1
|
León-Félix CM, Ouni E, Herinckx G, Vertommen D, Amorim CA, Lucci CM. Decellularized extracellular matrix from bovine ovarian tissue maintains the protein composition of the native matrisome. J Proteomics 2025; 311:105347. [PMID: 39521401 DOI: 10.1016/j.jprot.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Recent approaches of regenerative reproductive medicine investigate the decellularized extracellular matrix to develop a transplantable engineered ovary (TEO). However, a full proteomic analysis is not usually performed after the decellularization process to evaluate the preservation of the extracellular matrix (ECM). In this study, the ECM of the bovine ovarian cortex was analyzed before and after decellularization using mass spectrometry and bioinformatics. A total of 155 matrisome proteins were identified in the native ECM of the bovine ovarian cortex, with 145 matrisome proteins detected in the decellularized ECM. After decellularization, only 10 matrisome proteins were lost, and notably, none belonged to the category of reproductive biological processes. Histology and histochemistry analyses were employed to assess the general morphology of both native and decellularized ECM, allowing for the identification of the most abundant ECM proteins. Moreover, our study highlighted collagen type VI alpha 3 and heparan sulfate proteoglycan 2 as the most abundant components in the bovine ovarian ECM, mirroring the composition observed in the human ovary. These findings enhance our understanding of the composition of both native and decellularized ECM, with the potential implications for the development of a TEO. SIGNIFICANCE: The significance of the present study lies on the possibility of advancing towards developing a bioengineered ovary, which is the ultimate strategy to regain fertility in women. The results demonstrate that the decellularized extracellular matrix of the bovine ovary maintains the protein composition of the native matrisome, using a recently described decellularization protocol. The decellularized matrix may serve as scaffolding for seeding ovarian stromal cells and follicles to create a bioengineered ovary, and as closer its composition is to the native matrix the better. Also, comparing the bovine ovarian matrisome, which was described for the first time here, with the human ovarian matrisome, we could see a great similarity, suggesting that the bovine ovary decellularized matrix may serve as a model for developing a human bioengineered ovary.
Collapse
Affiliation(s)
- Cecibel M León-Félix
- Institute of Biological Sciences, Department of Physiology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Emna Ouni
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Gaëtan Herinckx
- PHOS Unit and MASSPROT Platform de Duve Institute, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Didier Vertommen
- PHOS Unit and MASSPROT Platform de Duve Institute, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium.
| | - Carolina M Lucci
- Institute of Biological Sciences, Department of Physiology, University of Brasilia, Brasilia 70910-900, Brazil.
| |
Collapse
|
2
|
Wang H, Xu YH, Guo Y. Novel prognostic marker TGFBI affects the migration and invasion function of ovarian cancer cells and activates the integrin αvβ3-PI3K-Akt signaling pathway. J Ovarian Res 2024; 17:50. [PMID: 38395907 PMCID: PMC10885438 DOI: 10.1186/s13048-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Individual patients with ovarian cancer show remarkably different prognosis. Present prognostic models for ovarian cancer mainly focus on clinico-pathological parameters, so quantifiable prognostic markers at molecular level are urgently needed. Platelets contribute to ovarian cancer progression, but have not been considered as biomarkers likely due to their instability. Here, we aimed to search for a stable prognostic marker from platelet-treated ovarian cancer cells, and explore its functions and mechanisms. METHODS Microarrays analysis was done with platelet-treated SKOV-3 ovarian cancer cells. Relevant studies were searched in the Gene Expression Omnibus (GEO) database. The candidate genes were determined by differentially expressed genes (DEGs), Venn diagram drawing, protein-protein interaction (PPI) network, Cox proportional hazards model and Kaplan-Meier analysis. The expression of TGFBI in clinical samples was assessed by immunehistochemical staining (IHC), and the association of TGFBI levels with the clinic-pathological characteristics and prognosis in ovarian cancer patients was evaluated by univariate and multivariate analysis. The functions of TGFBI were predicted using data from TCGA, and validated by in vitro and in vivo experiments. The mechanism exploration was performed based on proteomic analysis, molecular docking and intervention study. RESULTS TGFBI was significantly higher expressed in the platelet-treated ovarian cancer cells. An analysis of bioinformatics data revealed that increased expression of TGFBI led to significant decrease of overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS) in ovarian cancer patients. Tissue microarray results showed that TGFBI was an independent factor for ovarian cancer, and TGFBI expression predict poor prognosis. Functionally, TGFBI affected the migration and invasion of ovarian cancer cells by regulation of epithelial mesenchymal transition (EMT) markers (CDH1 and CDH2) and extracellular matrix (ECM) degradation proteins (MMP-2). Mechanistically, TGFBI phosphorylated PI3K and Akt by combining integrin αvβ3. CONCLUSIONS We found out TGFBI as a novel prognostic indicator for ovarian cancer patients. TGFBI could promote metastasis in ovarian cancer by EMT induction and ECM remodeling, which might be associated with the activation of integrin αvβ3-PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Hao Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yin-Hai Xu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Yi Guo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
| |
Collapse
|
3
|
Janša V, Pušić Novak M, Ban Frangež H, Rižner TL. TGFBI as a candidate biomarker for non-invasive diagnosis of early-stage endometriosis. Hum Reprod 2023; 38:1284-1296. [PMID: 37187159 PMCID: PMC10320490 DOI: 10.1093/humrep/dead091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
STUDY QUESTION Can cartilage oligomeric matrix protein (COMP) and transforming growth factor-β-induced protein ig-h3 (TGFBI) alone or in combination with cancer antigen 125 (CA-125) be considered as potential blood biomarkers of endometriosis? SUMMARY ANSWER The results of this study indicate that COMP has no diagnostic value. TGFBI has potential as a non-invasive biomarker of the early stages of endometriosis, while TGFBI together with CA-125 has similar diagnostic characteristics as CA-125 alone for all stages of endometriosis. WHAT IS KNOWN ALREADY Endometriosis is a common, chronic gynecological disease that significantly affects patient quality of life by causing pain and infertility. The gold standard for diagnosis is visual inspection of pelvic organs by laparoscopy, therefore there is an urgent need for discovery of non-invasive biomarkers for endometriosis to reduce diagnostic delays and allow earlier treatment of patients. The potential biomarkers for endometriosis evaluated in this study (COMP and TGFBI) were previously identified by our proteomic analysis of peritoneal fluid samples. STUDY DESIGN, SIZE, DURATION This is a case-control study divided into a discovery (n = 56 patients) and a validation phase (n = 237 patients). All patients were treated between 2008 and 2019 in a tertiary medical center. PARTICIPANTS/MATERIALS, SETTING, METHOD Patients were stratified based on the laparoscopic findings. The discovery phase included 32 endometriosis patients (cases) and 24 patients with confirmed absence of endometriosis (controls). The validation phase included 166 endometriosis and 71 control patients. Concentrations of COMP and TGFBI were measured by ELISA in plasma samples, whereas concentration of CA-125 was measured using a clinically validated assay for serum samples. Statistical and receiver operating characteristic (ROC) curve analyses were performed. The classification models were built using the linear support vector machine (SVM) method with the SVM built-in feature ranking method. MAIN RESULTS AND THE ROLE OF CHANCE The discovery phase revealed significantly increased concentration of TGFBI, but not COMP, in plasma samples of patients with endometriosis compared to controls. In this smaller cohort, univariate ROC analysis showed fair diagnostic potential of TGFBI, with an AUC value of 0.77, sensitivity of 58%, and specificity of 84%. The classification model built using linear SVM and combining TGFBI and CA-125 showed an AUC value of 0.91, sensitivity of 88% and specificity of 75% in distinguishing patients with endometriosis from controls. The validation phase results revealed similar diagnostic characteristics of the SVM model combining TGFBI and CA-125, with an AUC value of 0.83, sensitivity of 83% and specificity of 67% and CA-125 alone with AUC value of 0.83, sensitivity of 73% and specificity of 80%. TGFBI exhibited good diagnostic potential for early-stage endometriosis (revised American Society for Reproductive Medicine stage I-II), with an AUC value of 0.74, sensitivity of 61% and specificity of 83% compared to CA-125, which had an AUC value of 0.63, sensitivity of 60% and specificity of 67%. An SVM model combining TGFBI and CA-125 showed a high AUC value of 0.94 and sensitivity of 95% for diagnosing moderate-to-severe endometriosis. LIMITATIONS, REASONS FOR CAUTION The diagnostic models were built and validated from a single endometriosis center, and thus further validation and technical verification in a multicenter study with a larger cohort is needed. Additional limitation was lack of histological confirmation of disease for some patients in the validation phase. WIDER IMPLICATIONS OF THE FINDINGS This study revealed for the first time increased concentration of TGFBI in plasma samples of patients with endometriosis, particularly those with minimal-to-mild endometriosis, compared to controls. This is the first step in considering TGFBI as a potential non-invasive biomarker for the early stages of endometriosis. It also opens a path for new basic research to investigate the importance of TGFBI in the pathophysiology of endometriosis. Further studies are needed to confirm the diagnostic potential of a model based on TGFBI and CA-125 for the non-invasive diagnosis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The preparation of this manuscript was supported by grant J3-1755 from the Slovenian Research Agency to T.L.R and EU H2020-MSCA-RISE project TRENDO (grant 101008193). All authors declare that they have no conflicts of interest. TRIAL REGISTRATION NUMBER NCT0459154.
