1
|
Fines C, McCarthy H, Buckley N. The search for a TNBC vaccine: the guardian vaccine. Cancer Biol Ther 2025; 26:2472432. [PMID: 40089851 PMCID: PMC11913391 DOI: 10.1080/15384047.2025.2472432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Nearly 20 million people are diagnosed with cancer each year with breast cancer being the most common among women. Triple negative breast cancer (TNBC), defined by its no/low expression of ER and PR and lack of amplification of HER2, makes up 15-20% of all breast cancer cases. While patients overall have a higher response to chemotherapy, this subgroup is associated with the lowest survival rate indicating significant clinical and molecular heterogeneity demanding alternate treatment options. Therefore, new therapies have been explored, with a large focus on utilizing the immune system. A whole host of immunotherapies have been studied including immune checkpoint inhibitors, now standard of care for eligible patients, and possibly the most exciting and promising is that of a TNBC vaccine. While currently there are no approved TNBC vaccines, this review highlights many promising studies and points to an antigen, p53, which we believe is highly relevant for TNBC.
Collapse
Affiliation(s)
- Cory Fines
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Chai D, Wang X, Fan C, Wang J, Lim JM, Yu X, Young KH, Li Y. Vaccines targeting p53 mutants elicit anti-tumor immunity. Cancer Lett 2024; 611:217421. [PMID: 39740750 DOI: 10.1016/j.canlet.2024.217421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The p53 tumor suppressor is commonly mutated in cancer; however, there are no effective treatments targeting p53 mutants. A DNA vaccine gWIZ-S237G targeting the p53 S237G mutant, which is highly expressed in A20 murine tumor cells, was developed and administered intramuscularly via electroporation, either alone or in combination with PD-1 blockade. The anti-p53-S237G immunization elicited a robust protective response against subcutaneous A20 tumors and facilitated the infiltration of immune cells including CD8+ T cells, NK cells, and DCs. The vaccine enhanced the induction and maturation of CD11c+, CD103+CD11c+, and CD8+CD11c+ cells, which in turn promoted tumor-specific antibody production, as well as Th1 and CD8+ T cell-mediated immune responses. Several antigenic epitopes of p53-S237G effectively stimulated multifunctional CD8+ T cells to secrete IFN-γ and TNF-α. The vaccine showed long-term anti-tumor effects that were dependent on memory CD8+ T cells. Furthermore, the anti-p53-S237G vaccine exhibited significant protective efficacy in the A20 liver metastasis models. When combined with PD-1 inhibition, the vaccine showed superior inhibition of tumor growth and liver metastasis. Targeting p53 mutants by vaccination represents a potential precision medicine strategy against cancers harboring p53 mutations.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunmei Fan
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junhao Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jing Ming Lim
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S, Islam S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024; 13:1838. [PMID: 39594587 PMCID: PMC11592877 DOI: 10.3390/cells13221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cell survival and death are intricately governed by apoptosis, a meticulously controlled programmed cell death. Apoptosis is vital in facilitating embryonic development and maintaining tissue homeostasis and immunological functioning. It is a complex interplay of intrinsic and extrinsic signaling pathways that ultimately converges on executing the apoptotic program. The extrinsic pathway is initiated by the binding of death ligands such as TNF-α and Fas to their respective receptors on the cell surface. In contrast, the intrinsic pathway leads to increased permeability of the outer mitochondrial membrane and the release of apoptogenic factors like cytochrome c, which is regulated by the Bcl-2 family of proteins. Once activated, these pathways lead to a cascade of biochemical events, including caspase activation, DNA fragmentation, and the dismantling of cellular components. Dysregulation of apoptosis is implicated in various disorders, such as cancer, autoimmune diseases, neurodegenerative disorders, and cardiovascular diseases. This article focuses on elucidating the molecular mechanisms underlying apoptosis regulation, to develop targeted therapeutic strategies. Modulating apoptotic pathways holds immense potential in cancer treatment, where promoting apoptosis in malignant cells could lead to tumor regression. This article demonstrates the therapeutic potential of targeting apoptosis, providing options for treating cancer and neurological illnesses. The safety and effectiveness of apoptosis-targeting drugs are being assessed in ongoing preclinical and clinical trials (phase I-III), opening the door for more effective therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Irfan Qadir Tantry
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, India;
| | - Waleem Ahmad
- Department of Medicine, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
5
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
6
|
Efe G, Rustgi AK, Prives C. p53 at the crossroads of tumor immunity. NATURE CANCER 2024; 5:983-995. [PMID: 39009816 DOI: 10.1038/s43018-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
The p53 tumor suppressor protein has a plethora of cell-intrinsic functions and consequences that impact diverse cell types and tissues. Recent studies are beginning to unravel how wild-type and mutant p53 work in distinct ways to modulate tumor immunity. This sets up a disequilibrium between tumor immunosurveillance and escape therefrom. The ability to exploit this emerging knowledge for translational approaches may shape immunotherapy and targeted therapeutics in the future, especially in combinatorial settings.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Kaur K, Sanghu J, Memarzadeh S, Jewett A. Exploring the Potential of Natural Killer Cell-Based Immunotherapy in Targeting High-Grade Serous Ovarian Carcinomas. Vaccines (Basel) 2024; 12:677. [PMID: 38932405 PMCID: PMC11209217 DOI: 10.3390/vaccines12060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) likely consist of poorly differentiated stem-like cells (PDSLCs) and differentiated tumor cells. Conventional therapeutics are incapable of completely eradicating PDSLCs, contributing to disease progression and tumor relapse. Primary NK cells are known to effectively lyse PDSLCs, but they exhibit low or minimal cytotoxic potential against well-differentiated tumors. We have introduced and discussed the characteristics of super-charged NK (sNK) cells in this review. sNK cells, in comparison to primary NK cells, exhibit a significantly higher capability for the direct killing of both PDSLCs and well-differentiated tumors. In addition, sNK cells secrete significantly higher levels of cytokines, especially those known to induce the differentiation of tumors. In addition, we propose that a combination of sNK and chemotherapy could be one of the most effective strategies to eliminate the heterogeneous population of ovarian tumors; sNK cells can lyse both PDSLCs and well-differentiated tumors, induce the differentiation of PDSLCs, and could be used in combination with chemotherapy to target both well-differentiated and NK-induced differentiated tumors.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - Jashan Sanghu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Zhang M, Ono M, Kawaguchi S, Iida M, Chattrairat K, Zhu Z, Nagashima K, Yanagida T, Yamaguchi J, Nishikawa H, Natsume A, Baba Y, Yasui T. On-Site Stimulation of Dendritic Cells by Cancer-Derived Extracellular Vesicles on a Core-Shell Nanowire Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29570-29580. [PMID: 38804616 PMCID: PMC11181270 DOI: 10.1021/acsami.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) contain a subset of proteins, lipids, and nucleic acids that maintain the characteristics of the parent cell. Immunotherapy using EVs has become a focus of research due to their unique features and bioinspired applications in cancer treatment. Unlike conventional immunotherapy using tumor fragments, EVs can be easily obtained from bodily fluids without invasive actions. We previously fabricated nanowire devices that were specialized for EV collection, but they were not suitable for cell culturing. In this study, we fabricated a ZnO/Al2O3 core-shell nanowire platform that could collect more than 60% of the EVs from the cell supernatant. Additionally, we could continue to culture dendritic cells (DCs) on the platform as an artificial lymph node to investigate cell maturation into antigen-presenting cells. Finally, using this platform, we reproduced a series of on-site immune processes that are among the pivotal immune functions of DCs and include such processes as antigen uptake, antigen presentation, and endocytosis of cancer-derived EVs. This platform provides a new ex vivo tool for EV-DC-mediated immunotherapies.
