1
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Yao X, Zhang L, Sun S, Fu A, Ge Y. Progress of research on the relationship between efferocytosis and tumor. Front Oncol 2024; 14:1361327. [PMID: 38655133 PMCID: PMC11035832 DOI: 10.3389/fonc.2024.1361327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are genetic changes that develop in an organism as a result of many internal and external causes. They affect the biological behavior of cells, cause them to grow independently, and give rise to new, perpetually proliferating organisms. Recent research has supported the critical function of tumor-associated macrophages in the development, progression, and metastasis of tumors through efferocytosis. Yet, there is still much to learn about the mechanisms behind their contribution to tumor pathological processes. As a result, it's critical to actively investigate how cytosolic processes contribute to the growth of tumors and to create novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Yanlei Ge
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
3
|
Möckel D, Bartneck M, Niemietz P, Wagner M, Ehling J, Rama E, Weiler M, Gremse F, Eulberg D, Pola R, Pechar M, Etrych T, Storm G, Kiessling F, Tacke F, Lammers T. CCL2 chemokine inhibition primes the tumor vasculature for improved nanomedicine delivery and efficacy. J Control Release 2024; 365:358-368. [PMID: 38016488 DOI: 10.1016/j.jconrel.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors. The effect of CCL2 inhibition on tumor blood vessel functionality and tumor-targeted drug delivery was evaluated via multimodal and multiscale optical imaging, employing fluorophore-labeled polymeric (10 nm) and liposomal (100 nm) nanocarriers. Anti-CCL2 treatment induced a dose-dependent anti-angiogenic effect, reflected by a decreased relative blood volume, increased blood vessel maturity and functionality, and reduced macrophage infiltration, accompanied by a shift in the polarization of tumor-associated macrophages (TAM) towards a less M2-like and more M1-like phenotype. In line with this, CCL2 inhibitor treatment improved the delivery of polymers and liposomes to tumors, and enhanced the antitumor efficacy of free and liposomal doxorubicin. Together, these findings demonstrate that blocking the CCL2-CCR2 axis modulates TAM infiltration and polarization, resulting in vascular normalization and improved tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Diana Möckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Patricia Niemietz
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Maike Wagner
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Elena Rama
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Marek Weiler
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Gremse-IT GmbH, Aachen, Germany
| | | | - Robert Pola
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Michal Pechar
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Tomas Etrych
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Gert Storm
- Department of Pharmaceutics, Utrecht University, the Netherlands; Department of Biomaterials, Science and Technology, University of Twente, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany.
| |
Collapse
|
4
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Egidi MJ, Krug S, Haybaeck J, Michl P, Griesmann H. Anti-angiogenic therapy using the multi-tyrosine kinase inhibitor Regorafenib enhances tumor progression in a transgenic mouse model of ß-cell carcinogenesis. Br J Cancer 2023; 129:1225-1237. [PMID: 37620408 PMCID: PMC10575939 DOI: 10.1038/s41416-023-02389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Pancreatic neuroendocrine tumors (PNETs) represent a distinct hypervascularized tumor entity, often diagnosed at metastatic stage. Therapeutic efficacy of anti-angiogenic multi-kinase inhibitors is frequently limited by primary or acquired resistance in vivo. This study aimed to characterize the molecular mode of action as well as resistance mechanisms to the anti-angiogenic multi-tyrosine kinase inhibitor (TKI) Regorafenib in vitro and in vivo. METHODS In vitro, human and murine pancreatic neuroendocrine cell lines were comparatively treated with Regorafenib and other TKIs clinically used in PNETs. Effects on cell viability and proliferation were analyzed. In vivo, transgenic RIP1Tag2 mice were treated with Regorafenib at two different time periods during carcinogenesis and its impact on angiogenesis and tumor progression was evaluated. RESULTS Compared to the established TKI therapies with Sunitinib and Everolimus, Regorafenib showed the strongest effects on cell viability and proliferation in vitro, but was unable to induce apoptosis. Unexpectedly and in contrast to these in vitro findings, Regorafenib enhanced proliferation during early tumor development in RIP1Tag2 mice and had no significant effect in late tumor progression. In addition, invasiveness was increased at both time points. Mechanistically, we could identify an upregulation of the pro-survival protein Bcl-2, the induction of the COX2-PGE2-pathway as well as the infiltration of CSF1R positive immune cells into the tumors as potential resistance mechanisms following Regorafenib treatment. DISCUSSION Our data identify important tumor cell-autonomous and stroma-dependent mechanisms of resistance to antiangiogenic therapies.
Collapse
Affiliation(s)
- Maren Juliane Egidi
- Clinic for Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Straße 40, D 06120, Halle, Germany
| | - Sebastian Krug
- Clinic for Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Straße 40, D 06120, Halle, Germany
- Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Patrick Michl
- Clinic for Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Straße 40, D 06120, Halle, Germany.
- Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany.
| | - Heidi Griesmann
- Clinic for Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Straße 40, D 06120, Halle, Germany
| |
Collapse
|
6
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
7
|
Xiong K, Qi M, Stoeger T, Zhang J, Chen S. The role of tumor-associated macrophages and soluble mediators in pulmonary metastatic melanoma. Front Immunol 2022; 13:1000927. [PMID: 36131942 PMCID: PMC9483911 DOI: 10.3389/fimmu.2022.1000927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Skin malignant melanoma is a highly aggressive skin tumor, which is also a major cause of skin cancer-related mortality. It can spread from a relatively small primary tumor and metastasize to multiple locations, including lymph nodes, lungs, liver, bone, and brain. What’s more metastatic melanoma is the main cause of its high mortality. Among all organs, the lung is one of the most common distant metastatic sites of melanoma, and the mortality rate of melanoma lung metastasis is also very high. Elucidating the mechanisms involved in the pulmonary metastasis of cutaneous melanoma will not only help to provide possible explanations for its etiology and progression but may also help to provide potential new therapeutic targets for its treatment. Increasing evidence suggests that tumor-associated macrophages (TAMs) play an important regulatory role in the migration and metastasis of various malignant tumors. Tumor-targeted therapy, targeting tumor-associated macrophages is thus attracting attention, particularly for advanced tumors and metastatic tumors. However, the relevant role of tumor-associated macrophages in cutaneous melanoma lung metastasis is still unclear. This review will present an overview of the origin, classification, polarization, recruitment, regulation and targeting treatment of tumor-associated macrophages, as well as the soluble mediators involved in these processes and a summary of their possible role in lung metastasis from cutaneous malignant melanoma. This review particularly aims to provide insight into mechanisms and potential therapeutic targets to readers, interested in pulmonary metastasis melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| |
Collapse
|
8
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
9
|
Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors. Int J Mol Sci 2021; 22:ijms22115736. [PMID: 34072260 PMCID: PMC8199456 DOI: 10.3390/ijms22115736] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
The understanding of the tumor microenvironment (TME) has been expanding in recent years in the context of interactions among different cell types, through direct cell–cell communication as well as through soluble factors. It has become evident that the development of a successful antitumor response depends on several TME factors. In this context, the number, type, and subsets of immune cells, as well as the functionality, memory, and exhaustion state of leukocytes are key factors of the TME. Both the presence and functionality of immune cells, in particular T cells, are regulated by cellular and soluble factors of the TME. In this regard, one fundamental reason for failure of antitumor responses is hijacked immune cells, which contribute to the immunosuppressive TME in multiple ways. Specifically, reactive oxygen species (ROS), metabolites, and anti-inflammatory cytokines have central roles in generating an immunosuppressive TME. In this review, we focused on recent developments in the immune cell constituents of the TME, and the micromilieu control of antitumor responses. Furthermore, we highlighted the current challenges of T cell-based immunotherapies and potential future strategies to consider for strengthening their effectiveness.
Collapse
|
10
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
11
|
Miao L, Zhuo Z, Tang J, Huang X, Liu J, Wang H, Xia H, He J. FABP4 deactivates NF-κB-IL1α pathway by ubiquitinating ATPB in tumor-associated macrophages and promotes neuroblastoma progression. Clin Transl Med 2021; 11:e395. [PMID: 33931964 PMCID: PMC8087928 DOI: 10.1002/ctm2.395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma (NB) is the most common and deadliest pediatric solid tumor. Targeting and reactivating tumor-associated macrophages (TAMs) is necessary for reversing immune suppressive state and stimulating immune defense to exert tumoricidal function. However, studies on the function and regulation of TAMs in NB progression are still limited. Fatty acid binding protein 4 (FABP4) in TAMs was correlated with advanced clinical stages and unfavorable histology of NB. FABP4-mediated macrophages increased migration, invasion, and tumor growth of NB cells. Mechanically, FABP4 could directly bind to ATPB to accelerate ATPB ubiquitination in macrophages. The consequently decreased ATP levels could deactivate NF-κB/RelA-IL1α pathway, which subsequently results in macrophages reprogrammed to an anti-inflammatory phenotype. We also demonstrated that FABP4-enhanced migration and invasion were significantly suppressed by IL1α blocking antibody. Furthermore, circulating FABP4 was also associated with the clinical stages of NB. Our findings suggest that FABP4-mediated macrophages may promote proliferation and migration phenotypes in NB cells through deactivating NF-κB-IL1α pathway by ubiquitinating ATPB. This study reveals the pathologic and biologic role of FABP4-mediated macrophages in NB development and exhibits a novel application of targeting FABP4 in macrophages for NB treatment.
Collapse
Affiliation(s)
- Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xiaomei Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Hai‐Yun Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Pathology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
12
|
Quinn CH, Beierle AM, Beierle EA. Artificial Tumor Microenvironments in Neuroblastoma. Cancers (Basel) 2021; 13:cancers13071629. [PMID: 33915765 PMCID: PMC8037559 DOI: 10.3390/cancers13071629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Children with high-risk neuroblastoma have limited therapeutic options poor survival rates. The neuroblastoma tumor microenvironment contributes the lack of response to many interventions so innovative methods are needed to study the effects of the tumor microenvironment on new therapies. In this manuscript, we review the current literature related to the components of the tumor microenvironment and to the use of three-dimensional printing as modality to study cancer. This review highlights the potential for using three-dimensional printing to create an artificial tumor microenvironment in the presence of neuroblastoma to provide improved preclinical testing of novel therapies. Abstract In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.
