de la Santé et de la Recherche Médicale), Paris, France
| | - David W. Kamp
- Pulmonary & Critical Care Medicine, Northwestern University Feinberg School of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - John Whysner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Tom K. Hei
- Address correspondence to Tom K. Hei, Center for Radiological Research, College of Physicians and Surgeons, Columbia University. 630 West 168th Street, New York, NY 10032, USA. E-mail:
| |
Collapse
|
20
|
Ishida T, Alexandrov M, Nishimura T, Minakawa K, Hirota R, Sekiguchi K, Kohyama N, Kuroda A. Selective detection of airborne asbestos fibers using protein-based fluorescent probes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:755-759. [PMID: 20000675 DOI: 10.1021/es902395h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorescence microscopy (FM) is one of the most important analytical tools in modern life sciences, sufficiently sensitive to allow observation of single molecules. Here we describe the first application of the FM technique for the detection of inorganic environmental pollutants-airborne asbestos fibers that can cause asbestosis, mesothelioma, and lung cancer. In order to assess FM capabilities for detecting and counting asbestos fibers, we screened E. coli lysate for proteins that bind to amphibole asbestos. In combination with the previously discovered E. coli protein DksA (Kuroda et al., Biotechnol. Bioeng. 2008, 99, 285-289) that can specifically bind to chrysotile, the newly identified GatZ protein was used for selective and highly sensitive detection of two different asbestos types. Our novel FM-based method overcomes a number of limitations of the commonly used phase-contrast microscopy (PCM) method, offering a convenient alternative to PCM for airborne asbestos monitoring.
Collapse
Affiliation(s)
- Takenori Ishida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mesothelioma cells escape heat stress by upregulating Hsp40/Hsp70 expression via mitogen-activated protein kinases. J Biomed Biotechnol 2009; 2009:451084. [PMID: 19551156 PMCID: PMC2699487 DOI: 10.1155/2009/451084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/06/2009] [Indexed: 01/04/2023] Open
Abstract
Therapy with hyperthermal chemotherapy in pleural diffuse malignant mesothelioma had limited benefits for patients. Here we investigated the effect of heat stress on heat shock proteins (HSP), which rescue tumour cells from apoptosis. In human mesothelioma and mesothelial cells heat stress (39-42 degrees C) induced the phosphorylation of two mitogen activated kinases (MAPK) Erk1/2 and p38, and increased Hsp40, and Hsp70 expression. Mesothelioma cells expressed more Hsp40 and were less sensitive to heat stress compared to mesothelial cells. Inhibition of Erk1/2 MAPK by PD98059 or by Erk1 siRNA down-regulated heat stress-induced Hsp40 and Hsp70 expression and reduced mesothelioma cell survival. Inhibition of p38MAPK by SB203580 or siRNA reduced Hsp40, but not Hsp70, expression and also increased mesothelioma cell death. Thus hyperthermia combined with suppression of p38 MAPK or Hsp40 may represent a novel approach to improve mesothelioma therapy.
Collapse
|
22
|
Busacca S, Germano S, De Cecco L, Rinaldi M, Comoglio F, Favero F, Murer B, Mutti L, Pierotti M, Gaudino G. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol 2009; 42:312-9. [PMID: 19502386 DOI: 10.1165/rcmb.2009-0060oc] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate the expression of target genes, and may behave as oncogenes or tumor suppressors. Human malignant mesothelioma is an asbestos-related cancer, with poor prognosis and low median survival. Here we report, for the first time, a cross-evaluation of miRNA expression in mesothelioma (MPP-89, REN) and human mesothelial cells (HMC-telomerase reverse transcriptase). Microarray profiling, confirmed by real-time quantitative RT-PCR, revealed a differential expression of miRNAs between mesothelioma and mesothelial cells. In addition, a computational analysis combining miRNA and gene expression profiles allowed the accurate prediction of genes potentially targeted by dysregulated miRNAs. Several predicted genes belong to terms of Gene Ontology (GO) that are associated with the development and progression of mesothelioma. This suggests that miRNAs may be key players in mesothelioma oncogenesis. We further investigated miRNA expression on a panel of 24 mesothelioma specimens, representative of the three histotypes (epithelioid, biphasic, and sarcomatoid), by quantitative RT-PCR. The expression of miR-17-5p, miR-21, miR-29a, miR-30c, miR-30e-5p, miR-106a, and miR-143 was significantly associated with the histopathological subtypes. Notably, the reduced expression of two miRNAs (miR-17-5p and miR-30c) correlated with better survival of patients with sarcomatoid subtype. Our preliminary analysis points at miRNAs as potential diagnostic and prognostic markers of mesothelioma, and suggests novel tools for the therapy of this malignancy.
