1
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Wang Y, Wang B, Cao W, Xu X. TGF-β-activated circRYK drives glioblastoma progression by increasing VLDLR mRNA expression and stability in a ceRNA- and RBP-dependent manner. J Exp Clin Cancer Res 2024; 43:73. [PMID: 38454465 PMCID: PMC10921701 DOI: 10.1186/s13046-024-03000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The TGF-β signalling pathway is intricately associated with the progression of glioblastoma (GBM). The objective of this study was to examine the role of circRNAs in the TGF-β signalling pathway. METHODS In our research, we used transcriptome analysis to search for circRNAs that were activated by TGF-β. After confirming the expression pattern of the selected circRYK, we carried out in vitro and in vivo cell function assays. The underlying mechanisms were analysed via RNA pull-down, luciferase reporter, and RNA immunoprecipitation assays. RESULTS CircRYK expression was markedly elevated in GBM, and this phenotype was strongly associated with a poor prognosis. Functionally, circRYK promotes epithelial-mesenchymal transition and GSC maintenance in GBM. Mechanistically, circRYK sponges miR-330-5p and promotes the expression of the oncogene VLDLR. In addition, circRYK could enhance the stability of VLDLR mRNA via the RNA-binding protein HuR. CONCLUSION Our findings show that TGF-β promotes epithelial-mesenchymal transition and GSC maintenance in GBM through the circRYK-VLDLR axis, which may provide a new therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China
| | - Binbin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China
| | - Wenping Cao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China.
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
3
|
Li X, Zheng S, Feng Z, Liu X, Ding Y, Zhang L, Zhang G, Liu M, Zhu H, Jia H. Serum proteomics analysis of drug-naïve patients with generalised anxiety disorder: Tandem mass tags and multiple reaction monitoring. World J Biol Psychiatry 2024; 25:188-199. [PMID: 38247046 DOI: 10.1080/15622975.2023.2301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVES The prevalence of generalised anxiety disorder (GAD) is high. However, the underlying mechanisms remain elusive. Proteomics techniques can be employed to assess the pathological mechanisms involved in GAD. METHODS Twenty-two drug-naive GAD patients were recruited, their serum samples were used for protein quantification and identified using Tandem Mass Tag and Multiple Reaction Monitoring (MRM). Machine learning models were employed to construct predictive models for disease occurrence by using clinical scores and target proteins as input variables. RESULTS A total of 991 proteins were differentially expressed between GAD and healthy participants. Gene Ontology analysis revealed that these proteins were significantly associated with stress response and biological regulation, suggesting a significant implication in anxiety disorders. MRM validation revealed evident disparities in 12 specific proteins. The machine learning model found a set of five proteins accurately predicting the occurrence of the disease at a rate of 87.5%, such as alpha 1B-glycoprotein, complement component 4 A, transferrin, V3-3, and defensin alpha 1. These proteins had a functional association with immune inflammation. CONCLUSIONS The development of generalised anxiety disorder might be closely linked to the immune inflammatory stress response.
Collapse
Affiliation(s)
- Xue Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhengtian Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinzi Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ying Ding
- Hangzhou Seventh People's Hospital, Zhejiang, China
| | - Lina Zhang
- Hangzhou Seventh People's Hospital, Zhejiang, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Jiang X, Yin S, Yin X, Wang Y, Fang T, Yang S, Bian X, Li G, Xue Y, Zhang L. A prognostic marker LTBP1 is associated with epithelial mesenchymal transition and can promote the progression of gastric cancer. Funct Integr Genomics 2024; 24:30. [PMID: 38358412 DOI: 10.1007/s10142-024-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
LTBP1 is closely related to TGF-β1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-β and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Medical Oncology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia Autonomous Region, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, Inner Mongolia Autonomous Region, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Huang T, Cheng J, Feng H, Zhou W, Qiu P, Zhou D, Yang D, Zhang J, Willer C, Chen YE, Mizrak D, Yang B. Bicuspid Aortic Valve-Associated Regulatory Regions Reveal GATA4 Regulation and Function During Human-Induced Pluripotent Stem Cell-Based Endothelial-Mesenchymal Transition-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:312-322. [PMID: 36519469 PMCID: PMC10038164 DOI: 10.1161/atvbaha.122.318566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxi Cheng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dong Zhou
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongshan Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Liu B, Wang Y, He D, Han G, Wang H, Lin Y, Zhang T, Yi C, Li H. LTBP1 Gene Expression in the Cerebral Cortex and its Neuroprotective Mechanism in Mice with Postischemic Stroke Epilepsy. Curr Pharm Biotechnol 2023; 24:317-329. [PMID: 35676846 DOI: 10.2174/1389201023666220608091511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed at exploring the expression level of LTBP1 in the mouse model of epilepsy. The mechanism of LTBP1 in epileptic cerebral neural stem cells was deeply investigated to control the occurrence of epilepsy with neuroprotection. METHODS qRT-PCR was conducted for the expression levels of LTBP1 in clinical human epileptic tissues and neural stem cells, as well as normal cerebral tissues and neural stem cells. The mouse model of postischemic stroke epilepsy (PSE) was established by the middle cerebral artery occlusion (MCAO). Then, qRT-PCR was conducted again for the expression levels of LTBP1 in mouse epileptic tissues and neural stem cells as well as normal cerebral tissues and neural stem cells. The activation and inhibitory vectors of LTBP1 were constructed to detect the effects of LTBP1 on the proliferation of cerebral neural stem cells in the PSE model combined with CCK-8. Finally, Western blot was conducted for the specific mechanism of LTBP1 affecting the development of epileptic cells. RESULTS Racine score and epilepsy index of 15 mice showed epilepsy symptoms after the determination with MCAO, showing a successful establishment of the PSE model. LTBP1 expression in both diseased epileptic tissues and cells was higher than that in normal clinical epileptic tissues and cells. Meanwhile, qRT-PCR showed higher LTBP1 expression in both mouse epileptic tissues and their neural stem cells compared to that in normal tissues and cells. CCK-8 showed that the activation of LTBP1 stimulated the increased proliferative capacity of epileptic cells, while the inhibition of LTBP1 expression controlled the proliferation of epileptic cells. Western blot showed an elevated expression of TGFβ/SMAD signaling pathway-associated protein SMAD1/5/8 after activating LTBP1. The expression of molecular MMP-13 associated with the occurrence of inflammation was also activated. CONCLUSION LTBP1 can affect the changes in inflammation-related pathways by activating the TGFβ/SMAD signaling pathway and stimulate the development of epilepsy, and the inhibition of LTBP1 expression can control the occurrence of epilepsy with neuroprotection.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Yan Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Dongruo He
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Guochao Han
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Hao Wang
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Yuan Lin
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Tianyu Zhang
- Department of CT, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Chao Yi
- Department of Neurosurgery, Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Hui Li
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| |
Collapse
|
7
|
Langthasa J, Mishra S, U M, Kalal R, Bhat R. Mutations in a set of ancient matrisomal glycoprotein genes across neoplasia predispose to disruption of morphogenetic transduction. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jimpi Langthasa
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
| | - Satyarthi Mishra
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru India
| | - Monica U
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
| | - Ronak Kalal
- Department of Zoology University College of Science, Mohanlal Sukhadia University Udaipur India
| | - Ramray Bhat
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
- Centre for BioSystems Science and Engineering Indian Institute of Science Bengaluru India
| |
Collapse
|
8
|
Stewart VD, Cadieux J, Thulasiram MR, Douglas TC, Drewnik DA, Selamat S, Lao Y, Spicer V, Hannila SS. Myelin‐associated glycoprotein alters the neuronal secretome and stimulates the release of
TGFβ
and proteins that affect neural plasticity. FEBS Lett 2022; 596:2952-2973. [DOI: 10.1002/1873-3468.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Vanessa D. Stewart
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Justine Cadieux
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Matsya R. Thulasiram
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Tinsley Claire Douglas
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Dennis A. Drewnik
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Suhaila Selamat
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Ying Lao
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Victor Spicer
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Sari S. Hannila
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| |
Collapse
|
9
|
Munquad S, Si T, Mallik S, Li A, Das AB. Subtyping and grading of lower-grade gliomas using integrated feature selection and support vector machine. Brief Funct Genomics 2022; 21:408-421. [PMID: 35923100 DOI: 10.1093/bfgp/elac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Classifying lower-grade gliomas (LGGs) is a crucial step for accurate therapeutic intervention. The histopathological classification of various subtypes of LGG, including astrocytoma, oligodendroglioma and oligoastrocytoma, suffers from intraobserver and interobserver variability leading to inaccurate classification and greater risk to patient health. We designed an efficient machine learning-based classification framework to diagnose LGG subtypes and grades using transcriptome data. First, we developed an integrated feature selection method based on correlation and support vector machine (SVM) recursive feature elimination. Then, implementation of the SVM classifier achieved superior accuracy compared with other machine learning frameworks. Most importantly, we found that the accuracy of subtype classification is always high (>90%) in a specific grade rather than in mixed grade (~80%) cancer. Differential co-expression analysis revealed higher heterogeneity in mixed grade cancer, resulting in reduced prediction accuracy. Our findings suggest that it is necessary to identify cancer grades and subtypes to attain a higher classification accuracy. Our six-class classification model efficiently predicts the grades and subtypes with an average accuracy of 91% (±0.02). Furthermore, we identify several predictive biomarkers using co-expression, gene set enrichment and survival analysis, indicating our framework is biologically interpretable and can potentially support the clinician.
