1
|
Błaszczak-Świątkiewicz K, Krupa A, Mnich E, Elger W, Oettel M, Nair H, Wierzbicki M, Sieroszewski P, Shaked Z. Next step in the development of mesoprogestins: the preclinical profile of EC313. Front Endocrinol (Lausanne) 2023; 14:1201547. [PMID: 37766684 PMCID: PMC10520499 DOI: 10.3389/fendo.2023.1201547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/12/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The pharmacological target for progesterone, different progestins, and Selective Progesterone Receptor Modulators (SPRMs) is the nuclear progesterone receptor (PR). EC313 is a new member of a subgroup of SPRMs, mesoprogestins, which combine especially PR- agonistic and PR-antagonistic activities in one molecule. Methods The suitable in vivo-model for the differentiation of SPRMs from the subgroup of mesoprogestins is the estrogen-primed juvenile rabbit endometrium assay (McPhail Assay). Remarkably, in contrast to other well-known SPRMs with no agonistic effects in this test, EC313 shows clear partial PR-agonistic effects that are higher than that of the well-known mesoprogestin Asoprisnil which already demonstrated remarkable clinical effectiveness for the treatment of uterine fibroids and endometriosis. The findings from the guinea pig studies presented here can be the impetus for further preclinical development of EC313. This model shows the same features for the termination of pregnancy by antiprogestins such as Mifepristone and Ulipristal acetate (UPA) in humans. Moreover, it is possible to distinguish between progestational and anti-progestational activities in the same experiment. Results The EC313 treatment reveals PR dominance in the genital tract and inhibits unopposed estrogenic effects. In very high doses (30.0 mg/animal/day subcutaneously (s.c.)) given twice on pregnancy days 43 and 44, no premature labor was induced (in contrast to UPA, dosed at 10.0 and 30. mg/animal/day s.c.). The anti-ovulatory activity of EC313 exceeds that of Ulipristal acetate or Mifepristone. EC313 binds to the steroid receptors in vitro with a similar affinity as the natural ligand progesterone. At the glucocorticoid receptor (GR) EC313 acts as a weak inhibitor. Minor activities at the human androgen receptor (AR) and mineralocorticoid receptor (MR) are considered negligible. No binding to the estradiol receptor was detected. In contrast to some in vitro-receptor findings, estrogenic, anti-estrogenic, androgenic, anti-androgenic, glucocorticoid, and anti-glucocorticoid actions were absent in vivo. The tissue selectivity of EC313 was demonstrated previously by reducing the growth and proliferation of uterine fibroids in animal models (lowest effective dosage 0.1 mg/kg/day s.c.).. As shown in this article, the anti-fibroid activity of EC313 was confirmed with a 10 times lower dosage (0.01 mg/kg/day s.c.). It was also shown that EC313 reduces the growth of endometriotic lesions in a human xenograft immune-deficient (NOD-SCID) mice model with a comparatively very low dosage range. In the aforementioned EC313 activity model, UPA was tested as the reference compound, the clinical effectiveness of which has already been demonstrated. Discussion For an explanation of these findings, the possibility is discussed that the mixed agonistic/antagonistic feature of EC313 is tissue target-specific based on its super-additive synergism characteristic for active bifunctional agents. In conclusion, the specific pharmacodynamic profile of this compound opens the possibility for the development of a drug with a distinct pharmaco-endocrinological profile against uterine fibroids, endometriosis, and other PR-dependent gynecological diseases.
