1
|
Ginovyan M, Javrushyan H, Hovhannisyan S, Nadiryan E, Sevoyan G, Harutyunyan T, Gevorgyan S, Karabekian Z, Maloyan A, Avtandilyan N. 5-fluorouracil and Rumex obtusifolius extract combination trigger A549 cancer cell apoptosis: uncovering PI3K/Akt inhibition by in vitro and in silico approaches. Sci Rep 2024; 14:14676. [PMID: 38918540 PMCID: PMC11199614 DOI: 10.1038/s41598-024-65816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 06/27/2024] Open
Abstract
The continuous increase in cancer rates, failure of conventional chemotherapies to control the disease, and excessive toxicity of chemotherapies clearly demand alternative approaches. Natural products contain many constituents that can act on various bodily targets to induce pharmacodynamic responses. This study aimed to explore the combined anticancer effects of Rumex obtusifolius (RO) extract and the chemotherapeutic agent 5-fluorouracil (5-FU) on specific molecular targets involved in cancer progression. By focusing on the PI3K/Akt signaling pathway and its related components, such as cytokines, growth factors (TNFa, VEGFa), and enzymes (Arginase, NOS, COX-2, MMP-2), this research sought to elucidate the molecular mechanisms underlying the anticancer effects of RO extract, both independently and in combination with 5-FU, in non-small lung adenocarcinoma A549 cells. The study also investigated the potential interactions of compounds identified by HPLC/MS/MS of RO on PI3K/Akt in the active site pocket through an in silico analysis. The ultimate goal was to identify potent therapeutic combinations that effectively inhibit, prevent or delay cancer development with minimal side effects. The results revealed that the combined treatment of 5-FU and RO demonstrated a significant reduction in TNFa levels, comparable to the effect observed with RO alone. RO modulated the PI3K/Akt pathway, influencing the phosphorylated and total amounts of these proteins during the combined treatment. Notably, COX-2, a key player in inflammatory processes, substantially decreased with the combination treatment. Caspase-3 activity, indicative of apoptosis, increased by 1.8 times in the combined treatment compared to separate treatments. In addition, the in silico analyses explored the binding affinities and interactions of RO's major phytochemicals with intracellular targets, revealing a high affinity for PI3K and Akt. These findings suggest that the combined treatment induces apoptosis in A549 cells by regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Mikayel Ginovyan
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, RA, Armenia
| | - Hayarpi Javrushyan
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, RA, Armenia
| | - Svetlana Hovhannisyan
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, RA, Armenia
| | - Edita Nadiryan
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, RA, Armenia
| | - Gohar Sevoyan
- Laboratory of Immunology and Tissue Engineering, L.A. Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia
| | | | - Zaruhi Karabekian
- Laboratory of Immunology and Tissue Engineering, L.A. Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | - Alina Maloyan
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, USA
| | - Nikolay Avtandilyan
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, RA, Armenia.
| |
Collapse
|
2
|
Xu W, Goreczny GJ, Forsythe I, Brennan G, Stowell T, Brock K, Capella B, Turner CE. Hic-5 regulates extracellular matrix-associated gene expression and cytokine secretion in cancer associated fibroblasts. Exp Cell Res 2024; 435:113930. [PMID: 38237846 PMCID: PMC10923124 DOI: 10.1016/j.yexcr.2024.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The focal adhesion protein, Hic-5 plays a key role in promoting extracellular matrix deposition and remodeling by cancer associated fibroblasts within the tumor stroma to promote breast tumor cell invasion. However, whether stromal matrix gene expression is regulated by Hic-5 is still unknown. Utilizing a constitutive Hic-5 knockout, Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen spontaneous breast tumor mouse model, bulk RNAseq analysis was performed on cancer associated fibroblasts isolated from Hic-5 knockout mammary tumors. Functional network analysis highlighted a key role for Hic-5 in extracellular matrix organization, with both structural matrix genes, as well as matrix remodeling genes being differentially expressed in relation to Hic-5 expression. The subcellular distribution of the MRTF-A transcription factor and expression of a subset of MRTF-A responsive genes was also impacted by Hic-5 expression. Additionally, cytokine array analysis of conditioned media from the Hic-5 and Hic-5 knockout cancer associated fibroblasts revealed that Hic-5 is important for the secretion of several key factors that are associated with matrix remodeling, angiogenesis and immune evasion. Together, these data provide further evidence of a central role for Hic-5 expression in cancer associated fibroblasts in regulating the composition and organization of the tumor stroma microenvironment to promote breast tumor progression.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Jnana Therapeutics, Boston, MA, USA
| | - Ian Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Zymo Research Corp, Huntington Beach, CA, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Theresa Stowell
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Benjamin Capella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Wani AK, Singh R, Akhtar N, Prakash A, Nepovimova E, Oleksak P, Chrienova Z, Alomar S, Chopra C, Kuca K. Targeted Inhibition of the PI3K/Akt/mTOR Signaling Axis: Potential for Sarcoma Therapy. Mini Rev Med Chem 2024; 24:1496-1520. [PMID: 38265369 DOI: 10.2174/0113895575270904231129062137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Suliman Alomar
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
4
|
Seo I, Kim S, Hyun J, Kim Y, Park HS, Yoon J, Bhang SH. Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90 α and HSP27 regulation based on ROS stimulation for wound healing. Bioeng Transl Med 2023; 8:e10560. [PMID: 37693062 PMCID: PMC10487335 DOI: 10.1002/btm2.10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Light-based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio-stimulation mechanisms of light therapy in terms of ROS-heat shock proteins (HSPs) mediated anti-apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light-emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light-induced HSPs need to be investigated using a heat-independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti-apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound-closing model, rapid recovery and improved re-epithelization were observed in the light-treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti-apoptotic and angiogenic effects of OLED treatment on stem cells.
Collapse
Affiliation(s)
- Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jeong‐Kee Yoon
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
5
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Implication of mTOR Signaling in NSCLC: Mechanisms and Therapeutic Perspectives. Cells 2023; 12:2014. [PMID: 37566093 PMCID: PMC10416991 DOI: 10.3390/cells12152014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanistic target of the rapamycin (mTOR) signaling pathway represents a central cellular kinase that controls cell survival and metabolism. Increased mTOR activation, along with upregulation of respective upstream and downstream signaling components, have been established as oncogenic features in cancer cells in various tumor types. Nevertheless, mTOR pathway therapeutic targeting has been proven to be quite challenging in various clinical settings. Non-small cell lung cancer (NSCLC) is a frequent type of solid tumor in both genders, where aberrant regulation of the mTOR pathway contributes to the development of oncogenesis, apoptosis resistance, angiogenesis, cancer progression, and metastasis. In this context, the outcome of mTOR pathway targeting in clinical trials still demonstrates unsatisfactory results. Herewith, we discuss recent findings regarding the mechanisms and therapeutic targeting of mTOR signaling networks in NSCLC, as well as future perspectives for the efficient application of treatments against mTOR and related protein molecules.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biopathology, ‘Eginition’ Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Hao H, Wang B, Yang L, Sang Y, Xu W, Liu W, Zhang L, Jiang D. miRNA-186-5p inhibits migration, invasion and proliferation of breast cancer cells by targeting SBEM. Aging (Albany NY) 2023; 15:6993-7007. [PMID: 37477531 PMCID: PMC10415540 DOI: 10.18632/aging.204887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
The paper aimed to investigate the effect of miR186-5p on invasion and migration of breast cancer cells and its molecular mechanism. MicroRNA-186-5p was found to be low expressed in breast cancer and highly expressed in SBEM by bioinformatics analysis. After transfecting MDA-MB-231 cells with miR-186-5p inhibitor NC, miR-186-5p inhibitor, miR-186-5p mimic NC and miR-186-5p mimic, respectively. The migration and invasive ability of breast cancer cells were detected by cell scratch test and Transwell test. Moreover, after adding 740 Y-P to the miR-186-5p mimic NC group and miR-186-5p mimic group cells, SBEM and PI3K pathway-related proteins were detected by Western blotting and proliferation of the cancer cells was evaluated by monoclonal cell experiment. Meanwhile, exogenous miR-186-5p mimic in MDA-MB-231 cells significantly inhibited the expression of SBEM, p-PI3K, p-AKT and their downstream pathways, MMP1, MMP3, MMP9, CyclinD1, PCNA and CyclinB1 proteins and reduced proliferation of breast cancer cells. Furthermore, the expression of SBEM protein in the miR-186-5p mimic + 740Y-P group was significantly lower than the miR-186-5p mimic NC + 740Y-P group after adding 740 Y-P. However, there were no significant changes in the protein's levels associated with PI3K pathway and the cancer cells proliferation. These results suggest that low expression of miR-186-5p in breast cancer results in an abnormally high expression of SBEM, activation of PI3K/AKT signaling pathway, promoting migration and invasion of human breast cancer cells.