Collapse
Affiliation(s)
- Min Zhang
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Ono
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shota Kawaguchi
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kunanon Chattrairat
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Zetao Zhu
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuki Nagashima
- Research
Institute for Electronic Science (RIES), Hokkaido University, Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Yamaguchi
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyoshi Nishikawa
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
- Division
of Cancer Immunology, Exploratory Oncology
Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Kawamura
Medical Society, Gifu 501-3144, Japan
| | - Yoshinobu Baba
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
9
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Pro-inflammatory cytokines and CXC chemokines as game-changer in age-associated prostate cancer and ovarian cancer: Insights from preclinical and clinical studies' outcomes. Pharmacol Res 2024; 204:107213. [PMID: 38750677 DOI: 10.1016/j.phrs.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Prostate cancer (PC) and Ovarian cancer (OC) are two of the most common types of cancer that affect the reproductive systems of older men and women. These cancers are associated with a poor quality of life among the aged population. Therefore, finding new and innovative ways to detect, treat, and prevent these cancers in older patients is essential. Finding biomarkers for these malignancies will increase the chance of early detection and effective treatment, subsequently improving the survival rate. Studies have shown that the prevalence and health of some illnesses are linked to an impaired immune system. However, the age-associated changes in the immune system during malignancies such as PC and OC are poorly understood. Recent research has suggested that the excessive production of inflammatory immune mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor (TGF), tumor necrosis factor (TNF), CXC motif chemokine ligand 1 (CXCL1), CXC motif chemokine ligand 12 (CXCL12), and CXC motif chemokine ligand 13 (CXCL13), etc., significantly impact the development of PC and OC in elderly patients. Our review focuses on the latest functional studies of pro-inflammatory cytokines (interleukins) and CXC chemokines, which serve as biomarkers in elderly patients with PC and OC. Thus, we aim to shed light on how these biomarkers affect the development of PC and OC in elderly patients. We also examine the current status and future perspective of cytokines (interleukins) and CXC chemokines-based therapeutic targets in OC and PC treatment for elderly patients.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Jansen DTSL, de Beijer MTA, Luijten RJ, Kwappenberg K, Wiekmeijer AS, Kessler AL, Pieterman RFA, Bouzid R, Krebber WJ, de Man RA, Melief CJM, Buschow SI. Induction of broad multifunctional CD8+ and CD4+ T cells by hepatitis B virus antigen-based synthetic long peptides ex vivo. Front Immunol 2023; 14:1163118. [PMID: 37781393 PMCID: PMC10534072 DOI: 10.3389/fimmu.2023.1163118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Therapeutic vaccination based on synthetic long peptides (SLP®) containing both CD4+ and CD8+ T cell epitopes is a promising treatment strategy for chronic hepatitis B infection (cHBV). Methods We designed SLPs for three HBV proteins, HBcAg and the non-secreted proteins polymerase and X, and investigated their ability to induce T cell responses ex vivo. A set of 17 SLPs was constructed based on viral protein conservation, functionality, predicted and validated binders for prevalent human leukocyte antigen (HLA) supertypes, validated HLA I epitopes, and chemical producibility. Results All 17 SLPs were capable of inducing interferon gamma (IFNɣ) production in samples from four or more donors that had resolved an HBV infection in the past (resolver). Further analysis of the best performing SLPs demonstrated activation of both CD8+ and CD4+ multi-functional T cells in one or more resolver and patient sample(s). When investigating which SLP could activate HBV-specific T cells, the responses could be traced back to different peptides for each patient or resolver. Discussion This indicates that a large population of subjects with different HLA types can be covered by selecting a suitable mix of SLPs for therapeutic vaccine design. In conclusion, we designed a set of SLPs capable of inducing multifunctional CD8+ and CD4+ T cells ex vivo that create important components for a novel therapeutic vaccine to cure cHBV.
Collapse
Affiliation(s)
- Diahann T. S. L. Jansen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Monique T. A. de Beijer
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robbie J. Luijten
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Amy L. Kessler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roel F. A. Pieterman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rachid Bouzid
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
11
|
Lekshmy M, Dhanya CR, Smrithi JS, Sindhurani JA, Vandanamthadathil JJ, Veettil JT, Anila L, Lathakumari VS, Nayar AM, Madhavan M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals (Basel) 2023; 16:1054. [PMID: 37513965 PMCID: PMC10383774 DOI: 10.3390/ph16071054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Breast and gynecologic cancers are significant global threats to women's health and those living with the disease require lifelong physical, financial, and social support from their families, healthcare providers, and society as a whole. Cancer vaccines offer a promising means of inducing long-lasting immune response against the disease. Among various types of cancer vaccines available, peptide vaccines offer an effective strategy to elicit specific anti-tumor immune responses. Peptide vaccines have been developed based on tumor associated antigens (TAAs) and tumor specific neoantigens which can also be of viral origin. Molecular alterations in HER2 and non-HER2 genes are established to be involved in the pathogenesis of female-specific cancers and hence were exploited for the development of peptide vaccines against these diseases, most of which are in the latter stages of clinical trials. However, prophylactic vaccines for viral induced cancers, especially those against Human Papillomavirus (HPV) infection are well established. This review discusses therapeutic and prophylactic approaches for various types of female-specific cancers such as breast cancer and gynecologic cancers with special emphasis on peptide vaccines. We also present a pipeline for the design and evaluation of a multiepitope peptide vaccine that can be active against female-specific cancers.
Collapse
Affiliation(s)
- Manju Lekshmy
- Department of Botany and Biotechnology, St. Xavier’s College, Thumba, Thiruvananthapuram 695586, Kerala, India;
| | | | | | | | | | | | - Leelamma Anila
- Department of Biochemistry, NSS College, Nilamel, Kollam 691535, Kerala, India;
| | - Vishnu Sasidharan Lathakumari
- Department of Biochemistry and Industrial Microbiology, Sree Narayana College for Women, Kollam 691001, Kerala, India;
| | - Adhira M. Nayar
- Department of Zoology, Mahatma Gandhi College, Thiruvananthapuram 695004, Kerala, India;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
12
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
13
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
14
|
Wallis B, Bowman KR, Lu P, Lim CS. The Challenges and Prospects of p53-Based Therapies in Ovarian Cancer. Biomolecules 2023; 13:159. [PMID: 36671544 PMCID: PMC9855757 DOI: 10.3390/biom13010159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
It has been well established that mutations in the tumor suppressor gene, p53, occur readily in a vast majority of cancer tumors, including ovarian cancer. Typically diagnosed in stages three or four, ovarian cancer is the fifth leading cause of death in women, despite accounting for only 2.5% of all female malignancies. The overall 5-year survival rate for ovarian cancer is around 47%; however, this drops to an abysmal 29% for the most common type of ovarian cancer, high-grade serous ovarian carcinoma (HGSOC). HGSOC has upwards of 96% of cases expressing mutations in p53. Therefore, wild-type (WT) p53 and p53-based therapies have been explored as treatment options via a plethora of drug delivery vehicles including nanoparticles, viruses, polymers, and liposomes. However, previous p53 therapeutics have faced many challenges, which have resulted in their limited translational success to date. This review highlights a selection of these historical p53-targeted therapeutics for ovarian cancer, why they failed, and what the future could hold for a new generation of this class of therapies.