Collapse
Affiliation(s)
| | - A. Krupa
- R & D Centre, Evestra Onkologia Sp z o.o, Lodz, Poland
| | - E. Mnich
- R & D Centre, Evestra Onkologia Sp z o.o, Lodz, Poland
| | - W. Elger
- R & D Centre, Evestra Onkologia Sp z o.o, Lodz, Poland
| | - M. Oettel
- R & D Centre, Evestra Onkologia Sp z o.o, Lodz, Poland
| | - H. Nair
- Evestra, Inc., Corporate Headquarters, Schertz, TX, United States
| | - M. Wierzbicki
- R & D Centre, Evestra Onkologia Sp z o.o, Lodz, Poland
| | - P. Sieroszewski
- Department of Gynaecology and Obstetrics, Medical University of Lodz, Lodz, Poland
| | - Z. Shaked
- Evestra, Inc., Corporate Headquarters, Schertz, TX, United States
| |
Collapse
|
2
|
Cartwright M, Louw-du Toit R, Jackson H, Janse van Vuuren M, Africander D. Progesterone receptor isoform ratios influence the transcriptional activity of progestins via the progesterone receptor. J Steroid Biochem Mol Biol 2023; 232:106348. [PMID: 37315868 DOI: 10.1016/j.jsbmb.2023.106348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Progestins (synthetic progestogens) are progesterone receptor (PR) ligands used globally by women in both hormonal contraception and menopausal hormone therapy. Although four generations of unique progestins have been developed, studies seldom distinguish between the activities of progestins via the two functionally distinct PR isoforms, PR-A and PR-B. Moreover, not much is known about the action of progestins in breast cancer tumors where PR-A is mostly overexpressed relative to PR-B. Understanding progestin action in breast cancer is crucial since the clinical use of some progestins has been associated with an increased risk of developing breast cancer. This study directly compared the agonist activities of selected progestins from all four generations for transactivation and transrepression via either PR-A or PR-B, and when PR-A and PR-B were co-expressed at ratios comparable to those detected in breast cancer tumors. Comparative dose-response analysis showed that earlier generation progestins mostly displayed similar efficacies for transactivation on a minimal progesterone response element via the PR isoforms, while most of the 4th generation progestins, similar to the natural progestogen, progesterone (P4), were more efficacious via PR-B. Most of the progestogens were however more potent via PR-A. We are the first to show that the efficacies of the selected progestogens via the individual PR isoforms were generally decreased when PR-A and PR-B were co-expressed, irrespective of the ratio of PR-A:PR-B. While the potencies of most progestogens via PR-B were enhanced when the ratio of PR-A relative to PR-B was increased, those via PR-A were minimally influenced. This study is also the first to report that all progestogens evaluated, except 1st generation medroxyprogesterone acetate and 4th generation drospirenone, displayed similar agonist activity for transrepression via PR-A and PR-B on a minimal nuclear factor kappa B containing promoter. Moreover, we showed that the progestogen activity for transrepression was significantly increased when PR-A and PR-B were co-expressed. Taken together, our results highlight that PR agonists (progestogens) do not always display the same activity via PR-A and PR-B, or when PR-A and PR-B are co-expressed at ratios mimicking those found in breast cancer tumors. These results suggest that biological responses are progestogen- and PR isoform-dependent and may differ in target tissues expressing varying PR-A:PR-B ratios.
Collapse
Affiliation(s)
- Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Hayley Jackson
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Melani Janse van Vuuren
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
3
|
Li HWR, Resche-Rigon M, Bagchi IC, Gemzell-Danielsson K, Glasier A. Does ulipristal acetate emergency contraception (ella®) interfere with implantation? Contraception 2019; 100:386-390. [DOI: 10.1016/j.contraception.2019.07.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023]
|
4
|
Lamb CA, Fabris VT, Jacobsen B, Molinolo AA, Lanari C. Biological and clinical impact of imbalanced progesterone receptor isoform ratios in breast cancer. Endocr Relat Cancer 2018; 25:ERC-18-0179. [PMID: 29991638 DOI: 10.1530/erc-18-0179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
There is a consensus that progestins and thus their cognate receptor molecules, the progesterone receptors (PR), are essential in the development of the adult mammary gland and regulators of proliferation and lactation. However, a role for natural progestins in breast carcinogenesis remains poorly understood. A hint to that possible role came from studies in which the synthetic progestin medroxyprogesterone acetate was associated with an increased breast cancer risk in women under hormone replacement therapy. However, progestins have been also used for breast cancer treatment and to inhibit the growth of several experimental breast cancer models. More recently, PR have been shown to be regulators of estrogen receptor signaling. With all this information, the question is how can we target PR, and if so, which patients may benefit from such an approach? PR are not single unique molecules. Two main PR isoforms have been characterized, PRA and PRB, that exert different functions and the relative abundance of one isoform respect to the other determines the response of PR agonists and antagonists. Immunohistochemistry with standard antibodies against PR do not discriminate between isoforms. In this review, we summarize the current knowledge on the expression of both PR isoforms in mammary glands, in experimental models of breast cancer and in breast cancer patients, to better understand how the PRA/PRB ratio can be exploited therapeutically to design personalized therapeutic strategies.