Collapse
Affiliation(s)
- Hui Hao
- Department of Medical Oncology, The Forth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Bingsheng Wang
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Lin Yang
- Graduate School, Chengde Medical University and Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Yinzhou Sang
- Department of Pathology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Wei Xu
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Wei Liu
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Lili Zhang
- Department of Medicine, Cangzhou Medical College, Cangzhou 061011, China
| | - Da Jiang
- Department of Medical Oncology, The Forth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
7
|
Liu Y, Wang CL, Pang ZQ, Gao K, Shen LK, Xu WH, Ren MH. Endostatin 33 Peptide Is a Deintegrin α6β1 Agent That Exerts Antitumor Activity by Inhibiting the PI3K-Akt Signaling Pathway in Prostate Cancer. J Clin Med 2023; 12:1861. [PMID: 36902648 PMCID: PMC10003382 DOI: 10.3390/jcm12051861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the leading cause of death in men and has poor therapeutic outcomes. METHODS A novel endostatin 33 peptide was synthesized by adding a specific QRD sequence on the basis of the endostatin 30 peptide (PEP06) with antitumor activity. Then, bioinformatic analysis and subsequent experiments were performed to validate the antitumor function of this endostatin 33 peptide. RESULTS We found that the 33 polypeptides significantly inhibited growth, invasion and metastasis and promoted the apoptosis of PCa in vivo or vitro, which is more significant than PEP06 under the same conditions. According to 489 cases from the TCGA data portal, the α6β1 high expression group was closely associated with the poor prognosis (Gleason score, pathological N stage, etc.) of PCa and was mainly enriched in the PI3K-Akt pathway. Subsequently, we demonstrated that endostatin 33 peptide can down-regulate the PI3K-Akt pathway via the targeted inhibition of α6β1, thereby inhibiting the epithelial-mesenchymal transition and matrix metalloproteinase in C42 cell lines. CONCLUSION The endostatin 33 peptide can exert antitumor effects by inhibiting the PI3K-Akt pathway, especially in tumors with a high expression of the integrin α6β1 subtype, such as prostate cancer. Therefore, our study will provide a new method and theoretical basis for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chang-Lin Wang
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhong-Qi Pang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ke Gao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lin-Kun Shen
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wan-Hai Xu
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ming-Hua Ren
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
8
|
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020525. [PMID: 36677584 PMCID: PMC9862901 DOI: 10.3390/molecules28020525] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Faculty of Health and Welfare Science, Nayoro City University, Nayoro 096-8641, Hokkaido, Japan
- Correspondence: (H.T.); (T.O.)
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women’s College of Liberal Arts, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu 410-0301, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Correspondence: (H.T.); (T.O.)
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
9
|
The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
|
10
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
11
|
Cho S, Choi H, Jeong H, Kwon SY, Roh EJ, Jeong KH, Baek I, Kim BJ, Lee SH, Han I, Cha JM. Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion. Stem Cells Transl Med 2022; 11:1072-1088. [PMID: 36180050 PMCID: PMC9585955 DOI: 10.1093/stcltm/szac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Collapse
Affiliation(s)
- Sumin Cho
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hun Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Inho Baek
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
12
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|
13
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
14
|
Li RF, Wang YS, Lu FI, Huang YS, Chiu CC, Tai MH, Wu CY. Identification of Novel Vascular Genes Downstream of Islet2 and Nr2f1b Transcription Factors. Biomedicines 2022; 10:biomedicines10061261. [PMID: 35740282 PMCID: PMC9220758 DOI: 10.3390/biomedicines10061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
The genetic regulation of vascular development is not elucidated completely. We previously characterized the transcription factors Islet2 (Isl2) and Nr2f1b as being critical for vascular growth. In this study, we further performed combinatorial microarrays to identify genes that are potentially regulated by these factors. We verified the changed expression of several targets in isl2/nr2f1b morphants. Those genes expressed in vessels during embryogenesis suggested their functions in vascular development. We selectively assayed a potential target follistatin a (fsta). Follistatin is known to inhibit BMP, and BMP signaling has been shown to be important for angiogenesis. However, the fsta’s role in vascular development has not been well studied. Here, we showed the vascular defects in ISV growth and CVP patterning while overexpressing fsta in the embryo, which mimics the phenotype of isl2/nr2f1b morphants. The vascular abnormalities are likely caused by defects in migration and proliferation. We further observed the altered expression of vessel markers consistent with the vascular defects in (fli:fsta) embryos. We showed that the knockdown of fsta can rescue the vascular defects in (fli:fsta) fish, suggesting the functional specificity of fsta. Moreover, the decreased expression of fsta rescues abnormal vessel growth in isl2 and nr2f1b morphants, indicating that fsta functions downstream of isl2/nr2f1b. Lastly, we showed that Isl2/Nr2f1b control vascular development, via Fsta–BMP signaling in part. Collectively, our microarray data identify many interesting genes regulated by isl2/nr2f1b, which likely function in the vasculature. Our research provides useful information on the genetic control of vascular development.
Collapse
Affiliation(s)
- Ru-Fang Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
| | - Yi-Shan Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Shan Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 3627)
| |
Collapse
|
15
|
Zhang Z, Wei Y, Li X, Zhao R, Wang X, Yang Z, Li T, Wang X, Li X, Wang X. IQGAP1 enhances cell invasion and matrix metalloproteinase-2 expression through upregulating NF-κB activity in esophageal squamous cell carcinoma cells. Gene 2022; 824:146406. [PMID: 35276237 DOI: 10.1016/j.gene.2022.146406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one type of the most common malignancies, yet the overall survival rate is still not ideal. IQ motif containing GTPase activating protein 1 (IQGAP1) participates in cell biological functions of various tumors as an oncogene. However, the mechanisms of IQGAP1 affecting malignant development of ESCC are still unclear. In this study, the expression and correlation of IQGAP1 and MMP2 in esophageal cancer tissues were evaluated by online databases and immunohistochemistry. Stably transfected cell lines with IQGAP1 overexpression and knockdown were constructed. Cell growth, migration and invasion ability, the expression of MMP2 and NF-κB expression were examined in ESCC cells. Furthermore, the cellular malignant phenotypes of ESCC and MMP2 expression in IQGAP1 overexpressing cells after treatment with the NF-κB inhibitor pyrrolidinecarbodithioic acid (PDTC) or JSH-23 were detected. We found that the expression of IQGAP1 and MMP2 were up-regulated and positively correlated in ESCC tissues. IQGAP1 overexpression promoted the growth, migration and invasion of ESCC cells, and up-regulated the expression of MMP2, and increased the expression and the nuclear localization level of NF-κB. Treating with PDTC or JSH-23 reversed IQGAP1-mediated cell migration and invasion ability, as well as the expression of MMP2. In summary, IQGAP1 plays a tumor promotion role to regulate the migration and invasion of ESCC cells and the expression of MMP2 through upregulating NF-κB activity, supporting a promising therapeutic target against ESCC.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Yuan Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xinting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Ziyi Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xuewei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xiaozhong Li
- Department of Infection, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
16
|
Acquisition of paclitaxel resistance modulates the biological traits of gastric cancer AGS cells and facilitates epithelial to mesenchymal transition and angiogenesis. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:515-533. [PMID: 35122114 DOI: 10.1007/s00210-022-02217-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aims to develop a paclitaxel (PTX)-resistant gastric cancer AGS cells (AGS-R) and evaluate the mechanisms of drug resistance. METHODS AGS cells were successively treated with increasing PTX concentrations. Cross-resistance of established AGS-R, the molecular patterns of cell survival, evasion of apoptosis, epithelial-mesenchymal transition (EMT), and the angiogenic potential were evaluated. RESULTS AGS-R was induced within six months of PTX exposure. Extension of the treatment resulted in PTX-resistance beyond clinical levels. The established AGS-R showed resistance to vincristine and doxorubicin but not cisplatin. Upon induction of resistance, the expressions of MDR-1 (P < 0.001) and MRP-1 (P < 0.01) genes and proteins significantly increased. AGS-R cells had elevated levels of BCL-2, pro-CASP3, cleaved-NOTCH1, HES1, HEY1, NF-κB, PI3K, p-AKT, HIF-1α, Cyclin A, and B1 as compared with parental cells (at least P < 0.01). The protein levels of BAX, CASP3, P53, and P21 (at least P < 0.01) as well as intracellular ROS (P < 0.001) were reduced in AGS-R. A relative arrest at the G2/M phase (15.8 ± 0.75 vs. 26.7 ± 1.67) of the cell cycle and enrichment of AGS-R cells for CD44 marker (9 ± 0.6 vs. 1 ± 0.8) (P < 0.001) were detected by flow cytometry. While the E-cadherin expression was reduced (P < 0.001), the protein levels of Vimentin, N-cadherin, SLUG, and SNAIL were increased (at least P < 0.05). The angiogenic activity and release of VEGF and MMP2/9 were increased in AGS-R cells relative to the AGS line (P < 0.001). CONCLUSION AGS-R cells could bypass chemotherapy stress by expressing the genes coding for efflux pumps and altering some key signaling in favor of survival, EMT, and angiogenesis.