Collapse
Affiliation(s)
- Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Andee M. Beierle
- Division of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
- Correspondence:
| |
Collapse
|
13
|
Koo J, Hayashi M, Verneris MR, Lee-Sherick AB. Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Front Oncol 2020; 10:581107. [PMID: 33381449 PMCID: PMC7769312 DOI: 10.3389/fonc.2020.581107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
For many pediatric sarcoma patients, multi-modal therapy including chemotherapy, radiation, and surgery is sufficient to cure their disease. However, event-free and overall survival rates for patients with more advanced disease are grim, necessitating the development of novel therapeutic approaches. Within many pediatric sarcomas, the normal immune response, including recognition and destruction of cancer cells, is lost due to the highly immune suppressive tumor microenvironment (TME). In this setting, tumor cells evade immune detection and capitalize on the immune suppressed microenvironment, leading to unchecked proliferation and metastasis. Recent preclinical and clinical approaches are aimed at understanding this immune suppressive microenvironment and employing cancer immunotherapy in an attempt to overcome this, by renewing the ability of the immune system to recognize and destroy cancer cells. While there are several factors that drive the attenuation of immune responses in the sarcoma TME, one of the most remarkable are tumor associated macrophage (TAMs). TAMs suppress immune cytolytic function, promote tumor growth and metastases, and are generally associated with a poor prognosis in most pediatric sarcoma subtypes. In this review, we summarize the mechanisms underlying TAM-facilitated immune evasion and tumorigenesis and discuss the potential therapeutic application of TAM-focused drugs in the treatment of pediatric sarcomas.
Collapse
Affiliation(s)
- Jane Koo
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Masanori Hayashi
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Michael R Verneris
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Alisa B Lee-Sherick
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
14
|
Liu KX, Joshi S. "Re-educating" Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Front Immunol 2020; 11:1947. [PMID: 32983125 PMCID: PMC7493646 DOI: 10.3389/fimmu.2020.01947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric tumor and often presents with metastatic disease, and patients with high-risk neuroblastoma have survival rates of ~50%. Neuroblastoma tumorigenesis is associated with the infiltration of various types of immune cells, including myeloid derived suppressor cells, tumor associated macrophages (TAMs), and regulatory T cells, which foster tumor growth and harbor immunosuppressive functions. In particular, TAMs predict poor clinical outcomes in neuroblastoma, and among these immune cells, TAMs with an M2 phenotype comprise an immune cell population that promotes tumor metastasis, contributes to immunosuppression, and leads to failure of radiation or checkpoint inhibitor therapy. This review article summarizes the role of macrophages in tumor angiogenesis, metastasis, and immunosuppression in neuroblastoma and discusses the recent advances in "macrophage-targeting strategies" in neuroblastoma with a focus on three aspects: (1) inhibition of macrophage recruitment, (2) targeting macrophage survival, and (3) reprogramming of macrophages into an immunostimulatory phenotype.
Collapse
Affiliation(s)
- Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UCSD Rady's Children's Hospital, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Gouveia-Fernandes S. Monocytes and Macrophages in Cancer: Unsuspected Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:161-185. [PMID: 32130699 DOI: 10.1007/978-3-030-34025-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The behavior of cancer is undoubtedly affected by stroma. Macrophages belong to this microenvironment and their presence correlates with reduced survival in most cancers. After a tumor-induced "immunoediting", these monocytes/macrophages, originally the first line of defense against tumor cells, undergo a phenotypic switch and become tumor-supportive and immunosuppressive.The influence of these tumor-associated macrophages (TAMs) on cancer is present in all traits of carcinogenesis. These cells participate in tumor initiation and growth, migration, vascularization, invasion and metastasis. Although metastasis is extremely clinically relevant, this step is always reliant on the angiogenic ability of tumors. Therefore, the formation of new blood vessels in tumors assumes particular importance as a limiting step for disease progression.Herein, the once unsuspected roles of macrophages in cancer will be discussed and their importance as a promising strategy to treat this group of diseases will be reminded.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019; 12:76. [PMID: 31300030 PMCID: PMC6626377 DOI: 10.1186/s13045-019-0760-3] [Citation(s) in RCA: 845] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
|
17
|
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019. [PMID: 31300030 DOI: 10.1186/s13045-019-0760-3.pmid:31300030;pmcid:pmc6626377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China
| | - Jianxin Xu
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China.
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MS-1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019. [PMID: 31143517 DOI: 10.1080/2162402x.2019.1596004] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
19
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019; 8:1596004. [PMID: 31143517 PMCID: PMC6527283 DOI: 10.1080/2162402x.2019.1596004] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/17/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
20
|
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32:1267-1284. [PMID: 30275043 PMCID: PMC6169832 DOI: 10.1101/gad.314617.118] [Citation(s) in RCA: 1230] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Gonzelez et al. provide an update of recent accomplishments, unifying concepts, and futures challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas. The presence of inflammatory immune cells in human tumors raises a fundamental question in oncology: How do cancer cells avoid the destruction by immune attack? In principle, tumor development can be controlled by cytotoxic innate and adaptive immune cells; however, as the tumor develops from neoplastic tissue to clinically detectable tumors, cancer cells evolve different mechanisms that mimic peripheral immune tolerance in order to avoid tumoricidal attack. Here, we provide an update of recent accomplishments, unifying concepts, and future challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas.