Collapse
Affiliation(s)
- Sana Munquad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Tapas Si
- Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering, Bankura 722146, West Bengal, India
| | - Saurav Mallik
- Department of Environmental Epigenetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
10
|
Lin R, Li X, Wu S, Qian S, Hou H, Dong M, Zhang X, Zhang M. Suppression of latent transforming growth factor-β (TGF-β)-binding protein 1 (LTBP1) inhibits natural killer/ T cell lymphoma progression by inactivating the TGF-β/Smad and p38 MAPK pathways. Exp Cell Res 2021; 407:112790. [PMID: 34418460 DOI: 10.1016/j.yexcr.2021.112790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Natural killer/T cell lymphoma (NKTCL) is a distinct subtype of Non-Hodgkin's lymphoma with highly aggressive clinical behavior. We aim to investigate the function of Latent transforming growth factor β binding protein 1 (LTBP1) and transforming growth factor beta1 (TGF-β1) and complex molecular pathogenesis of this disease. METHODS NKTCL patients and reactive lymph nodes patients were recruited in this study. The expression of LTBP1 and TGF-β1 was examined using qRT-PCR, Western blot, IHC and ELISA analyses in biopsied tissues and serum from participants and NKTCL cell lines. Cell proliferation was determined using CFSE. Cell cycle and apoptosis were evaluated using flow cytometric analyses. The expression of Ki-67, CDK4 and cyclinD1 proteins was measured using Western blot analyses. The roles of LTBP-1/TGF-β1 in EMT program were determined by measuring E-cadherin, N-cadherin and Vimentin using Western blot analyses. The effects of LTBP-1 and TGF-β1 on tumor progression in vivo were determined by animal experiments. RESULTS LTBP-1 and TGF-β1 levels were elevated in NKTCL tissues and serum. The expression of LTBP-1 was positively correlated with the expression of TGF-β1 in NKTCL tissues. LTBP-1 was overexpressed in NKTCL cells. Knockdown of LTBP-1 suppressed cell proliferation and cell cycle progression, induced cell apoptosis, and suppressed EMT program in NKTCL cells. These effects of LTBP-1 knockdown were attenuated after TGF-β1 stimulation. Knockdown of LTBP-1 inhibited NKTCL tumor weight and volume in vivo. Also, stimulation of TGF-β1 attenuated the suppressive effects on tumor growth from sh-LTBP-1. Silencing of LTBP-1 lowered cellular TGF-β1, phosphorylated-Smad2, phosphorlyatd-Smad3, and phosphorylated-p38 and the suppressive effects were reversed after stimulation of TGF-β1. CONCLUSION Our findings suggested that inhibition of LTBP-1/TGF-β1 suppressed the malignant phenotypes of NKTCL cells and tumor growth via inactivating the canonical TGF-β/Smad signaling and p38MAPK signaling.
Collapse
Affiliation(s)
- Rui Lin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xiaoli Li
- Department of Geratology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shaoxuan Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Siyu Qian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Huting Hou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
11
|
Burghardt I, Schroeder JJ, Weiss T, Gramatzki D, Weller M. A tumor-promoting role for soluble TβRIII in glioblastoma. Mol Cell Biochem 2021; 476:2963-2973. [PMID: 33772427 PMCID: PMC8263459 DOI: 10.1007/s11010-021-04128-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
Purpose Members of the transforming growth factor (TGF)-β superfamily play a key role in the regulation of the malignant phenotype of glioblastoma by promoting invasiveness, angiogenesis, immunosuppression, and maintaining stem cell-like properties. Betaglycan, a TGF-β coreceptor also known as TGF-β receptor III (TβRIII), interacts with members of the TGF-β superfamily and acts as membrane-associated or shed molecule. Shed, soluble TβRIII (sTβRIII) is produced upon ectodomain cleavage of the membrane-bound form. Elucidating the role of TβRIII may improve our understanding of TGF-β pathway activity in glioblastoma Methods Protein levels of TβRIII were determined by immunohistochemical analyses and ex vivo single-cell gene expression profiling of glioblastoma tissue respectively. In vitro, TβRIII levels were assessed investigating long-term glioma cell lines (LTCs), cultured human brain-derived microvascular endothelial cells (hCMECs), glioblastoma-derived microvascular endothelial cells, and glioma-initiating cell lines (GICs). The impact of TβRIII on TGF-β signaling was investigated, and results were validated in a xenograft mouse glioma model Results Immunohistochemistry and ex vivo single-cell gene expression profiling of glioblastoma tissue showed that TβRIII was expressed in the tumor tissue, predominantly in the vascular compartment. We confirmed this pattern of TβRIII expression in vitro. Specifically, we detected sTβRIII in glioblastoma-derived microvascular endothelial cells. STβRIII facilitated TGF-β-induced Smad2 phosphorylation in vitro and overexpression of sTβRIII in a xenograft mouse glioma model led to increased levels of Smad2 phosphorylation, increased tumor volume, and decreased survival Conclusions These data shed light on the potential tumor-promoting role of extracellular shed TβRIII which may be released by glioblastoma endothelium with high sTβRIII levels. Supplementary Information The online version contains supplementary material available at 10.1007/s11010-021-04128-y.
Collapse
Affiliation(s)
- Isabel Burghardt
- Laboratory of Molecular Neuro-Oncology, Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Judith Johanna Schroeder
- Laboratory of Molecular Neuro-Oncology, Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Dorothee Gramatzki
- Laboratory of Molecular Neuro-Oncology, Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| |
Collapse
|
12
|
Abstract
Microvascular proliferation is a key feature of glioblastoma and neovascularization has been implicated in tumor progression. Glioblastomas use pro-angiogenic factors such as vascular endothelial growth factor (VEGF) for new blood vessel formation. Yet, anti-VEGF therapy does not prolong overall survival so that alternative angiogenic pathways may need to be explored as drug targets. Both glioma cells and glioma-associated endothelial cells produce TGF-β superfamily ligands which bind TGF-β receptors (TGF-βR). The TGF-βR type III endoglin (CD105), is a marker of proliferating endothelium that has already been studied as a potential therapeutic target. We studied endoglin expression in glioblastoma tissue and in glioma-associated endothelial cells in a cohort of 52 newly diagnosed and 10 recurrent glioblastoma patients by immunohistochemistry and by ex vivo single-cell gene expression profiling of 6 tumors. Endoglin protein levels were similar in tumor stroma and endothelium and correlated within tumors. Similarly, endoglin mRNA determined by ex vivo single-cell gene expression profiling was expressed in both compartments. There was positive correlation between endoglin and proteins of TGF-β superfamily signaling. No prognostic role of endoglin expression in either compartment was identified. Endoglin gene silencing in T98G glioma cells and in human cerebral microvascular endothelial cells (hCMEC) did not affect constitutive or exogenous TGF-β superfamily ligand-dependent signaling, except for a minor facilitation of pSmad1/5 signaling in hCMEC. These observations challenge the notion that endoglin might become a promising therapeutic target in glioblastoma.