Collapse
Affiliation(s)
| | | | | | - Carol S. Lim
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Abstract
Despite advances in surgery and chemotherapy, ovarian cancer remains one of the most lethal malignancies. Hence, the implementation of novel treatment approaches is required to improve the outcomes of the disease. Immunotherapy has been proven to be effective in many tumors and has already been incorporated into clinical practice. In this review, we describe key strategies in immunotherapy of ovarian cancer and summarize data from clinical studies assessing immunological prospects which could improve ovarian cancer treatment approaches in the future. The most notable current strategies include checkpoint blockade agents, the use of vaccines, adoptive cell transfer, as well as various combinations of these methods. While several of these options are promising, large controlled randomized studies are still needed to implement new immunotherapeutic options into clinical practice.
Collapse
|
16
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
17
|
In Silico Model Estimates the Clinical Trial Outcome of Cancer Vaccines. Cells 2021; 10:cells10113048. [PMID: 34831269 PMCID: PMC8616443 DOI: 10.3390/cells10113048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Over 30 years after the first cancer vaccine clinical trial (CT), scientists still search the missing link between immunogenicity and clinical responses. A predictor able to estimate the outcome of cancer vaccine CTs would greatly benefit vaccine development. Published results of 94 CTs with 64 therapeutic vaccines were collected. We found that preselection of CT subjects based on a single matching HLA allele does not increase immune response rates (IRR) compared with non-preselected CTs (median 60% vs. 57%, p = 0.4490). A representative in silico model population (MP) comprising HLA-genotyped subjects was used to retrospectively calculate in silico IRRs of CTs based on the percentage of MP-subjects having epitope(s) predicted to bind ≥ 1–4 autologous HLA allele(s). We found that in vitro measured IRRs correlated with the frequency of predicted multiple autologous allele-binding epitopes (AUC 0.63–0.79). Subgroup analysis of multi-antigen targeting vaccine CTs revealed correlation between clinical response rates (CRRs) and predicted multi-epitope IRRs when HLA threshold was ≥ 3 (r = 0.7463, p = 0.0004) but not for single HLA allele-binding epitopes (r = 0.2865, p = 0.2491). Our results suggest that CRR depends on the induction of broad T-cell responses and both IRR and CRR can be predicted when epitopes binding to multiple autologous HLAs are considered.
Collapse
|
18
|
Zhou S, Fan C, Zeng Z, Young KH, Li Y. Clinical and Immunological Effects of p53-Targeting Vaccines. Front Cell Dev Biol 2021; 9:762796. [PMID: 34805170 PMCID: PMC8595300 DOI: 10.3389/fcell.2021.762796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor T cells, is one of the most promising approaches to treat cancer. Vaccines have been effective in preventing cancers like liver cancer and cervical cancer with a viral etiology. Instead of preventing disease, therapeutic cancer vaccines mobilize the immune system to attack existing cancer. p53 is dysregulated in the majority of human cancers and is a highly promising target for cancer vaccines. Over twenty clinical trials have targeted p53 in malignant diseases using vaccines. In this work, we review the progress of vaccinations with p53 or its peptides as the antigens and summarize the clinical and immunological effects of p53-targeting vaccines from clinical trials. The delivery platforms include p53 peptides, viral vectors, and dendritic cells pulsed with short peptides or transduced by p53-encoding viruses. These studies shed light on the feasibility, safety, and clinical benefit of p53 vaccination in select groups of patients, implicating that p53-targeting vaccines warrant further investigations in experimental animals and human studies.
Collapse
Affiliation(s)
- Shan Zhou
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
19
|
The Role of Peptide-Based Tumor Vaccines on Cytokines of Adaptive Immunity: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Tay BQ, Wright Q, Ladwa R, Perry C, Leggatt G, Simpson F, Wells JW, Panizza BJ, Frazer IH, Cruz JLG. Evolution of Cancer Vaccines-Challenges, Achievements, and Future Directions. Vaccines (Basel) 2021; 9:vaccines9050535. [PMID: 34065557 PMCID: PMC8160852 DOI: 10.3390/vaccines9050535] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
The development of cancer vaccines has been intensively pursued over the past 50 years with modest success. However, recent advancements in the fields of genetics, molecular biology, biochemistry, and immunology have renewed interest in these immunotherapies and allowed the development of promising cancer vaccine candidates. Numerous clinical trials testing the response evoked by tumour antigens, differing in origin and nature, have shed light on the desirable target characteristics capable of inducing strong tumour-specific non-toxic responses with increased potential to bring clinical benefit to patients. Novel delivery methods, ranging from a patient’s autologous dendritic cells to liposome nanoparticles, have exponentially increased the abundance and exposure of the antigenic payloads. Furthermore, growing knowledge of the mechanisms by which tumours evade the immune response has led to new approaches to reverse these roadblocks and to re-invigorate previously suppressed anti-tumour surveillance. The use of new drugs in combination with antigen-based therapies is highly targeted and may represent the future of cancer vaccines. In this review, we address the main antigens and delivery methods used to develop cancer vaccines, their clinical outcomes, and the new directions that the vaccine immunotherapy field is taking.
Collapse
Affiliation(s)
- Ban Qi Tay
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Quentin Wright
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Rahul Ladwa
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
- Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia; (C.P.); (B.J.P.)
| | - Christopher Perry
- Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia; (C.P.); (B.J.P.)
- Department of Otolaryngology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Graham Leggatt
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Fiona Simpson
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - James W. Wells
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Benedict J. Panizza
- Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia; (C.P.); (B.J.P.)