Collapse
|
17
|
Ying TH, Lin CL, Chen PN, Wu PJ, Liu CJ, Hsieh YH. Angelol-A exerts anti-metastatic and anti-angiogenic effects on human cervical carcinoma cells by modulating the phosphorylated-ERK/miR-29a-3p that targets the MMP2/VEGFA axis. Life Sci 2022; 296:120317. [PMID: 35026214 DOI: 10.1016/j.lfs.2022.120317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/15/2023]
Abstract
AIMS Angelol-A (Ang-A), a kind of coumarins, is isolated from the roots of Angelica pubescens f. biserrata. However, AA exerts antitumor effects and molecular mechanism on cervical cancer cells is unknown. MAIN METHODS Cell viability was determined using the MTT assay, and the cell cycle phase was assessed by PI staining with flow cytometry. Ang-A-treated cells with/without Antago-miR-29a-3p (miR-29a-3p inhibitor) or U0126 (MEK inhibitor) were assessed for the expression of miR-29a-3p, in vitro migration/invasion, and angiogenesis using qRT-PCR, a chemotaxis assay, and tube formation assay, respectively. The expression of mitogen-activated protein kinases/MMP2/MMP9/VEGFA was determined by western blot analysis with applicable antibodies. KEY FINDINGS Ang-A significantly inhibited MMP2 and VEGFA expression, cell migration, and invasive motility in human cervical cancer cells. Conditioned medium inhibited tube formation in HUVECs. Ang-A principally inhibited invasive motility and angiogenesis by upregulating the expression of miR-29a-3p that targets the VEGFA-3' UTR. The role of miR-29a-3p was confirmed using Antago-miR-29a-3p, which reversed the Ang-A-inhibited expression of MMP2 and VEGFA, invasive motility, and angiogenesis in human cervical cancer cells. The ERK pathway was implicated in mediating the metastatic and angiogenic action of Ang-A. Combined treatment with Ang-A treated and U0126 exerted a synergistic inhibitory effect on the expression of MMP2 and VEGFA and the metastatic and angiogenic properties of human cervical cancer cells. SIGNIFICANCE These findings are the first to indicate that in human cervical cancer cells, Ang-A exerts anti-metastatic and anti-angiogenic effects via targeting the miR-29a-3p/MMP2/VEGFA axis, mediated through the ERK pathway.
Collapse
Affiliation(s)
- Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ju Wu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Morris RM, Mortimer TO, O’Neill KL. Cytokines: Can Cancer Get the Message? Cancers (Basel) 2022; 14:cancers14092178. [PMID: 35565306 PMCID: PMC9103018 DOI: 10.3390/cancers14092178] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cytokines are important molecular players in cancer development, progression, and potential targets for treatment. Despite being small and overlooked, research has revealed that cytokines influence cancer biology in multiple ways. Cytokines are often found to contribute to immune function, cell damage, inflammation, angiogenesis, metastasis, and several other cellular processes important to tumor survival. Cytokines have also proven to have powerful effects on complex tumor microenvironment molecular biology and microbiology. Due to their heavy involvement in critical cancer-related processes, cytokines have also become attractive therapeutic targets for cancer treatment. In this review, we describe the relationship between several cytokines and crucial cancer-promoting processes and their therapeutic potential. Abstract Cytokines are small molecular messengers that have profound effects on cancer development. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and antitumor activities, such as immune activation and suppression, inflammation, cell damage, angiogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often required to drive these cancer-related processes and, therefore, represent an important research area for understanding cancer development and the potential identification of novel therapeutic targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity, indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this review, we discuss some major cancer-related processes and their relationship with several cytokines.
Collapse
|
19
|
Deletion of TRIB3 disrupts the tumor progression induced by integrin αvβ3 in lung cancer. BMC Cancer 2022; 22:459. [PMID: 35473511 PMCID: PMC9044834 DOI: 10.1186/s12885-022-09593-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrin αvβ3 has been proposed as crucial determinant for tumor sustained progression and a molecular marker for the estimation of tumor angiogenesis. Our study suggested that integrin αvβ3 could efficiently promote lung cancer cell proliferation and stem-like phenotypes in a tribbles homolog 3 (TRIB3) dependent manner. RESULT Integrin αvβ3 could mediate the activation of FAK/AKT pro-survival signaling pathway. Meanwhile, activated TRIB3 interacted with AKT to upregulated FOXO1 and SOX2 expression, resulting in sustained tumor progression in lung cancer. Our further analysis revealed that TRIB3 was significantly upregulated in lung tumor tissues and correlated with the poor outcome in clinical patients, indicating the potential role of TRIB3 in diagnostic and prognostic estimation for patients with lung cancer. CONCLUSION Our study showed here for the first time that integrin αvβ3 promote lung cancer development by activating the FAK/AKT/SOX2 axis in a TRIB3 dependent signaling pathway, and interrupting TRIB3/AKT interaction significantly improved the outcome of chemotherapy in tumor-bearing mice, representing a promising therapeutic strategy in lung cancer.
Collapse
|
20
|
Abd Al Moaty MN, El Ashry ESH, Awad LF, Ibrahim NA, Abu-Serie MM, Barakat A, Altowyan MS, Teleb M. Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo[4,3-a]pyrimidinone Acyclo C-Nucleosides Multitarget Agents. Molecules 2022; 27:molecules27082422. [PMID: 35458618 PMCID: PMC9026109 DOI: 10.3390/molecules27082422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8; IC50 = 5.89 nM, 9; IC50 = 10.52 nM) and MMP-2 (8; IC50 = 17.44 nM, 9; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8; IC50 = 0.21 µM, 9; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50, thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation.
Collapse
Affiliation(s)
- Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - El Sayed Helmy El Ashry
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
- Correspondence: (L.F.A.); (A.B.)
| | - Nihal Ahmed Ibrahim
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Marwa Muhammad Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (L.F.A.); (A.B.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| |
Collapse
|
21
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022; 18:101364. [PMID: 35168143 PMCID: PMC8850794 DOI: 10.1016/j.tranon.2022.101364] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common and deadliest human malignancies. The alterations of PI3K/Akt/mTOR pathway are related to lung cancer progression. PI3K axis regulates proliferation, apoptosis, metastasis, and EMT of lung cancer. Agents inhibiting components of PI3K axis diminish lung tumor growth and invasion. Low efficacy and off-target toxicity could be improved by nanoparticle application.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.
