1
|
Hashemi M, Rezaei M, Rezaeiaghdam H, Jamali B, Koohpar ZK, Tanha M, Bizhanpour A, Asadi S, Jafari AM, Khosroshahi EM, Eslami M, Salimimoghadam S, Nabavi N, Rashidi M, Fattah E, Taheriazam A, Entezari M. Highlighting function of Wnt signalling in urological cancers: Molecular interactions, therapeutic strategies, and (nano)strategies. Transl Oncol 2024; 50:102145. [PMID: 39357465 PMCID: PMC11474201 DOI: 10.1016/j.tranon.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a complex, multistep process characterized by abnormal cell growth and metastasis as well as the capacity of the tumor cells in therapy resistance development. The urological system is particularly susceptible to a group of malignancies known as urological cancers, where an accumulation of genetic alterations drives carcinogenesis. In various human cancers, Wnt singalling is dysregulated; following nuclear transfer of β-catenin, it promotes tumor progression and affects genes expression. Elevated levels of Wnt have been documented in urological cancers, where its overexpression enhances growth and metastasis. Additionally, increased Wnt singalling contributes to chemoresistance in urological cancers, leading to reduced sensitivity to chemotherapy agents like cisplatin, doxorubicin, and paclitaxel. Wnt upregulation can change radiotherapy response of urological cancers. The regulation of Wnt involves various molecular pathways, including Akt, miRNAs, lncRNAs, and circRNAs, all of which play roles in carcinogenesis. Targeting and silencing Wnt or its associated pathways can mitigate tumorigenesis in urological cancers. Anti-cancer compounds such as curcumin and thymoquinone have shown efficacy in suppressing tumorigenesis through the downregulation of Wnt singalling. Notably, nanoparticles have proven effective in treating urological cancers, with several studies in prostate cancer (PCa) using nanoparticles to downregulate Wnt and suppress tumor growth. Future research should focus on developing small molecules that inhibit Wnt singalling to further suppress tumorigenesis and advance the treatment of urological cancers. Moreover, Wnt can be used as reliable biomarker for the diagnosis and prognosis of urological cancers.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Hadi Rezaeiaghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Zeinab Khazaei Koohpar
- Department Of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahsa Tanha
- Department Of Biological Sciences, University Of Alabama, Tuscaloosa, Al, United States
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Li L, Hossain SM, Eccles MR. The Role of the PAX Genes in Renal Cell Carcinoma. Int J Mol Sci 2024; 25:6730. [PMID: 38928435 PMCID: PMC11203709 DOI: 10.3390/ijms25126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) is a significant oncological challenge due to its heterogeneous nature and limited treatment options. The PAX developmental gene family encodes nine highly conserved transcription factors that play crucial roles in embryonic development and organogenesis, which have been implicated in the occurrence and development of RCC. This review explores the molecular landscape of RCC, with a specific focus on the role of the PAX gene family in RCC tumorigenesis and disease progression. Of the various RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most prevalent, characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene. Here, we review the published literature on the expression patterns and functional implications of PAX genes, particularly PAX2 and PAX8, in the three most common RCC subtypes, including ccRCC, papillary RCC (PRCC), and chromophobe RCC (ChRCC). Further, we review the interactions and potential biological mechanisms involving PAX genes and VHL loss in driving the pathogenesis of RCC, including the key signaling pathways mediated by VHL in ccRCC and associated mechanisms implicating PAX. Lastly, concurrent with our update regarding PAX gene research in RCC, we review and comment on the targeting of PAX towards the development of novel RCC therapies.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
| | - Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
6
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
7
|
Liu Y, Shen S, Yan Z, Yan L, Ding H, Wang A, Xu Q, Sun L, Yuan Y. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer 2023; 23:371. [PMID: 37088808 PMCID: PMC10124011 DOI: 10.1186/s12885-023-10832-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Insulin-like growth factor binding proteins (IGFBPs) are critical regulators of the biological activities of insulin-like growth factors. The IGFBP family plays diverse roles in different types of cancer, which we still lack comprehensive and pleiotropic understandings so far. METHODS Multi-source and multi-dimensional data, extracted from The Cancer Genome Atlas (TCGA), Oncomine, Cancer Cell Line Encyclopedia (CCLE), and the Human Protein Atlas (HPA) was used for bioinformatics analysis by R language. Immunohistochemistry and qRT-PCR were performed to validate the results of the database analysis results. Bibliometrics and literature review were used for summarizing the research progress of IGFBPs in the field of tumor. RESULTS The members of IGFBP gene family are differentially expressed in various cancer types. IGFBPs expression can affect prognosis of different cancers. The expression of IGFBPs expression is associated with multiple signal transduction pathways. The expression of IGFBPs is significantly correlated with tumor mutational burden, microsatellite instability, tumor stemness and tumor immune microenvironment. The qRT-PCR experiments verified the lower expression of IGFBP2 and IGFBP6 in gastric cancer and the lower expression of IGFBP6 in colorectal cancer. Immunohistochemistry validated a marked downregulation of IGFBP2 protein in gastric cancer tissues. The keywords co-occurrence analysis of IGFBP related publications in cancer showed relative research have been more concentrating on the potential of IGFBPs as tumor diagnostic and prognostic markers and developing cancer therapies. CONCLUSIONS These findings provide frontier trend of IGFBPs related research and new clues for identifying novel therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanxi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
8
|
Chen JY, Yiu WH, Tang PMK, Tang SCW. New insights into fibrotic signaling in renal cell carcinoma. Front Cell Dev Biol 2023; 11:1056964. [PMID: 36910160 PMCID: PMC9996540 DOI: 10.3389/fcell.2023.1056964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Fibrotic signaling plays a pivotal role in the development and progression of solid cancers including renal cell carcinoma (RCC). Intratumoral fibrosis (ITF) and pseudo-capsule (PC) fibrosis are significantly correlated to the disease progression of renal cell carcinoma. Targeting classic fibrotic signaling processes such as TGF-β signaling and epithelial-to-mesenchymal transition (EMT) shows promising antitumor effects both preclinically and clinically. Therefore, a better understanding of the pathogenic mechanisms of fibrotic signaling in renal cell carcinoma at molecular resolution can facilitate the development of precision therapies against solid cancers. In this review, we systematically summarized the latest updates on fibrotic signaling, from clinical correlation and molecular mechanisms to its therapeutic strategies for renal cell carcinoma. Importantly, we examined the reported fibrotic signaling on the human renal cell carcinoma dataset at the transcriptome level with single-cell resolution to assess its translational potential in the clinic.
Collapse
Affiliation(s)
- Jiao-Yi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Comprehensive Analysis of Prognostic Value and Immune Infiltration of IGFBP Family Members in Glioblastoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2929695. [PMID: 35832140 PMCID: PMC9273392 DOI: 10.1155/2022/2929695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The insulin-like growth factor-binding protein (IGFBP) family is involved in tumorigenesis and the development of multiple cancers. However, little is known about the prognostic value and regulatory mechanisms of IGFBPs in GBM. Oncomine, Gene Expression Profiling Interactive Analysis, PrognoScan, cBioPortal, LinkedOmics, TIMER, and TISIDB were used to analyze the differential expression, prognostic value, genetic alteration, biological function, and immune cell infiltration of IGFBPs in GBM. We observed that IGFBP1, IGFBP2, IGFBP3, IGFBP4, and IGFBP5 mRNA expression was significantly upregulated in patients with GBM, whereas IGFBP6 was downregulated; this difference in mRNA expression was statistically insignificant. Subsequent investigations showed that IGFBP4 and IGFBP6 mRNA levels were significantly associated with overall survival in patients with GBM. Functional Gene Ontology Annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes coexpressed with IGFBP4 and IGFBP6 were mainly enriched in immune-related pathways. These results were validated using the TIMER and TSMIDB databases. This study demonstrated that the IGFBP family has prognostic value in patients with GBM. IGFBP4 and IGFBP6 are two members of the IGFBP family that had the highest prognostic value; thus, they have the potential to serve as survival predictors and immunotherapeutic targets in GBM.