Collapse
Affiliation(s)
- Vid Janša
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maja Pušić Novak
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Ban Frangež
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Brown Y, Hua S, Tanwar PS. Extracellular Matrix in High-Grade Serous Ovarian Cancer: Advances in Understanding of Carcinogenesis and Cancer Biology. Matrix Biol 2023; 118:16-46. [PMID: 36781087 DOI: 10.1016/j.matbio.2023.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is notoriously known as the "silent killer" of post-menopausal women as it has an insidious progression and is the deadliest gynaecological cancer. Although a dual origin of HGSOC is now widely accepted, there is growing evidence that most cases of HGSOC originate from the fallopian tube epithelium. In this review, we will address the fallopian tube origin and involvement of the extracellular matrix (ECM) in HGSOC development. There is limited research on the role of ECM at the earliest stages of HGSOC carcinogenesis. Here we aim to synthesise current understanding on the contribution of ECM to each stage of HGSOC development and progression, beginning at serous tubal intraepithelial carcinoma (STIC) precursor lesions and proceeding across key events including dissemination of tumourigenic fallopian tube epithelial cells to the ovary, survival of these cells in peritoneal fluid as multicellular aggregates, and colonisation of the ovary. Likewise, as part of the metastatic series of events, serous ovarian cancer cells survive travel in peritoneal fluid, attach to, migrate across the mesothelium and invade into the sub-mesothelial matrix of secondary sites in the peritoneal cavity. Halting cancer at the pre-metastatic stage and finding ways to stop the dissemination of ovarian cancer cells from the primary site is critical for improving patient survival. The development of drug resistance also contributes to poor survival statistics in HGSOC. In this review, we provide an update on the involvement of the ECM in metastasis and drug resistance in HGSOC. Interplay between different cell-types, growth factor gradients as well as evolving ECM composition and organisation, creates microenvironment conditions that promote metastatic progression and drug resistance of ovarian cancer cells. By understanding ECM involvement in the carcinogenesis and chemoresistance of HGSOC, this may prompt ideas for further research for developing new early diagnostic tests and therapeutic strategies for HGSOC with the end goal of improving patient health outcomes.
Collapse
Affiliation(s)
- Yazmin Brown
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pradeep S Tanwar
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| |
Collapse
|
5
|
Hassan T, Firdous P, Nissar K, Ahmad MB, Imtiyaz Z. Role of proteomics in surgical oncology. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Leung D, Price ZK, Lokman NA, Wang W, Goonetilleke L, Kadife E, Oehler MK, Ricciardelli C, Kannourakis G, Ahmed N. Platinum-resistance in epithelial ovarian cancer: an interplay of epithelial-mesenchymal transition interlinked with reprogrammed metabolism. J Transl Med 2022; 20:556. [PMID: 36463238 PMCID: PMC9719259 DOI: 10.1186/s12967-022-03776-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics. This was validated in the platinum resistant versus sensitive parental cell lines, as well as platinum resistant versus sensitive human ovarian cancer patient samples. The prognostic significance of the different proteomics-identified marker proteins in prognosis prediction on survival as well as their correlative association and influence on immune cell infiltration was determined by public domain data bases. METHODS We explored the proteomic differences between carboplatin-sensitive OVCAR5 cells (parental) and their carboplatin-resistant counterpart, OVCAR5 CBPR cells. qPCR and western blots were performed to validate differentially expressed proteins at the mRNA and protein levels, respectively. Association of the identified proteins with epithelial-mesenchymal transition (EMT) prompted the investigation of cell motility. Cellular bioenergetics and proliferation were studied to delineate any biological adaptations that facilitate cancer progression. Expression of differentially expressed proteins was assessed in ovarian tumors obtained from platinum-sensitive (n = 15) versus platinum-resistant patients (n = 10), as well as matching tumors from patients at initial diagnosis and following relapse (n = 4). Kaplan-Meier plotter and Tumor Immune Estimation Resource (TIMER) databases were used to determine the prognostic significance and influence of the different proteomics-identified proteins on immune cell infiltration in the tumor microenvironment (TME). RESULTS Our proteomics study identified 2422 proteins in both cell lines. Of these, 18 proteins were upregulated and 14 were downregulated by ≥ twofold (p < 0.05) in OVCAR5 CBPR cells. Gene ontology enrichment analysis amongst upregulated proteins revealed an overrepresentation of biological processes consistent with EMT in the resistant cell line. Enhanced mRNA and/or protein expression of the identified EMT modulators including ITGA2, TGFBI, AKR1B1, ITGAV, ITGA1, GFPT2, FLNA and G6PD were confirmed in OVCAR5 CBPR cells compared to parental OVCAR5 cell line. Consistent with the altered EMT profile, the OVCAR5 CBPR cells demonstrated enhanced migration and reduced proliferation, glycolysis, and oxidative phosphorylation. The upregulation of G6PD, AKR1B1, ITGAV, and TGFβ1 in OVCAR5 CBPR cells was also identified in the tumors of platinum-resistant compared to platinum-sensitive high grade serous ovarian cancer (HGSOC) patients. Matching tumors of relapsed versus newly diagnosed HGSOC patients also showed enhanced expression of AKR1B1, ITGAV, TGFβ1 and G6PD protein in relapsed tumors. Among the identified proteins, significant enhanced expression of GFPT2, FLNA, TGFBI (CDGG1), ITGA2 predicted unfavorable prognosis in ovarian cancer patients. Further analysis suggested that the expression of TGFBI to correlate positively with the expression of identified and validated proteins such as GFPT2, FLNA, G6PD, ITGAV, ITGA1 and ITGA2; and with the infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic cells in the TME. CONCLUSIONS Our research demonstrates proteomic-based discovery of novel EMT-related markers with an altered metabolic profile in platinum-resistant versus sensitive ovarian cancer cell lines. The study also confirms the expression of selected identified markers in the tumors of platinum-resistant versus sensitive, and in matching relapsed versus newly diagnosed HGSOC patients. The study provides insights into the metabolic adaptation of EMT-induced carboplatin resistant cells that confers on them reduced proliferation to provide effective migratory advantage; and the role of some of these identified proteins in ovarian cancer prognosis. These observations warrant further investigation of these novel target proteins in platinum-resistant patients.
Collapse
Affiliation(s)
- Dilys Leung
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia
| | - Zoe K. Price
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Noor A. Lokman
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Wanqi Wang
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Lizamarie Goonetilleke
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia
| | - Martin K. Oehler
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.416075.10000 0004 0367 1221Department of Gynecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| | - Carmela Ricciardelli
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia ,grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| |
Collapse
|
7
|
Wang W, Lokman NA, Noye TM, Macpherson AM, Oehler MK, Ricciardelli C. ABCA1 is associated with the development of acquired chemotherapy resistance and predicts poor ovarian cancer outcome. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:485-502. [PMID: 35582032 PMCID: PMC9019266 DOI: 10.20517/cdr.2020.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Aim: This study investigated the ATP binding cassette (ABC) transporter (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) expression in high grade serous ovarian cancer (HGSOC) tissues, cell lines and primary cells to determine their potential relationship with acquired chemotherapy resistance and patient outcome. Methods: ABC transporter mRNA and protein expression (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) was assessed in publicly available datasets and in a tissue microarray (TMA) cohort of HGSOC at diagnosis, respectively. ABC transporter mRNA expression was also assessed in chemosensitive ovarian cancer cell lines (OVCAR-5 and CaOV3) versus matching cell lines with acquired carboplatin resistance and in primary HGSOC cells from patients with chemosensitive disease at diagnosis (n = 10) as well as patients with acquired chemotherapy resistance at relapse (n = 6). The effects of the ABCA1 inhibitor apabetalone in carboplatin-sensitive and -resistant cell lines were also investigated. Results: High ABCA1 mRNA and protein expression was found to be significantly associated with poor patient outcome. ABCA1 mRNA and protein levels were significantly increased in ovarian cancer cell lines (OVCAR-5 CBPR and CaOV3 CBPR) with acquired carboplatin resistance. ABCA1 mRNA was significantly increased in primary HGSOC cells obtained from patients with acquired chemotherapy resistance. Apabetalone treatment reduced ABCA1 protein expression and increased the sensitivity of both parental and carboplatin-resistant ovarian cancer cells to carboplatin. Conclusion: These results suggest that inhibiting ABCA1 transporter may be useful in overcoming acquired chemotherapy resistance and improving outcome for patients with HGSOC.
Collapse
Affiliation(s)
- Wanqi Wang
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Noor A Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tannith M Noye
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anne M Macpherson
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Martin K Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
8
|
Lazari LC, Rosa-Fernandes L, Palmisano G. Identification of Circulating Biomarkers of COVID-19 Using MALDI-TOF Mass Spectrometry. Methods Mol Biol 2022; 2511:175-182. [PMID: 35838960 DOI: 10.1007/978-1-0716-2395-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Matrix-assisted laser desorption/ionization source coupled with time-of-flight mass analyzer mass spectrometry (MALDI-TOF MS) is being widely used to obtain proteomic profiles for clinical purposes, as a fast, low-cost, robust, and efficient technique. Here we describe a method for biofluid analysis using MALDI-TOF MS for rapid acquisition of proteomic signatures of COVID-19 infected patients. By using solid-phase extraction, the method allows the analysis of biofluids in less than 15 min.