Collapse
|
22
|
Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorg Chem 2022; 124:105816. [DOI: 10.1016/j.bioorg.2022.105816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
|
23
|
Baldini L, Lenci E, Bianchini F, Trabocchi A. Identification of a Common Pharmacophore for Binding to MMP2 and RGD Integrin: Towards a Multitarget Approach to Inhibit Cancer Angiogenesis and Metastasis. Molecules 2022; 27:molecules27041249. [PMID: 35209039 PMCID: PMC8879803 DOI: 10.3390/molecules27041249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
During tumor angiogenesis different growth factors, cytokines and other molecules interact closely with each other to facilitate tumor cell invasion and metastatic diffusion. The most intensively studied as molecular targets in anti-angiogenic therapies are vascular endothelial growth factor (VEGF) and related receptors, integrin receptors and matrix metalloproteinases (MMPs). Considering the poor efficacy of cancer angiogenesis monotherapies, we reasoned combining the inhibition of αvβ3 and MMP2 as a multitarget approach to deliver a synergistic blockade of tumor cell migration, invasion and metastasis. Accordingly, we identified a common pharmacophore in the binding cavity of MMP2 and αvβ3, demonstrating such approach with the design, synthesis and bioassays of tyrosine-derived peptidomimetics carrying the necessary functional groups to bind to key pharmacophoric elements of MMP2 and αvβ3 RGD integrin.
Collapse
Affiliation(s)
- Lorenzo Baldini
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (L.B.); (E.L.)
| | - Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (L.B.); (E.L.)
| | - Francesca Bianchini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (L.B.); (E.L.)
- Correspondence:
| |
Collapse
|
24
|
Yassin NYS, AbouZid SF, El-Kalaawy AM, Ali TM, Almehmadi MM, Ahmed OM. Silybum marianum total extract, silymarin and silibinin abate hepatocarcinogenesis and hepatocellular carcinoma growth via modulation of the HGF/c-Met, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother 2022; 145:112409. [PMID: 34781148 DOI: 10.1016/j.biopha.2021.112409] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been identified as one of the most deadly malignancies with limited therapeutic efficacy worldwide. However, understanding the molecular mechanisms of crosstalk between signaling pathways in HCC and predicting cancer cell responses to targeted therapeutic interventions remain to be challenge. Thus, in this study, we aimed to evaluate the anticancerous efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally-induced HCC in rats. In vitro investigations were also performed and the anticancer effects against HCC cell lines (HepG2 and Huh7) were confirmed. Wistar rats were given diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4) and were orally treated with STE (200 mg/kg body weight (bw)), Sm (150 mg/kg bw), and Sb (5 mg/kg bw) every other day from the 1st or 16th week to the 25th week of DEN/AAF/CCl4 injection. Treatment with STE, Sm, and Sb inhibited the growth of cancerous lesions in DEN/AAF/CCl4-treated rats. This inhibition was associated with inhibition of Ki-67 expression and repression of HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. STE, Sm, and Sb improved liver function biomarkers and tumor markers (AFP, CEA, and CA19.9) and increased total protein and albumin levels in serum. STE, Sm, and Sb treatment was also noted to reduce the hepatic production of lipid peroxides, increase hepatic glutathione content, and induce the activities of hepatic antioxidant enzymes in DEN/AAF/CCl4-treated rats. These results indicate that STE, Sm, and Sb exert anti-HCC effects through multiple pathways, including suppression of Ki-67 expression and HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR pathways and enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Nour Y S Yassin
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Asmaa M El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M Ali
- Department of Physiology, College of Medicine, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen M Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
25
|
Ren J, Pan G, Yang J, Xu N, Zhang Q, Li W. Circ_0000620 acts as an oncogenic factor in gastric cancer through regulating MMP2 expression via sponging miR-671-5p. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:23. [PMID: 34972532 PMCID: PMC8720221 DOI: 10.1186/s40709-021-00154-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/10/2021] [Indexed: 04/14/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers in the digestive system. Circular RNAs (circRNAs) have been found to function as important regulators in the pathogenesis of GC. This study focused on the biological role and molecular mechanism of circ_0000620 in GC progression. METHODS The expression levels of circ_0000620, microRNA-671-5p (miR-671-5p) and Matrix MetalloProteinase 2 (MMP2) were measured by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) assay or western blot. The stability of circ_0000620 was confirmed by Ribonuclease R (RNase R) assay. The protein levels were determined by western blot assay. Cell viability, colony formation, cell migratory ability, cell invasive ability and tube formation capacity were respectively examined by CCK-8 assay, colony formation assay, wound healing assay, transwell invasion assay and tube formation assay. The interaction between miR-671-5p and circ_0000620 or MMP2 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. The role of circ_0000620 in GC undefined was explored by xenograft tumor assay. RESULTS Circ_0000620 was conspicuously upregulated in GC tissues and cells. Circ_0000620 knockdown reduced cell viability, colony formation, migration, invasion and tube formation capacity of GC cells in vitro. Furthermore, MMP2 was upregulated in GC and MMP2 overexpression reversed the anti-tumor response of circ_0000620 knockdown in GC progression. Moreover, circ_0000620 directly interacted with miR-671-5p and circ_0000620 downregulation regulated malignant behaviors of GC cells by upregulating miR-671-5p. In addition, silencing of circ_0000620 inhibited tumor growth in vivo. CONCLUSIONS Circ_0000620 knockdown inhibited the malignant development of GC partly through modulating the miR-671-5p/MMP2 axis.
Collapse
Affiliation(s)
- Junyu Ren
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China
| | - Guoqing Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China
| | - Ning Xu
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China
| | - Qiong Zhang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenliang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China.
| |
Collapse
|
26
|
Liang J, Wang S, Zhang G, He B, Bie Q, Zhang B. A New Antitumor Direction: Tumor-Specific Endothelial Cells. Front Oncol 2021; 11:756334. [PMID: 34988011 PMCID: PMC8721012 DOI: 10.3389/fonc.2021.756334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Targeting tumor blood vessels is an important strategy for tumor therapies. At present, antiangiogenic drugs are known to have significant clinical effects, but severe drug resistance and side effects also occur. Therefore, new specific targets for tumor and new treatment methods must be developed. Tumor-specific endothelial cells (TECs) are the main targets of antiangiogenic therapy. This review summarizes the differences between TECs and normal endothelial cells, assesses the heterogeneity of TECs, compares tumorigenesis and development between TECs and normal endothelial cells, and explains the interaction between TECs and the tumor microenvironment. A full and in-depth understanding of TECs may provide new insights for specific antitumor angiogenesis therapies.
Collapse
Affiliation(s)
- Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shouqi Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
27
|
Fardi Golyan F, Forghanifard MM. A new gene panel as a marker for ESCC poor prognosis; INPP5A, TWIST1, MMP2, and EGFR. Adv Med Sci 2021; 66:231-236. [PMID: 33798953 DOI: 10.1016/j.advms.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is categorized among ten common aggressive malignancies, with a higher incidence and mortality rates in the developing than in developed countries. The inositol polyphosphate 5-phosphatase (INPP5A), as an intracellular-calcium mobilizer and modifier enzyme, facilitates cell responses to various stimuli. Epithelial-mesenchymal transition (EMT), a transformation procedure, has a vital role in cancer progression and metastasis when epithelial cells lose their traits in favor of obtaining mesenchymal features. In this study, we analyzed the correlation between the expression of INPP5A and the involved genes in EMT pathway through the progression and development of the ESCCs. MATERIALS AND METHODS The gene expression analyses of INPP5A, TWIST1, MMP-2, and EGFR were performed using relative comparative real-time PCR in 58 ESCCs patients compared to corresponding margin-normal esophageal tissues. RESULTS A significant inverse correlation between INPP5A and EGFR/MMP-2 mRNA expression was observed in tumor samples. Underexpression of INPP5A was significantly correlated with overexpression of TWIST1, MMP-2, and EGFR in different invasiveness and aggressiveness pathological features of the ESCCs (P < 0.05). CONCLUSIONS The results propose a tumor suppressor role for INPP5A and oncogenic function for concomitant expression of the other genes in ESCC invasion and metastasis. The current study is the first report elucidating the correlation between the downregulation of INPP5A and upregulation of TWIST1, MMP-2, and EGFR in ESCC and introduces this panel of the genes as a marker for poor prognosis of the disease.