- Department of Otolaryngology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Ian H. Frazer
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Jazmina L. G. Cruz
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
- Correspondence: ; Tel.: +61-0478912737
| |
Collapse
|
21
|
Kondo S, Shimizu T, Koyama T, Sato J, Iwasa S, Yonemori K, Fujiwara Y, Shimomura A, Kitano S, Tamura K, Yamamoto N. First-in-human study of the cancer peptide vaccine TAS0313 in patients with advanced solid tumors. Cancer Sci 2021; 112:1514-1523. [PMID: 33615628 PMCID: PMC8019195 DOI: 10.1111/cas.14765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
TAS0313, a novel cancer vaccine cocktail, was developed to overcome the disadvantages of previously developed short and long peptide vaccines; it comprises several long peptides targeting multiple cancer antigens. We evaluated TAS0313 monotherapy in Japanese patients with advanced solid tumors for which no other therapies were available. In the dose‐finding cohort, patients received TAS0313 (9 or 27 mg) on days 1, 8, and 15 of cycles 1 and 2, and then on day 1 of each subsequent 21‐day cycle. The primary objective was the evaluation of safety and tolerability. Secondary objectives were evaluation of efficacy, tumor responses, and immune activation (CTL, IgG, and tumor‐infiltrating lymphocyte [TIL] levels). The full analysis set contained 10 patients in the 9‐mg group and seven in the 27‐mg group. No dose‐limiting toxicities were reported in cycle 1. All adverse drug reactions (ADRs) were grade 1 or 2; the most common ADRs were injection site‐related events. The best response was stable disease in four of 17 patients. The median progression‐free survival (PFS) duration was 2.2 (95% confidence interval, 1.0‐2.3) months overall; patients with baseline low lymphocyte counts (≤750/μL) had shorter PFS. Compared with baseline, TILs were increased in five patients. Although CTLs, IgG, and TILs were induced, no correlative pattern with clinical outcomes was observed. The safety, tolerability, and induction of immune responses in patients with advanced solid tumors receiving TAS0313 were confirmed. Further evaluation of TAS0313’s efficacy as monotherapy or in combination with pembrolizumab is underway. The study is registered at www.clinicaltrials.jp (JapicCTI‐183824).
Collapse
Affiliation(s)
- Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Toshio Shimizu
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Jun Sato
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Satoru Iwasa
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Yutaka Fujiwara
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.,Department of Respiratory Medicine, Mitsui Memorial Hospital, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.,Division of Cancer Immunotherapy Development, Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.,Innovative Cancer Center, Shimane University Hospital, Izumo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Duwa R, Jeong JH, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Development of Therapeutic Vaccines for Ovarian Cancer. Vaccines (Basel) 2020; 8:vaccines8040657. [PMID: 33167428 PMCID: PMC7711901 DOI: 10.3390/vaccines8040657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer remains the deadliest of all gynecologic malignancies. Our expanding knowledge of ovarian cancer immunology has allowed the development of therapies that generate systemic anti-tumor immune responses. Current immunotherapeutic strategies include immune checkpoint blockade, cellular therapies, and cancer vaccines. Vaccine-based therapies are designed to induce both adaptive and innate immune responses directed against ovarian cancer associated antigens. Tumor-specific effector cells, in particular cytotoxic T cells, are activated to recognize and eliminate ovarian cancer cells. Vaccines for ovarian cancer have been studied in various clinical trials over the last three decades. Despite evidence of vaccine-induced humoral and cellular immune responses, the majority of vaccines have not shown significant anti-tumor efficacy. Recently, improved vaccine development using dendritic cells or synthetic platforms for antigen presentation have shown promising clinical benefits in patients with ovarian cancer. In this review, we provide an overview of therapeutic vaccine development in ovarian cancer, discuss proposed mechanisms of action, and summarize the current clinical experience.
Collapse
|
24
|
O’Dwyer J, O’Cearbhaill RE, Wylie R, O’Mahony S, O’Dwyer M, Duffy GP, Dolan EB. Enhancing delivery of small molecule and cell-based therapies for ovarian cancer using advanced delivery strategies. ADVANCED THERAPEUTICS 2020; 3:2000144. [PMID: 33709016 PMCID: PMC7942751 DOI: 10.1002/adtp.202000144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy with a global five-year survival rate of 30-50%. First-line treatment involves cytoreductive surgery and administration of platinum-based small molecules and paclitaxel. These therapies were traditionally administered via intravenous infusion, although intraperitoneal delivery has also been investigated. Initial clinical trials of intraperitoneal administration for ovarian cancer indicated significant improvements in overall survival compared to intravenous delivery, but this result is not consistent across all studies performed. Recently cell-based immunotherapy has been of interest for ovarian cancer. Direct intraperitoneal delivery of cell-based immunotherapies might prompt local immunoregulatory mechanisms to act synergistically with the delivered immunotherapy. Based on this theory, pre-clinical in vivo studies have delivered these cell-based immunotherapies via the intraperitoneal route, with promising results. However, successful intraperitoneal delivery of cell-based immunotherapy and clinical adoption of this technique will depend on overcoming challenges of intraperitoneal delivery and finding the optimal combinations of dose, therapeutic and delivery route. We review the potential advantages and disadvantages of intraperitoneal delivery of cell-based immunotherapy for ovarian cancer and the pre-clinical and clinical work performed so far. Potential advanced delivery strategies, which might improve the efficacy and adoption of intraperitoneal delivery of therapy for ovarian cancer, are also outlined.
Collapse
Affiliation(s)
- Joanne O’Dwyer
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland; Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Roisin E. O’Cearbhaill
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Robert Wylie
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Saoirse O’Mahony
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Michael O’Dwyer
- Apoptosis Research Centre, National University of Ireland Galway, Ireland
| | - Garry P. Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Eimear B. Dolan
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
25
|
Zamarin D, Walderich S, Holland A, Zhou Q, Iasonos AE, Torrisi JM, Merghoub T, Chesebrough LF, Mcdonnell AS, Gallagher JM, Li Y, Hollmann TJ, Grisham RN, Erskine CL, Block MS, Knutson KL, O'Cearbhaill RE, Aghajanian C, Konner JA. Safety, immunogenicity, and clinical efficacy of durvalumab in combination with folate receptor alpha vaccine TPIV200 in patients with advanced ovarian cancer: a phase II trial. J Immunother Cancer 2020; 8:e000829. [PMID: 32503949 PMCID: PMC7279674 DOI: 10.1136/jitc-2020-000829] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) to date have demonstrated limited activity in advanced ovarian cancer (OC). Folate receptor alpha (FRα) is overexpressed in the majority of OCs and presents an attractive target for a combination immunotherapy to potentially overcome resistance to ICI in OCs. The current study sought to examine clinical and immunologic responses to TPIV200, a multiepitope FRα vaccine administered with programmed death ligand 1 (PD-L1) inhibitor durvalumab in patients with advanced platinum-resistant OC. METHODS Following Simon two-stage phase II trial design, 27 patients were enrolled. Treatment was administered in 28-day cycles (intradermal TPIV200 and granulocyte-macrophage colony-stimulating factor (GM-CSF) for 6 cycles and intravenous durvalumab for 12 cycles). Primary endpoints included overall response rate and progression-free survival at 24 weeks. Translational parameters focused on tumor microenvironment, PD-L1 and FRα expression, and peripheral vaccine-specific immune responses. RESULTS Treatment was well tolerated, with related grade 3 toxicity rate of 18.5%. Increased T cell responses to the majority of peptides were observed in all patients at 6 weeks (p<0.0001). There was one unconfirmed partial response (3.7%) and nine patients had stable disease (33.3%). Clinical benefit was not associated with baseline FRα or PD-L1 expression. One patient with prolonged clinical benefit demonstrated loss of FRα expression and upregulation of PD-L1 in a progressing lesion. Despite the low overall response rate, the median overall survival was 21 months (13.5-∞), with evidence of benefit from postimmunotherapy regimens. CONCLUSIONS Combination of TPIV200 and durvalumab was safe and elicited robust FRα-specific T cell responses in all patients. Unexpectedly durable survival in this heavily pretreated population highlights the need to investigate the impact of FRα vaccination on the OC biology post-treatment.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/immunology
- Adenocarcinoma, Clear Cell/pathology
- Adult
- Aged
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/immunology
- Cancer Vaccines/therapeutic use
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/pathology
- Drug Therapy, Combination
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/immunology
- Endometrial Neoplasms/pathology
- Female
- Folate Receptor 1/immunology
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Non-Randomized Controlled Trials as Topic
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Prognosis
- Survival Rate
- Treatment Outcome
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sven Walderich
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aliya Holland
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Qin Zhou
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alexia E Iasonos
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jean M Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lewis F Chesebrough
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Autumn S Mcdonnell
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jacqueline M Gallagher
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Travis J Hollmann
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rachel N Grisham
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| | | | - Mathew S Block
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Roisin E O'Cearbhaill
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| | - Carol Aghajanian
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| | - Jason A Konner
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| |
Collapse
|
26
|
Abstract
The importance of cancer-cell-autonomous functions of the tumour suppressor p53 (encoded by TP53) has been established in many studies, but it is now clear that the p53 status of the cancer cell also has a profound impact on the immune response. Loss or mutation of p53 in cancers can affect the recruitment and activity of myeloid and T cells, allowing immune evasion and promoting cancer progression. p53 can also function in immune cells, resulting in various outcomes that can impede or support tumour development. Understanding the role of p53 in tumour and immune cells will help in the development of therapeutic approaches that can harness the differential p53 status of cancers compared with most normal tissue.