Collapse
Affiliation(s)
- Hugo Gonzalez
- Department of Anatomy, the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| | - Catharina Hagerling
- Department of Anatomy, the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| | - Zena Werb
- Department of Anatomy, the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
21
|
Webb MW, Sun J, Sheard MA, Liu WY, Wu HW, Jackson JR, Malvar J, Sposto R, Daniel D, Seeger RC. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes. Int J Cancer 2018; 143:1483-1493. [PMID: 29665011 DOI: 10.1002/ijc.31532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages can promote growth of cancers. In neuroblastoma, tumor-associated macrophages have greater frequency in metastatic versus loco-regional tumors, and higher expression of genes associated with macrophages helps to predict poor prognosis in the 60% of high-risk patients who have MYCN-non-amplified disease. The contribution of cytotoxic T-lymphocytes to anti-neuroblastoma immune responses may be limited by low MHC class I expression and low exonic mutation frequency. Therefore, we modelled human neuroblastoma in T-cell deficient mice to examine whether depletion of monocytes/macrophages from the neuroblastoma microenvironment by blockade of CSF-1R can improve the response to chemotherapy. In vitro, CSF-1 was released by neuroblastoma cells, and topotecan increased this release. In vivo, neuroblastomas formed by subcutaneous co-injection of human neuroblastoma cells and human monocytes into immunodeficient NOD/SCID mice had fewer human CD14+ and CD163+ cells and mouse F4/80+ cells after CSF-1R blockade. In subcutaneous or intra-renal models in immunodeficient NSG or NOD/SCID mice, CSF-1R blockade alone did not affect tumor growth or mouse survival. However, when combined with cyclophosphamide plus topotecan, the CSF-1R inhibitor BLZ945, either without or with anti-human and anti-mouse CSF-1 mAbs, inhibited neuroblastoma growth and synergistically improved mouse survival. These findings indicate that depletion of tumor-associated macrophages from neuroblastomas can be associated with increased chemotherapeutic efficacy without requiring a contribution from T-lymphocytes, suggesting the possibility that combination of CSF-1R blockade with chemotherapy might be effective in patients who have limited anti-tumor T-cell responses.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Benzothiazoles/pharmacology
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Humans
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/pathology
- Neuroblastoma/drug therapy
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Picolinic Acids/pharmacology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Matthew W Webb
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Jianping Sun
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Michael A Sheard
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Wei-Yao Liu
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Hong-Wei Wu
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Jeremy R Jackson
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Jemily Malvar
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Richard Sposto
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Dylan Daniel
- Novartis Institutes of BioMedical Research, Emeryville, CA, 94608
| | - Robert C Seeger
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
22
|
Zins K, Schäfer R, Paulus P, Dobler S, Fakhari N, Sioud M, Aharinejad S, Abraham D. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β-catenin-dependent and β-catenin-independent signaling pathways. Oncotarget 2018; 7:46187-46202. [PMID: 27323822 PMCID: PMC5216790 DOI: 10.18632/oncotarget.10070] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Frizzled2 (FZD2) is a receptor for Wnts and may activate both canonical and non-canonical Wnt signaling pathways in cancer. However, no studies have reported an association between FZD2 signaling and high-risk NB so far. Here we report that FZD2 signaling pathways are critical to NB growth in MYCN-single copy SK-N-AS and MYCN-amplified SK-N-DZ high-risk NB cells. We demonstrate that stimulation of FZD2 by Wnt3a and Wnt5a regulates β-catenin-dependent and -independent Wnt signaling factors. FZD2 blockade suppressed β-catenin-dependent signaling activity and increased phosphorylation of PKC, AKT and ERK in vitro, consistent with upregulation of β-catenin-independent signaling activity. Finally, FZD2 small interfering RNA knockdown suppressed tumor growth in murine NB xenograft models associated with suppressed β-catenin-dependent signaling and a less vascularized phenotype in both NB xenografts. Together, our study suggests a role for FZD2 in high-risk NB cell growth and provides a potential candidate for therapeutic inhibition in FZD2-expressing NB patients.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | | | - Patrick Paulus
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Silvia Dobler
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Nazak Fakhari
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, N-0310, Norway
| | - Seyedhossein Aharinejad
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria.,Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
23
|
Song W, Mazzieri R, Yang T, Gobe GC. Translational Significance for Tumor Metastasis of Tumor-Associated Macrophages and Epithelial-Mesenchymal Transition. Front Immunol 2017; 8:1106. [PMID: 28955335 PMCID: PMC5601389 DOI: 10.3389/fimmu.2017.01106] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment determines development and progression of many cancers. Epithelial–mesenchymal transition (EMT) is fundamental to tumor progression and metastasis not only by increasing invasiveness but also by increasing resistance to cell death, senescence, and various cancer therapies; determining inflammation and immune surveillance; and conferring stem cell properties. It does this by enabling polarized epithelial cells to transform into cells with a mesenchymal, and therefore motile, phenotype. Tumor-associated macrophages (TAMs) are key cells of the tumor microenvironment that orchestrate the connection between inflammation and cancer. Activation of EMT often requires crosstalk between cancer cells and components of the local tumor microenvironment, including TAMs. In this review, clinical and experimental evidence is presented for control of TAMs in promoting cancer cell invasion and migration and their interaction with the EMT process in the metastatic cascade. The translational significance of these findings is that the signaling pathways that interconnect TAMs and EMT-modified cancer cells may represent promising therapeutic targets for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Wenzhe Song
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Roberta Mazzieri
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Tao Yang
- Discipline of Pathology, The Western Sydney University, Sydney, NSW, Australia.,SydPath, St Vincent's Hospital, Sydney, NSW, Australia
| | - Glenda C Gobe
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Kasaai B, Caolo V, Peacock HM, Lehoux S, Gomez-Perdiguero E, Luttun A, Jones EAV. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep 2017; 7:43817. [PMID: 28272478 PMCID: PMC5341067 DOI: 10.1038/srep43817] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Erythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development. We find that EMPs express most EC markers but late EMPs and EMP-derived cells do not take up acetylated low-density lipoprotein (AcLDL), as ECs do. When the endothelium is labelled with AcLDL before EMPs differentiate, EMPs and EMP-derived cells arise that are AcLDL+. If AcLDL is injected after the onset of EMP differentiation, however, the majority of EMP-derived cells are not double labelled. We find that cell division precedes entry of EMPs into circulation, and that blood flow facilitates the transition of EMPs from the endothelium into circulation in a nitric oxide-dependent manner. In gain-of-function studies, we inject the CSF1-Fc ligand in embryos and found that this increases the number of CSF1R+ cells, which localize to the venous plexus and significantly disrupt venous remodeling. This is the first study to definitively establish that EMPs arise from the endothelium in vivo and show a role for early myeloid cells in vascular development.