Collapse
|
10
|
Lopez-Tello J, Jimenez-Martinez MA, Salazar-Petres E, Patel R, George AL, Kay RG, Sferruzzi-Perri AN. Identification of Structural and Molecular Signatures Mediating Adaptive Changes in the Mouse Kidney in Response to Pregnancy. Int J Mol Sci 2022; 23:6287. [PMID: 35682969 PMCID: PMC9181623 DOI: 10.3390/ijms23116287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pregnancy is characterized by adaptations in the function of several maternal body systems that ensure the development of the fetus whilst maintaining health of the mother. The renal system is responsible for water and electrolyte balance, as well as waste removal. Thus, it is imperative that structural and functional changes occur in the kidney during pregnancy. However, our knowledge of the precise morphological and molecular mechanisms occurring in the kidney during pregnancy is still very limited. Here, we investigated the changes occurring in the mouse kidney during pregnancy by performing an integrated analysis involving histology, gene and protein expression assays, mass spectrometry profiling and bioinformatics. Data from non-pregnant and pregnant mice were used to identify critical signalling pathways mediating changes in the maternal kidneys. We observed an expansion of renal medulla due to proliferation and infiltration of interstitial cellular constituents, as well as alterations in the activity of key cellular signalling pathways (e.g., AKT, AMPK and MAPKs) and genes involved in cell growth/metabolism (e.g., Cdc6, Foxm1 and Rb1) in the kidneys during pregnancy. We also generated plasma and urine proteomic profiles, identifying unique proteins in pregnancy. These proteins could be used to monitor and study potential mechanisms of renal adaptations during pregnancy and disease.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ritik Patel
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amy L George
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Richard G Kay
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
11
|
Inhibition of FSTL3 abates the proliferation and metastasis of renal cell carcinoma via the GSK-3β/β-catenin signaling pathway. Aging (Albany NY) 2021; 13:22528-22543. [PMID: 34555811 PMCID: PMC8507290 DOI: 10.18632/aging.203564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Renal cell carcinoma (RCC) is a lethal malignancy of the genitourinary system. Follistatin-like 3 (FSTL3), which mediates cell differentiation and growth, acts as a biomarker of tumors and participates in cancer development and progression. Presently, the FSTL3’s functions in RCC were investigated. Quantitative reverse transcription PCR (qRT-PCR), Western Blot, and enzyme linked immunosorbent assay (ELISA) were conducted to verify FSTL3 expression in RCC tissues and cell lines. BrdU assay and CCK8 experiment were made to monitor cell proliferation. Transwell was implemented to examine the invasion of the cells. Flow cytometry analyzed cell apoptosis, and Western Blot evaluated the protein levels of E-cadherin, Twist, and Slug. In the meantime, the protein profiles of the GSK-3β, β-catenin, and TGF-β signaling pathways were ascertained. Moreover, the Xenograft tumor model was constructed in nude mice for measuring tumor growth in vivo. The statistics showed that FSTL3 presented an overexpression in RCC, and patients with a lower expression of FSTL3 manifested a better prognosis. Down-regulated FSTL3 hampered the proliferation, invasion, EMT, and tumor growth of RCC cells and caused cell apoptosis. On the contrary, FSTL3 overexpression enhanced the malignant behaviors of RCC cells. Furthermore, FSTL3 knockdown bolstered GSK-3β, suppressed β-catenin, and reduced BMP1-SMAD pathway activation. Inhibited β-catenin substantially mitigated FSTL3-mediated promoting functions in RCC. In short, FSTL3 functions as an oncogene in RCC by modulating the GSK-3β/β-catenin signaling pathway.
Collapse
|
12
|
Wei W, Wang L, Xu L, Zeng J. Anticancer mechanism of breviscapine in non-small cell lung cancer A549 cells acts via ROS-mediated upregulation of IGFBP4. J Thorac Dis 2021; 13:2475-2485. [PMID: 34012594 PMCID: PMC8107560 DOI: 10.21037/jtd-21-551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The overall 5-year survival rate of non-small cell lung cancer (NSCLC) is less than 15% because of multiple drug resistance to chemotherapy and the limitations of early diagnosis. Thus, safe and effective drugs to treat NSCLC are required. The present study aimed to investigate the effects of breviscapine (BVP) on NSCLC cell apoptosis and proliferation, and to study its possible mechanisms. Methods Using the NSCLC A549 cell line and BVP (0, 25, 50, and 100 µM), the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect A549 cell proliferation, and flow cytometry was used to assess cell apoptosis. Insulin-like growth factor binding protein 4 (IGFBP4) levels was assessed using enzyme-linked immunosorbent assays and western blotting. Flow cytometry of hydrogen peroxide and superoxide was used to assess intracellular reactive oxygen species (ROS) generation. Western blotting was used to assess the levels of BCL2-associated X, apoptosis regulator (BAX) and B-cell CLL/lymphoma 2 (BCL2). Quantitative real-time reverse transcription PCR (qRT-PCR) was used to assess IGFBP4 mRNA expression. Results BVP induced apoptosis, inhibited cell proliferation, and increased ROS in A549 cells. Western blotting and qRT-PCR showed that BVP increased IGFBP4 protein and mRNA expressions in A549 cells. Compared with BVP treatment alone, IGFBP4 expression decreased in A549 cells treated with BVP and the ROS scavenger N-acetylcysteine. IGFBP4 overexpression increased BVP-induced proliferation inhibition, while increasing BAX expression and decreasing BCL2 expression. Silencing IGFBP4 had the opposite effects. Conclusions BVP could inhibit the growth of NSCLC A549 cells by promoting apoptosis via ROS-mediated upregulation of IGFBP4.
Collapse
Affiliation(s)
- Weitian Wei
- Department of Thoracic Tumor Surgery, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Liang Wang
- Department of Thoracic Tumor Surgery, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Liwei Xu
- Department of Thoracic Tumor Surgery, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jian Zeng
- Department of Thoracic Tumor Surgery, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
13
|
The Prognostic Values of the Insulin-Like Growth Factor Binding Protein Family in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7658782. [PMID: 33282953 PMCID: PMC7685796 DOI: 10.1155/2020/7658782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Purpose To assess the expression of insulin-like growth factor binding protein (IGFBP) family and its prognostic impact in ovarian cancer (OC) patients. Materials and Methods The mRNA expression and protein expression of individual IGFBPs in healthy ovarian samples and OC tissues were explored through Oncomine, Gene Expression Profiling Interactive Analysis, and Human Protein Atlas database. Additionally, the prognostic values of the six IGFBP members in patients with OC were evaluated by Kaplan-Meier plotter. Results IGFBP2 and IGFBP4 mRNA expression were remarkably upregulated in patients with OC. To be specific, the mRNA expression of IGFBP2 was upregulated in patients with serous ovarian cancer (SOC), while IGFBP1/3/4/5/6 mRNA levels were downregulated. In addition, the IGFBP4 protein expression was upregulated in SOC, and the IGFBP6 protein expression was upregulated in both of SOC and endometrioid ovarian cancer (EOC) tissues. High IGFBP1 mRNA levels showed favorable overall survival (OS) and progression-free survival (PFS) in all OC. Meanwhile, increased IGFBP5/6 mRNA levels revealed worsen OS and PFS in all OC patients. IGFBP4/6 mRNA levels predicted unfavorable OS and PFS only in SOC patients. Moreover, the aberrant mRNA expression of IGFBP1/2/4/5/6 was correlated with significantly prognosis in patients receiving different chemotherapeutic regimens. Conclusion This study indicates that the IGFBP family reveals distinct prognosis in patients with OC. IGFBP1/2/4/5/6 are useful prognostic predictors for chemotherapeutic effect in OC patients, and IGFBP2/4 are potential tumor markers for the diagnosis of OC.