Collapse
|
13
|
Taki T, Shiraki Y, Enomoto A, Weng L, Chen C, Asai N, Murakumo Y, Yokoi K, Takahashi M, Mii S. CD109 regulates in vivo tumor invasion in lung adenocarcinoma through TGF-β signaling. Cancer Sci 2020; 111:4616-4628. [PMID: 33007133 PMCID: PMC7734007 DOI: 10.1111/cas.14673] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Stromal invasion is considered an important prognostic factor in patients with lung adenocarcinoma. The mechanisms underlying the formation of tumor stroma and stromal invasion have been studied in the lung; however, they are still unclear. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein highly expressed in several types of human malignant tumors including lung cancers. In this study, we investigated the in vivo functions of CD109 protein in malignant lung tumors. Initially, we identified an association between higher expression of CD109 protein in human lung adenocarcinoma and a significantly worse prognosis, according to immunohistochemical analysis. We also showed that CD109 deficiency significantly reduced the area of stromal invasive lesions in a genetically engineered CD109-deficient lung adenocarcinoma mouse model, which correlated with the results observed in human lung adenocarcinoma. Furthermore, we identified latent TGF-β binding protein-1 (LTBP1) as a CD109-interacting protein using mass spectrometry and confirmed their interaction by co-immunoprecipitation. Importantly, increased CD109 expression enhanced stromal TGF-β activation in the presence of LTBP1. Therefore, these data suggest the significance of the regulation of TGF-β signaling through CD109 and LTBP1 interaction in tumor stroma and also reveal the importance of CD109 expression levels in promoting lung cancer cell proliferation, migration, and invasion, and thus predicting the outcome of patients suffering from lung adenocarcinoma. Therefore, CD109 protein could be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Tetsuro Taki
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukihiro Shiraki
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of MedicineNagoyaJapan
| | - Atsushi Enomoto
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Liang Weng
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Chen Chen
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Naoya Asai
- Department of Molecular Pathology, Graduate School of MedicineFujita Health UniversityToyoakeJapan
| | - Yoshiki Murakumo
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Kohei Yokoi
- Department of Thoracic SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Masahide Takahashi
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinji Mii
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
14
|
Fu X, Zhang P, Song H, Wu C, Li S, Li S, Yan C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J Transl Med 2020; 18:391. [PMID: 33059753 PMCID: PMC7566028 DOI: 10.1186/s12967-020-02509-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain. Diagnosis and treatment of GBM may lead to psychological disorders such as depressive and anxiety disorders. There was no research focusing on the correlation between depressive/anxiety disorder and the outcome of GBM. Thus, the aim of this study was to investigate the possibility of depressive/anxiety disorder correlated with the outcome of GBM patients, as well as the overlapped mechanism bridge which could link depressive/anxiety disorders and GBM. Methods Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder (GAD-7) were used to investigate the psychological condition of GBM patients in our department. To further explore the potential mechanism, bioinformatic methods were used to screen out genes that could be indicators of outcome in GBM, followed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) analysis. Further, cellular experiments were conducted to evaluate the proliferation, migration capacity of primary GBM cells from the patients. Results It was revealed that patients with higher PHQ-9 and GAD-7 scores had significantly worse prognosis than their lower-scored counterparts. Bioinformatic mining revealed that LTBP1 could be a potential genetic mechanism in both depressive/anxiety disorder and GBM. Primary GBM cells with different expression level of LTBP1 should significantly different proliferation and migration capacity. GO, KEGG analysis confirmed that extracellular matrix (ECM) was the most enriched function of LTBP1. PPI network showed the interaction of proteins altered by LTBP1. Hub genes COL1A2, COL5A1 and COL10A1, as well as mesenchymal marker CD44 and Vimentin were statistically higher expressed in LTBP1 high group; while proneural marker E-cadherin was significantly higher expressed in low LTBP1 group. Conclusion There is closely correlation between depressive/anxiety disorders and GBM. LTBP1 could be a potential bridge linking the two diseases through the regulation of ECM.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.,Capital Medical University, Beijing, People's Republic of China
| | - Pei Zhang
- Beijing Institute of Technology, Beijing, China
| | - Hongwang Song
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China
| | | | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| |
Collapse
|
15
|
Perepechaeva ML, Grishanova AY. The Role of Aryl Hydrocarbon Receptor (AhR) in Brain Tumors. Int J Mol Sci 2020; 21:ijms21082863. [PMID: 32325928 PMCID: PMC7215596 DOI: 10.3390/ijms21082863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Primary brain tumors, both malignant and benign, are diagnosed in adults at an incidence rate of approximately 23 people per 100 thousand. The role of AhR in carcinogenesis has been a subject of debate, given that this protein may act as either an oncogenic protein or a tumor suppressor in different cell types and contexts. Lately, there is growing evidence that aryl hydrocarbon receptor (AhR) plays an important part in the development of brain tumors. The role of AhR in brain tumors is complicated, depending on the type of tumor, on ligands that activate AhR, and other features of the pathological process. In this review, we summarize current knowledge about AhR in relation to brain tumors and provide an overview of AhR’s potential as a therapeutic target.
Collapse
|
16
|
Cai R, Wang P, Zhao X, Lu X, Deng R, Wang X, Su Z, Hong C, Lin J. LTBP1 promotes esophageal squamous cell carcinoma progression through epithelial-mesenchymal transition and cancer-associated fibroblasts transformation. J Transl Med 2020; 18:139. [PMID: 32216815 PMCID: PMC7098101 DOI: 10.1186/s12967-020-02310-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide. Due to its high morbidity and mortality rates, it is urgent to find a molecular target that contributes to esophageal carcinogenesis and progression. In this research, we aimed to investigate the functions of Latent transforming growth factor β binding protein 1(LTBP1) in ESCC progression and elucidate the underlying mechanisms. METHODS The tandem mass tag-based quantitative proteomic approach was applied to screen the differentially expressed proteins (DEPs) between 3 cases of ESCC tumor samples and paired normal tissues. Then the DEPs were validated in human ESCC tissues using western blot assays and GEPIA database respectively. The expression level of LTBP1 was detected in 152 cases of ESCC tissues and paired normal tissues. Loss-of-function assays were performed to detect the function of LTBP1 in vivo and in vitro. Immunofluorescence and Western blot assays were used to detect the expression of apoptosis, epithelial-mesenchymal transition (EMT) and cancer-associated fibroblasts (CAFs) markers. RESULTS A total of 39 proteins were screened to be up-regulated (ratio > 2.0) in all three ESCC tissues. The results of immunohistochemistry assays indicated that the expression level of LTBP1 was higher in ESCC tissues than that in paired normal tissues (p < 0.001). Overexpression of LTBP1 was positively associated with lymphatic metastasis in ESCC (p = 0.002). Down-regulation of LTBP1 inhibited the invasion and migration as well as metastatic abilities in vitro and in vivo. It was also observed the down-regulation of LTBP1 not only decreased the mesenchymal phenotypes but also inhibited TGFβ-induced EMT in ESCC cells. We further found that down-regulation of LTBP1 enhanced ESCC cells' sensitivity to 5-FU treatment. Inhibition of LTBP1 expression could also attenuate induction of CAFs transformation and restrain fibroblast express fibronectin (FN1) in ESCC cells. CONCLUSION Overexpression of LTBP1 was associated with lymph node metastasis in ESCC. Our results indicated that LTBP1 not only increased the malignant behaviors of ESCC cells but also induced EMT and CAFs transformation. Our studies suggested an oncogenic role of LTBP1 in ESCC progression and it may serve as a potential therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Rui Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Ping Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Xin Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Ruxia Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Xiaoyu Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Zhaoji Su
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Chang Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China.
| |
Collapse
|
17
|
Fu Y, Wu Z, Guo Z, Chen L, Ma Y, Wang Z, Xiao W, Wang Y. Systems-level analysis identifies key regulators driving epileptogenesis in temporal lobe epilepsy. Genomics 2020; 112:1768-1780. [DOI: 10.1016/j.ygeno.2019.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023]
|
18
|
Kaminska B, Cyranowski S. Recent Advances in Understanding Mechanisms of TGF Beta Signaling and Its Role in Glioma Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:179-201. [PMID: 32034714 DOI: 10.1007/978-3-030-30651-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase (MAPK) cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. While genetic alterations in genes related to TGF-β signaling are relatively rare in gliomas, the altered expression of those genes is a frequent event. The increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis in many ways: by direct support of tumor growth, by maintaining self-renewal of glioma initiating stem cells and inhibiting anti-tumor immunity. Glioma initiating cells are dedifferentiated cells that retain many stem cell-like properties, play a role in tumor initiation and contribute to its recurrence. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show a great promise as novel, potential anti-tumor therapeutics.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland.
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
19
|
Qin J, Sun Y, Liu S, Zhao R, Zhang Q, Pang W. MicroRNA-323-3p promotes myogenesis by targeting Smad2. J Cell Biochem 2019; 120:18751-18761. [PMID: 31218742 DOI: 10.1002/jcb.29187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/28/2019] [Indexed: 11/12/2022]
Abstract
Skeletal muscle is an important and complex organ with multiple biological functions in humans and animals. Proliferation and differentiation of myoblasts are the key steps during the development of skeletal muscle. MicroRNA (miRNA) is a class of 21-nucleotide noncoding RNAs regulating gene expression by combining with the 3'-untranslated region of target messenger RNA. Many studies in recent years have suggested that miRNAs play a critical role in myogenesis. Through high-throughput sequencing, we found that miR-323-3p showed significant changes in the longissimus dorsi muscle of Rongchang pigs in different age groups. In this study, we discovered that overexpression of miR-323-3p repressed myoblast proliferation and promoted differentiation, whereas the inhibitor of miR-323-3p displayed the opposite results. Furthermore, we predicted Smad2 as the target gene of miR-323-3p and found that miR-323-3p directly modulated the expression level of Smad2. Then luciferase reporter assays verified that Smad2 was a target gene of miR-323-3p during the differentiation of myoblasts. These findings reveal that miR-323-3p is a positive regulator of myogenesis by targeting Smad2. This provides a novel mechanism of miRNAs in myogenesis.