Collapse
Affiliation(s)
- Lucas C Lazari
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Lecker LSM, Berlato C, Maniati E, Delaine-Smith R, Pearce OMT, Heath O, Nichols SJ, Trevisan C, Novak M, McDermott J, Brenton JD, Cutillas PR, Rajeeve V, Hennino A, Drapkin R, Loessner D, Balkwill FR. TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer. Cancer Res 2021; 81:5706-5719. [PMID: 34561272 PMCID: PMC9397609 DOI: 10.1158/0008-5472.can-21-0536] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023]
Abstract
The tumor microenvironment evolves during malignant progression, with major changes in nonmalignant cells, cytokine networks, and the extracellular matrix (ECM). In this study, we aimed to understand how the ECM changes during neoplastic transformation of serous tubal intraepithelial carcinoma lesions (STIC) into high-grade serous ovarian cancers (HGSOC). Analysis of the mechanical properties of human fallopian tubes (FT) and ovaries revealed that normal FT and fimbria had a lower tissue modulus, a measure of stiffness, than normal or diseased ovaries. Proteomic analysis of the matrisome fraction between FT, fimbria, and ovaries showed significant differences in the ECM protein TGF beta induced (TGFBI, also known as βig-h3). STIC lesions in the fimbria expressed high levels of TGFBI, which was predominantly produced by CD163-positive macrophages proximal to STIC epithelial cells. In vitro stimulation of macrophages with TGFβ and IL4 induced secretion of TGFBI, whereas IFNγ/LPS downregulated macrophage TGFBI expression. Immortalized FT secretory epithelial cells carrying clinically relevant TP53 mutations stimulated macrophages to secrete TGFBI and upregulated integrin αvβ3, a putative TGFBI receptor. Transcriptomic HGSOC datasets showed a significant correlation between TGFBI expression and alternatively activated macrophage signatures. Fibroblasts in HGSOC metastases expressed TGFBI and stimulated macrophage TGFBI production in vitro. Treatment of orthotopic mouse HGSOC tumors with an anti-TGFBI antibody reduced peritoneal tumor size, increased tumor monocytes, and activated β3-expressing unconventional T cells. In conclusion, TGFBI may favor an immunosuppressive microenvironment in STICs that persists in advanced HGSOC. Furthermore, TGFBI may be an effector of the tumor-promoting actions of TGFβ and a potential therapeutic target. SIGNIFICANCE: Analysis of ECM changes during neoplastic transformation reveals a role for TGFBI secreted by macrophages in immunosuppression in early ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Owen Heath
- Barts Cancer Institute, London, United Kingdom
| | | | - Caterina Trevisan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Marian Novak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
| | - Ronny Drapkin
- Ovarian Cancer Research Center, Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
10
|
Janša V, Klančič T, Pušić M, Klein M, Vrtačnik Bokal E, Ban Frangež H, Rižner TL. Proteomic analysis of peritoneal fluid identified COMP and TGFBI as new candidate biomarkers for endometriosis. Sci Rep 2021; 11:20870. [PMID: 34686725 PMCID: PMC8536751 DOI: 10.1038/s41598-021-00299-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Endometriosis is a common non-malignant gynecological disease that significantly compromises fertility and quality of life of the majority of patients. The gold standard for diagnosis is visual inspection of the pelvic organs by surgical laparoscopy and there are no biomarkers that would allow non-invasive diagnosis. The pathogenesis of endometriosis is not completely understood, thus analysis of peritoneal fluid might contribute in this respect. Our prospective case-control study included 58 patients undergoing laparoscopy due to infertility, 32 patients with peritoneal endometriosis (cases) and 26 patients with unexplained primary infertility (controls). Discovery proteomics using antibody microarrays that covered 1360 proteins identified 16 proteins with different levels in cases versus the control patients. The validation using an ELISA approach confirmed significant differences in the levels of cartilage oligomeric matrix protein (COMP) and transforming growth factor-β-induced protein ig-h3 (TGFBI) and nonsignificant differences in angiotensinogen (AGT). A classification model based on a linear support vector machine revealed AUC of > 0.83, sensitivity of 0.81 and specificity of 1.00. Differentially expressed proteins represent candidates for diagnostic and prognostic biomarkers or drug targets. Our findings have brought new knowledge that will be helpful in the understanding of the pathophysiology of endometriosis and warrant further studies in blood samples.
Collapse
Affiliation(s)
- V Janša
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000, Ljubljana, Slovenia
| | - T Klančič
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - M Pušić
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - M Klein
- Sciomics GmbH, Karl-Landsteiner-Straße 6, 69151, Neckargemünd, Germany
| | - E Vrtačnik Bokal
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - H Ban Frangež
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - T Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Wang Y, Wei Q, Chen Y, Long S, Yao Y, Fu K. Identification of Hub Genes Associated With Sensitivity of 5-Fluorouracil Based Chemotherapy for Colorectal Cancer by Integrated Bioinformatics Analysis. Front Oncol 2021; 11:604315. [PMID: 33912443 PMCID: PMC8071956 DOI: 10.3389/fonc.2021.604315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. 5-fluorouracil (5-FU) has been used for the standard first-line treatment for CRC patients for several decades. Although 5-FU based chemotherapy has increased overall survival (OS) of CRC patients, the resistance of CRC to 5-FU based chemotherapy is the principal cause for treatment failure. Thus, identifying novel biomarkers to predict response to 5-FU based chemotherapy is urgently needed. In the present study, the gene expression profile of GSE3964 from the Gene Expression Omnibus database was used to explore the potential genes related to intrinsic resistance to 5-FU. A gene module containing 81 genes was found to have the highest correlation with chemotherapy response using Weighted Gene Co-expression Network Analysis (WGCNA). Then a protein-protein interaction (PPI) network was constructed and ten hub genes (TGFBI, NID, LEPREL2, COL11A1, CYR61, PCOLCE, IGFBP7, COL4A2, CSPG2, and VTN) were identified using the CytoHubba plugin of Cytoscape. Seven of these hub genes showed significant differences in expression between chemotherapy-sensitive and chemotherapy-resistant samples. The prognostic value of these seven genes was evaluated using TCGA COAD (Colorectal Adenocarcinoma) data. The results showed that TGFBI was highly expressed in chemotherapy-sensitive patients, and patients with high TGFBI expression have better survival.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qunhui Wei
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shichao Long
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Diagnostic Value of Plasma Annexin A2 in Early-Stage High-Grade Serous Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11010069. [PMID: 33406648 PMCID: PMC7823988 DOI: 10.3390/diagnostics11010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) is commonly diagnosed at advanced stage when prognosis is poor. Consequently, there is an urgent clinical need to identify novel biomarkers for early detection to improve survival. We examined the diagnostic value of the calcium phospholipid binding protein annexin A2 (ANXA2), which plays an important role in OC metastasis. Annexin A2 plasma levels in patients with high grade serous OC (n = 105), benign ovarian lesions (n = 55) and healthy controls (n = 143) were measured by ELISA. Annexin A2 levels were found to be significantly increased in patients with stage I (p < 0.0001) and stage IA (p = 0.0027) OC when compared to healthy controls. In the logistic regression models followed by receiver operating characteristics (ROC) curve analyses, plasma annexin A2 showed 46.7% sensitivity at 99.6% specificity in distinguishing stage IA OC patients from healthy controls and 75% sensitivity at 65.5% specificity in the diagnosis of stage IA versus benign ovarian tumors. In the diagnosis of stage IA OC versus normal controls, the combination of plasma annexin A2 and CA125 showed 80% sensitivity at 99.6% specificity (AUC = 0.970) which was significantly higher than for CA125 (53.3% sensitivity at 99.6% specificity; AUC = 0.891) alone. The diagnostic accuracy in distinguishing stage IA OC from benign ovarian disease when combining annexin A2 and CA125 (71.4% accuracy at 100% sensitivity) was almost twice as high compared to CA125 (37.1% accuracy at 100% sensitivity) alone. In conclusion, annexin A2 in combination with CA125 has potential as a biomarker for the early detection of OC and to predict malignancy in patients with ovarian lesions, warranting further investigations.
Collapse
|
13
|
Cheung J, Lokman NA, Abraham RD, Macpherson AM, Lee E, Grutzner F, Ghinea N, Oehler MK, Ricciardelli C. Reduced Gonadotrophin Receptor Expression Is Associated with a More Aggressive Ovarian Cancer Phenotype. Int J Mol Sci 2020; 22:ijms22010071. [PMID: 33374698 PMCID: PMC7793521 DOI: 10.3390/ijms22010071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and luteinising hormone (LH) play important roles in regulating cell growth and proliferation in the ovary. However, few studies have explored the expression of FSH and LH receptors (FSHR and LHCGR) in ovarian cancer, and their functional roles in cancer progression remain inconclusive. This study investigated the potential impact of both mRNA (FSHR, LHCGR) and protein (FSHR, LHCGR) expression on ovarian cancer progression using publicly available online databases, qRT-PCR (high grade serous ovarian cancers, HGSOC, n = 29 and benign ovarian tumors, n = 17) and immunohistochemistry (HGSOC, n = 144). In addition, we investigated the effect of FSHR and LHCGR siRNA knockdown on the pro-metastatic behavior of serous ovarian cancer cells in vitro. High FSHR or high LHCGR expression in patients with all subtypes of high-grade ovarian cancer was significantly associated with longer progression-free survival (PFS) and overall survival (OS). High FSHR protein expression was associated with increased PFS (p = 0.050) and OS (p = 0.025). HGSOC patients with both high FSHR and high LHCGR protein levels had the best survival outcome, whilst both low FSHR and low LHCGR expression was associated with poorest survival (p = 0.019). Knockdown of FSHR significantly increased the invasion of serous ovarian cancer cells (OVCAR3 and COV362) in vitro. LHCGR knockdown also promoted invasion of COV362 cells. This study highlights that lower FSHR and LHCGR expression is associated with a more aggressive epithelial ovarian cancer phenotype and promotes pro-metastatic behaviour.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Female
- Humans
- Middle Aged
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phenotype
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
Collapse
Affiliation(s)
- Janelle Cheung
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Noor A. Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Riya D. Abraham
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Anne M. Macpherson
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Eunice Lee
- School of Biological Science, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (E.L.); (F.G.)
| | - Frank Grutzner
- School of Biological Science, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (E.L.); (F.G.)