Collapse
Affiliation(s)
- Bahar Kasaai
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium.,Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Experimental Medicine, McGill University, 3755 Ch. Côte-Ste-Catherine, Montréal, QC, H3T 1E2, Canada
| | | | - Aernout Luttun
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Li XM, Wang JR, Shen T, Gao SS, He XS, Li JN, Yang TY, Zhang S, Gan WJ, Li JM, Wu H. Nur77 deficiency in mice accelerates tumor invasion and metastasis by facilitating TNFα secretion and lowering CSF-1R expression. PLoS One 2017; 12:e0171347. [PMID: 28170411 PMCID: PMC5295676 DOI: 10.1371/journal.pone.0171347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Nur77, an orphan member of the nuclear receptor superfamily, plays critical roles in inflammation and immunity. However, the role of Nur77 in tumor microenvironment remains elusive. Results showed that deletion of Nur77 strikingly enhanced tumor metastasis compared to WT mice. Additionally, compared to the conditioned media derived from Nur77+/+ peritoneal macrophages (CM1), the conditioned media derived from Nur77-/- peritoneal macrophages (CM2) significantly promoted the EMT of cancer cells, and greatly enhanced the migratory and invasive abilities of cancer cells. Moreover, studies using TNF-α blocking antibody demonstrated that pro-inflammatory cytokine TNF-α was indispensable in supporting CM2-induced EMT to drive cancer cells migration and invasion. Furthermore, we found that Nur77 promoted the expression of CSF-1R, a novel downstream target gene of Nur77, and subsequently enhanced the migration of inflammatory cells. Notably, infiltration of inflammatory cells in the tumors of Nur77-/- mice was markedly abrogated compared to Nur77+/+ mice. Collectively, these results revealed that host Nur77 expression was pivotal in antitumor immune response, and in inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tong Shen
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shang-Shang Gao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang-Nan Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tian-Yu Yang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HW); (JML)
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
- * E-mail: (HW); (JML)
| |
Collapse
|
26
|
Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters. Mediators Inflamm 2017; 2017:9294018. [PMID: 28197019 PMCID: PMC5286482 DOI: 10.1155/2017/9294018] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 02/08/2023] Open
Abstract
One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays.
Collapse
|
27
|
De Vlaeminck Y, González-Rascón A, Goyvaerts C, Breckpot K. Cancer-Associated Myeloid Regulatory Cells. Front Immunol 2016; 7:113. [PMID: 27065074 PMCID: PMC4810015 DOI: 10.3389/fimmu.2016.00113] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level.
Collapse
Affiliation(s)
- Yannick De Vlaeminck
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel , Brussels , Belgium
| | - Anna González-Rascón
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium; Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel , Brussels , Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
28
|
Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2016; 2:15025. [PMID: 26998515 PMCID: PMC4794275 DOI: 10.1038/npjbcancer.2015.25] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Deleterious inflammation is a primary feature of breast cancer. Accumulating evidence demonstrates that macrophages, the most abundant leukocyte population in mammary tumors, have a critical role at each stage of cancer progression. Such tumor-associated macrophages facilitate neoplastic transformation, tumor immune evasion and the subsequent metastatic cascade. Herein, we discuss the dynamic process whereby molecular and cellular features of the tumor microenvironment act to license tissue-repair mechanisms of macrophages, fostering angiogenesis, metastasis and the support of cancer stem cells. We illustrate how tumors induce, then exploit trophic macrophages to subvert innate and adaptive immune responses capable of destroying malignant cells. Finally, we discuss compelling evidence from murine models of cancer and early clinical trials in support of macrophage-targeted intervention strategies with the potential to dramatically reduce breast cancer morbidity and mortality.
Collapse
Affiliation(s)
- Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Adam C Soloff
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
29
|
Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett 2015; 380:304-14. [PMID: 26597947 DOI: 10.1016/j.canlet.2015.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Neuroblastoma is the second most common solid tumor in children. Since the seminal discovery of the role of amplification of the MYCN oncogene in the pathogenesis of neuroblastoma in the 1980s, much focus has been on the contribution of genetic alterations in the progression of this cancer. However it is now clear that not only genetic events play a role but that the tumor microenvironment (TME) substantially contributes to the biology of neuroblastoma. In this article, we present a comprehensive review of the literature on the contribution of the TME to the ten hallmarks of cancer in neuroblastoma and discuss the mechanisms of communication between neuroblastoma cells and the TME that underlie the influence of the TME on neuroblastoma progression. We end our review by discussing how the knowledge acquired over the last two decades in this field is now leading to new clinical trials targeting the TME.