Collapse
Affiliation(s)
- Caroline A Lamb
- C Lamb, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Victoria T Fabris
- V Fabris, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Britta Jacobsen
- B Jacobsen, Department of Pathology, University of Colorado at Denver - Anschutz Medical Campus, Aurora, United States
| | - Alfredo A Molinolo
- A Molinolo, Biorepository and Tissue Technology Shared Resource, University of California San Diego Moores Cancer Center, La Jolla, United States
| | - Claudia Lanari
- C Lanari, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| |
Collapse
|
5
|
Michurina AO, Polikarpova AV, Levina IS, Kulikova LE, Zavarzin IV, Guseva AA, Morozov IA, Rubtsov PM, Smirnova OV, Shchelkunova TA. Agonistic and Antagonistic Effects of Progesterone Derivatives on the Transcriptional Activity of Nuclear Progesterone Receptor B in Yeast Model System. BIOCHEMISTRY (MOSCOW) 2018; 83:574-585. [DOI: 10.1134/s0006297918050103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Courtoy GE, Donnez J, Marbaix E, Barreira M, Luyckx M, Dolmans MM. Progesterone Receptor Isoforms, Nuclear Corepressor-1 and Steroid Receptor Coactivator-1 and B-Cell Lymphoma 2 and Akt and Akt Phosphorylation Status in Uterine Myomas after Ulipristal Acetate Treatment: A Systematic Immunohistochemical Evaluation. Gynecol Obstet Invest 2017; 83:443-454. [PMID: 29227976 DOI: 10.1159/000480011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/03/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate whether ulipristal acetate (UPA) treatment modifies the expression of progesterone receptor (PR), its nuclear cofactors steroid receptor coactivator-1 (SRC1) and nuclear corepressor-1 (NCoR1), prosurvival factor B-cell lymphoma 2 (Bcl-2), and Akt in uterine myomas. PATIENTS Prospective study of 59 women with symptomatic myomas undergoing myomectomy. Forty-two patients were treated preoperatively with UPA; the remaining 17 were not and they served as controls. METHOD Tissue microarrays were obtained from surgical specimens and immunohistochemistry was performed. Blinded quantification of expression of PR (PR-A vs. PR-B), coactivator SRC1 and corepressor NCoR1, and prosurvival factor Bcl-2, and Akt and evaluation of Akt phosphorylation levels. RESULTS Compared with the control group, UPA does not alter PR protein levels or expression patterns in myomas, and the PR-A/PR-B ratio was similar, as well as cytoplasmic or nuclear expression of cofactors SRC1 and NCoR1. Bcl-2 was heterogeneously expressed throughout the samples and no significant modification in expression was evidenced. No significant difference was found in Akt expression and phosphorylation between treated and untreated myomas. CONCLUSION This study did not find any significant change in the expression of the studied factors in myomas after UPA exposure. In conclusion, various theories on myomas cells proposed on the basis of in vitro studies are not supported in vivo.
Collapse
Affiliation(s)
- Guillaume E Courtoy
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour L'Infertilité (SRI), Brussels, Belgium
| | - Etienne Marbaix
- Department of Pathology, Cliniques Universitaires St-Luc, Woluwe-Saint-Lambert, Belgium.,Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Matilde Barreira
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Mathieu Luyckx
- Gynecology Department, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Gynecology Department, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Yu P, Li S, Zhang Z, Wen X, Quan W, Tian Q, Gao C, Su W, Zhang J, Jiang R. Progesterone-mediated angiogenic activity of endothelial progenitor cell and angiogenesis in traumatic brain injury rats were antagonized by progesterone receptor antagonist. Cell Prolif 2017; 50. [PMID: 28752929 DOI: 10.1111/cpr.12362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/20/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Progesterone (P4) has the potential therapeutic effects for traumatic brain injury (TBI) whose recovery depended on the enhanced angiogenesis. Endothelial progenitor cell (EPC) plays an essential role in vascular biology. We previously demonstrated that P4 administration improved circulating EPC level and neurological recovery of rat with TBI. Here, we hypothesized that P4 augmented angiogenic potential of EPC and the angiogenesis-related neurorestoration after TBI through classical progesterone receptor (PR). MATERIALS AND METHODS EPC derived from rats were stimulated with graded concentrations (0, 10-10 , 10-9 , 5 × 10-9 , 10-8 , 10-7 mol/L) of P4 or 10-6 mol/L ulipristal acetate (UPA, a PR antagonist). Male rats were subjected to cortical impact injury and treated with (i) DMSO (dimethyl sulfoxide), (ii) P4 and (iii) P4 and UPA. RESULTS It showed that P4 improved the angiogenic potential of EPC, including tube