Collapse
|
14
|
Stalin J, Traboulsi W, Vivancos-Stalin L, Nollet M, Joshkon A, Bachelier R, Guillet B, Lacroix R, Foucault-Bertaud A, Leroyer AS, Dignat-George F, Bardin N, Blot-Chabaud M. Therapeutic targeting of soluble CD146/MCAM with the M2J-1 monoclonal antibody prevents metastasis development and procoagulant activity in CD146-positive invasive tumors. Int J Cancer 2020; 147:1666-1679. [PMID: 32022257 DOI: 10.1002/ijc.32909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
Abstract
Initially discovered in human melanoma, CD146/MCAM is expressed on many tumors and is correlated with cancer progression and metastasis. However, targeting CD146 remains challenging since it is also expressed on other cell types, as vessel cells, where it displays important physiological functions. We previously demonstrated that CD146 is shed as a soluble form (sCD146) that vectorizes the effects of membrane CD146 on tumor angiogenesis, growth and survival. We thus generated a novel monoclonal antibody, the M2J-1 mAb, which specifically targets sCD146, but not membrane CD146, and counteracts these effects. In our study, we analyzed the effects of sCD146 on the dissemination and the associated procoagulant phenotype in two highly invasive human CD146-positive cancer cell lines (ovarian and melanoma). Results show that sCD146 induced epithelial to mesenchymal transition, favored the generation of cancer stem cells and increased the membrane expression of tissue factor. Treatment of cancer cells with sCD146 in two experimental models (subcutaneous xenografting and intracardiac injection of cancer cells in nude mice) led to increased tumor dissemination and procoagulant activity. The M2J-1 mAb drastically reduced metastasis but also procoagulant activity, in particular by decreasing the number of circulating tumor microparticles, and blocked the relevant signaling pathways as demonstrated by RNA expression profiling experiments. Thus, our findings demonstrate that sCD146 mediates important pro-metastatic and procoagulant effects in two CD146-positive tumors. Targeting sCD146 with the newly generated M2J-1 mAb could constitute an innovative strategy for preventing dissemination and thromboembolism in many CD146-positive tumors.
Collapse
Affiliation(s)
- Jimmy Stalin
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Wael Traboulsi
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | | | - Marie Nollet
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Ahmad Joshkon
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Richard Bachelier
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Benjamin Guillet
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | - Romaric Lacroix
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,AP-HM, La Conception Hospital, Marseille, France
| | | | - Aurélie S Leroyer
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Françoise Dignat-George
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,AP-HM, La Conception Hospital, Marseille, France
| | - Nathalie Bardin
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,AP-HM, La Conception Hospital, Marseille, France
| | - Marcel Blot-Chabaud
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| |
Collapse
|
15
|
Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med 2020; 9:2201-2212. [PMID: 31991069 PMCID: PMC7064116 DOI: 10.1002/cam4.2857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
δ‐Catenin is a unique member of the catenin family and is proved to be overexpressed in diverse human cancer types. However, the clinical significance and underling mechanism of δ‐catenin expression in renal cell carcinoma (RCC) remain elusive. Herein, we detected the protein expression of δ‐catenin in 28 clinical specimens of paired renal cancer tissues and normal renal tissues by Western blot analysis. δ‐Catenin expression in 58 cases of renal cell carcinoma was also examined by immunohistochemistry, and its association with clinicopathological factors was analyzed by statistical analysis. In vitro and in vivo assays were employed to further explore the biological role of δ‐catenin in RCC. The results showed that δ‐catenin was highly expressed in both clinical samples and cell lines of RCC. RCC patients with higher δ‐catenin expression had a more advanced pTNM stage and tumor stage as well as lymph nodes metastasis than those with lower expression. By regulating the nuclear translocation of β‐catenin and β‐catenin‐mediated oncogenic signals, δ‐catenin promoted proliferation and inhibited apoptosis in RCC. In vivo assay indicated δ‐catenin facilitated tumor growth in ACHN cell xenograft mouse model. Taken together, our study suggests that δ‐catenin might be considered as a novel prognostic indicator and actionable target for gene therapy in renal cell carcinoma.
Collapse
Affiliation(s)
- Lincheng Ju
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Zhou W, Yang F, Xu Z, Luo M, Wang P, Guo Y, Nie H, Yao L, Jiang Q. Comprehensive Analysis of Copy Number Variations in Kidney Cancer by Single-Cell Exome Sequencing. Front Genet 2020; 10:1379. [PMID: 32038722 PMCID: PMC6989475 DOI: 10.3389/fgene.2019.01379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common and lethal subtype of kidney cancer. VHL and PBRM1 are the top two significantly mutated genes in ccRCC specimens, while the genetic mechanism of the VHL/PBRM1-negative ccRCC remains to be elucidated. Here we carried out a comprehensive analysis of single-cell genomic copy number variations (CNVs) in VHL/PBRM1-negative ccRCC. Genomic CNVs were identified at the single-cell level, and the tumor cells showed widespread amplification and deletion across the whole genome. Functional enrichment analysis indicated that the amplified genes are significantly enriched in cancer-related signaling transduction pathways. Besides, receptor protein tyrosine kinase (RTK) genes also showed widespread copy number variations in cancer cells. Our studies indicated that the genomic CNVs in RTK genes and downstream signaling transduction pathways may be involved in VHL/PBRM1-negative ccRCC pathogenesis and progression, and highlighted the role of the comprehensive investigation of genomic CNVs at the single-cell level in both clarifying pathogenic mechanism and identifying potential therapeutic targets in cancers.
Collapse
Affiliation(s)
- Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
A1CF-promoted colony formation and proliferation of RCC depends on DKK1-MEK/ERK signal axis. Gene 2019; 730:144299. [PMID: 31881249 DOI: 10.1016/j.gene.2019.144299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
The function and mechanism of RNA editing proteins have been extensively studied, but its association with cellular processes and signaling pathways remained unaddressed. Here, we explored the function of RNA editing complementary protein- Apobec-1 Complementation Factor (A1CF) in the proliferation and colony formation of renal cell carcinoma (RCC) cells. Decreased A1CF expression inhibits the proliferation and colony formation of 786-O cells; and further signaling pathway screening demonstrated that A1CF increases ERK activation and DKK1 expression. Moreover, knockdown of DKK1 has similar phenotypes with A1CF deficiency in 786-O cells on cell proliferation and colony formation and ERK activation. Decreasing of DKK1 expression reduces the phosphorylation of ERK1/2 and MEK1/2 increased by A1CF overexpression; further, inhibiting of the phosphorylation of MEK1/2 by U0126 also decreases the ERK activation upregulated by A1CF overexpression. Deficiency of DKK1 or U0126 treatment suppresses the cell proliferation promoted by A1CF overexpression in 786-O cells; furthermore, U0126 treatment inhibits DKK1-increased cell proliferation in 786-O cells. Our results reveal that DKK1 mediates A1CF to activate ERK in promotion renal carcinoma cell proliferation and colony formation. For the important function of ERK signaling pathway in tumor metastasis and key position of DKK1 in Wnt signaling pathway, we associate RNA editing protein-A1CF with multiple cellular processes and signaling pathways through DKK1, and the key node of A1CF-DKK1-MEK/ERK axis is a potential targeting site for RCC therapy.