Collapse
Affiliation(s)
- Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
27
|
Lynam S, Lugade AA, Odunsi K. Immunotherapy for Gynecologic Cancer: Current Applications and Future Directions. Clin Obstet Gynecol 2020; 63:48-63. [PMID: 31833846 PMCID: PMC7298668 DOI: 10.1097/grf.0000000000000513] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of the immune system in the development of cancer has been a subject of ongoing clinical investigation in recent years. Emerging data demonstrate that tumorigenesis resulting in ovarian, uterine, and cervical cancers is a consequence of impaired host immune responses to cancerous cells. Leveraging the immune system through the use of immune checkpoint inhibitors, therapeutic vaccine therapy, and adoptive cell transfer presents a profound opportunity to revolutionize cancer treatment. This review will encompass the role of the immune system in development of gynecologic cancers and highlight recent data regarding immunotherapy applications in ovarian, uterine, and cervical cancers.
Collapse
Affiliation(s)
| | - Amit A Lugade
- Center for Immunotherapy Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology
- Center for Immunotherapy Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
28
|
Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advances in cancer therapy have offered great promise but only modest clinical benefits as monotherapies to date. Patients usually respond well to therapies targeted at specific mutations, but only for a short time. Conversely, immunotherapies help fewer patients, but increase survival. Combination therapies, which could offer the best of both worlds, are currently limited by substantial toxicity. While recent advances in genomics and proteomics have yielded an unprecedented depth of enabling datasets, it has also shifted the focus toward in silico predictions. Designing the next wave of multidimensional immunotherapies will require leveraging this knowledge while providing a renewed emphasis on tumor biology and vaccine design. This includes careful selection of tumor clinical stage in the context of pre-existing tumor microenvironments, target antigen and technology platform selections to maximize their effect, and treatment staging. Here, we review strategies on how to approach an increasingly complex landscape of immunotherapeutic agents for use in combination therapies.
Collapse
|
29
|
Hoo WPY, Siak PY, In LLA. Overview of Current Immunotherapies Targeting Mutated KRAS Cancers. Curr Top Med Chem 2019; 19:2158-2175. [PMID: 31483231 DOI: 10.2174/1568026619666190904163524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
Collapse
Affiliation(s)
- Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Abstract
With the spotlight on cancer immunotherapy and the expanding use of immune checkpoint inhibitors, strategies to improve the response rate and duration of current cancer immunotherapeutics are highly sought. In that sense, investigators around the globe have been putting spurs on the development of effective cancer vaccines in humans after decades of efforts that led to limited clinical success. In more than three decades of research in pursuit of targeted and personalized immunotherapy, several platforms have been incorporated into the list of cancer vaccines from live viral or bacterial agents harboring antigens to synthetic peptides with the hope of stronger and durable immune responses that will tackle cancers better. Unlike adoptive cell therapy, cancer vaccines can take advantage of using a patient's entire immune system that can include more than engineered receptors or ligands in developing antigen-specific responses. Advances in molecular technology also secured the use of genetically modified genes or proteins of interest to enhance the chance of stronger immune responses. The formulation of vaccines to increase chances of immune recognition such as nanoparticles for peptide delivery is another area of great interest. Studies indicate that cancer vaccines alone may elicit tumor-specific cellular or humoral responses in immunologic assays and even regression or shrinkage of the cancer in select trials, but novel strategies, especially in combination with other cancer therapies, are under study and are likely to be critical to achieve and optimize reliable objective responses and survival benefit. In this review, cancer vaccine platforms with different approaches to deliver tumor antigens and boost immunity are discussed with the intention of summarizing what we know and what we need to improve in the clinical trial setting.
Collapse
Affiliation(s)
- Hoyoung M. Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
31
|
Immunotherapy of gynecological cancers. Best Pract Res Clin Obstet Gynaecol 2019; 60:97-110. [PMID: 31003902 DOI: 10.1016/j.bpobgyn.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Oncology treatments have evolved from intuitive, via empiric, to the present precision medicine, with the integration of molecular targeted therapies in our treatment arsenal. The use of the patients' powerful immune system has long been contemplated and recently led to the integration of immunotherapy to overturn the well-documented inhibitory effects of the tumor on the immune system and restore it to a state of activity against the cancer. Recent favorable results have shown the value and effectiveness of immunotherapy against gynecological cancers. In particular, the checkpoint inhibitors, targeting the programmed death-1 (PD-1) pathway, have shown durable clinical responses with manageable toxicity. Several phase II and III clinical trials testing the association of different regimen of chemotherapy and immunotherapy are ongoing in gynecological cancers, and important results are expected. In this chapter, we outline the main principles of immunotherapy for gynecological cancers and summarize the current strategies used in clinical trials.
Collapse
|
32
|
Paijens ST, Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief CJM, de Bruyn M, Nijman HW. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 2018; 9:CD007287. [PMID: 30199097 PMCID: PMC6513204 DOI: 10.1002/14651858.cd007287.pub4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs.