Collapse
Affiliation(s)
- Lucia Borriello
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Robert C Seeger
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Stafford JH, Hirai T, Deng L, Chernikova SB, Urata K, West BL, Brown JM. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol 2015; 18:797-806. [PMID: 26538619 DOI: 10.1093/neuonc/nov272] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/04/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell-derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. METHODS To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. RESULTS GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. CONCLUSION CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy.
Collapse
Affiliation(s)
- Jason H Stafford
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (J.H.S., T.H., L.D., S.B.C., K.U., J.M.B.), Department of Radiation Oncology, Juntendo University School of Medicine, Tokyo, Japan (T.H.); Plexxikon Inc., Berkeley, California (B.L.W.)
| | - Takahisa Hirai
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (J.H.S., T.H., L.D., S.B.C., K.U., J.M.B.), Department of Radiation Oncology, Juntendo University School of Medicine, Tokyo, Japan (T.H.); Plexxikon Inc., Berkeley, California (B.L.W.)
| | - Lei Deng
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (J.H.S., T.H., L.D., S.B.C., K.U., J.M.B.), Department of Radiation Oncology, Juntendo University School of Medicine, Tokyo, Japan (T.H.); Plexxikon Inc., Berkeley, California (B.L.W.)
| | - Sophia B Chernikova
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (J.H.S., T.H., L.D., S.B.C., K.U., J.M.B.), Department of Radiation Oncology, Juntendo University School of Medicine, Tokyo, Japan (T.H.); Plexxikon Inc., Berkeley, California (B.L.W.)
| | - Kimiko Urata
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (J.H.S., T.H., L.D., S.B.C., K.U., J.M.B.), Department of Radiation Oncology, Juntendo University School of Medicine, Tokyo, Japan (T.H.); Plexxikon Inc., Berkeley, California (B.L.W.)
| | - Brian L West
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (J.H.S., T.H., L.D., S.B.C., K.U., J.M.B.), Department of Radiation Oncology, Juntendo University School of Medicine, Tokyo, Japan (T.H.); Plexxikon Inc., Berkeley, California (B.L.W.)
| | - J Martin Brown
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (J.H.S., T.H., L.D., S.B.C., K.U., J.M.B.), Department of Radiation Oncology, Juntendo University School of Medicine, Tokyo, Japan (T.H.); Plexxikon Inc., Berkeley, California (B.L.W.)
| |
Collapse
|
31
|
Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proc Natl Acad Sci U S A 2014; 111:E5086-95. [PMID: 25385645 DOI: 10.1073/pnas.1419899111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-infiltrating inflammatory cells comprise a major part of the stromal microenvironment and support cancer progression by multiple mechanisms. High numbers of tumor myeloid cells correlate with poor prognosis in breast cancer and are coupled with the angiogenic switch and malignant progression. However, the specific roles and regulation of heterogeneous tumor myeloid populations are incompletely understood. CSF-1 is a major myeloid cell mitogen, and signaling through its receptor CSF-1R is also linked to poor outcomes. To characterize myeloid cell function in tumors, we combined confocal intravital microscopy with depletion of CSF-1R-dependent cells using a neutralizing CSF-1R antibody in the mouse mammary tumor virus long-terminal region-driven polyoma middle T antigen breast cancer model. The depleted cells shared markers of tumor-associated macrophages and dendritic cells (M-DCs), matching the phenotype of tumor dendritic cells that take up antigens and interact with T cells. We defined functional subgroups within the M-DC population by imaging endocytic and matrix metalloproteinase activity. Anti-CSF-1R treatment altered stromal dynamics and impaired both survival of M-DCs and accumulation of new M-DCs, but did not deplete Gr-1(+) neutrophils or block doxorubicin-induced myeloid cell recruitment, and had a minimal effect on lung myeloid cells. Nevertheless, prolonged treatment led to delayed tumor growth, reduced vascularity, and decreased lung metastasis. Because the myeloid infiltrate in metastatic lungs differed significantly from that in mammary tumors, the reduction in metastasis may result from the impact on primary tumors. The combination of functional analysis by intravital imaging with cellular characterization has refined our understanding of the effects of experimental targeted therapies on the tumor microenvironment.
Collapse
|
32
|
Abstract
The tumor microenvironment is a complex ecology of cells that evolves with and provides support to tumor cells during the transition to malignancy. Among the innate and adaptive immune cells recruited to the tumor site, macrophages are particularly abundant and are present at all stages of tumor progression. Clinical studies and experimental mouse models indicate that these macrophages generally play a protumoral role. In the primary tumor, macrophages can stimulate angiogenesis and enhance tumor cell invasion, motility, and intravasation. During monocytes and/or metastasis, macrophages prime the premetastatic site and promote tumor cell extravasation, survival, and persistent growth. Macrophages are also immunosuppressive, preventing tumor cell attack by natural killer and T cells during tumor progression and after recovery from chemo- or immunotherapy. Therapeutic success in targeting these protumoral roles in preclinical models and in early clinical trials suggests that macrophages are attractive targets as part of combination therapy in cancer treatment.