formation, adhesion, migration and vascular endothelial growth factor secretion, in a dose-dependent fashion with the maximal effect achieved at 10-9 mol/L P4. High concentration (10-7 mol/L) of P4 impaired the angiogenic potential of EPC. Notably, 10-6 mol/L UPA antagonized the stimulatory effects of 10-9 mol/L P4. After administrating P4, a significant improvement of neurological function and the restoration of the leaked blood-brain barrier were observed as well as a reduction of the brain water content. Both vessel density and expression of occludin of vessels were increased. When UPA was administered with P4, the neural restoration and angiogenesis were all reversed. Western blot showed that 10-9 mol/L P4 increased the content of PRA and PRB of EPC, while 10-7 mol/L P4 reduced the content of both PR isoforms, but there was no change found in the TBI rats. CONCLUSIONS It may suggest that P4-mediated angiogenic activity of EPC and angiogenesis in TBI rats were antagonized by PR antagonist.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Shengjie Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Zhifei Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaolong Wen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qilong Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Wanqiang Su
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
8
|
|
9
|
Rosato E, Farris M, Bastianelli C. Mechanism of Action of Ulipristal Acetate for Emergency Contraception: A Systematic Review. Front Pharmacol 2016; 6:315. [PMID: 26793107 PMCID: PMC4709420 DOI: 10.3389/fphar.2015.00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Ulipristal acetate (UPA) is now recommended as first choice hormonal emergency contraception (EC), due to its higher efficacy and similar safety compared to Levonorgestrel - EC. Even though all trials demonstrated that the first mechanism of action is inhibition of ovulation, some authors still postulate that a post fertilization effect is also possible, raising the alert on medication and fostering the ethical debate. A Medline database search was performed in order to find recent articles related to UPA's effects on ovulation, on fallopian tube and on endometrium. We also analyzed the effects on sperm function and pregnancy. All studies conclude that UPA is effective in inhibition of ovulation even when administered shortly before LH peak. The effects on fallopian tube are unclear: according to some authors UPA inhibits ciliar beat through an agonistic effect on progesterone receptors, according to others it antagonizes the progesterone-induced ciliar beat decrease. Concerning the action on endometrium and on embryo implantation most of the studies concluded that low dose UPA used for EC has no significant effect on the decrease of endometrial thickness and on embryo's attachment, but these results are still matter of debate. Finally recent evidence suggests that UPA modulates human sperm functions while it has no effect on established pregnancy. To date the majority of the evidence concurs in excluding a post-fertilization effect of UPA, even though more studies are needed to clarify its mechanism of action.
Collapse
Affiliation(s)
- Elena Rosato
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, “Sapienza" University of RomeRome, Italy
| | | | | |
Collapse
|
10
|
Esber N, Le Billan F, Resche-Rigon M, Loosfelt H, Lombès M, Chabbert-Buffet N. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression. PLoS One 2015; 10:e0140795. [PMID: 26474308 PMCID: PMC4608808 DOI: 10.1371/journal.pone.0140795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
The progesterone receptor (PR) with its isoforms and ligands are involved in breast tumorigenesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms, PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-model, allowing independent PR isoforms analysis. We used the bi-inducible human breast cancer cell system MDA-iPRAB. We studied the effects and molecular mechanisms of action of progesterone (P4) and ulipristal acetate (UPA), a new selective progesterone receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA expressing cells proliferation. This was associated with P4-stimulated expression of the anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II onto the +58 kb PR binding motif of the BCL2-L1 gene. UPA decreased cell proliferation and repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but not RNA Pol II recruitment. These results bring new information on the mechanism of action of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen independent model. Evaluation of PR isoforms ratio, as well as molecular signature studies based on PRA target genes could be proposed to facilitate personalized breast cancer therapy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in the clinical setting is required.