Collapse
Affiliation(s)
- Jin Qin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunmei Sun
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuge Liu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Zhao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiyue Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Bi L, Lwigale P. Transcriptomic analysis of differential gene expression during chick periocular neural crest differentiation into corneal cells. Dev Dyn 2019; 248:583-602. [PMID: 31004457 DOI: 10.1002/dvdy.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multipotent neural crest cells (NCC) contribute to the corneal endothelium and keratocytes during ocular development, but the molecular mechanisms that underlie this process remain poorly understood. We performed RNA-Seq analysis on periocular neural crest (pNC), corneal endothelium, and keratocytes and validated expression of candidate genes by in situ hybridization. RESULTS RNA-Seq profiling revealed enrichment of genes between pNC and neural crest-derived corneal cells, which correspond to pathways involved in focal adhesion, ECM-receptor interaction, cell adhesion, melanogenesis, and MAPK signaling. Comparisons of candidate NCC genes to ocular gene expression revealed that majority of the NCC genes are expressed in the pNC, but they are either differentially expressed or maintained during corneal development. Several genes involved in retinoic acid, transforming growth factor-β, and Wnt signaling pathways and their modulators are also differentially expressed. We identified differentially expressed transcription factors as potential downstream candidates that may instruct expression of genes involved in establishing corneal endothelium and keratocyte identities. CONCLUSION Combined, our data reveal novel changes in gene expression profiles as pNC differentiate into highly specialized corneal endothelial cells and keratocytes. These data serve as platform for further analyses of the molecular networks involved in NCC differentiation into corneal cells and provide insights into genes involved in corneal dysgenesis and adult diseases.
Collapse
Affiliation(s)
- Lian Bi
- BioSciences, Rice University, Houston, Texas
| | | |
Collapse
|
21
|
Shidal C, Singh NP, Nagarkatti P, Nagarkatti M. MicroRNA-92 Expression in CD133 + Melanoma Stem Cells Regulates Immunosuppression in the Tumor Microenvironment via Integrin-Dependent Activation of TGFβ. Cancer Res 2019; 79:3622-3635. [PMID: 31015227 DOI: 10.1158/0008-5472.can-18-2659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022]
Abstract
In addition to being refractory to treatment, melanoma cancer stem cells (CSC) are known to suppress host antitumor immunity, the underlying mechanisms of which need further elucidation. In this study, we established a novel role for miR-92 and its associated gene networks in immunosuppression. CSCs were isolated from the B16-F10 murine melanoma cell line based on expression of the putative CSC marker CD133 (Prominin-1). CD133+ cells were functionally distinct from CD133- cells and showed increased proliferation in vitro and enhanced tumorigenesis in vivo. CD133+ CSCs also exhibited a greater capacity to recruit immunosuppressive cell types during tumor formation, including FoxP3+ Tregs, myeloid-derived suppressor cells (MDSC), and M2 macrophages. Using microarray technology, we identified several miRs that were significantly downregulated in CD133+ cells compared with CD133- cells, including miR-92. Decreased expression of miR-92 in CSCs led to higher expression of target molecules integrin αV and α5 subunits, which, in turn, enhanced TGFβ activation, as evidenced by increased phosphorylation of SMAD2. CD133+ cells transfected with miR-92a mimic and injected in vivo showed significantly decreased tumor burden, which was associated with reduced immunosuppressive phenotype intratumorally. Using The Cancer Genome Atlas database of patients with melanoma, we also noted a positive correlation between integrin α5 and TGFβ1 expression levels and an inverse association between miR-92 expression and integrin alpha subunit expression. Collectively, this study suggests that a miR-92-driven signaling axis involving integrin activation of TGFβ in CSCs promotes enhanced tumorigenesis through induction of intratumoral immunosuppression. SIGNIFICANCE: CD133+ cells play an active role in suppressing melanoma antitumor immunity by modulating miR-92, which increases influx of immunosuppressive cells and TGFβ1 expression.
Collapse
Affiliation(s)
- Chris Shidal
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina.
| |
Collapse
|
22
|
Wiberg A, Ng M, Schmid AB, Smillie RW, Baskozos G, Holmes MV, Künnapuu K, Mägi R, Bennett DL, Furniss D. A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome. Nat Commun 2019; 10:1030. [PMID: 30833571 PMCID: PMC6399342 DOI: 10.1038/s41467-019-08993-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Carpal tunnel syndrome (CTS) is a common and disabling condition of the hand caused by entrapment of the median nerve at the level of the wrist. It is the commonest entrapment neuropathy, with estimates of prevalence ranging between 5-10%. Here, we undertake a genome-wide association study (GWAS) of an entrapment neuropathy, using 12,312 CTS cases and 389,344 controls identified in UK Biobank. We discover 16 susceptibility loci for CTS with p < 5 × 10-8. We identify likely causal genes in the pathogenesis of CTS, including ADAMTS17, ADAMTS10 and EFEMP1, and using RNA sequencing demonstrate expression of these genes in surgically resected tenosynovium from CTS patients. We perform Mendelian randomisation and demonstrate a causal relationship between short stature and higher risk of CTS. We suggest that variants within genes implicated in growth and extracellular matrix architecture contribute to the genetic predisposition to CTS by altering the environment through which the median nerve transits.
Collapse
Affiliation(s)
- Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Robert W Smillie
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, OX3 7LF, UK.,Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - K Künnapuu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - R Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23 B, 51010, Tartu, Estonia
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK. .,Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
23
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Powell J, Mota F, Steadman D, Soudy C, Miyauchi JT, Crosby S, Jarvis A, Reisinger T, Winfield N, Evans G, Finniear A, Yelland T, Chou YT, Chan AWE, O'Leary A, Cheng L, Liu D, Fotinou C, Milagre C, Martin JF, Jia H, Frankel P, Djordjevic S, Tsirka SE, Zachary IC, Selwood DL. Small Molecule Neuropilin-1 Antagonists Combine Antiangiogenic and Antitumor Activity with Immune Modulation through Reduction of Transforming Growth Factor Beta (TGFβ) Production in Regulatory T-Cells. J Med Chem 2018; 61:4135-4154. [PMID: 29648813 PMCID: PMC5957473 DOI: 10.1021/acs.jmedchem.8b00210] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We
report the design, synthesis, and biological evaluation of some
potent small-molecule neuropilin-1 (NRP1) antagonists. NRP1 is implicated
in the immune response to tumors, particularly in Treg cell fragility,
required for PD1 checkpoint blockade. The design of these compounds
was based on a previously identified compound EG00229. The design
of these molecules was informed and supported by X-ray crystal structures.
Compound 1 (EG01377) was identified as having properties
suitable for further investigation. Compound 1 was then
tested in several in vitro assays and was shown to have antiangiogenic,
antimigratory, and antitumor effects. Remarkably, 1 was
shown to be selective for NRP1 over the closely related protein NRP2.
In purified Nrp1+, FoxP3+, and CD25+ populations of Tregs from mice, 1 was able to block
a glioma-conditioned medium-induced increase in TGFβ production.
This comprehensive characterization of a small-molecule NRP1 antagonist
provides the basis for future in vivo studies.
Collapse
Affiliation(s)
- Jonathan Powell
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Filipa Mota
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - David Steadman
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - Christelle Soudy
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - Jeremy T Miyauchi
- Department of Pharmacology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Stuart Crosby
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Ashley Jarvis
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Tifelle Reisinger
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Natalie Winfield
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Graham Evans
- Park Place Research Ltd , Unit 5/6 Willowbrook Technology Park, Llandogo Road, St. Mellons , Cardiff CF3 0EF , U.K
| | - Aled Finniear
- Park Place Research Ltd , Unit 5/6 Willowbrook Technology Park, Llandogo Road, St. Mellons , Cardiff CF3 0EF , U.K
| | | | - Yi-Tai Chou
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - A W Edith Chan
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - Andrew O'Leary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Lili Cheng
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Dan Liu
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Constantina Fotinou
- Institute of Structural and Molecular Biology , University College London , Gower Street , London WC1E 6BT , U.K
| | - Carla Milagre
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - John F Martin
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Haiyan Jia
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Paul Frankel
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Snezana Djordjevic
- Institute of Structural and Molecular Biology , University College London , Gower Street , London WC1E 6BT , U.K
| | - Stella E Tsirka
- Department of Pharmacology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - David L Selwood
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| |
Collapse
|
25
|
Chowdhury FA, Hossain MK, Mostofa AGM, Akbor MM, Bin Sayeed MS. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4010629. [PMID: 29651429 PMCID: PMC5831880 DOI: 10.1155/2018/4010629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.