Collapse
Affiliation(s)
- Sterre T Paijens
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Ninke Leffers
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Toos Daemen
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | - Wijnand Helfrich
- University Medical Center Groningen (UMCG)Department of Surgery. Translational Surgical OncologyGroningenNetherlands9713 GZ
| | - H Marike Boezen
- University Medical Center Groningen (UMCG)Unit Chronic Airway Diseases, Department of EpidemiologyGroningenNetherlands9713 GZ
| | - Ben J Cohlen
- Isala Clinics, Location SophiaDepartment of Obstetrics & GynaecologyDr van Heesweg 2P O Box 10400ZwolleNetherlands3515 BE
| | - Cornelis JM Melief
- Leiden University Medical CenterDepartment of Immunohaematology and Blood TransfusionPO Box 9600E3‐QLeidenNetherlands2300 RC
| | - Marco de Bruyn
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Hans W Nijman
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | | |
Collapse
|
33
|
Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol 2018; 41:69-85. [PMID: 29978248 DOI: 10.1007/s00281-018-0691-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Anti-cancer vaccines have raised many hopes from the start of immunotherapy but have not yet been clinically successful. The few positive results of anti-cancer vaccines have been observed in clinical situations of low tumor burden or preneoplastic lesions. Several new concepts and new results reposition this therapeutic approach in the field of immunotherapy. Indeed, cancers that respond to anti-PD-1/PD-L1 (20-30%) are those that are infiltrated by anti-tumor T cells with an inflammatory infiltrate. However, 70% of cancers do not appear to have an anti-tumor immune reaction in the tumor microenvironment. To induce this anti-tumor immunity, therapeutic combinations between vaccines and anti-PD-1/PD-L1 are being evaluated. In addition, the identification of neoepitopes against which the immune system is less tolerated is giving rise to a new enthusiasm by the first clinical results of the vaccine including these neoepitopes in humans. The ability of anti-cancer vaccines to induce a population of anti-tumor T cells called memory resident T cells that play an important role in immunosurveillance is also a new criterion to consider in the design of therapeutic vaccines.
Collapse
Affiliation(s)
- T Tran
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Blanc
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Granier
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Saldmann
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Tanchot
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Hôpital Européen Georges Pompidou, Laboratory of Immunology, Assistance Publique des Hôpitaux de Paris, Paris, France.
- Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
| |
Collapse
|
34
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
35
|
Hardwick NR, Frankel P, Ruel C, Kilpatrick J, Tsai W, Kos F, Kaltcheva T, Leong L, Morgan R, Chung V, Tinsley R, Eng M, Wilczynski S, Ellenhorn JDI, Diamond DJ, Cristea M. p53-Reactive T Cells Are Associated with Clinical Benefit in Patients with Platinum-Resistant Epithelial Ovarian Cancer After Treatment with a p53 Vaccine and Gemcitabine Chemotherapy. Clin Cancer Res 2018; 24:1315-1325. [PMID: 29301826 DOI: 10.1158/1078-0432.ccr-17-2709] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/27/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Purpose: To conduct a phase I trial of a Modified Vaccinia Ankara vaccine delivering wild-type human p53 (p53MVA) in combination with gemcitabine chemotherapy in patients with platinum-resistant ovarian cancer.Experimental Design: Patients received gemcitabine on days 1 and 8 and p53MVA vaccine on day 15, during the first 3 cycles of chemotherapy. Toxicity was classified using the NCI Common Toxicity Criteria and clinical response assessed by CT scan. Peripheral blood samples were collected for immunophenotyping and monitoring of anti-p53 immune responses.Results: Eleven patients were evaluated for p53MVA/gemcitabine toxicity, clinical outcome, and immunologic response. TOXICITY there were no DLTs, but 3 of 11 patients came off study early due to gemcitabine-attributed adverse events (AE). Minimal AEs were attributed to p53MVA vaccination. Immunologic and clinical response: enhanced in vitro recognition of p53 peptides was detectable after immunization in both the CD4+ and CD8+ T-cell compartments in 5 of 11 and 6 of 11 patients, respectively. Changes in peripheral T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSC) did not correlate significantly with vaccine response or progression-free survival (PFS). Patients with the greatest expansion of p53-reactive T cells had significantly longer PFS than patients with lower p53-reactivity after therapy. Tumor shrinkage or disease stabilization occurred in 4 patients.Conclusions: p53MVA was well tolerated, but gemcitabine without steroid pretreatment was intolerable in some patients. However, elevated p53-reactive CD4+ and CD8+ T-cell responses after therapy correlated with longer PFS. Therefore, if responses to p53MVA can be enhanced with alternative agents, superior clinical responses may be achievable. Clin Cancer Res; 24(6); 1315-25. ©2018 AACR.
Collapse
Affiliation(s)
- Nicola R Hardwick
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California
| | - Paul Frankel
- Division of Biostatistics, Beckman Research Institute, Duarte, California
| | - Christopher Ruel
- Division of Biostatistics, Beckman Research Institute, Duarte, California
| | - Julie Kilpatrick
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Weimin Tsai
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - Ferdynand Kos
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California
| | - Teodora Kaltcheva
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California
| | - Lucille Leong
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Robert Morgan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Vincent Chung
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Raechelle Tinsley
- Clinical Trials Office, City of Hope National Medical Center, Duarte, California
| | - Melissa Eng
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Sharon Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | | | - Don J Diamond
- Department of Experimental Therapeutics, Beckman Research Institute, Duarte, California.
| | - Mihaela Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
36
|
Mangsbo SM, Fletcher EAK, van Maren WWC, Redeker A, Cordfunke RA, Dillmann I, Dinkelaar J, Ouchaou K, Codee JDC, van der Marel GA, Hoogerhout P, Melief CJM, Ossendorp F, Drijfhout JW. Linking T cell epitopes to a common linear B cell epitope: A targeting and adjuvant strategy to improve T cell responses. Mol Immunol 2017; 93:115-124. [PMID: 29175591 DOI: 10.1016/j.molimm.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/09/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022]
Abstract
Immune complexes are potent mediators of cellular immunity and have been extensively studied for their disease mediating properties in humans and for their role in anti-cancer immunity. However, a viable approach to use antibody-complexed antigen as vehicle for specific immunotherapy has not yet reached clinical use. Since virtually all people have endogenous antibodies against tetanus toxoid (TTd), such commonly occurring antibodies are promising candidates to utilize for immune modulation. As an initial proof-of-concept we investigated if anti-tetanus IgG could induce potent cross-presentation of a conjugate with SIINFEKL, a MHC class I presented epitope of ovalbumin (OVA), to TTd. This protein conjugate enhanced OVA-specific CD8+ T cell responses when administrated to seropositive mice. Since TTd is poorly defined, we next investigated whether a synthetic peptide-peptide conjugate, with a chemically defined linear B cell epitope of tetanus toxin (TTx) origin, could improve cellular immune responses. Herein we identify one linear B cell epitope, here after named MTTE thru a screening of overlapping peptides from the alpha and beta region of TTx, and by assessment of the binding of pooled IgG, or individual human IgG from high-titer TTd vaccinated donors, to these peptides. Subsequently, we developed a chemical protocol to synthesize defined conjugates containing multiple copies of MTTE covalently attached to one or more T cell epitopes of choice. To demonstrate the potential of the above approach we showed that immune complexes of anti-MTTE antibodies with MTTE-containing conjugates are able to induce DC and T cell activation using model antigens.
Collapse
Affiliation(s)
- Sara M Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Immuneed AB, Uppsala, Sweden.
| | - Erika A K Fletcher
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wendy W C van Maren
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert A Cordfunke
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Inken Dillmann
- Department of Immunology Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jasper Dinkelaar
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kahina Ouchaou
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codee
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Gijs A van der Marel
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Peter Hoogerhout
- Institute for Translational Vaccinology Intravacc, Bilthoven, The Netherlands
| | - Cornelis J M Melief
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Wada S, Yada E, Ohtake J, Sasada T. Personalized peptide vaccines for cancer therapy: current progress and state of the art. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1403286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Satoshi Wada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Erica Yada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Junya Ohtake
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Tetsuro Sasada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| |
Collapse
|
38
|
Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 2017; 8:4008-4042. [PMID: 28008141 PMCID: PMC5354810 DOI: 10.18632/oncotarget.14021] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Boulevard de l’Université, Sherbrooke, QC, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
39
|
|
40
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
41
|
Suzuki S, Sakata J, Utsumi F, Sekiya R, Kajiyama H, Shibata K, Kikkawa F, Nakatsura T. Efficacy of glypican-3-derived peptide vaccine therapy on the survival of patients with refractory ovarian clear cell carcinoma. Oncoimmunology 2016; 5:e1238542. [PMID: 27999758 PMCID: PMC5139642 DOI: 10.1080/2162402x.2016.1238542] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
Compared with other epithelial ovarian carcinoma subtypes, ovarian clear cell carcinoma (OCCC) has been recognized to show chemoresistance. Therefore, new treatment modalities are required for patients with OCCC that is refractory to chemotherapy. The carcinoembryonic antigen glypican-3 (GPC3) is expressed by approximately half of OCCC and is a promising immunotherapeutic target. The purpose of this study was to evaluate the effect of GPC3 peptide vaccine against refractory OCCC patients. We conducted a phase II trial with a GPC3-derived peptide vaccine in OCCC patients. Immunological responses were analyzed by ex vivo IFNγ ELISPOT assay. We also evaluated control subjects, who received best supportive care without vaccinations during the same period. Thirty-two patients with refractory OCCC were enrolled between July 2010 and September 2015, and underwent GPC3 peptide vaccination. Fifteen patients were vaccinated less than six times because their general condition progressively deteriorated, and 17 patients were vaccinated at least six times. Three patients showed a partial response as the best overall response. The GPC3 peptide vaccine induced a GPC3-specific CTL response in 15 out of 24 patients who had PBMCs collected three times or more. The prognosis of palliative care patients without GPC3 peptide vaccinations was significantly poorer than that of those with GPC3 peptide vaccinations (post cancer-treatment survival: p = 0.002). Although the disease control rate was not high, our results suggest that GPC3 peptide vaccinations may hold a significant impact to prolong survival of patients with refractory OCCC, allowing them to maintain quality of life with no serious toxicities.
Collapse
Affiliation(s)
- Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Jun Sakata
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Ryuichiro Sekiya
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| |
Collapse
|
42
|
Dijkgraaf EM, Santegoets SJAM, Reyners AKL, Goedemans R, Nijman HW, van Poelgeest MIE, van Erkel AR, Smit VTHBM, Daemen TAHH, van der Hoeven JJM, Melief CJM, Welters MJP, Kroep JR, van der Burg SH. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget 2016; 6:32228-43. [PMID: 26334096 PMCID: PMC4741673 DOI: 10.18632/oncotarget.4772] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Preclinical tumor models show that chemotherapy has immune modulatory properties which can be exploited in the context of immunotherapy. The purpose of this study was to determine the feasibility and immunogenicity of combinations of such an immunomodulatory chemotherapeutic agent with immunotherapy, p53 synthetic long peptide (SLP) vaccine and Pegintron (IFN-α) in patients with platinum-resistant p53-positive epithelial ovarian cancer (EOC). Experimental design This is a phase 1/2 trial in which patients sequential 6 cycles of gemcitabine (1000 mg/kg2 iv; n = 3), gemcitabine with Pegintron before and after the first gemcitabine cycle (Pegintron 1 μg/kg sc; n = 6), and gemcitabine and Pegintron combined with p53 SLP vaccine (0.3 mg/peptide, 9 peptides; n = 6). At baseline, 22 days after the 2nd and 6th cycle, blood was collected for immunomonitoring. Toxicity, CA-125, and radiologic response were evaluated after 3 and 6 cycles of chemotherapy. Results None of the patients enrolled experienced dose-limiting toxicity. Predominant grade 3/4 toxicities were nausea/vomiting and dyspnea. Grade 1/2 toxicities consisted of fatigue (78%) and Pegintron-related flu-like symptoms (72%). Gemcitabine reduced myeloid-derived suppressor cells (p = 0.0005) and increased immune-supportive M1 macrophages (p = 0.04). Combination of gemcitabine and Pegintron stimulated higher frequencies of circulating proliferating CD4+ and CD8+ T-cells but not regulatory T-cells. All vaccinated patients showed strong vaccine-induced p53-specific T-cell responses. Conclusion Combination of gemcitabine, the immune modulator Pegintron and therapeutic peptide vaccination is a viable approach in the development of combined chemo-immunotherapeutic regimens to treat cancer.
Collapse
Affiliation(s)
- Eveline M Dijkgraaf
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Saskia J A M Santegoets
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - An K L Reyners
- Department of Clinical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Renske Goedemans
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Hans W Nijman
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Arien R van Erkel
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Toos A H H Daemen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
43
|
Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol 2016; 28:319-28. [PMID: 27235694 DOI: 10.1093/intimm/dxw027] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor cells commonly express several antigens, such as tumor-associated antigens (TAAs) or mutation-derived antigens (neoantigens), that can be regarded as foreign antigens and elicit anti-tumor immune responses in cancer patients. Various TAAs or neoantigens expressed in cancer cells have been identified and utilized as targets for cancer vaccines. One approach to elicit tumor-specific immune responses is termed peptide-based cancer vaccination; it involves administrating TAAs or neoantigen-derived peptide for treatment of cancers. There have been several forms of peptide-based cancer vaccines depending on which effector cells, such as CTLs or CD4(+) T-helper cells, are targeted to be activated. Many phase I and II clinical trials of peptide-based cancer vaccines using TAA-derived CTL epitopes, T-helper cell epitopes or dendritic cells loaded with TAA-derived peptides for various malignant tumors have been conducted and provide clinical benefits in a small fraction of patients. Nowadays, to improve the efficiency of peptide-based cancer vaccines, combination immunotherapy of peptide-based cancer vaccines with the immune-checkpoint blockade therapies using mAbs specific for CTLA-4, programmed cell death 1 (PD-1), or PD-1 ligand 1 (PD-L1) have been developed for clinical application. Furthermore, along with the recent technological progress in genetic and bioinformatic analysis, it has become easier to identify neoantigens from individual cancer patients. It is expected that peptide-based cancer vaccines targeting neoantigens as a personalized cancer immunotherapy will be developed.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Immunogenetics and Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | | |
Collapse
|
44
|
Adjuvant Autologous Melanoma Vaccine for Macroscopic Stage III Disease: Survival, Biomarkers, and Improved Response to CTLA-4 Blockade. J Immunol Res 2016; 2016:8121985. [PMID: 27294163 PMCID: PMC4887652 DOI: 10.1155/2016/8121985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 04/17/2016] [Indexed: 11/30/2022] Open
Abstract
Background. There is not yet an agreed adjuvant treatment for melanoma patients with American Joint Committee on Cancer stages III B and C. We report administration of an autologous melanoma vaccine to prevent disease recurrence. Patients and Methods. 126 patients received eight doses of irradiated autologous melanoma cells conjugated to dinitrophenyl and mixed with BCG. Delayed type hypersensitivity (DTH) response to unmodified melanoma cells was determined on the vaccine days 5 and 8. Gene expression analysis was performed on 35 tumors from patients with good or poor survival. Results. Median overall survival was 88 months with a 5-year survival of 54%. Patients attaining a strong DTH response had a significantly better (p = 0.0001) 5-year overall survival of 75% compared with 44% in patients without a strong response. Gene expression array linked a 50-gene signature to prognosis, including a cluster of four cancer testis antigens: CTAG2 (NY-ESO-2), MAGEA1, SSX1, and SSX4. Thirty-five patients, who received an autologous vaccine, followed by ipilimumab for progressive disease, had a significantly improved 3-year survival of 46% compared with 19% in nonvaccinated patients treated with ipilimumab alone (p = 0.007). Conclusion. Improved survival in patients attaining a strong DTH and increased response rate with subsequent ipilimumab suggests that the autologous vaccine confers protective immunity.