Collapse
Affiliation(s)
- Fatemeh Fardi Golyan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
28
|
Siddhartha R, Garg M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions. Toxicol Appl Pharmacol 2021; 426:115593. [PMID: 34038713 DOI: 10.1016/j.taap.2021.115593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are the group of enzymes that belong to the family of zinc dependent endopeptidases. These proteases degrade collagen and other important proteins in extracellular matrix (ECM) and regulate cytoskeletal proteins, growth factors, chemokines and cytokines, thereby play significant role during organogenesis and normal tissue turnover. Recent studies highlight the tumorigenic functions of MMPs by modulating tumor microenvironment. Dysregulated MMPs/TIMPs cause an imbalance in crucial cell signals, and lead to serious pathological conditions related to inflammation, uncontrolled cell growth, ECM degradation, increased cell migration, cell death resistance, replicative immortality and the establishment of metastatic niche at secondary sites. Recently established correlation between the higher expression of active MMPs and cancer aggressiveness makes them probable target candidate of cancer diagnosis, prognosis and therapy. The present review focuses on the tumourigenic functions of MMPs and recent advancements in the development of MMP inhibitors of therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Rohit Siddhartha
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| |
Collapse
|
29
|
Shantha Kumara HMC, Miyagaki H, Herath SA, Pettke E, Yan X, Cekic V, Whelan RL. Plasma MMP-2 and MMP-7 levels are elevated first month after surgery and may promote growth of residual metastases. World J Gastrointest Oncol 2021; 13:879-892. [PMID: 34457193 PMCID: PMC8371512 DOI: 10.4251/wjgo.v13.i8.879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MMP-2 also known as gelatinase A and MMP-7 (matrilysin) are members of the zinc-dependent family of MMPs (Matrix metalloproteinase). MMP-2 and MMP-7 are remodeling enzymes that digest extracellular matrix; MMP-2 is extensively expressed during development and is upregulated at sites of tissue damage, inflammation, and in stromal cells of metastatic tumors. MMP-7 is expressed in the epithelial cells and in a variety of cancers including colon tumors. Plasma MMP-2 and MMP-7 levels were assessed before and after minimally invasive colorectal resection for cancer pathology.
AIM To determine plasma MMP-2 and MMP-7 levels before and after minimally invasive colorectal resection for cancer pathology.
METHODS Patients enrolled in a plasma bank for whom plasma was available were eligible. Plasma obtained from preoperative (Preop) and postoperative blood samples was used. Only colorectal cancer (CRC) patients who underwent elective minimally invasive cancer resection with preop, post-operative day (POD) 1, 3 and at least 1 late postop sample (POD 7-34) were included. Late samples were bundled into 7 d blocks (POD 7-13, 14-20, etc.) and treated as single time points. Plasma MMP-2 and MMP-7 levels were determined via enzyme-linked immunosorbent assay in duplicate.
RESULTS Total 88 minimally invasive CRC resection CRC patients were studied (right colectomy, 37%; sigmoid, 24%; and LAR/AR 18%). Cancer stages were: 1, 31%; 2, 30%; 3, 34%; and 4, 5%. Mean Preop MMP-2 plasma level (ng/mL) was 179.3 ± 40.9 (n = 88). Elevated mean levels were noted on POD1 (214.3 ± 51.2, n = 87, P < 0.001), POD3 (258.0 ± 63.9, n = 80, P < 0.001), POD7-13 (229.9 ± 62.3, n = 65, P < 0.001), POD 14-20 (234.9 ± 47.5, n = 25, P < 0.001), POD 21-27 (237.0 ± 63.5, n = 17, P < 0.001,) and POD 28-34 (255.4 ± 59.7, n = 15, P < 0.001). Mean Preop MMP-7 level was 3.9 ± 1.9 (n = 88). No significant differences were noted on POD 1 or 3, however, significantly elevated levels were noted on POD 7-13 (5.7 ± 2.5, n = 65, P < 0.001), POD 14-20 (5.9 ± 2.5, n = 25, P < 0.001), POD 21-27 (6.1 ± 3.6, n = 17, P = 0.002) and on POD 28-34 (6.8 ± 3.3, n = 15 P < 0.001,) vs preop levels.
CONCLUSION MMP-2 levels are elevated for 5 wk and MMP-7 levels elevated for weeks 2-6. The etiology of these changes in unclear, trauma and wound healing likely play a role. These changes may promote residual tumor growth and metastasis.
Collapse
Affiliation(s)
- HMC Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Hiromichi Miyagaki
- Department of Gastroenterological Surgery, Osaka University, Suita 565-0862, Osaka, Japan
| | - Sajith A Herath
- Analytic Department, Novartis, Morris Plains, NJ 07905, United States
| | - Erica Pettke
- Department of Surgery, Swedish Medical Center, Seattle, WA 98122, United States
| | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States
| |
Collapse
|
30
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
31
|
Rugamba A, Kang DY, Sp N, Jo ES, Lee JM, Bae SW, Jang KJ. Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells. Cells 2021; 10:cells10071632. [PMID: 34209829 PMCID: PMC8307196 DOI: 10.3390/cells10071632] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- Alexis Rugamba
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
32
|
Romano R, Calcagnile M, Margiotta A, Franci L, Chiariello M, Alifano P, Bucci C. RAB7A Regulates Vimentin Phosphorylation through AKT and PAK. Cancers (Basel) 2021; 13:cancers13092220. [PMID: 34066419 PMCID: PMC8125308 DOI: 10.3390/cancers13092220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary RAB7A (RAs-related in Brain 7A) is a master regulator of intracellular traffic controlling transport to late endosomes and lysosomes, two organelles of the endocytic pathway important for degradation. Thanks to this function, RAB7A is also involved in cellular processes linked to cancer, such as apoptosis, cytoskeletal reorganization, and cell migration. Therefore, the interest in the role of RAB7A in cancer progression is increasing. Previously, we demonstrated that RAB7A regulates phosphorylation and assembly of vimentin, a cytoskeletal intermediate filament protein, which is also an important mesenchymal marker of cancer cells. The aim of the present study is the identification of the kinases responsible for vimentin phosphorylation whose activity is affected by the modulation of RAB7A expression. We found that RAB7A is able to regulate AKT (also called protein kinase B or PKB) and PAK1 (P21-Activated Kinase 1) and several of their downstream effectors, which control proliferation, apoptosis, survival, migration, and invasion. These data suggest that RAB7A could have a key role in cancer development. Abstract RAB7A is a small GTPase that controls the late endocytic pathway but also cell migration through RAC1 (Ras-related C3 botulinum toxin substrate 1) and vimentin. In fact, RAB7A regulates vimentin phosphorylation at different sites and vimentin assembly, and, in this study, we identified vimentin domains interacting with RAB7A. As several kinases could be responsible for vimentin phosphorylation, we investigated whether modulation of RAB7A expression affects the activity of these kinases. We discovered that RAB7A regulates AKT and PAK1, and we demonstrated that increased vimentin phosphorylation at Ser38 (Serine 38), observed upon RAB7A overexpression, is due to AKT activity. As AKT and PAK1 are key regulators of several cellular events, we investigated if RAB7A could have a role in these processes by modulating AKT and PAK1 activity. We found that RAB7A protein levels affected beta-catenin and caspase 9 expression. We also observed the downregulation of cofilin-1 and decreased matrix metalloproteinase 2 (MMP2) activity upon RAB7A silencing. Altogether these results demonstrate that RAB7A regulates AKT and PAK1 kinases, affecting their downstream effectors and the processes they regulate, suggesting that RAB7A could have a role in a number of cancer hallmarks.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Azzurra Margiotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
- Correspondence: ; Tel.: +39-0832-298900
| |
Collapse
|
33
|
Carey P, Low E, Harper E, Stack MS. Metalloproteinases in Ovarian Cancer. Int J Mol Sci 2021; 22:3403. [PMID: 33810259 PMCID: PMC8036623 DOI: 10.3390/ijms22073403] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor-microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis.