Collapse
Affiliation(s)
- Sara Busacca
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, University of Piemonte Orientale, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Daubriac J, Fleury-Feith J, Kheuang L, Galipon J, Saint-Albin A, Renier A, Giovannini M, Galateau-Sallé F, Jaurand MC. Malignant pleural mesothelioma cells resist anoikis as quiescent pluricellular aggregates. Cell Death Differ 2009; 16:1146-55. [PMID: 19343038 DOI: 10.1038/cdd.2009.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pleural fluid accumulation is a frequent clinical observation in diffuse malignant pleural mesothelioma (MPM). The cytological analysis of pleural fluid often reveals the presence of free spheroid aggregates of malignant cells, giving rise to the question of the ability of non-adherent tumor cells to resist the loss of anchorage-induced apoptosis (termed as anoikis), and to develop new tumor foci in the pleural cavity. Here, we show that MPM cells cultured under non-adherent conditions form well-organized aggregates composed of viable cells, which progressively enter in G(0). Although the PI3K/Akt, ERK and SAPK/JNK signaling pathways are activated in adherent MPM cells, loss of anchorage results in the inactivation of these pathways. By comparison, we show that the non-tumoral mesothelial cells MeT-5A enter anoikis in an SAPK/JNK-, Bim- and caspase-9-dependent pathway. The survival of MPM cells can be reversed by activating SAPK/JNK with anisomycin, according to a Bim-dependent mitochondrial pathway. Finally, our findings show that impairment of cell aggregation activates SAPK/JNK and Bim and induces anoikis. Our results underline the importance of intercellular contacts in the anoikis resistance of MPM cells.
Collapse
Affiliation(s)
- J Daubriac
- INSERM, U674, Fondation Jean Dausset-CEPH, IFR105, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Weiner SJ, Neragi-Miandoab S. Pathogenesis of malignant pleural mesothelioma and the role of environmental and genetic factors. J Cancer Res Clin Oncol 2008; 135:15-27. [PMID: 18787841 DOI: 10.1007/s00432-008-0444-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor for which no effective therapy exists despite the discovery of many possible molecular and genetic targets. The late stage of MPM diagnosis and the long latency that exist between some exposures and diagnosis have made it difficult to comprehensively evaluate the role of risk factors and their downstream molecular effects. METHODS This manuscript is a review of current literature about the pathogenesis of malignant mesothelioma. In this overview, current published studies concerning pathogenesis of malignant mesothelioma are reviewed, with insights into its etiology and pathogenesis. We searched pubmed using the following subjects: mesothelioma, radiation, genetics, pediatric malignant mesothelioma, SV40 virus, and growth factors. We selected 350 valuable articles of which 152 sources were used to complete this review. CONCLUSION Many risk factors for MPM development have been recognized including environmental exposures, genetic susceptibility, viral contamination, and radiation. In this review, we discuss the current molecular and genetic contributors to MPM pathogenesis and the risk factors associated with these carcinogenic processes.