Collapse
Affiliation(s)
- Fabliha Ahmed Chowdhury
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamal Hossain
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. G. M. Mostofa
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maruf Mohammad Akbor
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | | |
Collapse
|
26
|
Li H, Venkatraman L, Narmada BC, White JK, Yu H, Tucker-Kellogg L. Computational analysis reveals the coupling between bistability and the sign of a feedback loop in a TGF-β1 activation model. BMC SYSTEMS BIOLOGY 2017; 11:136. [PMID: 29322934 PMCID: PMC5763301 DOI: 10.1186/s12918-017-0508-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bistable behaviors are prevalent in cell signaling and can be modeled by ordinary differential equations (ODEs) with kinetic parameters. A bistable switch has recently been found to regulate the activation of transforming growth factor-β1 (TGF-β1) in the context of liver fibrosis, and an ordinary differential equation (ODE) model was published showing that the net activation of TGF-β1 depends on the balance between two antagonistic sub-pathways. RESULTS Through modeling the effects of perturbations that affect both sub-pathways, we revealed that bistability is coupled with the signs of feedback loops in the model. We extended the model to include calcium and Krüppel-like factor 2 (KLF2), both regulators of Thrombospondin-1 (TSP1) and Plasmin (PLS). Increased levels of extracellular calcium, which alters the TSP1-PLS balance, would cause high levels of TGF-β1, resembling a fibrotic state. KLF2, which suppresses production of TSP1 and plasminogen activator inhibitor-1 (PAI1), would eradicate bistability and preclude the fibrotic steady-state. Finally, the loop PLS - TGF-β1 - PAI1 had previously been reported as negative feedback, but the model suggested a stronger indirect effect of PLS down-regulating PAI1 to produce positive (double-negative) feedback in a fibrotic state. Further simulations showed that activation of KLF2 was able to restore negative feedback in the PLS - TGF-β1 - PAI1 loop. CONCLUSIONS Using the TGF-β1 activation model as a case study, we showed that external factors such as calcium or KLF2 can induce or eradicate bistability, accompanied by a switch in the sign of a feedback loop (PLS - TGF-β1 - PAI1) in the model. The coupling between bistability and positive/negative feedback suggests an alternative way of characterizing a dynamical system and its biological implications.
Collapse
Affiliation(s)
- Huipeng Li
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
| | - Lakshmi Venkatraman
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
| | - Balakrishnan Chakrapani Narmada
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669 Singapore
| | - Jacob K. White
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Hanry Yu
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456 Singapore
- Department of Physiology, National University of Singapore, Singapore, 117597 Singapore
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, 138602 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669 Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Lisa Tucker-Kellogg
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Center for Computational Biology, Duke-NUS Medical School, Singapore, 169857 Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857 Singapore
| |
Collapse
|
27
|
Effect of adenovirus-mediated TGF-β1 gene transfer on the function of rabbit articular chondrocytes. J Orthop Sci 2017; 22:149-155. [PMID: 27876193 DOI: 10.1016/j.jos.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Articular chondrocytes are important in maintaining normal cartilage tissue and preventing articular degeneration. Exogenous genes have previously been transduced into articular cells using adenoviral vectors to contribute to the maintenance of cell function. This study aimed to transfer the transforming growth factor-β1 gene (TGF-β1) into rabbit articular chondrocytes by adenovirus infection to elucidate its effects on cell function. METHODS Rabbit chondrocytes were isolated and cultured both as monolayers and three-dimensional culture systems. To achieve overexpression, TGF-β1 was transfected by adenovirus infection, using the LacZ gene as a control. TGF-β1 protein expression was analyzed by western blotting. Quantitative DNA fluorometric analysis evaluated cell proliferation, and quantitative reverse transcriptase PCR determined the mRNA expression of related chondrocyte marker genes. Western blotting and glycosaminoglycan quantitative testing were used to examine changes in extracellular matrix components. RESULTS TGF-β1 protein expression was found to increase in Adv-TGF-β1-transduced cells, reaching a maximum after chondrocytes had been cultured for 4 weeks. Adv-hTGF-β1 transduction altered chondrocyte morphology from fibrocyte-like long spindle-shaped to round or oval. TGF-β1-transduced cells showed an increase in DNA synthesis, glycosaminoglycan content, and increased aggrecan and collagen II protein expression, while collagen I was significantly decreased. Moreover, TGF-β1 overexpression significantly promoted the mRNA expression of the chondrogenic gene SOX9, and inhibited that of the hypertrophic marker COL10A1 and the mineralization marker MMP-13. CONCLUSIONS TGF-β1 overexpression positively improved the phenotype, function, and proliferation of chondrocytes, even after several generations.
Collapse
|
28
|
Paolillo M, Serra M, Schinelli S. Integrins in glioblastoma: Still an attractive target? Pharmacol Res 2016; 113:55-61. [PMID: 27498157 DOI: 10.1016/j.phrs.2016.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023]
Abstract
Integrin-mediated signaling pathways have been found to promote the invasiveness and survival of glioma cells by modifying the brain microenvironment to support the formation of the tumoral niche. A variety of cells in the niche express integrin receptors, including tumor-associated macrophages, fibroblasts, endothelial cells and pericytes. In particular, RGD-binding integrins have been demonstrated to have an important role in the epithelial-mesenchymal transition process, considered the first step in the infiltration of tissue by cancer cells and molecular markers of which have been found in glioma cells. In simultaneous research, Small Molecule Integrin Antagonists (SMIA) yielded initially promising results in in vitro and in vivo studies, leading to clinical trials to test their safety and efficacy in combination with other anticancer drugs in the treatment of several tumor types. The initially high expectations, especially because of their antiangiogenic activity, which appeared to be a winning strategy against GBM, were not confirmed and this cast serious doubts on the real benefits to be gained from the use of SMIA for the treatment of cancer in humans. In this review, we provide an overview of recent findings concerning the functional roles of integrins, especially RGD-binding integrins, in the processes related to glioma cells survival and brain tissue infiltration. These findings disclose a new scenario in which recently developed SMIA might become useful tools to hinder glioblastoma cell dissemination.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Pavia, Italy.
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
29
|
Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, Cher L, Steinbach JP, Capper D, Specenier P, Rodon J, Cleverly A, Smith C, Gueorguieva I, Miles C, Guba SC, Desaiah D, Lahn MM, Wick W. A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol 2016; 18:1146-56. [PMID: 26902851 PMCID: PMC4933481 DOI: 10.1093/neuonc/now009] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The combination of galunisertib, a transforming growth factor (TGF)-β receptor (R)1 kinase inhibitor, and lomustine was found to have antitumor activity in murine models of glioblastoma. METHODS Galunisertib (300 mg/day) was given orally 14 days on/14 days off (intermittent dosing). Lomustine was given as approved. Patients were randomized in a 2:1:1 ratio to galunisertib + lomustine, galunisertib monotherapy, or placebo + lomustine. The primary objective was overall survival (OS); secondary objectives were safety, pharmacokinetics (PKs), and antitumor activity. RESULTS One hundred fifty-eight patients were randomized: galunisertib + lomustine (N = 79), galunisertib (N = 39), and placebo + lomustine (N = 40). Baseline characteristics were: male (64.6%), white (75.3%), median age 58 years, ECOG performance status (PS) 1 (63.3%), and primary glioblastoma (93.7%). The PKs of galunisertib were not altered with lomustine, and galunisertib had a median half-life of ∼8 hours. Median OS in months (95% credible interval [CrI]) for galunisertib + lomustine was 6.7 (range: 5.3-8.5), 8.0 (range: 5.7-11.7) for galunisertib alone, and 7.5 (range: 5.6-10.3) for placebo + lomustine. There was no difference in OS for patients treated with galunisertib + lomustine compared with placebo + lomustine [P (HR < 1) = 26%]. Median progression-free survival of ∼2 months was observed in all 3 arms. Among 8 patients with IDH1 mutation, 7 patients were treated with galunisertib (monotherapy or with lomustine); OS ranged from 4 to 17 months. Patients treated with galunisertib alone had fewer drug-related grade 3/4 adverse events (n = 34) compared with lomustine-treated patients (10% vs 26%). Baseline PS, post-discontinuation of bevacizumab, tumor size, and baseline levels of MDC/CCL22 were correlated with OS. CONCLUSIONS Galunisertib + lomustine failed to demonstrate improved OS relative to placebo + lomustine. Efficacy outcomes were similar in all 3 arms. CLINICAL TRIAL REGISTRATION NCT01582269, ClinicalTrials.gov.