| | - Nicolae Ghinea
- Curie Institute, Research Center, Translational Research Department, Tumor Angiogenesis Team, 75005 Paris, France;
| | - Martin K. Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
- Correspondence:
| |
Collapse
|
14
|
Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TC, Otzen DE, Hjortdal J, Enghild JJ. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res 2020; 77:100843. [DOI: 10.1016/j.preteyeres.2020.100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
|
15
|
Steitz AM, Steffes A, Finkernagel F, Unger A, Sommerfeld L, Jansen JM, Wagner U, Graumann J, Müller R, Reinartz S. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis 2020; 11:249. [PMID: 32312959 PMCID: PMC7171168 DOI: 10.1038/s41419-020-2438-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
A central and unique aspect of high-grade serous ovarian carcinoma (HGSC) is the extensive transcoelomic spreading of tumor cell via the peritoneal fluid or malignant ascites. We and others identified tumor-associated macrophages (TAM) in the ascites as promoters of metastasis-associated processes like extracellular matrix (ECM) remodeling, tumor cell migration, adhesion, and invasion. The precise mechanisms and mediators involved in these functions of TAM are, however, largely unknown. We observed that HGSC migration is promoted by soluble mediators from ascites-derived TAM, which can be emulated by conditioned medium from monocyte-derived macrophages (MDM) differentiated in ascites to TAM-like asc-MDM. A similar effect was observed with IL-10-induced alternatively activated m2c-MDM but not with LPS/IFNγ-induced inflammatory m1-MDM. These observations provided the basis for deconvolution of the complex TAM secretome by performing comparative secretome analysis of matched triplets of different MDM phenotypes with different pro-migratory properties (asc-MDM, m2c-MDM, m1-MDM). Mass spectrometric analysis identified an overlapping set of nine proteins secreted by both asc-MDM and m2c-MDM, but not by m1-MDM. Of these, three proteins, i.e., transforming growth factor beta-induced (TGFBI) protein, tenascin C (TNC), and fibronectin (FN1), have been associated with migration-related functions. Intriguingly, increased ascites concentrations of TGFBI, TNC, and fibronectin were associated with short progression-free survival. Furthermore, transcriptome and secretome analyses point to TAM as major producers of these proteins, further supporting an essential role for TAM in promoting HGSC progression. Consistent with this hypothesis, we were able to demonstrate that the migration-inducing potential of asc-MDM and m2c-MDM secretomes is inhibited, at least partially, by neutralizing antibodies against TGFBI and TNC or siRNA-mediated silencing of TGFBI expression. In conclusion, the present study provides the first experimental evidence that TAM-derived TGFBI and TNC in ascites promote HGSC progression.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Alina Steffes
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Annika Unger
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Leah Sommerfeld
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
16
|
Norris EJ, Zhang Q, Jones WD, DeStephanis D, Sutker AP, Livasy CA, Ganapathi RN, Tait DL, Ganapathi MK. Increased expression of neurotensin in high grade serous ovarian carcinoma with evidence of serous tubal intraepithelial carcinoma. J Pathol 2019; 248:352-362. [PMID: 30883751 PMCID: PMC6619390 DOI: 10.1002/path.5264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/04/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
High grade serous ovarian carcinoma (HGSC) without identifiable serous tubal intraepithelial carcinoma (STIC) within the fallopian tube (FT) occurs in approximately 50% of patients. The objective of this study was to use a multisite tumor sampling approach to study HGSC with and without STIC. RNAseq analysis of HGSC samples collected from multiple sites e.g. ovary, FT and peritoneum, revealed moderate levels of intrapatient heterogeneity in gene expression that could influence molecular profiles. Mixed‐model ANOVA analysis of gene expression in tumor samples from patients with multiple tumor sites (n = 13) and patients with a single site tumor sample (n = 11) to compare HGSC‐STIC to HGSC‐NOSTIC identified neurotensin (NTS) as significantly higher (> two‐fold change, False Discovery Rate (FDR) < 0.10) in HGSC‐STIC. This data was validated using publicly available RNA‐Seq datasets. Concordance between higher NTS gene expression and NTS peptide levels in HGSC‐STIC samples was demonstrated by immunohistochemistry. To determine the role of NTS in HGSC, five ovarian cancer (OvCa) cell lines were screened for expression of NTS and its receptors, NTSR1 and NTSR3. Increased expression of NTS and NSTR1 was observed in several of the OvCa cells, whereas the NTSR3 receptor was lower in all OvCa cells, compared to immortalized FT epithelial cells. Treatment with NTSR1 inhibitor (SR48692) decreased cell proliferation, but increased cell migration in OvCa cells. The effects of SR48692 were receptor mediated, since transient RNAi knockdown of NTSR1 mimicked the migratory effects and knockdown of NTSR3 mimicked the anti‐proliferative effects. Further, knockdown of NTSR1 or NTSR3 was associated with acquisition of distinct morphological phenotypes, epithelial or mesenchymal, respectively. Taken together, our results reveal a difference in a biologically active pathway between HGSC with and without STIC. Furthermore, we identify neurotensin signaling as an important pathway involved in cell proliferation and epithelial–mesenchymal transition in HGSC‐STIC which warrants further study as a potential therapeutic target. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eric J Norris
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Qing Zhang
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Wendell D Jones
- Department of Bioinformatics and Clinical Systems, Q2 Solutions - EA Genomics, Morrisville, NC, USA
| | | | | | | | | | - David L Tait
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | | |
Collapse
|
17
|
Kheir V, Cortés-González V, Zenteno JC, Schorderet DF. Mutation update: TGFBI pathogenic and likely pathogenic variants in corneal dystrophies. Hum Mutat 2019; 40:675-693. [PMID: 30830990 DOI: 10.1002/humu.23737] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023]
Abstract
Human transforming growth factor β-induced (TGFBI), is a gene responsible for various corneal dystrophies. TGFBI produces a protein called TGFBI, which is involved in cell adhesion and serves as a recognition sequence for integrins. An alteration in cell surface interactions could be the underlying cause for the progressive accumulation of extracellular deposits in different layers of the cornea with the resulting changes of refractive index and transparency. To this date, 69 different pathogenic or likely pathogenic variants in TGFBI have been identified in a heterozygous or homozygous state in various corneal dystrophies, including a novel variant reported here. All disease-associated variants were inherited as autosomal-dominant traits but one; this latter was inherited as an autosomal recessive trait. Most corneal dystrophy-associated variants are located at amino acids Arg124 and Arg555. To keep the list of corneal dystrophy-associated variant current, we generated a locus-specific database for TGFBI (http://databases.lovd.nl/shared/variants/TGFBI) containing all pathogenic and likely pathogenic variants reported so far. Non-disease-associated variants are described in specific databases, like gnomAD and ExAC but are not listed here. This article presents the most recent up-to-date list of disease-associated variants.
Collapse
Affiliation(s)
- Valeria Kheir
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vianney Cortés-González
- Department of Genetics, Hospital "Dr. Luis Sanchez Bulnes", Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Lokman NA, Ho R, Gunasegaran K, Bonner WM, Oehler MK, Ricciardelli C. Anti-tumour effects of all-trans retinoid acid on serous ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:10. [PMID: 30621740 PMCID: PMC6325857 DOI: 10.1186/s13046-018-1017-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Background Annexin A2 is increased in serous ovarian cancer and plays an essential role in ovarian cancer invasion and metastasis. In combination with S100A10, annexin A2 plays an important role in the plasminogen activator system regulating plasmin production. The aim of this study was to investigate the potential utility of all-trans retinoid acid (ATRA), an inhibitor of the annexin A2-S100A10 signalling pathway, as a new therapeutic against serous ovarian cancer. Methods In this study we determined the effects of ATRA treatment (1-5 μM) on annexin A2 and S100A10 expression, plasmin activation, and the ability of ATRA to inhibit serous ovarian cancer cell survival, motility and invasion in vitro. We also employed an ex vivo tissue explant assay to assess response to ATRA treatment in serous ovarian cancers. Cryopreserved serous ovarian cancer tissues were cultured on gelatin sponges for 72 h with ATRA (1 μM). Effects on apoptosis and proliferation were assessed by immunohistochemistry using antibodies to cleaved caspase 3 or Ki67, respectively. Results Survival of serous ovarian cancer cells (OVCAR-3, OV-90, & OAW28) was significantly decreased by ATRA treatment (1-5 μM). ATRA (1 μM) also significantly decreased proliferation (Ki67 positivity, p = 0.0034), S100A10 protein levels (p = 0.0273), and increased cell apoptosis (cleaved caspase-3 positivity, p = 0.0024) in serous ovarian cancer tissues using the ex vivo tissue explant assay. In OAW28 cells, reduced cell survival following ATRA treatment was associated with a reduction of S100A10 mRNA and protein levels, S100A10 and annexin A2 membrane localization, plasmin generation, motility and invasion. In contrast, ATRA inhibited OV-90 cell survival and invasion but did not affect plasmin activation or S100A10 and annexin A2 expression or membrane localization. Conclusions These findings suggest that ATRA inhibits serous ovarian cancer proliferation and invasion via both S100A10 dependant and S100A10 independent mechanisms. Our results show that ATRA has promising potential as a novel therapy against serous ovarian cancer that warrants further evaluation. Electronic supplementary material The online version of this article (10.1186/s13046-018-1017-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Rachel Ho
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Kavyadharshini Gunasegaran
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Wendy M Bonner
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
19
|
Klamer SE, Dorland YL, Kleijer M, Geerts D, Lento WE, van der Schoot CE, von Lindern M, Voermans C. TGFBI Expressed by Bone Marrow Niche Cells and Hematopoietic Stem and Progenitor Cells Regulates Hematopoiesis. Stem Cells Dev 2018; 27:1494-1506. [PMID: 30084753 PMCID: PMC6209430 DOI: 10.1089/scd.2018.0124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The interactions of hematopoietic stem and progenitor cells (HSPCs) with extracellular matrix (ECM) components and cells from the bone marrow (BM) microenvironment control their homeostasis. Regenerative BM conditions can induce expression of the ECM protein transforming growth factor beta-induced gene H3 (TGFBI or BIGH3) in murine HSPCs. In this study, we examined how increased or reduced TGFBI expression in human HSPCs and BM mesenchymal stromal cells (MSCs) affects HSPC maintenance, differentiation, and migration. HSPCs that overexpressed TGFBI showed accelerated megakaryopoiesis, whereas granulocyte differentiation and proliferation of granulocyte, erythrocyte, and monocyte cultures were reduced. In addition, both upregulation and downregulation of TGFBI expression impaired HSPC colony-forming capacity of HSPCs. Interestingly, the colony-forming capacity of HSPCs with reduced TGFBI levels was increased after long-term co-culture with MSCs, as measured by long-term culture-colony forming cell (LTC-CFC) formation. Moreover, TGFBI downregulation in HSPCs resulted in increased cobblestone area-forming cell (CAFC) frequency, a measure for hematopoietic stem cell (HSC) capacity. Concordantly, TGFBI upregulation in HSPCs resulted in a decrease of CAFC and LTC-CFC frequency. These results indicate that reduced TGFBI levels in HSPCs enhanced HSC maintenance, but only in the presence of MSCs. In addition, reduced levels of TGFBI in MSCs affected MSC/HSPC interaction, as observed by an increased migration of HSPCs under the stromal layer. In conclusion, tight regulation of TGFBI expression in the BM niche is essential for balanced HSPC proliferation and differentiation.