Collapse
Affiliation(s)
- Nathalie Esber
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
- HRA-Pharma, Paris, France
| | - Florian Le Billan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
| | | | - Hugues Loosfelt
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
- Service d’Endocrinologie et des Maladies de la Reproduction, assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique Médecine de la Reproduction, Hôpitaux Universitaires Est Parisien site Tenon, AP-HP, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 938, Centre de Recherche Saint Antoine, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Li HWR, Liao SB, Yeung WSB, Ng EHY, O WS, Ho PC. Ulipristal acetate resembles mifepristone in modulating human Fallopian tube function. Hum Reprod 2014; 29:2156-62. [DOI: 10.1093/humrep/deu210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Chung HH, Sze SK, Woo ARE, Sun Y, Sim KH, Dong XM, Lin VCL. Lysine methylation of progesterone receptor at activation function 1 regulates both ligand-independent activity and ligand sensitivity of the receptor. J Biol Chem 2014; 289:5704-22. [PMID: 24415758 DOI: 10.1074/jbc.m113.522839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone receptor (PR) exists in two isoforms, PRA and PRB, and both contain activation functions AF-1 and AF-2. It is believed that AF-1 is primarily responsible for the ligand-independent activity, whereas AF-2 mediates ligand-dependent PR activation. Although more than a dozen post-translational modifications of PR have been reported, no post-translational modification on AF-1 or AF-2 has been reported. Using LC-MS/MS-based proteomic analysis, this study revealed AF-1 monomethylation at Lys-464. Mutational analysis revealed the remarkable importance of Lys-464 in regulating PR activity. Single point mutation K464Q or K464A led to ligand-independent PR gel upshift similar to the ligand-induced gel upshift. This upshift was associated with increases in both ligand-dependent and ligand-independent PR phosphorylation and PR activity due to the hyperactivation of AF-1. In contrast, mutation of Lys-464 to the bulkier phenylalanine to mimic the effect of methylation caused a drastic decrease in PR activity. Importantly, PR-K464Q also showed heightened ligand sensitivity, and this was associated with increases in its functional interaction with transcription co-regulators NCoR1 and SRC-1. These results suggest that monomethylation of PR at Lys-464 probably has a repressive effect on AF-1 activity and ligand sensitivity.
Collapse
Affiliation(s)
- Hwa Hwa Chung
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
13
|
Communal L, Vilasco M, Hugon-Rodin J, Courtin A, Mourra N, Lahlou N, Dumont S, Chaouat M, Forgez P, Gompel A. Ulipristal acetate does not impact human normal breast tissue. Hum Reprod 2012; 27:2785-98. [PMID: 22740493 DOI: 10.1093/humrep/des221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Antiprogestins are of growing interest for the development of new treatments in the gynecological field. Ulipristal acetate (UPA) is a progesterone receptor (PR) modulator considered for long-term administration in contraception and is currently being registered for the treatment of uterine fibroids. In light of the influences of hormonal dysfunction in breast pathologies, the secondary consequences of chronic UPA therapy need to be established. The aim of this study was to determine UPA actions mediated by PR and glucocorticoid receptor (GR) in normal and transformed breast. METHODS UPA, progesterone (P) and dexamethasone (DEX) effects were observed on PR and GR responsive genes and on proliferation and apoptosis of normal human breast epithelial (HBE) and breast cancer cells. Human normal breast tissue samples were xenografted in athymic mice and treated with estradiol (E2), or E2 + P, or E2 + P + UPA. RESULTS Analysis of PR and GR reporter gene transactivation and their respective endogenous target genes indicated that UPA exerted anti-progestational and anti-glucocorticoid activity in both types of cells with a more pronounced effect in cancer cells. When combined with P or DEX, UPA limits the proliferation of HBE cells but increases growth in breast cancer cell lines. UPA administration had no impact on the mitotic index on xenografted human breast tissue exposed to gonadal hormones at similar concentrations to those present in normal women. CONCLUSIONS Although further clinical trials are required to confirm that the results from our experimental models can be extrapolated to women treated with UPA, they suggest that such treatment would not be deleterious to normal breast tissue at least for a cycle (28 days) of continuous administration.
Collapse
Affiliation(s)
- Laudine Communal
- INSERM-UPMC, UMRS 938, Hôpital Saint-Antoine, 75012 Parris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Obr A, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357:4-17. [PMID: 22193050 PMCID: PMC3318965 DOI: 10.1016/j.mce.2011.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
This paper reviews work on progesterone and the progesterone receptor (PR) in the mouse mammary gland that has been used extensively as an experimental model. Studies have led to the concept that progesterone controls proliferation and morphogenesis of the luminal epithelium in a tightly orchestrated manner at distinct stages of development by paracrine signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL) as a major paracrine factor. Progesterone also drives expansion of stem cells by paracrine signals to generate progenitors required for alveologenesis. During mid-to-late pregnancy, progesterone has another role to suppress secretory activation until parturition mediated in part by crosstalk between PR and prolactin/Stat5 signaling to inhibit induction of milk protein gene expression, and by inhibiting tight junction closure. In models of hormone-dependent mouse mammary tumors, the progesterone/PR signaling axis enhances pre-neoplastic progression by a switch from a paracrine to an autocrine mode of proliferation and dysregulation of the RANKL signaling pathway. Limited experiments with normal human breast show that progesterone/PR signaling also stimulates epithelial cell proliferation by a paracrine mechanism; however, the signaling pathways and whether RANKL is a major mediator remains unknown. Work with human breast cancer cell lines, patient tumor samples and clinical studies indicates that progesterone is a risk factor for breast cancer and that alteration in progesterone/PR signaling pathways contributes to early stage human breast cancer progression. However, loss of PR expression in primary tumors is associated with a less differentiated more invasive phenotype and worse prognosis, suggesting that PR may limit later stages of tumor progression.