Collapse
|
45
|
Martin Lluesma S, Wolfer A, Harari A, Kandalaft LE. Cancer Vaccines in Ovarian Cancer: How Can We Improve? Biomedicines 2016; 4:biomedicines4020010. [PMID: 28536377 PMCID: PMC5344251 DOI: 10.3390/biomedicines4020010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one important cause of gynecologic cancer-related death. Currently, the mainstay of ovarian cancer treatment consists of cytoreductive surgery and platinum-based chemotherapy (introduced 30 years ago) but, as the disease is usually diagnosed at an advanced stage, its prognosis remains very poor. Clearly, there is a critical need for new treatment options, and immunotherapy is one attractive alternative. Prophylactic vaccines for prevention of infectious diseases have led to major achievements, yet therapeutic cancer vaccines have shown consistently low efficacy in the past. However, as they are associated with minimal side effects or invasive procedures, efforts directed to improve their efficacy are being deployed, with Dendritic Cell (DC) vaccination strategies standing as one of the more promising options. On the other hand, recent advances in our understanding of immunological mechanisms have led to the development of successful strategies for the treatment of different cancers, such as immune checkpoint blockade strategies. Combining these strategies with DC vaccination approaches and introducing novel combinatorial designs must also be considered and evaluated. In this review, we will analyze past vaccination methods used in ovarian cancer, and we will provide different suggestions aiming to improve their efficacy in future trials.
Collapse
Affiliation(s)
- Silvia Martin Lluesma
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Anita Wolfer
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Alexandre Harari
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Zamarin D, Jazaeri AA. Leveraging immunotherapy for the treatment of gynecologic cancers in the era of precision medicine. Gynecol Oncol 2016; 141:86-94. [PMID: 27016233 PMCID: PMC5007873 DOI: 10.1016/j.ygyno.2015.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Abstract
During the past decade significant progress in the understanding of stimulatory and inhibitory signaling pathways in immune cells has reinvigorated the field of immuno-oncology. In this review we outline the current immunotherapy based approaches for the treatment of gynecological cancers, and focus on the emerging clinical data on immune checkpoint inhibitors, adoptive cell therapies, and vaccines. It is anticipated that in the coming years biomarker-guided clinical trials, will provide for a better understanding of the mechanisms of response and resistance to immunotherapy, and guide combination treatment strategies that will extend the benefit from immunotherapy to patients with gynecologic cancers.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, United States
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, United States.
| |
Collapse
|
47
|
Sakamoto S, Noguchi M, Yamada A, Itoh K, Sasada T. Prospect and progress of personalized peptide vaccinations for advanced cancers. Expert Opin Biol Ther 2016; 16:689-98. [PMID: 26938083 DOI: 10.1517/14712598.2016.1161752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has made dramatic progress in the past 20 years, in part due to the identification of numerous tumor-associated antigens (TAAs). We have developed a novel immunotherapeutic approach called the personalized peptide vaccine (PPV), in which a maximum of four human leukocyte antigen (HLA)-matched vaccine peptides are selected based on the pre-existing host immunity before vaccination. AREAS COVERED This review describes recent progress in the use of PPV for various types of advanced cancer. EXPERT OPINION Although various approaches for therapeutic cancer immunotherapies, including peptide-based vaccines, have been developed and clinically examined, the diverse and heterogeneous characteristics of tumor cells and host immunity seem to limit their therapeutic efficacy. Selection of suitable peptide vaccines for individual patients based on the pre-existing host immunity before vaccination could resolve this limitation and could be a rational approach for developing effective cancer vaccines.
Collapse
Affiliation(s)
- Shinjiro Sakamoto
- a Research Center for Innovative Cancer Therapy , Kurume University , Kurume , Japan.,b Cancer Vaccine Center , Kurume University , Kurume , Japan.,c Department of Molecular and Internal Medicine School of Medicine, Graduate School of Biomedical and Health Sciences , Hiroshima University , Hiroshima , Japan
| | - Masanori Noguchi
- a Research Center for Innovative Cancer Therapy , Kurume University , Kurume , Japan
| | - Akira Yamada
- a Research Center for Innovative Cancer Therapy , Kurume University , Kurume , Japan
| | - Kyogo Itoh
- b Cancer Vaccine Center , Kurume University , Kurume , Japan
| | - Tetsuro Sasada
- b Cancer Vaccine Center , Kurume University , Kurume , Japan.,d Kanagawa Cancer Center Research Institute , Yokohama , Japan
| |
Collapse
|
48
|
Menderes G, Schwab CL, Black J, Santin AD. The Role of the Immune System in Ovarian Cancer and Implications on Therapy. Expert Rev Clin Immunol 2016; 12:681-95. [PMID: 26821930 DOI: 10.1586/1744666x.2016.1147957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States. While the treatment options have improved with conventional cytotoxic chemotherapy and advanced surgical techniques, disease recurrence is common and fatal in nearly all cases. Current evidence suggests that the immune system and its ability to recognize and eliminate microscopic disease is paramount in preventing recurrence. The goal of immunotherapy is to balance the activation of the immune system against cancer while preventing the potential for tremendous toxicity elicited by immune modulation. In this paper we will review the role of immune system in disease pathogenesis and different immunotherapies available for the treatment of ovarian cancer as well as current ongoing studies and potential future directions.
Collapse
Affiliation(s)
- Gulden Menderes
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Carlton L Schwab
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
49
|
Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res 2016; 168:74-95. [PMID: 26297944 DOI: 10.1016/j.trsl.2015.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.
Collapse
Affiliation(s)
- João Constantino
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Faculty of Medicine, Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI) and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Department of Chemistry and QOPNA, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
50
|
Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 2016; 16:2129-44. [PMID: 25824729 DOI: 10.7314/apjcp.2015.16.6.2129] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.
Collapse
Affiliation(s)
- Samira Goldar
- Department of Biochemistry and Clinical Labratorary, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|