Collapse
Affiliation(s)
- Alba A Brandes
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Antoine F Carpentier
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Santosh Kesari
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Juan M Sepulveda-Sanchez
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Helen R Wheeler
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Olivier Chinot
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Lawrence Cher
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Joachim P Steinbach
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - David Capper
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Pol Specenier
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Jordi Rodon
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Ann Cleverly
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Claire Smith
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Ivelina Gueorguieva
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Colin Miles
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Susan C Guba
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Durisala Desaiah
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Michael M Lahn
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Wolfgang Wick
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| |
Collapse
|
30
|
Admoni-Elisha L, Nakdimon I, Shteinfer A, Prezma T, Arif T, Arbel N, Melkov A, Zelichov O, Levi I, Shoshan-Barmatz V. Novel Biomarker Proteins in Chronic Lymphocytic Leukemia: Impact on Diagnosis, Prognosis and Treatment. PLoS One 2016; 11:e0148500. [PMID: 27078856 PMCID: PMC4831809 DOI: 10.1371/journal.pone.0148500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL) that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS) analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1), regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in CLL patients, as revealed from LC-HR-MS/MS, we could distinguish between patients in a stable disease state and those who would be later transferred to anti-cancer treatments. The over-expressed proteins can thus serve as potential biomarkers for early diagnosis, prognosis, new targets for CLL therapy, and treatment guidance of CLL, forming the basis for personalized therapy.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Chromatography, Liquid
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukocytes, Mononuclear/metabolism
- Male
- Prognosis
- Proteome/analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tandem Mass Spectrometry/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee Admoni-Elisha
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itay Nakdimon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Prezma
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Melkov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ori Zelichov
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itai Levi
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
31
|
Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS One 2016; 11:e0150471. [PMID: 26938996 PMCID: PMC4777439 DOI: 10.1371/journal.pone.0150471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/14/2016] [Indexed: 11/29/2022] Open
Abstract
The α8 integrin (Itga8) chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.
Collapse
|
32
|
Razavi SM, Lee KE, Jin BE, Aujla PS, Gholamin S, Li G. Immune Evasion Strategies of Glioblastoma. Front Surg 2016; 3:11. [PMID: 26973839 PMCID: PMC4773586 DOI: 10.3389/fsurg.2016.00011] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. Despite advances in surgery and chemoradiation, the survival of afflicted patients has not improved significantly in the past three decades. Immunotherapy has been heralded as a promising approach in treatment of various cancers; however, the immune privileged environment of the brain usually curbs the optimal expected response in central nervous system malignancies. In addition, GBM cells create an immunosuppressive microenvironment and employ various methods to escape immune surveillance. The purpose of this review is to highlight the strategies by which GBM cells evade the host immune system. Further understanding of these strategies and the biology of this tumor will pave the way for developing novel immunotherapeutic approaches for treatment of GBM.
Collapse
Affiliation(s)
- Seyed-Mostafa Razavi
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Karen E Lee
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Benjamin E Jin
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Parvir S Aujla
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Sharareh Gholamin
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
33
|
Nilsson G, Kannius-Janson M. Forkhead Box F1 promotes breast cancer cell migration by upregulating lysyl oxidase and suppressing Smad2/3 signaling. BMC Cancer 2016; 16:142. [PMID: 26908052 PMCID: PMC4763409 DOI: 10.1186/s12885-016-2196-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) increases cell migration and is implicated in cancer cell invasion and metastasis. We have previously described the involvement of the transcription factors, nuclear factor I-C2 (NFI-C2) and Forkhead box F1 (FoxF1), in the regulation of EMT and invasion during breast tumor progression. NFI-C2 counteracts these processes and FoxF1 is a directly repressed target of NFI-C2. FoxF1 induces EMT and invasiveness and enhances xenograft tumorigenicity in nude mice. Here we identify oppositely regulated targets of NFI-C2 and FoxF1 involved in these processes and further study a possible role for FoxF1 in tumorigenesis. Methods We used Affymetrix microarray to detect changes in the transcriptome of a mouse mammary epithelial cell line upon overexpression of NFI-C2 or FoxF1. To elucidate the effects and signaling events following FoxF1 overexpression we investigated in vitro invasion capacity and changes in transcription and protein expression resulting from RNAi and inhibitor treatment. Results The extracellular matrix enzyme lysyl oxidase (LOX) was negatively regulated by NFI-C2 and positively regulated by FoxF1, and upregulation of LOX following FoxF1 overexpression in mouse mammary epithelial cells increased in vitro cell invasion. In the nuclei of FoxF1-overexpressing cells, the phosphorylation of Smad2 decreased, while that of p38 increased. Depletion of LOX by RNAi enhanced phosphorylation of Smad2 by a focal adhesion kinase (FAK)-dependent mechanism. In addition, induced expression of FoxF1 in a non-malignant human mammary epithelial cell line showed that the increase in LOX transcription and the suppression of Smad2 activity are early effects of FoxF1. Conclusion These data show that FoxF1 enhances invasion in a LOX-dependent manner, is involved in the regulation of Smad2 signaling, and that FoxF1 overexpression ultimately leads to activation of p38 MAPK signaling. These findings provide new insights into the regulation of signaling pathways known to be important during breast tumor progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2196-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gisela Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 430, SE-405 30, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
34
|
Caballé-Serrano J, Sawada K, Miron RJ, Bosshardt DD, Buser D, Gruber R. Collagen barrier membranes adsorb growth factors liberated from autogenous bone chips. Clin Oral Implants Res 2016; 28:236-241. [PMID: 26818588 DOI: 10.1111/clr.12789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Collagen membranes serve as barriers to separate bone grafts from soft tissues. Bone grafts harvested with a bone scraper release growth factors activating transforming growth factor-β (TGF-β) signaling in mesenchymal cells. The aim of the present pilot study was to determine whether collagen membranes adsorb molecules from bone-conditioned medium (BCM) with the capacity to provoke the expression of TGF-β target genes in vitro. MATERIALS AND METHODS Collagen membranes were soaked in aqueous extracts from fresh and demineralized bone chips placed in cell culture medium. Recombinant human TGF-β1 served as control. Gingival fibroblasts were seeded onto the washed collagen membranes and evaluated for the expression of adrenomedullin, pentraxin 3, interleukin 11, and proteoglycan 4. Cell viability and morphology with phalloidin staining were also determined. RESULTS Incubation of collagen membranes with BCM for at least one minute caused fibroblasts to decrease the expression of adrenomedullin and pentraxin 3, and to increase the expression of interleukin 11 and proteoglycan 4. Four different membrane treatments - incubated with recombinant TGF-β1, pre-wetted with saline solution, exposed to UV light, and dry out and stored one week at room temperature - also provoked significant changes in gene expression. Likewise, conditioned medium from demineralized bone chips caused gene expression changes. BCM did not alter the viability or morphology of gingival fibroblasts. CONCLUSIONS These findings demonstrate that collagen membranes rapidly adsorb the TGF-β activity released from bone chips, a molecular process that might contribute to guided bone regeneration.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Kosaku Sawada
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Richard J Miron
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dieter D Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Zhang H, Zhu NX, Huang K, Cai BZ, Zeng Y, Xu YM, Liu Y, Yuan YP, Lin CM. iTRAQ-Based Quantitative Proteomic Comparison of Early- and Late-Passage Human Dermal Papilla Cell Secretome in Relation to Inducing Hair Follicle Regeneration. PLoS One 2016; 11:e0167474. [PMID: 27907131 PMCID: PMC5132394 DOI: 10.1371/journal.pone.0167474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 11/15/2016] [Indexed: 02/05/2023] Open
Abstract
Alopecia is an exceedingly prevalent problem that lacks effective therapy. Recently, research has focused on early-passage dermal papilla cells (DPCs), which have hair inducing activity both in vivo and in vitro. Our previous study indicated that factors secreted from early-passage DPCs contribute to hair follicle (HF) regeneration. To identify which factors are responsible for HF regeneration and why late-passage DPCs lose this potential, we collected 48-h-culture medium (CM) from both of passage 3 and 9 DPCs, and subcutaneously injected the DPC-CM into NU/NU mice. Passage 3 DPC-CM induced HF regeneration, based on the emergence of a white hair coat, but passage 9 DPC-CM did not. In order to identify the key factors responsible for hair induction, CM from passage 3 and 9 DPCs was analyzed by iTRAQ-based quantitative proteomic technology. We identified 1360 proteins, of which 213 proteins were differentially expressed between CM from early-passage vs. late-passage DPCs, including SDF1, MMP3, biglycan and LTBP1. Further analysis indicated that the differentially-expressed proteins regulated the Wnt, TGF-β and BMP signaling pathways, which directly and indirectly participate in HF morphogenesis and regeneration. Subsequently, we selected 19 proteins for further verification by multiple reaction monitoring (MRM) between the two types of CM. These results indicate DPC-secreted proteins play important roles in HF regeneration, with SDF1, MMP3, biglycan, and LTBP1 being potential key inductive factors secreted by dermal papilla cells in the regeneration of hair follicles.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ning-Xia Zhu
- Department of Cardiology, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Keng Huang
- Emergency Department, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Bo-Zhi Cai
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Zeng
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Liu
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan-Ping Yuan
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chang-Min Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
36
|
Ryan RE, Martin B, Mellor L, Jacob RB, Tawara K, McDougal OM, Oxford JT, Jorcyk CL. Oncostatin M binds to extracellular matrix in a bioactive conformation: implications for inflammation and metastasis. Cytokine 2015; 72:71-85. [PMID: 25622278 DOI: 10.1016/j.cyto.2014.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
Abstract
Oncostatin M (OSM) is an interleukin-6-like inflammatory cytokine reported to play a role in a number of pathological processes including cancer. Full-length OSM is expressed as a 26 kDa protein that can be proteolytically processed into 24 kDa and 22 kDa forms via removal of C-terminal peptides. In this study, we examined both the ability of OSM to bind to the extracellular matrix (ECM) and the activity of immobilized OSM on human breast carcinoma cells. OSM was observed to bind to ECM proteins collagen types I and XI, laminin, and fibronectin in a pH-dependent fashion, suggesting a role for electrostatic bonds that involves charged amino acids of both the ECM and OSM. The C-terminal extensions of 24 kDa and 26 kDa OSM, which contains six and thirteen basic amino acids, respectively, enhanced electrostatic binding to ECM at pH 6.5-7.5 when compared to 22 kDa OSM. The highest levels of OSM binding to ECM, though, were observed at acidic pH 5.5, where all forms of OSM bound to ECM proteins to a similar extent. This indicates additional electrostatic binding properties independent of the OSM C-terminal extensions. The reducing agent dithiothreitol also inhibited the binding of OSM to ECM suggesting a role for disulfide bonds in OSM immobilization. OSM immobilized to ECM was protected from cleavage by tumor-associated proteases and maintained activity following incubation at acidic pH for extended periods of time. Importantly, immobilized OSM remained biologically active and was able to induce and sustain the phosphorylation of STAT3 in T47D and ZR-75-1 human breast cancer cells over prolonged periods, as well as increase levels of STAT1 and STAT3 protein expression. Immobilized OSM also induced epithelial-mesenchymal transition-associated morphological changes in T47D cells. Taken together, these data indicate that OSM binds to ECM in a bioactive state that may have important implications for the development of chronic inflammation and tumor metastasis.