Collapse
Affiliation(s)
- Alison Obr
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
15
|
Bouchard P, Chabbert-Buffet N, Fauser BCJM. Selective progesterone receptor modulators in reproductive medicine: pharmacology, clinical efficacy and safety. Fertil Steril 2011; 96:1175-89. [PMID: 21944187 DOI: 10.1016/j.fertnstert.2011.08.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 11/19/2022]
|
16
|
Tone AA, Virtanen C, Shaw PA, Brown TJ. Decreased progesterone receptor isoform expression in luteal phase fallopian tube epithelium and high-grade serous carcinoma. Endocr Relat Cancer 2011; 18:221-34. [PMID: 21263043 PMCID: PMC3043379 DOI: 10.1530/erc-10-0235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously reported that BRCA1/2-mutated fallopian tube epithelium (FTE) collected during the luteal phase exhibits gene expression profiles more closely resembling that of high-grade serous carcinoma (HGSC) specimens than FTE collected during the follicular phase or from control patients. Since the luteal phase is characterised by high levels of progesterone, we determined whether the expression of progesterone receptor (PR) and PR-responsive genes was altered in FTE obtained from BRCA mutation carriers during the luteal phase of the menstrual cycle. RT-qPCR confirmed a decreased expression of PR mRNA in FTE during the luteal phase relative to follicular phase, in both BRCA1/2 mutation carriers and control patients. Immunohistochemistry using isoform-specific antibodies confirmed a low level of both PR-A and PR-B in HGSC and a lower level of staining in FTE samples obtained during the luteal phase compared with the follicular phase. No significant difference in PR-A or PR-B staining was found based on patient BRCA mutation status. Analysis of our previously reported gene expression profiles based upon known PR-A- and PR-B-specific target genes did not partition samples by BRCA mutation status, indicating that overall FTE PR response is not altered in BRCA mutation carriers. HGSC samples grouped separately from other samples, consistent with the observed loss of PR expression. These findings indicate no overall difference in PR signalling in FTE as a function of BRCA mutation status. Thus, the molecular similarity of BRCA1/2-mutated luteal phase FTE and HGSC likely results from an altered response to luteal phase factors other than progesterone.
Collapse
Affiliation(s)
- Alicia A Tone
- The Samuel Lunenfeld Research Institute, Mount Sinai HospitalUniversity of Toronto60 Murray Street, PO Box 41, Toronto, OntarioCanadaM5T 3L9
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoM5S 1A8, Toronto, OntarioCanada
- Department of Obstetrics and GynecologyUniversity of TorontoM5G 1L4, Toronto, OntarioCanada
- Department of PathologyUniversity Health NetworkM5G 2C1, Toronto, OntarioCanada
| | - Carl Virtanen
- Microarray CentreUniversity Health NetworkM5G 1L7, Toronto, OntarioCanada
| | - Patricia A Shaw
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoM5S 1A8, Toronto, OntarioCanada
- Department of Obstetrics and GynecologyUniversity of TorontoM5G 1L4, Toronto, OntarioCanada
- Department of PathologyUniversity Health NetworkM5G 2C1, Toronto, OntarioCanada
| | - Theodore J Brown
- The Samuel Lunenfeld Research Institute, Mount Sinai HospitalUniversity of Toronto60 Murray Street, PO Box 41, Toronto, OntarioCanadaM5T 3L9
- Department of Obstetrics and GynecologyUniversity of TorontoM5G 1L4, Toronto, OntarioCanada
- (Correspondence should be addressed to T J Brown at The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto; )
| |
Collapse
|
17
|
Wei Q, Levens ED, Stefansson L, Nieman LK. Indian Hedgehog and its targets in human endometrium: menstrual cycle expression and response to CDB-2914. J Clin Endocrinol Metab 2010; 95:5330-7. [PMID: 20881264 PMCID: PMC2999967 DOI: 10.1210/jc.2010-0637] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Progesterone is critical for secretory endometrial differentiation in women, but its downstream mediators are poorly understood. OBJECTIVE Our objective was to investigate endometrial expression of Indian Hedgehog (IHH) and genes involved in its signaling [smoothened (SMO), patched-1 (PTCH1), glioma-associated oncogene homolog 1 (GLI1), and GLI2] during the menstrual cycle and the effects of the selective progesterone receptor modulator CDB-2914 on its expression. DESIGN AND SETTING Comparisons between normally cycling volunteers and women with symptomatic fibroids who received CDB-2914 or placebo were made at a clinical research center. PATIENTS AND INTERVENTIONS Endometrial biopsy was performed on 34 volunteers, 17 additional women with fibroids. MAIN OUTCOME MEASURES Endometrial expression of IHH, SMO, PTCH1, GLI1, and GLI2 by in situ hybridization and/or RT-PCR and IHH, GLI1, and PTCH1 immunohistochemistry were evaluated. RESULTS RT-PCR showed expression of IHH, SMO, PTCH1, GLI1, and GLI2, with significant increases in IHH (5.2-fold) and GLI1 (3.6-fold) in endometrium exposed to CDB-2914 compared with placebo. In situ hybridization showed IHH mRNA expression in glands and stroma that was stronger in secretory samples. Among volunteers, IHH and GLI1 immunohistochemistry scores were higher in the secretory than proliferative phase in the nuclei and cytoplasm of glands and stroma (P=0.0002-0.04). Compared with follicular-phase controls, women exposed to CDB-2914 showed increased IHH expression in all compartments except stromal cytoplasm (P=0.0199-0.0423); GLI1 was up-regulated in glandular nuclei and cytoplasm compared with both volunteers and women receiving placebo (P≤0.0416). CONCLUSIONS The temporal increase in endometrial IHH and GLI1 during the secretory phase, and their modulation by CDB-2914, suggests progestin regulation and a potential role in endometrial differentiation and implantation.
Collapse
Affiliation(s)
- Qingxiang Wei
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, Room 1-3140, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
18
|
Toloubeydokhti T, Pan Q, Luo X, Bukulmez O, Chegini N. The expression and ovarian steroid regulation of endometrial micro-RNAs. Reprod Sci 2010; 15:993-1001. [PMID: 19088369 DOI: 10.1177/1933719108324132] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) which regulate gene expression stability displayed an aberrant expression profile in ectopic endometrium (ECE) as compared to eutopic (EUE) and normal endometrium (NE). We assessed the expression of miR-17-5p, miR-23a, miR-23b and miR-542-3p, their predicted target genes, steroidogenic acute regulatory protein, aromatase and cyclooxygenase-2, and influence of ovarian steroids on their expression in endometrial stromal (ESC) and glandular epithelial cells (GEC). The results indicated a lower expression of miR-23b and miR-542-3p and higher level of miR-17-5p in paired ECE and EUE as compared with NE. These levels were elevated and inversely correlated with the level of expression of their respective target genes in ECE. The expression of these miRNAs and genes was differentially regulated by 17beta- estradiol, medroxyprogesterone acetate, ICI-182780 and RU-486, or their respective combinations in ESC and GEC. We concluded that altered expression of specific miRNAs in ECE, affecting the stability of their target genes expression, has direct implications in pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Tannaz Toloubeydokhti
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
19
|
Xia Luo, Coon JS, Su E, Kerry Pearson E, Ping Yin, Ishikawa H, Bulun SE. LAT1 Regulates Growth of Uterine Leiomyoma Smooth Muscle Cells. Reprod Sci 2010; 17:791-7. [DOI: 10.1177/1933719110372419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xia Luo
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - John S. Coon
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Emily Su
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth Kerry Pearson
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hiroshi Ishikawa
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Serdar E. Bulun
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| |
Collapse
|
20
|
Progesterone induces scolex evagination of the human parasite Taenia solium: evolutionary implications to the host-parasite relationship. J Biomed Biotechnol 2009; 2010:591079. [PMID: 20037735 PMCID: PMC2796346 DOI: 10.1155/2010/591079] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/14/2009] [Indexed: 11/20/2022] Open
Abstract
Taenia solium cysticercosis is a health problem in underdeveloped and developed countries. Sex hormones are involved in cysticercosis prevalence in female and male pigs. Here, we evaluated the effects of progesterone and its antagonist RU486 on scolex evagination, which is the initial step in the development of the adult worm. Interestingly, progesterone increased T. solium scolex evagination and worm growth, in a concentration-independent pattern. Progesterone effects could be mediated by a novel T. solium progesterone receptor (TsPR), since RU486 inhibits both scolex evagination and worm development induced by progesterone. Using RT-PCR and western blot, sequences related to progesterone receptor were detected in the parasite. A phylogenetic analysis reveals that TsPR is highly related to fish and amphibian progesterone receptors, whereas it has a distant relation with birds and mammals. Conclusively, progesterone directly acts upon T. solium cysticerci, possibly through its binding to a progesterone receptor synthesized by the parasite.