Collapse
Affiliation(s)
- Sofieke E Klamer
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Yvonne L Dorland
- 2 Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Marion Kleijer
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Dirk Geerts
- 3 Department of Medical Biology, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - William E Lento
- 4 Department of Pharmacology, Duke University , Durham, North Carolina
| | - C Ellen van der Schoot
- 5 Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands .,6 Department of Hematology, Academic Medical Center , Amsterdam, the Netherlands
| | - Marieke von Lindern
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Carlijn Voermans
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| |
Collapse
|
20
|
Ricciardelli C, Lokman NA, Sabit I, Gunasegaran K, Bonner WM, Pyragius CE, Macpherson AM, Oehler MK. Novel ex vivo ovarian cancer tissue explant assay for prediction of chemosensitivity and response to novel therapeutics. Cancer Lett 2018; 421:51-58. [PMID: 29425684 DOI: 10.1016/j.canlet.2018.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/14/2017] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
The majority of ovarian cancer patients present with advanced disease and despite aggressive treatment, prognosis remains poor. Response to first-line carboplatin-containing chemotherapy is usually good, however, recurrence rates and subsequent chemoresistance are very high and ultimately responsible for the fatal outcome of the disease. To improve treatment outcomes pre-clinical models that can predict individual patient response to 1st line chemotherapy and novel therapeutics are urgently required. In this study, we employed an ex vivo ovarian cancer tissue explant assay to assess response to carboplatin and an inhibitor of the extracellular matrix molecule, hyaluronan (4-methylubelliferone, 4-MU), shown to inhibit cancer metastasis. Cryopreserved ovarian cancer tissues were cultured on gelatine sponges for 48-120 h with increasing concentrations of carboplatin (0-400 μM) or 4-MU (1 mM) alone or the combination of both drugs. Effects on apoptosis and proliferation were assessed by immunohistochemistry using antibodies to cleaved caspase 3 or Ki67, respectively. The ex vivo tissue explant assay maintained viable tumor cells in an intact tumor microenvironment similar to the in vivo situation over the 120 h culture period. Carboplatin treatment promoted apoptosis in chemosensitive (P = 0.0047) but not chemoresistant cancer tissues. The combination of 4-MU (1 mM) and carboplatin (100 μM) significantly increased apoptosis (P = 0.0111) and reduced proliferation (P = 0.0064) in chemoresistant tissues. Overall, our results show that the ex vivo explant assay is a robust and cost effective model to assess chemosensitivity and the effect of novel therapeutics in ovarian cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Ilhamjan Sabit
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kavyadharshini Gunasegaran
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Wendy M Bonner
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Carmen E Pyragius
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Liu T, Liu F, Peng LW, Chang L, Jiang YM. The Peritoneal Macrophages in Inflammatory Diseases and Abdominal Cancers. Oncol Res 2017; 26:817-826. [PMID: 29237519 PMCID: PMC7844755 DOI: 10.3727/096504017x15130753659625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Peritoneal macrophages (PMs) are the major cell type of peritoneal cells that participate in multiple aspects of innate and acquired immunity in the peritoneal cavity. PMs have an ability to release a large amount of proinflammatory and anti-inflammatory cytokines and therefore play a critical role in regulating the differentiation of innate immune cells and inflammatory T cells. Accumulating studies demonstrate that the immunological reactions and inflammatory responses of PMs are strongly related to the pathogenic processes of various inflammatory diseases and abdominal cancers. Consequently, the regulation of PM activation has gradually emerged as a promising target for immunotherapy, and better understanding of the distinctly biological function of PMs in individual diseases is crucial for designing specific and effective therapeutic agents. This review covers the characterization and immunological function of PMs in hosts with inflammatory diseases and abdominal cancers.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Fang Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Lei-Wen Peng
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Li Chang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
22
|
Ricciardelli C, Lokman NA, Pyragius CE, Ween MP, Macpherson AM, Ruszkiewicz A, Hoffmann P, Oehler MK. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotarget 2017; 8:17819-17832. [PMID: 28147318 PMCID: PMC5392289 DOI: 10.18632/oncotarget.14867] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
This study investigated the clinical significance of keratin 5 and 6 expression in serous ovarian cancer progression and chemotherapy resistance. KRT5 and KRT6 (KRT6A, KRT6B & KRT6C) gene expression was assessed in publically available serous ovarian cancer data sets, ovarian cancer cell lines and primary serous ovarian cancer cells. Monoclonal antibodies which detect both K5/6 or only K5 were used to assess protein expression in ovarian cancer cell lines and a cohort of high grade serous ovarian carcinomas at surgery (n = 117) and after neoadjuvant chemotherapy (n = 21). Survival analyses showed that high KRT5 mRNA in stage III/IV serous ovarian cancers was significantly associated with reduced progression-free (HR 1.38, P < 0.0001) and overall survival (HR 1.28, P = 0.013) whilst high KRT6 mRNA was only associated with reduced progression-free survival (HR 1.2, P = 0.031). Both high K5/6 (≥ 10%, HR 1.78 95% CI; 1.03−2.65, P = 0.017) and high K5 (≥ 10%, HR 1.90, 95% CI; 1.12−3.19, P = 0.017) were associated with an increased risk of disease recurrence. KRT5 but not KRT6C mRNA expression was increased in chemotherapy resistant primary serous ovarian cancer cells compared to chemotherapy sensitive cells. The proportion of serous ovarian carcinomas with high K5/6 or high K5 immunostaining was significantly increased following neoadjuvant chemotherapy. K5 can be used to predict serous ovarian cancer prognosis and identify cancer cells that are resistant to chemotherapy. Developing strategies to target K5 may therefore improve serous ovarian cancer survival.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, 5000, South Australia, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, 5000, South Australia, Australia
| | - Carmen E Pyragius
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, 5000, South Australia, Australia
| | - Miranda P Ween
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia.,Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, 5000, South Australia, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, 5000, South Australia, Australia
| | - Andrew Ruszkiewicz
- Centre of Cancer Biology, University of South Australia and Department of Anatomical Pathology, SA Pathology, Adelaide, 5000, South Australia, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, 5000, South Australia, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, 5000, South Australia, Australia
| |
Collapse
|
23
|
Bigh3 silencing increases retinoblastoma tumor growth in the murine SV40-TAg-Rb model. Oncotarget 2017; 8:15490-15506. [PMID: 28099942 PMCID: PMC5362501 DOI: 10.18632/oncotarget.14659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/24/2016] [Indexed: 11/25/2022] Open
Abstract
BIGH3, a secreted protein of the extracellular matrix interacts with collagen and integrins on the cell surface. BIGH3 can have opposing functions in cancer, acting either as tumor suppressor or promoter by enhancing tumor progression and angiogenesis. In the eye, BIGH3 is expressed in the cornea and the retinal pigment epithelium and could impact on the development of retinoblastoma, the most common paediatric intraocular neoplasm. Retinoblastoma initiation requires the inactivation of both alleles of the RB1 tumor suppressor gene in the developing retina and tumor progression involves additional genomic changes. To determine whether BIGH3 affects retinoblastoma development, we generated a retinoblastoma mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing in these mice resulted in enhanced tumor development in the retina. A decrease in apoptosis is involved in the initial events of tumorigenesis, followed by an increased activity of the pro-survival ERK pathway as well as an upregulation of cyclin-dependent kinases (CDKs). Taken together, these data suggest that BIGH3 acts as a tumor suppressor in the retina.
Collapse
|
24
|
Hsiao YC, Chu LJ, Chen JT, Yeh TS, Yu JS. Proteomic profiling of the cancer cell secretome: informing clinical research. Expert Rev Proteomics 2017; 14:737-756. [PMID: 28695748 DOI: 10.1080/14789450.2017.1353913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cancer represents one of the major causes of human deaths. Identification of proteins as biomarkers for early detection of cancer and therapeutic targets for cancer treatment are important issues in precision medicine. Secretome of cancer cells represents the collection of proteins secreted or shed from cancer cells. Proteomic profiling of the cancer cell secretome has been proven to be a convenient and efficient way to discover cancer biomarker and/or therapeutic targets. Areas covered: There have been numerous reviews describing the history and application of secretome analysis in cancer biomarker/therapeutic target research. The present review focuses on the technological advancement for profiling low-molecular-mass proteins in secretome, the latest information regarding the new candidate biomarkers and molecular mechanisms discovered on the basis of cancer cell secretome analysis, as well as the previously discovered candidate biomarkers that enter into clinical trials. Expert commentary: Current technologies for protein sample preparation/separation and MS-based protein identification have allowed in-depth analysis of cancer cell secretome. Future efforts should focus on the comprehensiveness of cancer cell secretome, meta-analysis of different secretome datasets and integrated analysis via combining other omics datasets, as well as the incorporation of MS-based biomarker verification pipeline into both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Yung-Chin Hsiao
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Lichieh Julie Chu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jeng-Ting Chen
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Ta-Sen Yeh
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jau-Song Yu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan.,d Department of Cell and Molecular Biology , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
25
|
Moritz RJ, LeBaron RG, Phelix CF, Rupaimoole R, Kim HS, Tsin A, Asmis R. Macrophage TGF- β1 and the Proapoptotic Extracellular Matrix Protein BIGH3 Induce Renal Cell Apoptosis in Prediabetic and Diabetic Conditions. ACTA ACUST UNITED AC 2017; 7:496-510. [PMID: 28149671 PMCID: PMC5279341 DOI: 10.4236/ijcm.2016.77055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metabolically stressed kidney is in part characterized by infiltrating macrophages and macrophage-derived TGF-β1 that promote the synthesis of various ECM molecules. TGF-β1 strongly enhances the expression of the gene TGFBI that encodes a cell-adhesion class, proapoptotic ECM protein called BIGH3. We hypothesized that in a diabetic environment a relationship between infiltrating macrophages, macrophage-derived TGF-β1, and BIGH3 protein promotes renal cell death. To investigate this hypothesis, we used our mouse model of diabetic complications. Mice on a high-fat diet developed hypercholesterolemia, and exposure to streptozotocin rendered hypercholesterolemic mice diabetic. Immunohistochemical images show increased macrophage infiltration and BIGH3 protein in the kidney cortices of hypercholesterolemic and diabetic mice. Macrophages induced a two-fold increase in BIGH3 expression and an 86% increase in renal proximal tubule epithelial cell apoptosis. TGF-β1 antibody and TGF-β1 receptor chemical antagonist blocked macrophage-induced apoptosis. BIGH3 antibody completely blocked apoptosis that was induced by TGF-β1, and blocked apoptosis induced by exogenous recombinant BIGH3. These results uncover a distinctive interplay of macrophage-derived TGF-β1, BIGH3 protein, and apoptosis, and indicate that BIGH3 is central in a novel pathway that promotes diabetic nephropathy. Macrophage TGF-β1 and BIGH3 are identified as prediabetic biomarkers, and potential therapeutic targets for intervention in prediabetic and diabetic individuals.