Collapse
Affiliation(s)
- Randall E Ryan
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Bryan Martin
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States; Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Liliana Mellor
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Reed B Jacob
- Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Ken Tawara
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Owen M McDougal
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States; Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Julia Thom Oxford
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Cheryl L Jorcyk
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States.
| |
Collapse
|
37
|
Rodon J, Carducci MA, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly AL, Pillay NS, Desaiah D, Estrem ST, Paz-Ares L, Holdhoff M, Blakeley J, Lahn MM, Baselga J. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 2014; 21:553-60. [PMID: 25424852 DOI: 10.1158/1078-0432.ccr-14-1380] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE TGFβ signaling plays a key role in tumor progression, including malignant glioma. Small-molecule inhibitors such as LY2157299 monohydrate (LY2157299) block TGFβ signaling and reduce tumor progression in preclinical models. To use LY2157299 in the treatment of malignancies, we investigated its properties in a first-in-human dose (FHD) study in patients with cancer. EXPERIMENTAL DESIGN Sixty-five patients (58 with glioma) with measurable and progressive malignancies were enrolled. Oral LY2157299 was given as a split dose morning and evening on an intermittent schedule of 14 days on and 14 days off (28-day cycle). LY2157299 monotherapy was studied in dose escalation (part A) first and then evaluated in combination with standard doses of lomustine (part B). Safety was assessed using Common Terminology Criteria for Adverse Events version 3.0, echocardiography/Doppler imaging, serum troponin I, and brain natriuretic peptide (BNP) levels. Antitumor activity was assessed by RECIST and Macdonald criteria. RESULTS In part A, 16.6% (5/30) and in part B, 7.7% (2/26) of evaluable patients with glioma had either a complete (CR) or a partial response (PR). In both parts, 15 patients with glioma had stable disease (SD), 5 of whom had SD ≥ 6 cycles of treatment. Therefore, clinical benefit (CR+PR+SD ≥ 6 cycles) was observed in 12 of 56 patients with glioma (21.4%). LY2157299 was safe, with no cardiac adverse events. CONCLUSIONS On the basis of the safety, pharmacokinetics, and antitumor activity in patients with glioma, the intermittent administration of LY2157299 at 300 mg/day is safe for future clinical investigation.
Collapse
Affiliation(s)
- Jordi Rodon
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain.
| | | | | | - Analia Azaro
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Emiliano Calvo
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joan Seoane
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Irene Braña
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elisabet Sicart
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | - Jaishri Blakeley
- Department of Neurology/Neurosurgery/and Oncology, Johns Hopkins University, Baltimore, Maryland
| | | | - Jose Baselga
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Aryl hydrocarbon receptor (AhR) modulates cockroach allergen-induced immune responses through active TGFβ1 release. Mediators Inflamm 2014; 2014:591479. [PMID: 24795504 PMCID: PMC3984807 DOI: 10.1155/2014/591479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Aryl hydrocarbon receptor (AhR), a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE) treated human lung fibroblasts (WI-38) was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1) in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.
Collapse
|
39
|
Lee MJ. Heparin inhibits activation of latent transforming growth factor-β1. Pharmacology 2013; 92:238-44. [PMID: 24247664 DOI: 10.1159/000355837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022]
Abstract
AIM Besides acting as an anticoagulant, heparin has antifibrotic effects. Transforming growth factor-β1 (TGF-β1) is secreted from cells as latent TGF-β1 (LTGF-β1). LTGF-β1 consists of TGF-β1 and latency-associated peptide (LAP). To be biologically active, TGF-β1 has to be released from LAP. Heparin binds to LAP as well as TGF-β1. This study was performed to explore the biological effect of the interaction of heparin with LTGF-β1. MATERIALS AND METHODS TGF-β1 was measured by ELISA. Furin-like proprotein convertase activity was assayed using the fluorogenic substrate, Pyr-Arg-Thr-Lys-Arg-AMC. RESULTS Heparin did not interfere with the receptor binding of TGF-β1, but inhibited furin-like proprotein convertase-mediated activation of platelet LTGF-β1. This was not by inhibition of the enzyme because heparin did not inhibit the activity of furin-like proprotein convertase. In addition, heparin inhibited acid activations of recombinant small LTGF-β1, platelet LTGF-β1 and LTGF-β1s secreted in the supernatant of cultured cells. Low-molecular-weight heparins, including dalteparin, enoxaparin and nadroparin, also had inhibitory effects on furin-like proprotein convertase-mediated or acid activation of platelet LTGF-β1. CONCLUSION The findings suggest that heparin renders LTGF-β1 resistant to activation, possibly by binding simultaneously to TGF-β1 and LAP. Inhibition of LTGF-β1 activation by heparin may in part account for its antifibrotic effects.
Collapse
Affiliation(s)
- Mee Jeong Lee
- Department of Pediatrics, College of Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
40
|
Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology 2013; 270:1-2. [PMID: 24056404 DOI: 10.1148/radiol.13130078] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To perform a multilevel radiogenomics study to elucidate the glioblastoma multiforme (GBM) magnetic resonance (MR) imaging radiogenomic signatures resulting from changes in messenger RNA (mRNA) expression and DNA copy number variation (CNV). MATERIALS AND METHODS Radiogenomic analysis was performed at MR imaging in 23 patients with GBM in this retrospective institutional review board-approved HIPAA-compliant study. Six MR imaging features-contrast enhancement, necrosis, contrast-to-necrosis ratio, infiltrative versus edematous T2 abnormality, mass effect, and subventricular zone (SVZ) involvement-were independently evaluated and correlated with matched genomic profiles (global mRNA expression and DNA copy number profiles) in a significant manner that also accounted for multiple hypothesis testing by using gene set enrichment analysis (GSEA), resampling statistics, and analysis of variance to gain further insight into the radiogenomic signatures in patients with GBM. RESULTS GSEA was used to identify various oncogenic pathways with MR imaging features. Correlations between 34 gene loci were identified that showed concordant variations in gene dose and mRNA expression, resulting in an MR imaging, mRNA, and CNV radiogenomic association map for GBM. A few of the identified gene-to-trait associations include association of the contrast-to-necrosis ratio with KLK3 and RUNX3; association of SVZ involvement with Ras oncogene family members, such as RAP2A, and the metabolic enzyme TYMS; and association of vasogenic edema with the oncogene FOXP1 and PIK3IP1, which is a member of the PI3K signaling network. CONCLUSION Construction of an MR imaging, mRNA, and CNV radiogenomic association map has led to identification of MR traits that are associated with some known high-grade glioma biomarkers and association with genomic biomarkers that have been identified for other malignancies but not GBM. Thus, the traits and genes identified on this map highlight new candidate radiogenomic biomarkers for further evaluation in future studies.