Collapse
Affiliation(s)
- Preston Carey
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ethan Low
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth Harper
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M. Sharon Stack
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
34
|
Lenci E, Cosottini L, Trabocchi A. Novel matrix metalloproteinase inhibitors: an updated patent review (2014 - 2020). Expert Opin Ther Pat 2021; 31:509-523. [PMID: 33487088 DOI: 10.1080/13543776.2021.1881481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Matrix MetalloProteinases (MMPs) are key enzymes in several pathophysiological processes connected to the extracellular matrix (ECM) degradation. Earlier clinical trials evaluating broad spectrum MMP inhibitors as cancer therapeutics failed to succeed, resulting in toxic side effects, such as musculoskeletal pain and inflammation, due to poor selectivity. As it is now recognized that some MMPs are essential for tumor progression and metastasis, but others play host-protective functions, selective MMP inhibitors are needed, and their interest has grown also for therapeutic applications beyond cancer, such as infectious, inflammatory and neurological diseases. Areas covered: This updated review describes patents concerning MMP inhibitors published within January 2014 and June 2020, with therapeutic applications spanning from cancer to inflammatory and neurological disorders. Expert opinion: Although the number of patents has decreased with respect to the previous decade, new applications provide selective matrix metalloproteinase inhibitors for therapeutic treatments beyond cancer. For several applications, the need of selective inhibitors resulted in the development of new non-hydroxamate compounds, paving the way towards a renewed interest towards MMPs as therapeutic targets. In particular, inhibitors able to cross the blood-brain barrier have been disclosed and proposed for the treatment of neurological conditions, infections, wound healing and cancer.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Lucrezia Cosottini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
35
|
Xiao J, Zhang H, Yang F, Xiao M, Zhou L, Yu R, Shao X, Ea V, Su L, Zhang X, Li X. Proteomic Analysis of Plasma sEVs Reveals That TNFAIP8 Is a New Biomarker of Cell Proliferation in Diabetic Retinopathy. J Proteome Res 2021; 20:1770-1782. [PMID: 33594895 DOI: 10.1021/acs.jproteome.0c01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small extracellular vesicles (sEVs) derived from the plasma have been increasingly recognized as important vehicles of intercellular communication and potential sources of new biomarkers for multiple diseases. In this study, proteomic profiles of plasma sEVs from normal subjects and diabetic patients with or without diabetic retinopathy (DR) were systematically compared using iTRAQ-based quantitative proteomics. Among a total of 901 identified proteins in plasma sEVs (false discovery rate (FDR) < 1%), 90 proteins were found to have significantly changed levels in DR. Based on the findings from the proteomic analysis, the role of tumor necrosis factor-α-induced protein 8 (TNFAIP8) in promoting human retinal microvascular endothelial cell (HRMEC) proliferation was investigated. The enzyme-linked immunosorbent assay (ELISA) showed that TNFAIP8 levels in plasma sEVs and vitreous are elevated in DR, whereas not statistically different in large EVs (lEVs) and plasma. In addition, in vitro experiments demonstrated that 4-hydroxynonenal (4-HNE) increased the expression of TNFAIP8 in HRMECs. TNFAIP8 significantly increased HRMECs cell viability and promote cell migration and tube formation, and the depletion of TNFAIP8 impaired HRMEC proliferation. We demonstrated that TNFAIP8 in plasma sEVs could be used as a potential biomarker of DR. Functional studies suggested that TNFAIP8 might be an important mediator of angiogenesis in DR.
Collapse
Affiliation(s)
- Jing Xiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Mengran Xiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, 119077 Singapore
| | - Rongguo Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Xianfeng Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Vicki Ea
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| |
Collapse
|
36
|
Mukherjee T, Behl T, Sehgal A, Bhatia S, Singh H, Bungau S. Exploring the molecular role of endostatin in diabetic neuropathy. Mol Biol Rep 2021; 48:1819-1836. [PMID: 33559819 DOI: 10.1007/s11033-021-06205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
For over a decade, diabetic neuropathy has exhibited great emergence in diabetic patients. Though there are numerous impediments in understanding the underlying pathology it is not that enough to conclude. Initially, there was no intricate protocol for diagnosis as its symptoms mimic most of the neurodegenerative disorders and demyelinating diseases. Continuous research on this, reveals many pathological correlates which are also detectable clinically. The most important pathologic manifestation is imbalanced angiogenesis/neo-vascularization. This review is completely focused on established pathogenesis and anti-angiogenic agents which are physiological signal molecules by the origin. Those agents can also be used externally to inhibit those pathogenic pathways. Pathologically DN demonstrates the misbalanced expression of many knotty factors like VEGF, FGF2, TGFb, NF-kb, TNF-a, MMP, TIMP, and many minor factors. Their pathway towards the incidence of DN is quite interrelated. Many anti-angiogenic agents inhibit neovascularization to many extents, but out of them predominantly inhibition of angiogenic activity is shared by endostatin which is now in clinical trial phase II. It inhibits almost all angiogenic factors and it is possible because they share interrelated pathogenesis towards imbalanced angiogenesis. Endostatin is a physiological signal molecule produced by the proteolytic cleavage of collagen XVIII. It has also a broad research profile in the field of medical research and further investigation can show promising therapeutic effects for benefit of mankind.
Collapse
Affiliation(s)
- Tuhin Mukherjee
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
37
|
Inhibition of tumor invasion and metastasis by targeting TGF-β-Smad-MMP2 pathway with Asiatic acid and Naringenin. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:277-289. [PMID: 33614911 PMCID: PMC7873580 DOI: 10.1016/j.omto.2021.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022]
Abstract
Transforming growth factor β (TGF-β) has been shown to promote tumor invasion and metastasis by activating the matrix metalloproteinases (MMPs); however, signaling mechanisms remain controversial and therapies targeting MMPs are still suboptimal. In the present study, we found that combined therapy with Asiatic acid (AA), a Smad7 agonist, and Naringenin (NG), a Smad3 inhibitor, effectively retrieved the balance between Smad3 and Smad7 signaling in the TGF-β-rich tumor microenvironment and thus significantly suppressed tumor invasion and metastasis in mouse models of melanoma and lung carcinoma. Mechanistically, we unraveled that Smad3 acted as a transcriptional activator of MMP2 and as a transcriptional suppressor of tissue inhibitors of metalloproteinase-2 (TIMP2) via binding to 5′ UTR of MMP2 and 3′ UTR of TIMP2, respectively. Treatment with NG inhibited Smad3-mediated MMP2 transcription while increasing TIMP, whereas treatment with AA enhanced Smad7 to suppress TGF-β/Smad3 signaling, as well as the activation of MMP2 by targeting the nuclear factor-κB (NF-κB)-membrane-type-1 MMP (MT1-MMP) axis. Therefore, the combination of AA and NG additively suppressed invasion and metastasis of melanoma and lung carcinoma by targeting TGF-β/Smad-dependent MMP2 transcription, post-translational activation, and function.