Collapse
|
18
|
Tandon N, Goller K, Wang F, Soibam B, Gagea M, Jain AK, Schwartz RJ, Liu Y. Aberrant expression of embryonic mesendoderm factor MESP1 promotes tumorigenesis. EBioMedicine 2019; 50:55-66. [PMID: 31761621 PMCID: PMC6921370 DOI: 10.1016/j.ebiom.2019.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Background Mesoderm Posterior 1 (MESP1) belongs to the family of basic helix-loop-helix transcription factors. It is a master regulator of mesendoderm development, leading to formation of organs such as heart and lung. However, its role in adult pathophysiology remains unknown. Here, we report for the first time a previously-unknown association of MESP1 with non-small cell lung cancer (NSCLC). Methods MESP1 mRNA and protein levels were measured in NSCLC-derived cells by qPCR and immunoblotting respectively. Colony formation assay, colorimetric cell proliferation assay and soft agar colony formation assays were used to assess the effects of MESP1 knockdown and overexpression in vitro. RNA-sequencing and chromatin immunoprecipitation (ChIP)-qPCR were used to determine direct target genes of MESP1. Subcutaneous injection of MESP1-depleted NSCLC cells in immuno-compromised mice was done to study the effects of MESP1 mediated tumor formation in vivo. Findings We found that MESP1 expression correlates with poor prognosis in NSCLC patients, and is critical for proliferation and survival of NSCLC-derived cells, thus implicating MESP1 as a lung cancer oncogene. Ectopic MESP1 expression cooperates with loss of tumor suppressor ARF to transform murine fibroblasts. Xenografts from MESP1-depleted cells showed decreased tumor growth in vivo. Global transcriptome analysis revealed a MESP1 DNA-binding-dependent gene signature associated with various hallmarks of cancer, suggesting that transcription activity of MESP1 is most likely responsible for its oncogenic abilities. Interpretation Our study demonstrates MESP1 as a previously-unknown lineage-survival oncogene in NSCLC which may serve as a potential prognostic marker and therapeutic target for lung cancer in the future.
Collapse
Affiliation(s)
- Neha Tandon
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Kristina Goller
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Fan Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States; Department of Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Benjamin Soibam
- Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX, United States
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Abhinav K Jain
- Center for Cancer Epigenetics, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States.
| |
Collapse
|
19
|
Lee YY, Mok MT, Kang W, Yang W, Tang W, Wu F, Xu L, Yan M, Yu Z, Lee SD, Tong JHM, Cheung YS, Lai PBS, Yu DY, Wang Q, Wong GLH, Chan AM, Yip KY, To KF, Cheng ASL. Loss of tumor suppressor IGFBP4 drives epigenetic reprogramming in hepatic carcinogenesis. Nucleic Acids Res 2019; 46:8832-8847. [PMID: 29992318 PMCID: PMC6158508 DOI: 10.1093/nar/gky589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic sequencing of hepatocellular carcinoma (HCC) uncovers a paucity of actionable mutations, underscoring the necessity to exploit epigenetic vulnerabilities for therapeutics. In HCC, EZH2-mediated H3K27me3 represents a major oncogenic chromatin modification, but how it modulates the therapeutic vulnerability of signaling pathways remains unknown. Here, we show EZH2 acts antagonistically to AKT signaling in maintaining H3K27 methylome through epigenetic silencing of IGFBP4. ChIP-seq revealed enrichment of Ezh2/H3K27me3 at silenced loci in HBx-transgenic mouse-derived HCCs, including Igfbp4 whose down-regulation significantly correlated with EZH2 overexpression and poor survivals of HCC patients. Functional characterizations demonstrated potent growth- and invasion-suppressive functions of IGFBP4, which was associated with transcriptomic alterations leading to deregulation of multiple signaling pathways. Mechanistically, IGFBP4 stimulated AKT/EZH2 phosphorylation to abrogate H3K27me3-mediated silencing, forming a reciprocal feedback loop that suppressed core transcription factor networks (FOXA1/HNF1A/HNF4A/KLF9/NR1H4) for normal liver homeostasis. Consequently, the in vivo tumorigenicity of IGFBP4-silenced HCC cells was vulnerable to pharmacological inhibition of EZH2, but not AKT. Our study unveils chromatin regulation of a novel liver tumor suppressor IGFBP4, which constitutes an AKT-EZH2 reciprocal loop in driving H3K27me3-mediated epigenetic reprogramming. Defining the aberrant chromatin landscape of HCC sheds light into the mechanistic basis of effective EZH2-targeted inhibition.
Collapse
Affiliation(s)
- Ying-Ying Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Myth Ts Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liangliang Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingfei Yan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sau-Dan Lee
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna H M Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yue-Sun Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Grace L H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Wang C, Li Y, Chu CM, Zhang XM, Ma J, Huang H, Wang YN, Hong TY, Zhang J, Pan XW, Zheng JC, Jiang N, Hu CY, Ma X, Sun YH, Cui XG. Gankyrin is a novel biomarker for disease progression and prognosis of patients with renal cell carcinoma. EBioMedicine 2018; 39:255-264. [PMID: 30558998 PMCID: PMC6354735 DOI: 10.1016/j.ebiom.2018.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the clinic, how to stratify renal cell carcinoma (RCC) patients with different risks and to accurately predict their prognostic outcome remains a crucial issue. In this study, we assessed the expression and prognostic value of gankyrin in RCC patients. METHODS The expression of gankyrin was examined in public databases and validated in specimens from two independent centers. The clinical practice and disease correlation of gankyrin in RCC were evaluated in RCC patients, various cell lines and an orthotopic RCC model. FINDINGS Upregulation of gankyrin expression in RCC was corroborated in two independent cohorts. High gankyrin expression positively associated with disease progression and metastasis of RCC patients. A positive correlation between gankyrin and sunitinib-resistance was also observed in RCC cell lines and in an orthotopic RCC model. Kaplan-Meier analysis revealed that patients with higher gankyrin expression presented worse prognosis of RCC patients in the two cohorts. Gankyrin served as an independent prognostic factor for RCC patients even after multivariable adjustment by clinical variables. Time-dependent AUC and Harrell's c-index analysis presented that the incorporation of the gankyrin classifier into the current clinical prognostic parameters such as TNM stage, Fuhrman nuclear grade or SSIGN score achieved a greater accuracy than without it in predicting prognosis of RCC patients. All results were confirmed in randomized training and validation sets from the two patient cohorts. INTERPRETATION Gankyrin can serve as a reliable biomarker for disease progression and for prognosis of RCC patients. Combining gankyrin with the current clinical parameters may help patient management. FUND: National Natural Science Foundation of China (No. 81773154, 81772747 and 81301861), Medical Discipline Construction Project of Pudong New Area Commission of Health and Family Planning (PWYgf2018-03), the Shanghai Medical Guidance (Chinese and Western Medicine) Science and Technology Support Project (No. 17411960200), Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai (No. PWR12016-05).
Collapse
Affiliation(s)
- Chao Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), 168 Changhai Road, Shanghai 200438, China
| | - Yan Li
- Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Chuan-Min Chu
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China; Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Xiang-Min Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Jie Ma
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road No. 2, Shanghai 200025, China
| | - Yu-Ning Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Tian-Yu Hong
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Xiu-Wu Pan
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China
| | - Jing-Cun Zheng
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Ning Jiang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Chuan-Yi Hu
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China.
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York 10065-4805, NY, United States..
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), 168 Changhai Road, Shanghai 200438, China.
| | - Xin-Gang Cui
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China.
| |
Collapse
|
21
|
Hjortebjerg R. IGFBP-4 and PAPP-A in normal physiology and disease. Growth Horm IGF Res 2018; 41:7-22. [PMID: 29864720 DOI: 10.1016/j.ghir.2018.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) is a modulator of the IGF system, exerting both inhibitory and stimulatory effects on IGF-induced cellular growth. IGFBP-4 is the principal substrate for the enzyme pregnancy-associated plasma protein-A (PAPP-A). Through IGF-dependent cleavage of IGFBP-4 in the vicinity of the IGF receptor, PAPP-A is able to increase IGF bioavailability and stimulate IGF-mediated growth. Recently, the stanniocalcins (STCs) were identified as novel inhibitors of PAPP-A proteolytic activity, hereby adding additional members to the seemingly endless list of proteins belonging to the IGF family. Our understanding of these proteins has advanced throughout recent years, and there is evidence to suggest that the role of IGFBP-4 and PAPP-A in defining the relationship between total IGF and IGF bioactivity can be linked to a number of pathological conditions. This review provides an overview of the experimental and clinical findings on the IGFBP-4/PAPP-A/STC axis as a regulator of IGF activity and examines the conundrum surrounding extrapolation of circulating concentrations to tissue action of these proteins. The primary focus will be on the biological significance of IGFBP-4 and PAPP-A in normal physiology and in pathophysiology with emphasis on metabolic disorders, cardiovascular diseases, and cancer. Finally, the review assesses current new trajectories of IGFBP-4 and PAPP-A research.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark; The Danish Diabetes Academy, Odense, Denmark.