Collapse
Affiliation(s)
- Neema Jamshidi
- From the Department of Radiological Sciences, UCLA School of Medicine, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721 (N.J., M.D.K.); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, Calif (M.D.); and Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Ala (M.B.)
| | | | | | | |
Collapse
|
41
|
Brown KJ, Seol H, Pillai DK, Sankoorikal BJ, Formolo CA, Mac J, Edwards NJ, Rose MC, Hathout Y. The human secretome atlas initiative: implications in health and disease conditions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2454-61. [PMID: 23603790 DOI: 10.1016/j.bbapap.2013.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/26/2013] [Accepted: 04/11/2013] [Indexed: 01/24/2023]
Abstract
Proteomic analysis of human body fluids is highly challenging, therefore many researchers are redirecting efforts toward secretome profiling. The goal is to define potential biomarkers and therapeutic targets in the secretome that can be traced back in accessible human body fluids. However, currently there is a lack of secretome profiles of normal human primary cells making it difficult to assess the biological meaning of current findings. In this study we sought to establish secretome profiles of human primary cells obtained from healthy donors with the goal of building a human secretome atlas. Such an atlas can be used as a reference for discovery of potential disease associated biomarkers and eventually novel therapeutic targets. As a preliminary study, secretome profiles were established for six different types of human primary cell cultures and checked for overlaps with the three major human body fluids including plasma, cerebrospinal fluid and urine. About 67% of the 1054 identified proteins in the secretome of these primary cells occurred in at least one body fluid. Furthermore, comparison of the secretome profiles of two human glioblastoma cell lines to this new human secretome atlas enabled unambiguous identification of potential brain tumor biomarkers. These biomarkers can be easily monitored in different body fluids using stable isotope labeled standard proteins. The long term goal of this study is to establish a comprehensive online human secretome atlas for future use as a reference for any disease related secretome study. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Kristy J Brown
- Center for Genetic Medicine Research, Children's National Medical Center, Washington DC 20010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
He S, Deng J, Li G, Wang B, Cao Y, Tu Y. Down-regulation of Nedd4L is Associated with the Aggressive Progression and Worse Prognosis of Malignant Glioma. Jpn J Clin Oncol 2012; 42:196-201. [DOI: 10.1093/jjco/hyr195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Farias-Eisner G, Bank AM, Hwang BY, Appelboom G, Piazza MA, Bruce SS, Sander Connolly E. Glioblastoma biomarkers from bench to bedside: advances and challenges. Br J Neurosurg 2011; 26:189-94. [PMID: 22176646 DOI: 10.3109/02688697.2011.629698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour, with few available therapies providing significant improvements in mortality. Biomarkers, which are defined by the National Institutes of Health as 'characteristics that are objectively measured and evaluated as indicators of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention', have the potential to play valuable roles in the diagnosis and treatment of GBM. Although GBM biomarker research is still in its early stages because of the tumour's complex pathophysiology, a number of potential markers have been identified which can be measured in either brain tissue or blood serum. In conjunction with other clinical data, particularly neuroimaging modalities such as MRI, these proteins could contribute to the clinical management of GBM by helping to classify tumours, predict prognosis and assess treatment response. In this article, we review the current understanding of GBM pathophysiology and recent advances in GBM biomarker research, and discuss the potential clinical implications of promising biomarkers. A better understanding of GBM pathophysiology will allow researchers and clinicians to identify optimal biomarkers and methods of interpretation, leading to advances in tumour classification, prognosis prediction and treatment assessment.
Collapse
Affiliation(s)
- Gina Farias-Eisner
- Department of Neurological Surgery, Cerebrovascular Lab, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
45
|
Leibovici J, Itzhaki O, Huszar M, Sinai J. Targeting the tumor microenvironment by immunotherapy: part 2. Immunotherapy 2011; 3:1385-408. [DOI: 10.2217/imt.11.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer therapy was traditionally centered on the neoplastic cells. This included mainly surgery, radiation, and chemotherapy, in some cases hormone therapy and to a lesser extent immunotherapy – all traditionally targeted to the highly proliferating mutated tumor cells. In view of our present understanding of the powerfull influence of the tumor microenvironment (TME) on cancer behavior and response – and lack of response – to treatment, this previously ignored constituent of cancer now has to be considered as an important, even indispensable target for therapy. The TME may be targeted both to its immune and to its nonimmune components. The various immune evasion elements of the TME should be targeted as well.
Collapse
Affiliation(s)
| | - Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Monica Huszar
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Judith Sinai
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
46
|
Transforming growth factor-beta2 utilizes the canonical Smad-signaling pathway to regulate tissue transglutaminase expression in human trabecular meshwork cells. Exp Eye Res 2011; 93:442-51. [PMID: 21722634 DOI: 10.1016/j.exer.2011.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/04/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022]
Abstract
Transforming growth factor-beta2 (TGF-β2) is elevated in the aqueous humor of patients with glaucoma. This growth factor is known to increase extracellular matrix (ECM) deposition in the trabecular meshwork (TM) as well as increase intraocular pressure (IOP) in perfused human cultured anterior eye segments. In addition overexpression of TGF-β2 in the mouse TM leads to elevated IOP. Exogenous TGF-β2 also increases tissue transglutaminase (TGM2) protein levels and enzyme activity in TM cells. TGM2 is a calcium-dependent enzyme that mediates cross-linking of ECM proteins, thus making ECM proteins resistant to enzymatic degradation and physical breakdown. We have investigated the signaling pathway by which TGF-β2 induces TGM2 in human TM cells. Primary cultures of human TM cells (N = 6) were treated for 48 h with TGF-β2 (0-10 ng/ml) in serum-free medium. TGM2 enzyme activity differences between non-treated and TGF-β2 treated TM cells were studied using a biotin cadaverine assay. Endogenous TGF-β2 protein levels were examined in normal trabecular meshwork (NTM) and glaucomatous trabecular meshwork (GTM) cell strains. Immunohistochemistry was used to evaluate the expression and co-localization of TGF-β2 and TGM2 in NTM and GTM tissues. Activation of Smad3 signaling pathway was evaluated by western immunoblot analysis using phospho-specific antibodies following exogenous TGF-β2 treatment. Pharmacological specific inhibitor of Smad3 (SIS3) and short interfering (si)RNAs were used to suppress Smad3 activity and CTGF gene expression respectively. Endogenous TGF-β2 levels were significantly elevated in cultured GTM cells (p < 0.05) when compared to NTM cells. Immunohistochemistry studies also demonstrated elevated expression and co-localization of both TGF-β2 and TGM2 in glaucoma human TM tissues. Exogenous TGF-β2 increased both TGM2 protein levels and enzyme activity in TM cells. Phosphorylation of Smad3 was stimulated in TM cell strains by exogenous TGF-β2. TGF-β2 induction of TGM2 was not inhibited with selective siRNA knockdown of CTGF. In contrast, a specific inhibitor of Smad3 (SIS3) and siRNA knockdown of Smad3 (p < 0.05) suppressed TGF-β2 induction of TGM2. This study demonstrated that TGF-β2 induction of TGM2 can be mediated via the canonical Smad-signaling pathway but does not appear to involve CTGF as a downstream mediator. Regulation of the Smad-signaling pathway in the TM may be useful in the therapy for glaucoma associated with aberrant TGF-β2 signaling.
Collapse
|
47
|
Dogar AM, Towbin H, Hall J. Suppression of latent transforming growth factor (TGF)-beta1 restores growth inhibitory TGF-beta signaling through microRNAs. J Biol Chem 2011; 286:16447-58. [PMID: 21402698 PMCID: PMC3091250 DOI: 10.1074/jbc.m110.208652] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/09/2011] [Indexed: 12/19/2022] Open
Abstract
Cancer cells secreting excess latent TGF-β are often resistant to TGF-β induced growth inhibition. We observed that RNAi against TGF-β1 led to apoptotic death in such cell lines with features that were, paradoxically, reminiscent of TGF-β signaling activity and that included transiently enhanced SMAD2 and AKT phosphorylation. A comprehensive search in Hela cells for potential microRNA drivers of this mechanism revealed that RNAi against TGF-β1 led to induction of pro-apoptotic miR-34a and to a globally decreased oncomir expression. The reduced levels of the oncomirs miR-18a and miR-24 accounted for the observed derepression of two TGF-β1 processing factors, thrombospondin-1, and furin, respectively. Our data suggest a novel mechanism in which latent TGF-β1, thrombospondin 1, and furin form a microRNA-mediated regulatory feedback loop. For cells with high levels of latent TGF-β, this provides a potentially widespread mechanism of escape from TGF-β-mediated growth arrest at the earliest point in the signaling pathway, TGF-β processing.
Collapse
Affiliation(s)
- Afzal M. Dogar
- From the Department of Chemistry and Applied Biosciences, Institute
of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Harry Towbin
- From the Department of Chemistry and Applied Biosciences, Institute
of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jonathan Hall
- From the Department of Chemistry and Applied Biosciences, Institute
of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
48
|
Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Köhle C, Wick W, Schwarz M, Weller M, Tritschler I. Aryl hydrocarbon receptor inhibition downregulates the TGF-β/Smad pathway in human glioblastoma cells. Oncogene 2009; 28:2593-605. [DOI: 10.1038/onc.2009.104] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|