Collapse
Affiliation(s)
- Robert J Moritz
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Richard G LeBaron
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Clyde F Phelix
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Rajesha Rupaimoole
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Hong Seok Kim
- Departments of Biochemistry and Clinical Laboratory Sciences, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Andrew Tsin
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Reto Asmis
- Departments of Biochemistry and Clinical Laboratory Sciences, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, USA
| |
Collapse
|
26
|
Ricciardelli C, Lokman NA, Ween MP, Oehler MK. WOMEN IN CANCER THEMATIC REVIEW: Ovarian cancer-peritoneal cell interactions promote extracellular matrix processing. Endocr Relat Cancer 2016; 23:T155-T168. [PMID: 27578826 DOI: 10.1530/erc-16-0320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Ovarian cancer has a distinct tendency for metastasising via shedding of cancerous cells into the peritoneal cavity and implanting onto the peritoneum that lines the pelvic organs. Once ovarian cancer cells adhere to the peritoneal cells, they migrate through the peritoneal layer and invade the local organs. Alterations in the extracellular environment are critical for tumour initiation, progression and intra-peritoneal dissemination. To increase our understanding of the molecular mechanisms involved in ovarian cancer metastasis and to identify novel therapeutic targets, we recently studied the interaction of ovarian cancer and peritoneal cells using a proteomic approach. We identified several extracellular matrix (ECM) proteins including, fibronectin, TGFBI, periostin, annexin A2 and PAI-1 that were processed as a result of the ovarian cancer-peritoneal cell interaction. This review focuses on the functional role of these proteins in ovarian cancer metastasis. Our findings together with published literature support the notion that ECM processing via the plasminogen-plasmin pathway promotes the colonisation and attachment of ovarian cancer cells to the peritoneum and actively contributes to the early steps of ovarian cancer metastasis.
Collapse
Affiliation(s)
- C Ricciardelli
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - N A Lokman
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - M P Ween
- Lung Research LaboratoryHanson Institute, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - M K Oehler
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gynaecological OncologyRoyal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Ricciardelli C. WOMEN IN CANCER PROFILE: My pathway to understanding the role of the tumour microenvironment in cancer progression. Endocr Relat Cancer 2016; 23:P27-P31. [PMID: 27530659 DOI: 10.1530/erc-16-0335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
El-Sayed M, Abd Elazeem MA. Expression of epithelial–mesenchymal transition-related markers E-cadherin and vimentin in ovarian serous carcinomas. EGYPTIAN JOURNAL OF PATHOLOGY 2016; 36:1-8. [DOI: 10.1097/01.xej.0000472882.59885.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Lokman NA, Zhang C, Anderson L, Scurry J, Leung Y, Stewart CJ, Carter J, Kaur G, Oehler MK, Hoffmann P. Lymph node metastasis of primary endometrial cancers: Associated proteins revealed by MALDI imaging. Proteomics 2016; 16:1793-801. [PMID: 27061135 DOI: 10.1002/pmic.201500455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/12/2016] [Accepted: 04/05/2016] [Indexed: 12/30/2022]
Abstract
Metastasis is a crucial step of malignant progression and is the primary cause of death from endometrial cancer. However, clinicians presently face the challenge that conventional surgical-pathological variables, such as tumour size, depth of myometrial invasion, histological grade, lymphovascular space invasion or radiological imaging are unable to predict with accuracy if the primary tumour has metastasized. In the current retrospective study, we have used primary tumour samples of endometrial cancer patients diagnosed with (n = 16) and without (n = 27) lymph node metastasis to identify potential discriminators. Using peptide matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI), we have identified m/z values which can classify 88% of all tumours correctly. The top discriminative m/z values were identified using a combination of in situ sequencing and LC-MS/MS from digested tumour samples. Two of the proteins identified, plectin and α-Actin-2, were used for validation studies using LC-MS/MS data independent analysis (DIA) and immunohistochemistry. In summary, MALDI-MSI has the potential to identify discriminators of metastasis using primary tumour samples.
Collapse
Affiliation(s)
- Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Austraila.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Austraila
| | - Manuela Klingler-Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Austraila.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Austraila
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Austraila.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Austraila
| | - Lyron Winderbaum
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Austraila.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Austraila
| | - Noor A Lokman
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Austraila.,Discipline of Obstetrics and Gynaecology, Research Centre for Reproductive Health, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Austraila
| | - Chao Zhang
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Austraila.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Austraila
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - James Scurry
- Faculty of Health and Medicine, University of New South Wales, Callaghan, New South Wales, Australia
| | - Yee Leung
- School of Women's and Infants' Health, University of Western Australia, Crawley, Western Australia, Austraila
| | - Colin Jr Stewart
- School of Women's and Infants' Health, University of Western Australia, Crawley, Western Australia, Austraila
| | - Jonathan Carter
- Department of Gynaecological Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Research Centre for Reproductive Health, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Austraila.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Austraila
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Austraila.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Austraila
| |
Collapse
|
30
|
Sluiter N, de Cuba E, Kwakman R, Kazemier G, Meijer G, Te Velde EA. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options. Clin Exp Metastasis 2016; 33:401-16. [PMID: 27074785 PMCID: PMC4884568 DOI: 10.1007/s10585-016-9791-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/07/2016] [Indexed: 12/14/2022]
Abstract
Peritoneal dissemination is diagnosed in 10–25 % of colorectal cancer patients. Selected patients are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. For these patients, earlier diagnosis, optimised selection criteria and a personalised approach are warranted. Biomarkers could play a crucial role here. However, little is known about possible candidates. Considering tumour cell adhesion as a key step in peritoneal dissemination, we aim to provide an overview of the functional importance of adhesion molecules in peritoneal dissemination and discuss the prognostic, diagnostic and therapeutic options of these candidate biomarkers. A systematic literature search was conducted according to the PRISMA guidelines. In 132 in vitro, ex vivo and in vivo studies published between 1995 and 2013, we identified twelve possibly relevant adhesion molecules in various cancers that disseminate peritoneally. The most studied molecules in tumour cell adhesion are integrin α2β1, CD44 s and MUC16. Furthermore, L1CAM, EpCAM, MUC1, sLex and Lex, chemokine receptors, Betaig-H3 and uPAR might be of clinical importance. ICAM1 was found to be less relevant in tumour cell adhesion in the context of peritoneal metastases. Based on currently available data, sLea and MUC16 are the most promising prognostic biomarkers for colorectal peritoneal metastases that may help improve patient selection. Different adhesion molecules appear expressed in haematogenous and transcoelomic spread, indicating two different attachment processes. However, our extensive assessment of available literature reveals that knowledge on metastasis-specific genes and their possible candidates is far from complete.
Collapse
Affiliation(s)
- Nina Sluiter
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erienne de Cuba
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Riom Kwakman
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Geert Kazemier
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerrit Meijer
- Department of Pathology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Pathology, Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Elisabeth Atie Te Velde
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Surgical Oncology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Sun W, Gui L, Zuo X, Zhang L, Zhou D, Duan X, Ren W, Xu G. Human epithelial-type ovarian tumour marker beta-2-microglobulin is regulated by the TGF-β signaling pathway. J Transl Med 2016; 14:75. [PMID: 26983758 PMCID: PMC4793749 DOI: 10.1186/s12967-016-0832-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
Background Beta-2-microglobulin (B2M), a light chain subunit of the major histocompatibility complex (MHC) class I complex, has been implicated in tumorigenesis. However, whether it is expressed in different epithelial-type ovarian tumours remains unknown. This study was performed to examine the expression of B2M in different histopathological types of ovarian tumours, to explore the function of B2M in ovarian cancer (OC) cells and to investigate the mechanisms underlying the regulation of B2M by the TGF-β signaling pathway. Methods B2M expression in normal ovarian tissues and epithelia-type ovarian tumours was detected by immunohistochemistry and Western blot, followed by the analysis of association with clinical features. OC cells were transfected with B2M-siRNA and cell proliferation, migration and invasion were determined by WST-1 assay, wound healing assay and Transwell invasion assay, respectively. The regulation of B2M by the TGF-β signaling pathway in OC cells was examined by Western blot, ELISA and qRT-PCR. Results We found that B2M was overexpressed in ovarian borderline and malignant tumours compared with benign tumours and normal controls, but was not associated with age, tumour size, lymph node metastasis and clinical stage. Knocking down of B2M led to a decrease in OC cell proliferation, migration and invasion. The expression of B2M was downregulated by TGF-β1 in OC cells, which was abolished in the presence of the inhibitor of TGF-β type I receptor. Conclusion Our findings suggest that B2M is a potential tissue biomarker and therapeutic target of borderline and malignant ovarian tumours and the dysregulation of B2M in these tumours may be mediated by the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Wenwen Sun
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Lu Gui
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xulei Zuo
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Daibing Zhou
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoling Duan
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Weimin Ren
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Vaziri-Gohar A, Houston KD. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells. Mol Cell Endocrinol 2016; 422:160-171. [PMID: 26690777 PMCID: PMC4742395 DOI: 10.1016/j.mce.2015.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023]
Abstract
Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Kevin D Houston
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA; Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
33
|
Swathi Chitra P, Swathi T, Sahay R, Reddy GB, Menon RK, Kumar PA. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria. J Cell Biochem 2015; 116:1947-56. [DOI: 10.1002/jcb.25150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - T. Swathi
- National Institute of Nutrition; Hyderabad India
| | | | | | - Ram K. Menon
- Pediatric Endocrinology and Molecular and Integrative Physiology; University of Michigan; Ann Arbor MI
| | - P. Anil Kumar
- Department of Biochemistry; University of Hyderabad; Hyderabad India
| |
Collapse
|
34
|
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr 2015; 8:563-77. [PMID: 25482635 PMCID: PMC4594522 DOI: 10.4161/19336918.2014.968501] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products.