Collapse
Affiliation(s)
- Roy Noy
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461, USA; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
33
|
Abstract
The tumor microenvironment is a complex ecology of cells that evolves with and provides support to tumor cells during the transition to malignancy. Among the innate and adaptive immune cells recruited to the tumor site, macrophages are particularly abundant and are present at all stages of tumor progression. Clinical studies and experimental mouse models indicate that these macrophages generally play a protumoral role. In the primary tumor, macrophages can stimulate angiogenesis and enhance tumor cell invasion, motility, and intravasation. During monocytes and/or metastasis, macrophages prime the premetastatic site and promote tumor cell extravasation, survival, and persistent growth. Macrophages are also immunosuppressive, preventing tumor cell attack by natural killer and T cells during tumor progression and after recovery from chemo- or immunotherapy. Therapeutic success in targeting these protumoral roles in preclinical models and in early clinical trials suggests that macrophages are attractive targets as part of combination therapy in cancer treatment.
Collapse
Affiliation(s)
- Roy Noy
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461, USA; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
34
|
Medina-Echeverz J, Aranda F, Berraondo P. Myeloid-derived cells are key targets of tumor immunotherapy. Oncoimmunology 2014; 3:e28398. [PMID: 25050208 PMCID: PMC4063142 DOI: 10.4161/onci.28398] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/01/2014] [Indexed: 12/22/2022] Open
Abstract
Tumors are composed of heterogeneous cell populations recruited by cancer cells to promote growth and metastasis. Among cells comprising the tumor stroma, myeloid-derived cells play pleiotropic roles in supporting tumorigenesis at distinct stages of tumor development. The tumor-infiltrating myeloid cell contingent is composed of mast cells, neutrophils, dendritic cells, macrophages, and myeloid-derived suppressor cells. Such cells are capable of evading the hostile tumor environment typically prone to immune cell destruction and can even promote angiogenesis, chronic inflammation, and invasion. This paper briefly summarizes the different myeloid-derived subsets that promote tumor development and the strategies that have been used to counteract the protumorigenic activity of these cells. These strategies include myeloid cell depletion, reduction of recruitment, and inactivation or remodeling of cell phenotype. Combining drugs designed to target tumor myeloid cells with immunotherapies that effectively trigger antitumor adaptive immune responses holds great promise in the development of novel cancer treatments.
Collapse
Affiliation(s)
- José Medina-Echeverz
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| | - Fernando Aranda
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| | - Pedro Berraondo
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| |
Collapse
|
35
|
Fend L, Accart N, Kintz J, Cochin S, Reymann C, Le Pogam F, Marchand JB, Menguy T, Slos P, Rooke R, Fournel S, Bonnefoy JY, Préville X, Haegel H. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts. PLoS One 2013; 8:e73310. [PMID: 24019914 PMCID: PMC3760897 DOI: 10.1371/journal.pone.0073310] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Tumor progression is promoted by Tumor-Associated Macrophages (TAMs) and metastasis-induced bone destruction by osteoclasts. Both myeloid cell types depend on the CD115-CSF-1 pathway for their differentiation and function. We used 3 different mouse cancer models to study the effects of targeting cancer host myeloid cells with a monoclonal antibody (mAb) capable of blocking CSF-1 binding to murine CD115. In mice bearing sub-cutaneous EL4 tumors, which are CD115-negative, the anti-CD115 mAb depleted F4/80+ CD163+ M2-type TAMs and reduced tumor growth, resulting in prolonged survival. In the MMTV-PyMT mouse model, the spontaneous appearance of palpable mammary tumors was delayed when the anti-CD115 mAb was administered before malignant transition and tumors became palpable only after termination of the immunotherapy. When administered to mice already bearing established PyMT tumors, anti-CD115 treatment prolonged their survival and potentiated the effect of chemotherapy with Paclitaxel. As shown by immunohistochemistry, this therapeutic effect correlated with the depletion of F4/80+CD163+ M2-polarized TAMs. In a breast cancer model of bone metastasis, the anti-CD115 mAb potently blocked the differentiation of osteoclasts and their bone destruction activity. This resulted in the inhibition of cancer-induced weight loss. CD115 thus represents a promising target for cancer immunotherapy, since a specific blocking antibody may not only inhibit the growth of a primary tumor through TAM depletion, but also metastasis-induced bone destruction through osteoclast inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sylvie Fournel
- UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France
| | | | | | | |
Collapse
|
36
|
Godby RC, Van Den Berg YW, Srinivasan R, Sturm R, Hui DY, Konieczny SF, Aronow BJ, Ozhegov E, Ruf W, Versteeg HH, Bogdanov VY. Nonproteolytic properties of murine alternatively spliced tissue factor: implications for integrin-mediated signaling in murine models. Mol Med 2012; 18:771-9. [PMID: 22481268 DOI: 10.2119/molmed.2011.00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/29/2012] [Indexed: 11/06/2022] Open
Abstract
This study was performed to determine whether murine alternatively spliced tissue factor (masTF) acts analogously to human alternatively spliced tissue factor (hasTF) in promoting neovascularization via integrin ligation. Immunohistochemical evaluation of a spontaneous murine pancreatic ductal adenocarcinoma model revealed increased levels of masTF and murine full-length tissue factor (mflTF) in tumor lesions compared with benign pancreas; furthermore, masTF colocalized with mflTF in spontaneous aortic plaques of Ldlr(-/-) mice, indicating that masTF is likely involved in atherogenesis and tumorigenesis. Recombinant masTF was used to perform in vitro and ex vivo studies examining its integrin-mediated biologic activity. Murine endothelial cells (ECs) rapidly adhered to masTF in a β3-dependent fashion. Using adult and embryonic murine ECs, masTF potentiated cell migration in transwell assays. Scratch assays were performed using murine and primary human ECs; the effects of masTF and hasTF were comparable in murine ECs, but in human ECs, the effects of hasTF were more pronounced. In aortic sprouting assays, the potency of masTF-triggered vessel growth was undistinguishable from that observed with hasTF. The proangiogenic effects of masTF were found to be Ccl2-mediated, yet independent of vascular endothelial growth factor. In murine ECs, masTF and hasTF upregulated genes involved in inflammatory responses; murine and human ECs stimulated with masTF and hasTF exhibited increased interaction with murine monocytic cells under orbital shear. We propose that masTF is a functional homolog of hasTF, exerting some of its key effects via β3 integrins. Our findings have implications for the development of murine models to examine the interplay between blood coagulation, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Richard C Godby