| |
Collapse
|
22
|
Matsuura K, Tanaka Y. Host genetic variations associated with disease progression in chronic hepatitis C virus infection. Hepatol Res 2018; 48:127-133. [PMID: 29235266 DOI: 10.1111/hepr.13042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
Treatment with recently developed interferon-free oral regimens combining direct-acting antiviral agents (DAAs) results in the elimination of hepatitis C virus (HCV) in almost all chronic hepatitis C (CHC) patients. In the era of DAAs, surveillance of hepatocellular carcinoma (HCC) after eradication of HCV by anti-HCV therapy is particularly important. As is well known, an advanced state of hepatic fibrosis is the major risk factor for developing HCC. Therefore, an increased understanding of various factors associated with disease progression and development of HCC in CHC patients is essential for implementing personalized treatment and surveillance of disease progression and HCC. Recent genome-wide association studies (GWAS) have identified several host genetic variants influencing treatment efficacy or clinical course in HCV infection. This review focuses on these host genetic variations recently identified, mainly by GWAS, which are associated with the clinical course of chronic HCV infection, especially disease progression and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
23
|
Nollet M, Stalin J, Moyon A, Traboulsi W, Essaadi A, Robert S, Malissen N, Bachelier R, Daniel L, Foucault-Bertaud A, Gaudy-Marqueste C, Lacroix R, Leroyer AS, Guillet B, Bardin N, Dignat-George F, Blot-Chabaud M. A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule. Oncotarget 2017; 8:112283-112296. [PMID: 29348825 PMCID: PMC5762510 DOI: 10.18632/oncotarget.22736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
CD146 is an adhesion molecule present on many tumors (melanoma, kidney, pancreas, breast, ...). In addition, it has been shown to be expressed on vascular endothelial and smooth muscle cells. Generating an antibody able to specifically recognize CD146 in cancer cells (designated as tumor CD146), but not in normal cells, would thus be of major interest for targeting tumor CD146 without affecting the vascular system. We thus generated antibodies against the extracellular domain of the molecule produced in cancer cells and selected an antibody that specifically recognizes tumor CD146. This antibody (TsCD146 mAb) was able to detect CD146-positive tumors in human biopsies and in vivo, by PET imaging, in a murine xenograft model. In addition, TsCD146 mAb antibody was able to specifically detect CD146-positive cancer microparticles in the plasma of patients. TsCD146 mAb displayed also therapeutic effects since it was able to reduce the growth of human CD146-positive cancer cells xenografted in nude mice. This effect was due to a decrease in the proliferation and an increase in the apoptosis of CD146-positive cancer cells after TsCD146-mediated internalization of the cell surface CD146. Thus, TsCD146 mAb could be of major interest for diagnostic and therapeutic strategies against CD146-positive tumors in a context of personalized medicine.
Collapse
Affiliation(s)
- Marie Nollet
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Jimmy Stalin
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Anaïs Moyon
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France.,CERIMED, European Center of Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Waël Traboulsi
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Amel Essaadi
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Stéphane Robert
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Nausicaa Malissen
- Department of Dermatology, Timone Hospital, Assistance Publique des Hôpitaux de Marseille, Inserm UMR-S 911, Aix-Marseille University, Marseille, France
| | - Richard Bachelier
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Laurent Daniel
- Service d'anatomie Pathologique, Aix-Marseille University, Timone Hospital, Marseille, France
| | | | - Caroline Gaudy-Marqueste
- Department of Dermatology, Timone Hospital, Assistance Publique des Hôpitaux de Marseille, Inserm UMR-S 911, Aix-Marseille University, Marseille, France
| | - Romaric Lacroix
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Aurélie S Leroyer
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | - Benjamin Guillet
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France.,CERIMED, European Center of Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Nathalie Bardin
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| | | | - Marcel Blot-Chabaud
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, Marseille, France
| |
Collapse
|
24
|
Knockdown of MSP58 inhibits the proliferation and metastasis in human renal cell carcinoma cells. Biomed Pharmacother 2017; 91:54-59. [DOI: 10.1016/j.biopha.2017.04.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 01/12/2023] Open
|
25
|
Nagao Y, Nishida N, Toyo-Oka L, Kawaguchi A, Amoroso A, Carrozzo M, Sata M, Mizokami M, Tokunaga K, Tanaka Y. Genome-Wide Association Study Identifies Risk Variants for Lichen Planus in Patients With Hepatitis C Virus Infection. Clin Gastroenterol Hepatol 2017; 15:937-944.e5. [PMID: 28065765 DOI: 10.1016/j.cgh.2016.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/14/2016] [Accepted: 12/24/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS There is a close relationship between hepatitis C virus (HCV) infection and lichen planus, a chronic inflammatory mucocutaneous disease. We performed a genome-wide association study (GWAS) to identify genetic variants associated with HCV-related lichen planus. METHODS We conducted a GWAS of 261 patients with HCV infection treated at a tertiary medical center in Japan from October 2007 through January 2013; a total of 71 had lichen planus and 190 had normal oral mucosa. We validated our findings in a GWAS of 38 patients with HCV-associated lichen planus and 7 HCV-infected patients with normal oral mucosa treated at a medical center in Italy. RESULTS Single-nucleotide polymorphisms in NRP2 (rs884000) and IGFBP4 (rs538399) were associated with risk of HCV-associated lichen planus (P < 1 × 10-4). We also found an association between a single-nucleotide polymorphism in the HLA-DR/DQ genes (rs9461799) and susceptibility to HCV-associated lichen planus. The odds ratios for the minor alleles of rs884000, rs538399, and rs9461799 were 3.25 (95% confidence interval, 1.95-5.41), 0.40 (95% confidence interval, 0.25-0.63), and 2.15 (95% confidence interval, 1.41-3.28), respectively. CONCLUSIONS In a GWAS of Japanese patients with HCV infection, we replicated associations between previously reported polymorphisms in HLA class II genes and risk for lichen planus. We also identified single-nucleotide polymorphisms in NRP2 and IGFBP4 loci that increase and reduce risk of lichen planus, respectively. These genetic variants might be used to identify patients with HCV infection who are at risk for lichen planus.
Collapse
Affiliation(s)
- Yumiko Nagao
- Department of Organ System Interactions and Information, Saga Medical School, Nabeshima, Saga, Japan; Research Center for Innovative Cancer Therapy, Kurume University, Asahi-machi, Kurume, Japan.
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan; Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Licht Toyo-Oka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Saga Medical School, Nabeshima, Saga, Japan
| | - Antonio Amoroso
- Regional Transplantation Center, Piedmont, Molinette Hospital, AOU Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Carrozzo
- Oral Medicine Department, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Michio Sata
- Research Center for Innovative Cancer Therapy, Kurume University, Asahi-machi, Kurume, Japan; Nishinihon Hospital, Hattannda, Kumamoto, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology, Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
26
|
Pullen TJ, Huising MO, Rutter GA. Analysis of Purified Pancreatic Islet Beta and Alpha Cell Transcriptomes Reveals 11β-Hydroxysteroid Dehydrogenase (Hsd11b1) as a Novel Disallowed Gene. Front Genet 2017; 8:41. [PMID: 28443133 PMCID: PMC5385341 DOI: 10.3389/fgene.2017.00041] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/23/2017] [Indexed: 11/30/2022] Open
Abstract
We and others have previously identified a group of genes, dubbed "disallowed," whose expression is markedly lower in pancreatic islets than in other mammalian cell types. Forced mis-expression of several members of this family leads to defective insulin secretion, demonstrating the likely importance of disallowance for normal beta cell function. Up to now, transcriptomic comparisons have been based solely on data from whole islets. This raises the possibilities that (a) there may be important differences in the degree of disallowance of family members between beta and other either neuroendocrine cells; (b) beta (or alpha) cell disallowed genes may have gone undetected. To address this issue, we survey here recent massive parallel sequencing (RNA-Seq) datasets from purified mouse and human islet cells. Our analysis reveals that the most strongly disallowed genes are similar in beta and alpha cells, with 11β-hydroxysteroid dehydrogenase (Hsd11b1) mRNA being essentially undetectable in both cell types. The analysis also reveals that several genes involved in cellular proliferation, including Yap1 and Igfbp4, and previously assumed to be disallowed in both beta and alpha cells, are selectively repressed only in the beta cell. The latter finding supports the view that beta cell growth is selectively restricted in adults, providing a mechanism to avoid excessive insulin production and the risk of hypoglycaemia. Approaches which increase the expression or activity of selected disallowed genes in the beta cell may provide the basis for novel regenerative therapies in type 2 diabetes.