Collapse
|
21
|
Nott SL, Huang Y, Kalkanoglu A, Harper K, Chen M, Paoni SF, Fenton BM, Muyan M. Designer monotransregulators provide a basis for a transcriptional therapy for de novo endocrine-resistant breast cancer. Mol Med 2009; 16:10-8. [PMID: 19946606 DOI: 10.2119/molmed.2009.00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/15/2009] [Indexed: 02/05/2023] Open
Abstract
The main circulating estrogen hormone 17beta-estradiol (E2) contributes to the initiation and progression of breast cancer. Estrogen receptors (ERs), as transcription factors, mediate the effects of E2. Ablation of the circulating E2 and/or prevention of ER functions constitute approaches for ER-positive breast cancer treatments. These modalities are, however, ineffective in de novo endocrine-resistant breast neoplasms that do not express ERs. The interaction of E2-ERs with specific DNA sequences, estrogen responsive elements (EREs), of genes constitutes one genomic pathway necessary for cellular alterations. We herein tested the prediction that specific regulation of ERE-driven genes by an engineered monomeric and constitutively active transcription factor, monotransregulator, provides a basis for the treatment of ER-negative breast cancer. Using adenovirus infected ER-negative MDA-MB-231 cells derived from a breast adenocarcinoma, we found that the monotransregulator, but not the ERE-binding defective counterpart, repressed cellular proliferation and motility, and induced apoptosis through expression of genes that required ERE interactions. Similarly, the monotransregulator suppressed the growth of ER-negative BT-549 cells derived from a breast-ductal carcinoma. Moreover, the ERE-binding monotransregulator repressed xenograft tumor growth in a nude mice model. Thus, specific regulation of genes bearing EREs could offer a therapeutic approach for de novo endocrine-resistant breast cancers.
Collapse
Affiliation(s)
- Stephanie L Nott
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
22
|
De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30:173-87. [PMID: 19318112 DOI: 10.1016/j.yfrne.2009.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Campagnoli C, Ambroggio S, Lotano MR, Peris C. Progestogen use in women approaching the menopause and breast cancer risk. Maturitas 2009; 62:338-42. [DOI: 10.1016/j.maturitas.2008.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/07/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
24
|
Fearmonti RM, Keyomarsi K, Hunt KK. Biomarkers in neoadjuvant trials. Cancer Treat Res 2009; 147:1-36. [PMID: 21461824 DOI: 10.1007/978-0-387-09463-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Reversal of antiprogestin resistance and progesterone receptor isoform ratio in acquired resistant mammary carcinomas. Breast Cancer Res Treat 2008; 116:449-60. [PMID: 18677559 DOI: 10.1007/s10549-008-0150-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 01/02/2023]
Abstract
To explore mechanisms related to hormone resistance, three resistant variants of the MPA mouse breast cancer tumor model with low levels of progesterone receptor (PR) isoform A (PR-A)/high PR-B expression were developed by prolonged selective pressure with antiprogestins. The resistant phenotype of one tumor line was reversed spontaneously after several consecutive passages in syngeneic BALB/c mice or by 17-beta-estradiol or tamoxifen treatment, and this reversion was significantly associated with an increase in PR-A expression. The responsive parental tumors disclosed low activation of ERK and high activation of AKT; resistant tumors on the other hand, showed the opposite, and this was associated with a higher metastatic potential, that did not revert. This study shows for the first time in vivo a relationship between PR isoform expression and antiprogestin responsiveness, demonstrating that, whereas acquired resistance may be reversed, changes in kinase activation and metastatic potential are unidirectional associated with tumor progression.
Collapse
|