Collapse
|
38
|
Song, BA Y, Wang, MA F, Wei, MA Y, Chen, BA D, Deng, BA G. ATP5A1 Participates in Transcriptional and Posttranscriptional Regulation of Cancer-Associated Genes by Modulating Their Expression and Alternative Splicing Profiles in HeLa Cells. Technol Cancer Res Treat 2021; 20:15330338211039126. [PMID: 34520292 PMCID: PMC8445539 DOI: 10.1177/15330338211039126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Aberrant expression and alternative splicing of oncogenes are the driving events in tumor initiation and development. But how these events are regulated in cancer cells is largely unknown. Functions of ATP5A1, an important mitochondrial ATP synthase gene, in transcriptional and posttranscriptional regulation were explored in this study. Methods: ATP5A1 was overexpressed using plasmid-transformed HeLa cells, and its influence on cell apoptosis and proliferation is evaluated. Transcriptome sequencing was then performed using RNA-seq to study the changes in gene expression and regulation of alternative splicing events. Validation of the implicated genes was achieved using RT-qPCR analysis. Results: It was found that ATP5A1 could significantly promote cellular apoptosis, but it had no influence on cell proliferation. ATP5A1 overexpression significantly increased the expression levels of genes associated with the innate immune response, angiogenesis, and collagen catabolic processes. This included enrichment of MMP2 and MMP19. It was also found that ATP5A1 could interfere with the alternative splicing of hundreds of genes associated with glucose homeostasis, HIF-1 signaling activation, and several pathways associated with cancers. Eight ATP5A1-regulated differentially expressed genes and 3 genes altered by splicing were selected and validated using RT-qPCR analysis. Conclusions: In summary, we illustrate the regulatory functions of ATP5A1 on the transcriptome of HeLa cells by exploring its influence on gene expression and alternative splicing. The results suggest that ATP5A1 may play an important regulatory role in cervical cancer cells by regulating expression and alternative splicing of cancer-associated genes. This study provides novel insights into the current understanding of the mechanisms of ATP5A1 on carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Yisa Song, BA
- Qinghai People's Hospital Xining, Xining, Qinghai, P.R. China
| | - Fei Wang, MA
- Qinghai People's Hospital Xining, Xining, Qinghai, P.R. China
| | | | - Dong Chen, BA
- ABLife Inc., Wuhan, P.R. China
- ABLife BioBigData Institute, Wuhan, P.R. China
| | - Gang Deng, BA
- Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, Hubei, P.R. China
| |
Collapse
|
39
|
Montalto AS, Currò M, Russo T, Ferlazzo N, Caccamo D, Ientile R, Romeo C, Impellizzeri P. CO2 Pneumoperitoneum Effects on Molecular Markers of Tumor Invasiveness in SH-SY5Y Neuroblastoma Cells. Eur J Pediatr Surg 2020; 30:524-528. [PMID: 31707727 DOI: 10.1055/s-0039-1700547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION CO2 pneumoperitoneum can influence the biological behavior of neuroblastoma (NB). Angiogenesis and genetic features are responsible for malignant phenotype of this tumor. We examined the CO2 effects on N-Myc, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2) expression as critical biomarkers of tumor invasiveness, in NB cells without N-Myc amplification. MATERIALS AND METHODS SH-SY5Y cells were exposed to CO2 (100%) at 15 mm Hg pressure for 4 hours and then moved to normal condition for 24 hours. Control cells were incubated with 5% CO2 for the same time. In control and CO2-exposed cells, the messenger ribonucleic acid (mRNA) levels of hypoxia-inducible factor (HIF)-1α, HIF-2α, VEGF-A, and MMP-2 were quantified by real-time polymerase chain reaction. N-Myc expression was evaluated by Western blot analysis. RESULTS The exposure to 15 mm Hg CO2 (100%) for 4 hours induced an increase in HIF-1α, but not in HIF-2α, mRNA levels. No differences were observed in N-Myc expression between exposed and control cells at each incubation time. Similarly, no significant differences were found for VEGF-A and MMP-2 transcript levels. In CO2 exposed cells, we observed only a slight increase in both VEGF-A and MMP-2 mRNA levels after 4 and 24 hours in comparison to controls. CONCLUSION In our study, the hypoxic environment induced by CO2 exposure does not affect the expression of critical biomarkers of NB aggressiveness, such as N-Myc, VEGF, and MMP-2, in human SH-SY5Y NB cells without N-Myc amplification. These data suggest that CO2 pneumoperitoneum might not adversely impact NB cell invasiveness; however, it is necessary to evaluate these effects in others in vitro and in vivo models.
Collapse
Affiliation(s)
- Angela Simona Montalto
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Monica Currò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Tiziana Russo
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Nadia Ferlazzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Carmelo Romeo
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Pietro Impellizzeri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
40
|
Han L, Sheng B, Zeng Q, Yao W, Jiang Q. Correlation between MMP2 expression in lung cancer tissues and clinical parameters: a retrospective clinical analysis. BMC Pulm Med 2020; 20:283. [PMID: 33115469 PMCID: PMC7594265 DOI: 10.1186/s12890-020-01317-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
Background Matrix metalloproteinase 2 (MMP2) has been found to be related to malignant tumors; the aim of this study was to investigate the correlation between MMP2 expression in lung cancer tissues and clinical parameters of lung cancer. Methods The expression of MMP2 in lung cancer tissues and in adjacent non-malignant tissues was tested by immunohistochemistry. The correlation between the expression of MMP2 and clinical parameters of lung cancer was analyzed by Kaplan-Meier curve and multiple regression analysis. Results The expression of MMP2 was higher in lung cancer tissues than that in adjacent non-malignant tissues (p = 0.002). Increased MMP2 was associated with low differentiation (p = 0.022), tumor size (p = 0.032), lymph node metastasis (p < 0.001), advanced stage (p = 0.002). The post-surgical survival time in patients with high MMP2 expression was shorter than that in patients with low MMP2 expression (p = 0.001). High expression of MMP2 (p = 0.006) and advanced stage (p = 0.003) were independent prognostic indicators for survival of lung cancer patients. Conclusions Increased MMP2 correlates with malignant biological behavior of lung cancer and it could be a potential biomarker for diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Liping Han
- Department of Respiration, Jining NO.1 People's Hospital, Jining, China.,Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baowei Sheng
- Department of Respiration, Jining NO.1 People's Hospital, Jining, China.,Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingdi Zeng
- Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China.,Department of Clinical Laboratory, Jining NO.1 People's Hospital, Jining, China
| | - Wei Yao
- General Surgery, Zoucheng Kanzhuang Township Health Center, Zoucheng, China
| | - Qiufang Jiang
- Department of Respiration, Jining NO.1 People's Hospital, Jining, China. .,Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China.
| |
Collapse
|
41
|
Beyond Conventional: The New Horizon of Anti-Angiogenic microRNAs in Non-Small Cell Lung Cancer Therapy. Int J Mol Sci 2020; 21:ijms21218002. [PMID: 33121202 PMCID: PMC7663714 DOI: 10.3390/ijms21218002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.
Collapse
|
42
|
Hazzaa HH, El Shiekh MAM, Abdelgawad N, Gouda OM, Kamal NM. Correlation of VEGF and MMP-2 levels in oral lichen planus: An in vivo immunohistochemical study. J Oral Biol Craniofac Res 2020; 10:747-752. [PMID: 33101894 DOI: 10.1016/j.jobcr.2020.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/26/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background This study aimed to investigate the relation between vascular endothelial growth factors (VEGF) and matrix metalloproteinase-2 (MMP-2) in different oral lichen planus (OLP) forms compared to control patients. Methods Biopsies from 60 patients were selected and equally distributed as follows: reticular/popular OLP (R/PLP), atrophic/erosive OLP (A/ELP) patients, healthy subjects (Control). All biopsies were immune-histochemical stained and statistically analyzed for VEGF and MMP-2 expression. Results Immune-expression of VEGF was significant between OLP and control (P-value <0.001). OLP showed a higher epithelial expression of VEGF in A/ELP compared to R/PLP (15.19 ± 2.53). In connective tissue (CT), R/PLP showed a higher VEGF expression (11.57 ± 2.32) compared to A/ELP (9.87 ± 2.48); (p < 0.001), with no significant difference (P-value ≥ 0.05). A significant epithelial expression of MMP-2 was seen in A/ELP compared to R/PLP (21.32 ± 7.08). R/PLP showed a higher expression of MMP-2 (20.45 ± 6.28) in CT compared to A/ELP group (17.66 ± 6.94), with a non-significant difference (P-value = 1.000). In A/ELP, a positive correlation between VEGF and MMP-2 was detected in CT, r = 0.761, with a weak correlation was noticed in epithelium r = 0.163. A negative correlation was noted between VEGF and MMP-2 in R/PLP in CT, r = -0.368, with a moderate positive correlation in epithelium, r = 0.655. Conclusion MMP-2 and VEGF protein profiles support a role in the pathogenesis of OLP. Based the MMP-2 and VEGF findings in the A/ELP group, this pathway may have a role in the malignant transformation of these lesions. Both observations invite further study.
Collapse
Affiliation(s)
- Hala H Hazzaa
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology, Faculty of Dental Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Marwa A M El Shiekh
- Department of Oral Biology, Faculty of Dental Medicine for Girls, Cairo, Egypt
| | - Nora Abdelgawad
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology, Faculty of Dental Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Ossama M Gouda
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Oral Medicine, Badr University, Cairo, Egypt
| | - Naglaa M Kamal
- Department of Oral Pathology, Faculty of Oral and Dental Medicine, Ahram Canadian University, 6th of October City, Giza, Egypt
| |
Collapse
|
43
|
de Mendonça RP, Balbinot KM, Martins BV, da Silva Kataoka MS, Mesquita RA, de Jesus Viana Pinheiro J, de Melo Alves Júnior S. Hypoxia and proangiogenic proteins in human ameloblastoma. Sci Rep 2020; 10:17567. [PMID: 33067558 PMCID: PMC7568536 DOI: 10.1038/s41598-020-74693-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022] Open
Abstract
Ameloblastomas are epithelial odontogenic tumours that, although benign, are locally invasive and may exhibit aggressive behaviour. In the tumour microenvironment, the concentration of oxygen is reduced, which leads to intratumoral hypoxia. Under hypoxia, the crosstalk between the HIF-1α, MMP-2, VEGF, and VEGFR-2 proteins has been associated with hypoxia-induced angiogenesis, leading to tumour progression and increased invasiveness. This work showcases 24 ameloblastoma cases, 10 calcifying odontogenic cysts, and 9 dental follicles, used to investigate the expression of these proteins by immunohistochemistry. The anti-HIF-1α, anti-MMP-2, anti-VEGF, and anti-VEGFR-2 primary antibodies are used in this work. The results have been expressed by the mean grey value after immunostaining in images acquired with an objective of 40×. The ameloblastoma samples showed higher immunoexpression of HIF-1α, MMP-2, VEGF, and VEGFR-2 when compared to the dental follicles and calcifying odontogenic cysts. Ameloblastomas show a higher degree of expression of proteins associated with intratumoral hypoxia and proangiogenic proteins, which indicates the possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
- Raíssa Pinheiro de Mendonça
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Karolyny Martins Balbinot
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Beatriz Voss Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil.