Collapse
Affiliation(s)
- Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College LondonLondon, UK
| | - Mark O. Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, DavisCA, USA
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
27
|
Jin XF, Li H, Zong S, Li HY. Knockdown of Collagen Triple Helix Repeat Containing-1 Inhibits the Proliferation and Epithelial-to-Mesenchymal Transition in Renal Cell Carcinoma Cells. Oncol Res 2017; 24:477-485. [PMID: 28281968 PMCID: PMC7838749 DOI: 10.3727/096504016x14685034103716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1), a secreted glycoprotein, is frequently upregulated in human cancers. However, the functional role of CTHRC1 in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to explore the role of CTHRC1 in RCC. Our results demonstrated that CTHRC1 was upregulated in RCC tissues and cell lines. Knockdown of CTHRC1 significantly inhibits the proliferation in RCCs. Furthermore, knockdown of CTHRC1 significantly inhibited the epithelial-to-mesenchymal transition (EMT) process in RCCs, as well as suppressed RCC cell migration and invasion. Mechanistically, knockdown of CTHRC1 inhibited the expression of β-catenin, c-Myc, and cyclin D1 in RCC cells. In conclusion, the results of the present study indicated that CTHRC1 downregulation inhibited proliferation, migration, EMT, and β-catenin expression in RCC cells. Therefore, CTHRC1 may be a potential therapeutic target for the treatment of RCC.
Collapse
Affiliation(s)
- Xue-Fei Jin
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | | | | | | |
Collapse
|
28
|
Shil S, Joshi RS, Joshi CG, Patel AK, Shah RK, Patel N, Jakhesara SJ, Kundu S, Reddy B, Koringa PG, Rank DN. Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage. Vet World 2017; 10:38-55. [PMID: 28246447 PMCID: PMC5301178 DOI: 10.14202/vetworld.2017.38-55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
Aim: Squamous cell carcinoma or SCC of horn in bovines (bovine horn core carcinoma) frequently observed in Bos indicus affecting almost 1% of cattle population. Freshly isolated primary epithelial cells may be closely related to the malignant epithelial cells of the tumor. Comparison of gene expression in between horn’s SCC tissue and its early passage primary culture using next generation sequencing was the aim of this study. Materials and Methods: Whole transcriptome sequencing of horn’s SCC tissue and its early passage cells using Ion Torrent PGM were done. Comparative expression and analysis of different genes and pathways related to cancer and biological processes associated with malignancy, proliferating capacity, differentiation, apoptosis, senescence, adhesion, cohesion, migration, invasion, angiogenesis, and metabolic pathways were identified. Results: Up-regulated genes in SCC of horn’s early passage cells were involved in transporter activity, catalytic activity, nucleic acid binding transcription factor activity, biogenesis, cellular processes, biological regulation and localization and the down-regulated genes mainly were involved in focal adhesion, extracellular matrix receptor interaction and spliceosome activity. Conclusion: The experiment revealed similar transcriptomic nature of horn’s SCC tissue and its early passage cells.
Collapse
Affiliation(s)
- Sharadindu Shil
- Veterinary Officer (WBAH & VS), West Bengal Animal Resources Development Department, Bankura - 772 152, West Bengal, India; Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - R S Joshi
- Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - C G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - A K Patel
- Hester Biosciences Limited, Ahmedabad, Gujarat, India
| | - Ravi K Shah
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Namrata Patel
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Subhash J Jakhesara
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Sumana Kundu
- Veterinary Officer, MVC Sarenga, Government of West Bengal, Bankura, West Bengal, India
| | - Bhaskar Reddy
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - P G Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - D N Rank
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India; Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
29
|
Integration of Breast Cancer Secretomes with Clinical Data Elucidates Potential Serum Markers for Disease Detection, Diagnosis, and Prognosis. PLoS One 2016; 11:e0158296. [PMID: 27355404 PMCID: PMC4927101 DOI: 10.1371/journal.pone.0158296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells secrete factors that influence adjacent cell behavior and can lead to enhanced proliferation and metastasis. To better understand the role of these factors in oncogenesis and disease progression, estrogen and progesterone receptor positive MCF-7 cells, triple negative breast cancer MDA-MB-231, DT22, and DT28 cells, and MCF-10A non-transformed mammary epithelial cells were grown in 3D cultures. A special emphasis was placed on triple negative breast cancer since these tumors are highly aggressive and no targeted treatments are currently available. The breast cancer cells secreted factors of variable potency that stimulated proliferation of the relatively quiescent MCF-10A cells. The conditioned medium from each cell line was subjected to mass spectrometry analysis and a variety of secreted proteins were identified including glycolytic enzymes, proteases, protease inhibitors, extracellular matrix proteins, and insulin-like growth factor binding proteins. An investigation of the secretome from each cell line yielded clues about strategies used for breast cancer proliferation and metastasis. Some of the proteins we identified may be useful in the development of a serum-based test for breast cancer detection, diagnosis, prognosis, and monitoring.
Collapse
|
30
|
Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8060057. [PMID: 27322325 PMCID: PMC4931622 DOI: 10.3390/cancers8060057] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.
Collapse
|
31
|
Kuo TL, Weng CC, Kuo KK, Chen CY, Wu DC, Hung WC, Cheng KH. APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice. Oncogene 2016; 35:2223-34. [PMID: 26411367 DOI: 10.1038/onc.2015.284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/03/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022]
Abstract
Adenomatous polyposis coli (APC), a tumor-suppressor gene critically involved in familial adenomatous polyposis, is integral in Wnt/β-catenin signaling and is implicated in the development of sporadic tumors of the distal gastrointestinal tract including pancreatic cancer (PC). Here we report for the first time that functional APC is required for the growth and maintenance of pancreatic islets and maturation. Subsequently, a non-Kras mutation-induced premalignancy mouse model was developed; in this model, APC haploinsufficiency coupled with p53 deletion resulted in the development of a distinct type of pancreatic premalignant precursors, mucinous cystic neoplasms (MCNs), exhibiting pathomechanisms identical to those observed in human MCNs, including accumulation of cystic fluid secreted by neoplastic and ovarian-like stromal cells, with 100% penetrance and the presence of hepatic and gastric metastases in >30% of the mice. The major clinical implications of this study suggest targeting the Wnt signaling pathway as a novel strategy for managing MCN.