Collapse
Affiliation(s)
- Sofieke Klamer
- a Department of Hematopoiesis; Sanquin Research; Landsteiner Laboratory; Academic Medical Centre ; University of Amsterdam ; Amsterdam , The Netherlands
| | | |
Collapse
|
35
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
36
|
Ricciardelli C, Lokman NA, Cheruvu S, Tan IA, Ween MP, Pyragius CE, Ruszkiewicz A, Hoffmann P, Oehler MK. Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation. Clin Exp Metastasis 2015; 32:441-55. [PMID: 25895698 DOI: 10.1007/s10585-015-9718-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
Ovarian cancer, the most lethal gynaecological cancer, is characterised by the shedding of epithelial cells from the ovarian surface, followed by metastasis and implantation onto the peritoneal surfaces of abdominal organs. Our proteomic studies investigating the interactions between peritoneal (LP-9) and ovarian cancer (OVCAR-5) cells found transketolase (TKT) to be regulated in the co-culture system. This study characterized TKT expression in advanced stage (III/IV) serous ovarian cancers (n = 125 primary and n = 54 peritoneal metastases), normal ovaries (n = 6) and benign serous cystadenomas (n = 10) by immunohistochemistry. In addition, we also evaluated the function of TKT in ovarian cancer cells in vitro. Nuclear TKT was present in all primary serous ovarian cancer tissues examined (median 82.0 %, range 16.5-100 %) and was significantly increased in peritoneal metastases compared with matching primary cancers (P = 0.01, Wilcoxon Rank test). Kaplan-Meier survival and Cox regression analyses showed that high nuclear TKT positivity in peritoneal metastases (>94 %) was significantly associated with reduced overall survival (P = 0.006) and a 2.8 fold increased risk of ovarian cancer death (95 % CI 1.29-5.90, P = 0.009). Knockdown of TKT by siRNAs significantly reduced SKOV-3 cell proliferation but had no effect on their motility or invasion. Oxythiamine, an inhibitor of TKT activity, significantly inhibited the proliferation of four ovarian cancer cell lines (OV-90, SKOV-3, OVCAR-3 and OVCAR-5) and primary serous ovarian cancer cells isolated from patient ascites. In conclusion, these findings indicate that TKT plays an important role in the proliferation of metastatic ovarian cancer cells and could be used as novel therapeutic target for advanced disease.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Han B, Cai H, Chen Y, Hu B, Luo H, Wu Y, Wu J. The role of TGFBI (βig-H3) in gastrointestinal tract tumorigenesis. Mol Cancer 2015; 14:64. [PMID: 25889002 PMCID: PMC4435624 DOI: 10.1186/s12943-015-0335-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TGFβ-induced (TGFBI/βig-H3) is a protein inducible by TGFβ1 and secreted by many types of cells. It binds to collagen, forms part of the extracellular matrix (ECM), and interacts with integrins on cell surfaces. In this study, we investigated the role of TGFBI in tumorigenesis and the underlying mechanisms. METHODS Patient serum TGFBI levels were determined by ELISA. TGFBI transgenic and gene knockout mice and TGFBI-overexpressing liver cells were used for mechanistic studies. RESULTS We demonstrated that patients with cholangiocarcinomas, hepatic carcinomas or gastric carcinomas presented significantly elevated serum TGFBI levels, and the excess TGFBI was derived from the tumor masses. TGFBI overexpression in mice resulted in increased incidence of spontaneous tumors and N,N-diethylnitrosamine (DEN)-induced liver tumor nodules, compared to that in wild type (WT) mice, while TGFBI knockout mice were comparable to WT controls in these 2 aspects. TGFBI promoted the survival of Aml-12 liver cells with DNA damage after irradiation, and augmented their post-irradiation proliferation. It activated the FAK/AKT/AKT1S1/PRS6/EIF4EBP pathway, which is known to modulate cell survival and proliferation. CONCLUSIONS Our data suggest that TGFBI functions as a promoter of certain gastrointestinal tract cancers. It provides a survival advantage to cells with DNA damage. Over a long time span, this advantage could translate into increased tumor risks.
Collapse
Affiliation(s)
- Bing Han
- Laboratory of Immunology and Cardiovascular Research, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada.
| | - Haolei Cai
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| | - Ying Chen
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| | - Bing Hu
- Anatomic Pathology, AmeriPath Central Florida, 8150 Chancellor Dr, Orlando, FL, USA.
| | - Hongyu Luo
- Laboratory of Immunology and Cardiovascular Research, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada.
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| | - Jiangping Wu
- Laboratory of Immunology and Cardiovascular Research, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada. .,Nephrology Service, Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada.
| |
Collapse
|
38
|
Aust S, Pils D. Epithelial ovarian cancer - more data, more questions? Wien Med Wochenschr 2014; 164:479-86. [PMID: 25392123 DOI: 10.1007/s10354-014-0323-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/07/2014] [Indexed: 01/05/2023]
Abstract
This review provides an overview of latest insights in epithelial ovarian cancer biology. The current understanding of the origin and the complex heterogeneity are depicted, followed by an introduction to the latest therapeutic approaches. The role of the tumor microenvironment, the high potential to disseminate within the peritoneal cavity, and new molecular biological findings are summarized.
Collapse
Affiliation(s)
- Stefanie Aust
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria,
| | | |
Collapse
|
39
|
Abstract
Our recent research identified the protein annexin A2 to be regulated by ovarian cancer-peritoneal cell interactions. This study investigated the role of annexin A2 in ovarian cancer metastasis and its potential utility as a novel therapeutic target, using in vitro and in vivo ovarian cancer models. Annexin A2 expression was examined by qRT-PCR and western blotting in ovarian cancer cell lines and immunohistochemistry in serous ovarian carcinoma tissues. Annexin A2 siRNAs were used to evaluate the effects of annexin A2 suppression on ovarian cancer cell adhesion, motility, and invasion. Furthermore, annexin A2 neutralizing antibodies were used to examine the role of annexin A2 in tumor invasion and metastasis in vivo using a chick chorioallantoic membrane assay and an intraperitoneal xenograft mouse model. Strong annexin A2 immunostaining was observed in 90% (38/42) of the serous ovarian cancer cells and was significantly increased in the cancer-associated stroma compared to non-malignant ovarian tissues. Annexin A2 siRNA significantly inhibited the motility and invasion of serous ovarian cancer cells and adhesion to the peritoneal cells. Annexin A2 neutralizing antibodies significantly inhibited OV-90 cell motility and invasion in vitro and in vivo using the chick chorioallantoic membrane assay. The growth of SKOV-3 cells and their peritoneal dissemination in nude mice was significantly inhibited by annexin A2 neutralizing antibodies. Annexin A2 plays a critical role in ovarian cancer metastasis and is therefore a potential novel therapeutic target against ovarian cancer.
Collapse
|
40
|
TGF-β-Induced (TGFBI) Protein in Melanoma: A Signature of High Metastatic Potential. J Invest Dermatol 2014; 134:1675-1685. [DOI: 10.1038/jid.2014.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/03/2013] [Accepted: 12/16/2013] [Indexed: 12/20/2022]
|
41
|
Musrap N, Karagiannis GS, Saraon P, Batruch I, Smith C, Diamandis EP. Proteomic analysis of cancer and mesothelial cells reveals an increase in Mucin 5AC during ovarian cancer and peritoneal interaction. J Proteomics 2014; 103:204-15. [PMID: 24726482 DOI: 10.1016/j.jprot.2014.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Ovarian cancer is a highly metastatic disease that is often characterized by widespread abdominal dissemination. A hallmark of ovarian cancer progression is the attachment of malignant cells to the mesothelium and the formation of invasive peritoneal implants. Therefore, delineating factors involved in cancer-peritoneal cell interaction is critical to improving patient survival, as it may lead to the discovery of novel therapeutic targets. As such, we aimed to identify proteins that participate in this interaction by comparing the secreted proteome of a co-culture model containing ovarian cancer (OVCAR-5) and mesothelial cells (LP-9), to their respective monoculture secretomes. In total, 49 proteins were differentially secreted during cancer and mesothelial cell contact. Relative mRNA expression of candidates was performed, which revealed a significant increase in MUC5AC gene expression in cancer cells cultured in three different co-culture models (OVCAR-5 and LP-9; BG-1 and LP-9; OV-90 and LP-9). An increased expression was also observed in LP-9 cells that were co-cultured with OVCAR-5 and OV-90 cancer cells. Further immunocytochemistry analysis also confirmed increased expression of MUC5AC in ovarian cancer and peritoneal co-cultures. Overall, our analysis uncovers novel molecular markers of peritoneal metastasis, which may have potential roles in regulating the progression of the disease. BIOLOGICAL SIGNIFICANCE In this study, our objective was to focus on identifying novel mediators of ovarian cancer and peritoneal interaction using a mass spectrometry-based approach. Our analysis resulted in the discovery of both previously known and novel factors involved this interaction, and as such, these newly discovered proteins might have potential roles in cancer progression, such as invasion and adhesion. We believe that these findings add to our current knowledge and understanding of ovarian cancer progression, and will aid researchers in their future attempts in finding new targets of the disease.
Collapse
Affiliation(s)
- Natasha Musrap
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Punit Saraon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chris Smith
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
Rodrigo MAM, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal 2014; 95:245-55. [PMID: 24699369 DOI: 10.1016/j.jpba.2014.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 02/09/2023]
Abstract
Recent developments in mass spectrometry have introduced clinical proteomics to the forefront of diseases diagnosis, offering reliable, robust and efficient analytical method for biomarker discovery and monitoring. MALDI-TOF is a powerful tool for surveying proteins and peptides comprising the realm for clinical analysis. MALDI-TOF has the potential to revolutionize cancer diagnostics by facilitating biomarker discovery, enabling tissue imaging and quantifying biomarker levels. Healthy (control) and cancerous tissues can be analyzed on the basis of mass spectrometry (MALDI-TOF) imaging to identify cancer-specific changes that may prove to be clinically useful. We review MALDI-TOF profiling techniques as tools for detection of cancer biomarkers in various cancers. We mainly discuss recent advances including period from 2011 to 2013.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
43
|
Guo YS, Zhao R, Ma J, Cui W, Sun Z, Gao B, He S, Han YH, Fan J, Yang L, Tang J, Luo ZJ. βig-h3 promotes human osteosarcoma cells metastasis by interacting with integrin α2β1 and activating PI3K signaling pathway. PLoS One 2014; 9:e90220. [PMID: 24595049 PMCID: PMC3942417 DOI: 10.1371/journal.pone.0090220] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/27/2014] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma, the most common primary bone tumor in children and young adolescents, is characterized by local invasion and distant metastasis. But the detailed mechanisms of osteosarcoma metastasis are not well known. In the present study, we found that βig-h3 promotes metastatic potential of human osteosarcoma cells in vitro and in vivo. Furthermore, βig-h3 co-localized with integrin α2β1 in osteosarcoma cells. But βig-h3 did not change integrin α2β1 expression in Saos-2 cells. Interaction of βig-h3 with integrin α2β1 mediates metastasis of human osteosarcoma cells. The second FAS1 domain of βig-h3 but not the first FAS1 domain, the third FAS1 domain or the fourth FAS1 domain mediates human osteosarcoma cells metastasis, which is the α2β1 integrin-interacting domain. We further demonstrated that PI3K/AKT signaling pathway is involved in βig-h3-induced human osteosarcoma cells metastasis process. Together, these results reveal βig-h3 enhances the metastasis potentials of human osteosarcoma cells via integrin α2β1-mediated PI3K/AKT signal pathways. The discovery of βig-h3-mediated pathway helps us to understand the mechanism of human osteosarcoma metastasis and provides evidence for the possibility that βig-h3 can be a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yun-Shan Guo
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Cell Engineering Research Centre & Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Rui Zhao
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Ma
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Gao
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shu He
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yue-Hu Han
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Fan
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (LY); (JT); (ZJL)
| | - Juan Tang
- Cell Engineering Research Centre & Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- * E-mail: (LY); (JT); (ZJL)
| | - Zhuo-Jing Luo
- Department of Osteology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (LY); (JT); (ZJL)
| |
Collapse
|
44
|
Pajares MJ, Agorreta J, Salvo E, Behrens C, Wistuba II, Montuenga LM, Pio R, Rouzaut A. TGFBI expression is an independent predictor of survival in adjuvant-treated lung squamous cell carcinoma patients. Br J Cancer 2014; 110:1545-51. [PMID: 24481402 PMCID: PMC3960613 DOI: 10.1038/bjc.2014.33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/23/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transforming growth factor β-induced protein (TGFBI) is a secreted protein that mediates cell anchoring to the extracellular matrix. This protein is downregulated in lung cancer, and when overexpressed, contributes to apoptotic cell death. Using a small series of stage IV non-small cell lung cancer (NSCLC) patients, we previously suggested the usefulness of TGFBI as a prognostic and predictive factor in chemotherapy-treated late-stage NSCLC. In order to validate and extend these results, we broaden the analysis and studied TGFBI expression in a large series of samples obtained from stage I-IV NSCLC patients. METHODS TGFBI expression was assessed by immunohistochemistry in 364 completely resected primary NSCLC samples: 242 adenocarcinomas (ADCs) and 122 squamous cell carcinomas (SCCs). Kaplan-Meier curves, log-rank tests and the Cox proportional hazards model were used to analyse the association between TGFBI expression and survival. RESULTS High TGFBI levels were associated with longer overall survival (OS, P<0.001) and progression-free survival (PFS, P<0.001) in SCC patients who received adjuvant platinium-based chemotherapy. Moreover, multivariate analysis demonstrated that high TGFBI expression is an independent predictor of better survival in patients (OS: P=0.030 and PFS: P=0.026). CONCLUSIONS TGFBI may be useful for the identification of a subset of NSCLC who may benefit from adjuvant therapy.