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
44
|
Discovery of a d-pro-lys peptidomimetic inhibitor of MMP9: Addressing the gelatinase selectivity beyond S1′ subsite. Bioorg Med Chem Lett 2020; 30:127467. [DOI: 10.1016/j.bmcl.2020.127467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/26/2022]
|
45
|
Wihadmadyatami H, Hening P, Kustiati U, Kusindarta DL, Triyono T, Supriatno S. Ocimum sanctum Linn. ethanolic extract inhibits angiogenesis in human lung adenocarcinoma (a549) cells. Vet World 2020; 13:2028-2032. [PMID: 33132621 PMCID: PMC7566237 DOI: 10.14202/vetworld.2020.2028-2032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/31/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND AIM Ocimum sanctum (OS) is a herbal plant, which is easy to find and is widely used as an alternative medication. The previous studies have shown that several species of OS extract have therapeutic properties, and in some cases, antitumor properties. Furthermore, several data have shown the antiproliferative effects of OS extract in cases of breast cancer, human fibrosarcoma, and oral cancer. Lung adenocarcinoma is a major cause of male cancer worldwide; however, the effect of OS (of Indonesian origin) on the metastasis of human alveolar pulmonary adenocarcinoma A549 cells remains unclear. This study aimed to analyze the antiangiogenic effects of OS ethanolic extract in A549 lung adenocarcinoma cells. MATERIALS AND METHODS An angiogenesis assay was performed by seeding A549 cells on extracellular matrix solution and observing tube formation using an inverted microscope. Enzyme-linked immunosorbent assay for αvβ3, matrix metalloproteinase (MMP)-2, and MMP-9 was performed by analyzing the cell lysate after a given treatment. RESULTS OS ethanolic extract significantly inhibited tube formation of A549 cells and suppressed the expression of integrin αvβ3, MMP-2, and MMP-9. CONCLUSION Our findings indicate that OS ethanolic extract disrupts angiogenesis of A549 cells, which may result from the disruption of cell migration and proliferation as a consequence of downregulation of αvβ3, MMP-2, and MMP-9. Taken together, OS ethanolic extract may represent a good therapeutic candidate for the treatment of metastasis in lung adenocarcinoma. Further studies are warranted to further establish the efficacy of OS in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Puspa Hening
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ulayatul Kustiati
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Teguh Triyono
- Department of Clinical Pathology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Supriatno Supriatno
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta Indonesia
| |
Collapse
|
46
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
47
|
Yuan Y, Guo Q, Zhang X, Jiang W, Ye C, Zhou X. Silica nanoparticle coated perfluorooctyl bromide for ultrasensitive MRI. J Mater Chem B 2020; 8:5014-5018. [PMID: 32301463 DOI: 10.1039/d0tb00484g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MRI with hyperpolarized 129Xe can achieve low-concentration detection. Herein, nanoparticle-coated perfluorooctyl bromide (PFOB) was developed as a 129Xe MRI contrast agent with a moderate exchange rate, sufficient stability and feasible surface modification. The αvβ3 integrin overexpressed by non-small-cell lung cancer A549 cells was successfully detected by 129Xe MRI with high specificity through adequate surface modifications.
Collapse
Affiliation(s)
- Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.
| | | | | | | | | | | |
Collapse
|
48
|
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
49
|
Ma Y, Cang S, Li G, Su Y, Zhang H, Wang L, Yang J, Shi X, Qin G, Yuan H. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression. J Cell Physiol 2019; 234:22260-22271. [PMID: 31081124 DOI: 10.1002/jcp.28793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
To better understand the molecular mechanisms of anaplastic thyroid carcinoma (ATC), we aimed to identify the hub genes specifically involved in ATC by integrated bioinformatics analysis. In this study, using three Gene Expression Omnibus data sets with the same platform GPL570, we screened hub genes involved in ATC progression. In vitro experiments, such as western blot analysis, Transwell assays, and coimmunoprecipitation, was performed to verify our findings. By comparing three subtypes of thyroid cancer with normal tissue, we found ATC harbored more changed genes than well and poorly differentiated thyroid cancer. Using specifically differentially expressed genes between ATC and normal thyroid tissues to perform Gene ontology (GO) analysis, ATC showed enrichments of GO terms involved in lymphocyte migration and activation, collagen catabolic and metabolic process, thyroid hormone synthesis, and embolism. Using genes involved in extracellular matrix, coexpression network analysis and protein-protein interaction analysis were performed to identify matrix metalloproteinase 3 (MMP3) and MMP13 as two hub genes. Our experimental data indicated that both MMP3 and MMP13 were upregulated in ATC and knockdown of either of them could notably suppress ATC cell invasion and migration. Mechanistically, Gene Set Enrichment Analysis, coimmunoprecipitation, and rescue experiments revealed MMP3 and MMP13 not only interacted with each other, but also regulated each other through the janus kinase/signal transducer and activator of transcription 3 and mammalian target of rapamycin pathways. In conclusion, we identified a specific molecular mechanisms for the development of ATC by integrated analysis of transcriptome and in vitro experiments, which suggested that MMP3 and MMP13 might be developed as novel therapeutic targets for ATC.
Collapse
Affiliation(s)
- Yuehua Ma
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Guoqing Li
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Huifeng Zhang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Ates M, Hosgorler F, Yuksel O, Unsal SK, Guvendi G, Karakilic A, Koc B, Kandis S, Kanit L, Uysal N. Nicotine increased VEGF and MMP2 levels in the rat eye and kidney. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33517-33523. [PMID: 31578682 DOI: 10.1007/s11356-019-06460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Chronic cigarette smoking affects many tissues negatively. Nicotine in tobacco has negative effects on tissues, kidneys, and eyes especially, where microcirculation is vitally important for the survival and functioning. It is known that appropriate vascular endothelial growth factor (VEGF) and (matrix metalloproteinase 2) MMP2 levels are required for suitable vascularity and enough microcirculation. The aim of this study was to investigate the effect of nicotine on VEGF and MMP2 levels in kidney and eyes, where microcirculation is very important for their function. The nicotine was given into drinking water, to male and female rats for 6 weeks. During the first 2 weeks, the nicotine concentration was 10 mg/L, then was given at a fixed dose of 20 mg/L until the end of the experiment. The VEGF and MMP2 levels were increased in kidney tissue of both genders as a result of given nicotine. MMP2 levels were also increased in the eye tissue for both genders similarly. However, VEGF levels increased in the eye tissue with nicotine in males, whereas it did not change in females. The use of nicotine made VEGF and MMP2 levels increase in kidney tissue in both genders of rats. This increase in VEGF was observed only in male eye tissue, not in females. According to our findings, it can be suggested that nicotine has negative effects on microvascular circulation by increasing VEGF and MMP2 levels. In addition, it should be pointed out that estrogen might have protective effects on female eye tissue. Further studies are necessary to understand the complex relationship between the role of nicotine and estrogen on eye and kidney tissues.
Collapse
Affiliation(s)
- Mehmet Ates
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ferda Hosgorler
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Oguz Yuksel
- Department of Sports Medicine, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Guven Guvendi
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Asli Karakilic
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Basar Koc
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Nazan Uysal
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
- Medical Faculty, Physiology Department, Dokuz Eylul University, Balcova, Izmir, Turkey.
| |
Collapse
|