Collapse
Affiliation(s)
- Shoshana J Weiner
- Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH, USA
| | | |
Collapse
|
25
|
Dogan AU, Dogan M, Hoskins JA. Erionite series minerals: mineralogical and carcinogenic properties. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2008; 30:367-381. [PMID: 18347916 DOI: 10.1007/s10653-008-9165-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 11/15/2007] [Accepted: 12/15/2007] [Indexed: 05/26/2023]
Abstract
Erionite is a human and animal carcinogen and one of the most toxic minerals known. Erionite deposits have been reported in many countries; however, it is only in the area of three villages of Cappadocia, Turkey, that environmental exposure to erionite has been demonstrated to be the cause of an epidemic of the disease mesothelioma. In the USA, no cases of mesothelioma have been reliably proven to be the result of erionite exposure, though the possibility exists. Erionite samples from three villages of the Cappadocia region were characterized mineralogically and compared with three different standards from the USA. Micro morphological details of erionite minerals using a high-resolution field-emission SEM showed that microstructures of "bundles", "fibers", and "fibrils" are important physical properties of fibrous erionite minerals. Typical lung burden of erionite and asbestos fibers were compared in terms of number of fibers. Assuming the lung burden of fibers in a human mesothelioma victim is about 1 mg, and the hazardous fibers are approximately 1 mum in diameter and 10 mum long, that milligram contains approximately 40 million asbestos and 50 million erionite fibers. These microstructures of erionite minerals draw attention to the concepts of surface area or surface-area-to-volume ratio and their relationship to the carcinogenicity of the mineral. The larger surface area creates a wider platform for mineral-cell interaction and thus more possibilities of proliferative transformation of mesothelial cells. Consequently, understanding the exact mineralogical properties will help determination of the true carcinogenic mechanism(s) of the mineral for prevention and possibly treatment of malignant mesothelioma.
Collapse
Affiliation(s)
- A Umran Dogan
- Department of Geological Engineering, Ankara University, Ankara, Turkey.
| | | | | |
Collapse
|
26
|
Weiner SJ, Neragi-Miandoab S. Pathogenesis of malignant pleural mesothelioma and the role of environmental and genetic factors. J Carcinog 2008; 7:3. [PMID: 18662397 PMCID: PMC2507706 DOI: 10.1186/1477-3163-7-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 07/28/2008] [Indexed: 11/10/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive tumor for which no effective therapy exists despite the discovery of many possible molecular and genetic targets. Many risk factors for MPM development have been recognized including environmental exposures, genetic susceptibility, viral contamination, and radiation. However, the late stage of MPM diagnosis and the long latency that exists between some exposures and diagnosis have made it difficult to comprehensively evaluate the role of risk factors and their downstream molecular effects. In this review, we discuss the current molecular and genetic contributors in MPM pathogenesis and the risk factors associated with these carcinogenic processes.
Collapse
Affiliation(s)
- Shoshana J Weiner
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Siyamek Neragi-Miandoab
- University Hospitals, Case Western Reserve University School of Medicine, 11100 Euclid Avenue LKS Building 7th floor, Cleveland, OH, USA
| |
Collapse
|
27
|
|
28
|
Duzgoren-Aydin NS. Health effects of atmospheric particulates: a medical geology perspective. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2008; 26:1-39. [PMID: 18322866 DOI: 10.1080/10590500801907340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this review, atmospheric particulates as composite airborne earth materials often containing both natural and anthropogenic components were examined in the context of medical geology. Despite a vast number of both experimental and epidemiological studies confirming the direct and indirect links between atmospheric particulates and human health, the exact nature of mechanisms affecting the particulate-induced pathogenesis largely remains unexplored. Future in depth research on these areas would be most successful if potential mechanisms are examined with reference to the physical (e.g., size, shape and surface), chemical, mineralogical and source characteristics of particulate matters. The underlying goal of this review was to present the relevant terminology and processes proposed in the literature to explain the interfaces and interactions between atmospheric particles and human body within the framework of "atmospheric particle cycles." The complexities of the interactions were demonstrated through case studies focusing on particulate matter air pollution and malignant mesothelioma occurrences due to environmental exposure to erionite-a fibrous zeolite mineral. There is an urgent need for a standard protocol or speciation methods applicable to earth-materials to guide and streamline studies on etiology of mineral-induced diseases. This protocol or speciation methods should provide relevant procedures to determine the level and extent of physical, chemical and mineralogical heterogeneity of particulate matters as well as quantitative in-situ particulate characteristics.
Collapse
Affiliation(s)
- Nurdan S Duzgoren-Aydin
- The University of Mississippi, National Center for Natural Products Research, University, Mississippi 38677, USA.
| |
Collapse
|