Collapse
Affiliation(s)
- T-L Kuo
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C-C Weng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - K-K Kuo
- Division of Hepatobiliopancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - C-Y Chen
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - D-C Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - W-C Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - K-H Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Wragg JW, Finnity JP, Anderson JA, Ferguson HJM, Porfiri E, Bhatt RI, Murray PG, Heath VL, Bicknell R. MCAM and LAMA4 Are Highly Enriched in Tumor Blood Vessels of Renal Cell Carcinoma and Predict Patient Outcome. Cancer Res 2016; 76:2314-26. [PMID: 26921326 DOI: 10.1158/0008-5472.can-15-1364] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/01/2016] [Indexed: 12/14/2022]
Abstract
The structure and molecular signature of tumor-associated vasculature are distinct from those of the host tissue, offering an opportunity to selectively target the tumor blood vessels. To identify tumor-specific endothelial markers, we performed a microarray on tumor-associated and nonmalignant endothelium collected from patients with renal cell carcinoma (RCC), colorectal carcinoma, or colorectal liver metastasis. We identified a panel of genes consistently upregulated by tumor blood vessels, of which melanoma cell adhesion molecule (MCAM) and its extracellular matrix interaction partner laminin alpha 4 (LAMA4) emerged as the most consistently expressed genes. This result was subsequently confirmed by immunohistochemical analysis of MCAM and LAMA4 expression in RCC and colorectal carcinoma blood vessels. Strong MCAM and LAMA4 expression was also shown to predict poor survival in RCC, but not in colorectal carcinoma. Notably, MCAM and LAMA4 were enhanced in locally advanced tumors as well as both the primary tumor and secondary metastases. Expression analysis in 18 different cancers and matched healthy tissues revealed vascular MCAM as highly specific in RCC, where it was induced strongly by VEGF, which is highly abundant in this disease. Lastly, MCAM monoclonal antibodies specifically localized to vessels in a murine model of RCC, offering an opportunity for endothelial-specific targeting of anticancer agents. Overall, our findings highlight MCAM and LAMA4 as prime candidates for RCC prognosis and therapeutic targeting. Cancer Res; 76(8); 2314-26. ©2016 AACR.
Collapse
Affiliation(s)
- Joseph W Wragg
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jonathan P Finnity
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jane A Anderson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Henry J M Ferguson
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Emilio Porfiri
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom. Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Edgbaston, Birmingham, United Kingdom
| | - Rupesh I Bhatt
- Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Edgbaston, Birmingham, United Kingdom
| | - Paul G Murray
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria L Heath
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Roy Bicknell
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| |
Collapse
|
33
|
Du M, Shi F, Zhang H, Xia S, Zhang M, Ma J, Bai X, Zhang L, Wang Y, Cheng S, Yang Q, Leng J. Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of β-catenin expression via EP3-4 receptor. Oncol Rep 2015; 34:715-26. [PMID: 26058972 DOI: 10.3892/or.2015.4043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin E2 (PGE2) is involved in cholangiocarcinoma cell proliferation, migration and invasion through E prostanoid receptors, including EP1, EP2 and EP4. However, the functions and the mechanisms of those splice variants of EP3 receptors in promoting liver cancer cell growth and invasion remain to be elucidated. In our previous studies, four isoforms of EP3 receptors, EP3-4, EP3-5, EP3-6 and EP3-7 receptors, were detected in CCLP1 and HuCCT1 cells. However, the functions of these receptors in these cells have yet to be determined. It was reported that β-catenin is closely correlated with malignancy, including cholangiocarcinoma. The present study was designed to examine the effects of 4-7 isoforms of EP3 in promoting cholangiocarcinoma progression and the mechanisms by which PGE2 increases β-catenin protein via EP3 receptors. The results showed that PGE2 promotes cholangiocarcinoma progression via the upregulation of β-catenin protein, and the EP3-4 receptor pathway is mainly responsible for this regulation. These findings reveal that PGE2 upregulated the cholangiocarcinoma cell β-catenin protein through the EP3-4R/Src/EGFR/PI3K/AKT/GSK-3β pathway. The present study identified the functions of EP3 and the mechanisms by which PGE2 regulates β-catenin expression and promoted cholangiocarcinoma cell growth and invasion.
Collapse
Affiliation(s)
- Mingzhan Du
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Shi
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hai Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shukai Xia
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Juan Ma
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yipin Wang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shanyu Cheng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qinyi Yang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
34
|
Endothelial-binding, proinflammatory T cells identified by MCAM (CD146) expression: Characterization and role in human autoimmune diseases. Autoimmun Rev 2015; 14:415-22. [PMID: 25595133 DOI: 10.1016/j.autrev.2015.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
A subset of T cells defined by the cell surface expression of MCAM (CD146) has been identified in the peripheral circulation of healthy individuals. These cells comprise approximately 3% of the pool of circulating T cells, have an effector memory phenotype, and are capable of producing several cytokines. Notably, the MCAM positive cells are enhanced for IL-17 production compared to MCAM negative effector memory T cells. These cells are committed to IL-17 production and do not require in vitro polarization with exogenous cytokines. MCAM positive T cells also demonstrate an increased ability to bind to endothelial monolayers. In numerous autoimmune diseases these cells are found at increased proportions in the peripheral circulation, and at the sites of active inflammation in patients with autoimmune disease, these cells appear in large numbers and are major contributors to IL-17 production. Studies to date have been performed with human subjects and it is uncertain if appropriate mouse models exist for this cell type. These cells could represent early components of the adaptive immune response and serve as targets of therapy in these diseases, although much work remains to be performed in order to discern the exact nature and function of these cells.
Collapse
|
35
|
Liu X, Wang SK, Zhang K, Zhang H, Pan Q, Liu Z, Pan H, Xue L, Yen Y, Chu PG. Expression of glypican 3 enriches hepatocellular carcinoma development-related genes and associates with carcinogenesis in cirrhotic livers. Carcinogenesis 2014; 36:232-42. [PMID: 25542894 DOI: 10.1093/carcin/bgu245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glypican-3 (GPC3) protein expression was determined by immunohistochemical analysis from 29 normal livers, 80 cirrhotic livers sample taken near hepatocellular carcinoma (HCC), and 87 cirrhotic livers without HCC. The levels for miR-657 and HCC-related gene mRNAs were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Also, a published microarray dataset was used for gene set enrichment analysis (GSEA) to investigate the relationship between GPC3- and HCC-related gene signatures. Kaplan-Meier analysis was used to evaluate the relationship between GPC3 and HCC recurrence. GPC3 protein expression was not detected in any of the 29 (0%) normal livers, but was detected in 32 of 87 (37%) cirrhotic livers without HCC, and 51 of 80 (64%) cirrhotic liver samples taken near HCC sites (P < 0.001). The GPC3-positive rate in cirrhotic livers of viral origin was 68% (27/40), which was significantly higher than for non-viral cirrhotic livers (11%, 5/47) (P < 0.001). Also, GPC3 expression positively correlated with mRNA expression of HCC-related genes in the qRT-PCR and GSEA evaluations. Furthermore, HCC recurrence in cirrhotic liver samples taken near HCC sites was significantly higher in the GPC3-positive group than the GPC3-negative group (Log-rank P = 0.02, HR = 3.26; 95% CI = 1.20-10.29). This study demonstrated that highly expression of GPC3 could enrich HCC-related genes' mRNA expression and positive associate with dysplasia in cirrhotic livers. Therefore, GPC3 may serve as a precancerous biomarker in cirrhotic livers.
Collapse
Affiliation(s)
- Xiyong Liu
- Department of Molecular Pharmacology, Beckman Research Institute
| | - Sean K Wang
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Keqiang Zhang
- Department of Molecular Pharmacology, Beckman Research Institute
| | - Hang Zhang
- Department of Molecular Pharmacology, Beckman Research Institute
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China and
| | - Zhiwei Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China and
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China and
| | - Lijun Xue
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yun Yen
- Department of Molecular Pharmacology, Beckman Research Institute, Taipei Medical University, Taipei, Taiwan (R.O.C)
| | - Peiguo G Chu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA,
| |
Collapse
|
36
|
Sun QY, Ding LW, Xiao JF, Chien W, Lim SL, Hattori N, Goodglick L, Chia D, Mah V, Alavi M, Kim SR, Doan NB, Said JW, Loh XY, Xu L, Liu LZ, Yang H, Hayano T, Shi S, Xie D, Lin DC, Koeffler HP. SETDB1 accelerates tumourigenesis by regulating the WNT signalling pathway. J Pathol 2014; 235:559-70. [PMID: 25404354 DOI: 10.1002/path.4482] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/07/2014] [Accepted: 11/08/2014] [Indexed: 12/21/2022]
Abstract
We investigated the oncogenic role of SETDB1, focusing on non-small cell lung cancer (NSCLC), which has high expression of this protein. A total of 387 lung cancer cases were examined by immunohistochemistry; 72% of NSCLC samples were positive for SETDB1 staining, compared to 46% samples of normal bronchial epithelium (106 cases) (p <0.0001). The percentage of positive cells and the intensity of staining increased significantly with increased grade of disease. Forced expression of SETDB1 in NSCLC cell lines enhanced their clonogenic growth in vitro and markedly increased tumour size in a murine xenograft model, while silencing (shRNA) SETDB1 in NSCLC cells slowed their proliferation. SETDB1 positively stimulated activity of the WNT-β-catenin pathway and diminished P53 expression, resulting in enhanced NSCLC growth in vitro and in vivo. Our finding suggests that therapeutic targeting of SETDB1 may benefit patients whose tumours express high levels of SETDB1.