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmidt T, Ben-Batalla I, Schultze A, Loges S. Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell Mol Life Sci 2012; 69:1391-414. [PMID: 22076650 PMCID: PMC11115155 DOI: 10.1007/s00018-011-0863-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 02/07/2023]
Abstract
Ample clinical and preclinical evidence indicates that macrophages interact with tumor cells as well as with virtually all populations of host cells present in the tumor microenvironment. This crosstalk can strongly promote malignancy, but also has in principle the potential to inhibit tumor growth. Thus, it is of the utmost importance to improve our understanding of the mechanisms driving the pro- and antimalignant behavior of tumor-associated macrophages (TAMs) in order to develop better anticancer therapies. In this review, we discuss the biological consequences of reciprocal interactions between TAMs, cancer cells, endothelial cells, fibroblasts and other leukocyte subfractions within tumors. It was recently elucidated that tumors specifically educate macrophages to secrete growth arrest-specific gene 6 (Gas6), the common ligand of the Tyro3, Axl, Mer receptor (TAMR) family. In turn, Gas6 fosters tumor growth by promoting cancer cell proliferation. Therefore, the Gas6-TAMR axis might represent a novel target for disrupting tumor-macrophage crosstalk. We summarize here what is known about TAMR and their ligands in (human) cancer biology. In order to shed more light on the role of macrophages in human cancer, we additionally provide an overview of what is currently known about the prognostic impact of TAMs in human cancer.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Isabel Ben-Batalla
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Schultze
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33:119-26. [PMID: 22277903 PMCID: PMC3294003 DOI: 10.1016/j.it.2011.12.001] [Citation(s) in RCA: 661] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 11/23/2022]
Abstract
Of the multiple unique stromal cell types common to solid tumors, tumor-associated macrophages (TAMs) are significant for fostering tumor progression. The protumor properties of TAMs derive from regulation of angiogenic programming, production of soluble mediators that support proliferation, survival and invasion of malignant cells, and direct and indirect suppression of cytotoxic T cell activity. These varied activities are dependent on the polarization state of TAMs that is regulated in part by local concentrations of cytokines and chemokines, as well as varied interactions of TAMs with normal and degraded components of the extracellular matrix. Targeting molecular pathways regulating TAM polarization holds great promise for anticancer therapy.
Collapse
Affiliation(s)
- Brian Ruffell
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| | - Nesrine I. Affara
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| | - Lisa M. Coussens
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| |
Collapse
|
39
|
Król M, Pawłowski KM, Majchrzak K, Gajewska M, Majewska A, Motyl T. Global gene expression profiles of canine macrophages and canine mammary cancer cells grown as a co-culture in vitro. BMC Vet Res 2012; 8:16. [PMID: 22353646 PMCID: PMC3315417 DOI: 10.1186/1746-6148-8-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/21/2012] [Indexed: 12/24/2022] Open
Abstract
Background Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute probably the most important element of all interactions within the tumour microenvironment. However, the molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular mechanisms that orchestrate these phenomena has been the aim of our study. A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The results were confirmed using real-time qPCR and confocal microscopy. Moreover, their ability for migration and invasion has been assessed. Results Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells, as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover, we showed that macrophages increase cancer migration and invasion. Conclusions The presence of macrophages in the cancer environment induces acquisition of the macrophage phenotype (specific antigens and chemokines/cytokines expression) in cancer cells. We presumed that cancer cells also acquire other myeloid features, such as: capabilities of cell rolling, spreading, migration and matrix invasion (what has also been confirmed by our results). It may, perhaps, be the result of myeloid-cancer cell hybrid formation, or cancer cells mimicking macrophages phenotype, owing to various proteins secreted by macrophages.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Physiological Sciences, Warsaw University of Life Sciences - WULS, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
40
|
Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141:39-51. [PMID: 20371344 DOI: 10.1016/j.cell.2010.03.014] [Citation(s) in RCA: 3730] [Impact Index Per Article: 266.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/10/2010] [Accepted: 03/15/2010] [Indexed: 11/20/2022]
Abstract
There is persuasive clinical and experimental evidence that macrophages promote cancer initiation and malignant progression. During tumor initiation, they create an inflammatory environment that is mutagenic and promotes growth. As tumors progress to malignancy, macrophages stimulate angiogenesis, enhance tumor cell migration and invasion, and suppress antitumor immunity. At metastatic sites, macrophages prepare the target tissue for arrival of tumor cells, and then a different subpopulation of macrophages promotes tumor cell extravasation, survival, and subsequent growth. Specialized subpopulations of macrophages may represent important new therapeutic targets.
Collapse
|