Collapse
Affiliation(s)
- M J Pajares
- 1] Division of Oncology, Center for Applied Medical Research, University of Navarra, 31080 Pamplona, Spain [2] Department of Histology and Pathology, University of Navarra, 31080 Pamplona, Spain
| | - J Agorreta
- 1] Division of Oncology, Center for Applied Medical Research, University of Navarra, 31080 Pamplona, Spain [2] Department of Histology and Pathology, University of Navarra, 31080 Pamplona, Spain
| | - E Salvo
- 1] Division of Oncology, Center for Applied Medical Research, University of Navarra, 31080 Pamplona, Spain [2] Department of Biochemistry and Genetics, University of Navarra, 31080 Pamplona, Spain
| | - C Behrens
- Department of Pathology and Thoracic/Head and Neck Medical Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - I I Wistuba
- Department of Pathology and Thoracic/Head and Neck Medical Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - L M Montuenga
- 1] Division of Oncology, Center for Applied Medical Research, University of Navarra, 31080 Pamplona, Spain [2] Department of Biochemistry and Genetics, University of Navarra, 31080 Pamplona, Spain
| | - R Pio
- 1] Department of Biochemistry and Genetics, University of Navarra, 31080 Pamplona, Spain [2] Department of Pathology and Thoracic/Head and Neck Medical Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - A Rouzaut
- 1] Department of Biochemistry and Genetics, University of Navarra, 31080 Pamplona, Spain [2] Department of Pathology and Thoracic/Head and Neck Medical Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Ricciardelli C, Ween MP, Lokman NA, Tan IA, Pyragius CE, Oehler MK. Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer. BMC Cancer 2013; 13:476. [PMID: 24124770 PMCID: PMC3852938 DOI: 10.1186/1471-2407-13-476] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022] Open
Abstract
Background Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance. Methods We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance. Results HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin. Conclusions Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC transporter expression. The HA-CD44 signaling pathway is therefore a promising target in platinum resistant ovarian cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide 5005, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Son HN, Nam JO, Kim S, Kim IS. Multiple FAS1 domains and the RGD motif of TGFBI act cooperatively to bind αvβ3 integrin, leading to anti-angiogenic and anti-tumor effects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2378-88. [DOI: 10.1016/j.bbamcr.2013.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/20/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022]
|
47
|
Lee MJ, Heo SC, Shin SH, Kwon YW, Do EK, Suh DS, Yoon MS, Kim JH. Oncostatin M promotes mesenchymal stem cell-stimulated tumor growth through a paracrine mechanism involving periostin and TGFBI. Int J Biochem Cell Biol 2013; 45:1869-77. [DOI: 10.1016/j.biocel.2013.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 12/22/2022]
|
48
|
Brachvogel B, Zaucke F, Dave K, Norris EL, Stermann J, Dayakli M, Koch M, Gorman JJ, Bateman JF, Wilson R. Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome. J Biol Chem 2013; 288:13481-92. [PMID: 23530037 DOI: 10.1074/jbc.m112.444810] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Collagen IX is an integral cartilage extracellular matrix component important in skeletal development and joint function. RESULTS Proteomic analysis and validation studies revealed novel alterations in collagen IX null cartilage. CONCLUSION Matrilin-4, collagen XII, thrombospondin-4, fibronectin, βig-h3, and epiphycan are components of the in vivo collagen IX interactome. SIGNIFICANCE We applied a proteomics approach to advance our understanding of collagen IX ablation in cartilage. The cartilage extracellular matrix is essential for endochondral bone development and joint function. In addition to the major aggrecan/collagen II framework, the interacting complex of collagen IX, matrilin-3, and cartilage oligomeric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9a2, Col9a3, Comp, and Matn3 genes cause multiple epiphyseal dysplasia, in which patients develop early onset osteoarthritis. In mice, collagen IX ablation results in severely disturbed growth plate organization, hypocellular regions, and abnormal chondrocyte shape. This abnormal differentiation is likely to involve altered cell-matrix interactions but the mechanism is not known. To investigate the molecular basis of the collagen IX null phenotype we analyzed global differences in protein abundance between wild-type and knock-out femoral head cartilage by capillary HPLC tandem mass spectrometry. We identified 297 proteins in 3-day cartilage and 397 proteins in 21-day cartilage. Components that were differentially abundant between wild-type and collagen IX-deficient cartilage included 15 extracellular matrix proteins. Collagen IX ablation was associated with dramatically reduced COMP and matrilin-3, consistent with known interactions. Matrilin-1, matrilin-4, epiphycan, and thrombospondin-4 levels were reduced in collagen IX null cartilage, providing the first in vivo evidence for these proteins belonging to the collagen IX interactome. Thrombospondin-4 expression was reduced at the mRNA level, whereas matrilin-4 was verified as a novel collagen IX-binding protein. Furthermore, changes in TGFβ-induced protein βig-h3 and fibronectin abundance were found in the collagen IX knock-out but not associated with COMP ablation, indicating specific involvement in the abnormal collagen IX null cartilage. In addition, the more widespread expression of collagen XII in the collagen IX-deficient cartilage suggests an attempted compensatory response to the absence of collagen IX. Our differential proteomic analysis of cartilage is a novel approach to identify candidate matrix protein interactions in vivo, underpinning further analysis of mutant cartilage lacking other matrix components or harboring disease-causing mutations.
Collapse
Affiliation(s)
- Bent Brachvogel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Transforming growth Factor-Beta-Induced Protein (TGFBI)/(βig-H3): a matrix protein with dual functions in ovarian cancer. Int J Mol Sci 2012; 13:10461-10477. [PMID: 22949874 PMCID: PMC3431872 DOI: 10.3390/ijms130810461] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/16/2012] [Indexed: 02/04/2023] Open
Abstract
Transforming growth factor-beta-induced protein (TGFBI, also known as βig-H3 and keratoepithelin) is an extracellular matrix protein that plays a role in a wide range of physiological and pathological conditions including diabetes, corneal dystrophy and tumorigenesis. Many reports indicate that βig-H3 functions as a tumor suppressor. Loss of βig-H3 expression has been described in several cancers including ovarian cancer and promoter hypermethylation has been identified as an important mechanism for the silencing of the TGFBI gene. Our recent findings that βig-H3 is down-regulated in ovarian cancer and that high concentrations of βig-H3 can induce ovarian cancer cell death support a tumor suppressor role. However, there is also convincing data in the literature reporting a tumor-promoting role for βig-H3. We have shown βig-H3 to be abundantly expressed by peritoneal cells and increase the metastatic potential of ovarian cancer cells by promoting cell motility, invasion, and adhesion to peritoneal cells. Our findings suggest that βig-H3 has dual functions and can act both as a tumor suppressor or tumor promoter depending on the tumor microenvironment. This article reviews the current understanding of βig-H3 function in cancer cells with particular focus on ovarian cancer.
Collapse
|
50
|
Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci 2012; 13:9959-9970. [PMID: 22949841 PMCID: PMC3431839 DOI: 10.3390/ijms13089959] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023] Open
Abstract
The majority of ovarian cancer patients present with advanced disease and despite aggressive treatment, prognosis remains poor. Significant improvement in ovarian cancer survival will require the development of more effective molecularly targeted therapeutics. Commonly, mouse models are used for the in vivo assessment of potential new therapeutic targets in ovarian cancer. However, animal models are costly and time consuming. Other models, such as the chick embryo chorioallantoic membrane (CAM) assay, are therefore an attractive alternative. CAM assays have been widely used to study angiogenesis and tumor invasion of colorectal, prostate and brain cancers. However, there have been limited studies that have used CAM assays to assess ovarian cancer invasion and metastasis. We have therefore developed a CAM assay protocol to monitor the metastatic properties of ovarian cancer cells (OVCAR-3, SKOV-3 and OV-90) and to study the effect of potential therapeutic molecules in vivo. The results from the CAM assay are consistent with cancer cell motility and invasion observed in in vitro assays. Our results demonstrate that the CAM assay is a robust and cost effective model to study ovarian cancer cell metastasis. It is therefore a very useful in vivo model for screening of potential novel therapeutics.
Collapse
|