Collapse
Affiliation(s)
- Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Crosley EJ, Dunk CE, Beristain AG, Christians JK. IGFBP-4 and -5 are expressed in first-trimester villi and differentially regulate the migration of HTR-8/SVneo cells. Reprod Biol Endocrinol 2014; 12:123. [PMID: 25475528 PMCID: PMC4271501 DOI: 10.1186/1477-7827-12-123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adverse gestational outcomes such as preeclampsia (PE) and intrauterine growth restriction (IUGR) are associated with placental insufficiency. Normal placental development relies on the insulin-like growth factors -I and -II (IGF-I and -II), in part to stimulate trophoblast proliferation and extravillous trophoblast (EVT) migration. The insulin-like growth factor binding proteins (IGFBPs) modulate the bioavailability of IGFs in various ways, including sequestration, potentiation, and/or increase in half-life. The roles of IGFBP-4 and -5 in the placenta are unknown, despite consistent associations between pregnancy complications and the levels of two IGFBP-4 and/or -5 proteases, pregnancy-associated plasma protein -A and -A2 (PAPP-A and PAPP-A2). The primary objective of this study was to elucidate the effects of IGFBP-4 and -5 on IGF-I and IGF-II in a model of EVT migration. A related objective was to determine the timing and location of IGFBP-4 and -5 expression in the placental villi. METHODS We used wound healing assays to examine the effects of IGFBP-4 and -5 on the migration of HTR-8/SVneo cells following 4 hours of serum starvation and 24 hours of treatment. Localization of IGFBP-4, -5 and PAPP-A2 was assessed by immunohistochemical staining of first trimester placental sections. RESULTS 2 nM IGF-I and -II each increased HTR-8/SVneo cell migration with IGF-I increasing migration significantly more than IGF-II. IGFBP-4 and -5 showed different levels of inhibition against IGF-I. 20 nM IGFBP-4 completely blocked the effects of 2 nM IGF-I, while 20 nM IGFBP-5 significantly reduced the effects of 2 nM IGF-I, but not to control levels. Either 20 nM IGFBP-4 or 20 nM IGFBP-5 completely blocked the effects of 2 nM IGF-II. Immunohistochemistry revealed co-localization of IGFBP-4, IGFBP-5 and PAPP-A2 in the syncytiotrophoblast layer of first trimester placental villi as early as 5 weeks of gestational age. CONCLUSIONS IGFBP-4 and -5 show different levels of inhibition on the migration-stimulating effects of IGF-I and IGF-II, suggesting different roles for PAPP-A and PAPP-A2. Moreover, co-localization of the pappalysins and their substrates within placental villi suggests undescribed roles of these molecules in early placental development.
Collapse
Affiliation(s)
- Erin J Crosley
- Biological Sciences, Simon Fraser University, V5A 1S6 Burnaby, Canada
| | - Caroline E Dunk
- Research Centre for Women’s and Infants Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Alexander G Beristain
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, Canada
- The Child and Family Research Institute, Vancouver, Canada
| | | |
Collapse
|
38
|
Li C, Siragy HM. High glucose induces podocyte injury via enhanced (pro)renin receptor-Wnt-β-catenin-snail signaling pathway. PLoS One 2014; 9:e89233. [PMID: 24533170 PMCID: PMC3923071 DOI: 10.1371/journal.pone.0089233] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/17/2014] [Indexed: 01/04/2023] Open
Abstract
(Pro)renin receptor (PRR) expression is upregulated in diabetes. We hypothesized that PRR contributes to podocyte injury via activation of Wnt-β-catenin-snail signaling pathway. Mouse podocytes were cultured in normal (5 mM) or high (25 mM) D-glucose for 3 days. Compared to normal glucose, high glucose significantly decreased mRNA and protein expressions of podocin and nephrin, and increased mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail, respectively. Confocal microscopy studies showed significant reduction in expression and reorganization of podocyte cytoskeleton protein, F-actin, in response to high glucose. Transwell functional permeability studies demonstrated significant increase in albumin flux through podocytes monolayer with high glucose. Cells treated with high glucose and PRR siRNA demonstrated significantly attenuated mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail; enhanced expressions of podocin mRNA and protein, improved expression and reorganization of F-actin, and reduced transwell albumin flux. We conclude that high glucose induces podocyte injury via PRR-Wnt-β-catenin-snail signaling pathway.
Collapse
Affiliation(s)
- Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Helmy M. Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
39
|
Praveen Kumar VR, Sehgal P, Thota B, Patil S, Santosh V, Kondaiah P. Insulin like growth factor binding protein 4 promotes GBM progression and regulates key factors involved in EMT and invasion. J Neurooncol 2014; 116:455-64. [PMID: 24395346 DOI: 10.1007/s11060-013-1324-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
Insulin like growth factor binding protein 4 (IGFBP4) regulates growth and development of tissues and organs by negatively regulating IGF signaling. Among most cancers, IGFBP4 has growth inhibitory role and reported as a down-regulated gene, except for renal cell carcinoma, wherein IGFBP4 promotes tumor progression. IGFBP4 expression has been shown to be higher in increasing grades of astrocytoma. However, the functional role of IGFBP4 in gliomas has not been explored. Surgical biopsies of 20 normal brain and 198 astrocytoma samples were analyzed for IGFBP4 expression by qRT-PCR. Highest expression of IGFBP4 mRNA was seen in GBM tumors compared to control brain tissues (median log2 of 2.035, p < 0.0001). Immunohistochemical analysis of 53 tissue samples revealed predominant nuclear staining of IGFBP4, seen maximally in GBMs when compared to DA and AA tumors (median LI = 29.12 ± 16.943, p < 0.001). Over expression of IGFBP4 in U343 glioma cells resulted in up-regulation of molecules involved in tumor growth, EMT and invasion such as pAkt, pErk, Vimentin, and N-cadherin and down-regulation of E-cadherin. Functionally, IGFBP4 over expression in these cells resulted in increased proliferation, migration and invasion as assessed by MTT, transwell migration, and Matrigel invasion assays. These findings were confirmed upon IGFBP4 knockdown in U251 glioma cells. Our data suggest a pro-tumorigenic role for IGFBP4 in glioma.
Collapse
Affiliation(s)
- V R Praveen Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India
| | | | | | | | | | | |
Collapse
|
40
|
Zuo Y, Ren S, Wang M, Liu B, Yang J, Kuai X, Lin C, Zhao D, Tang L, He F. Novel roles of liver sinusoidal endothelial cell lectin in colon carcinoma cell adhesion, migration and in-vivo metastasis to the liver. Gut 2013; 62:1169-78. [PMID: 22637699 DOI: 10.1136/gutjnl-2011-300593] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Adhesion molecules play an important role in tumour metastasis. The liver is a frequent target for the metastasis of several tumour types. However, virtually no liver-specific adhesion molecules have been described in terms of organ-specific metastasis. This study aimed to determine the role of liver sinusoidal endothelial cell lectin (LSECtin) in colon carcinoma metastasis to the liver. DESIGN The role of LSECtin in colon carcinoma metastasis to the liver was determined by LSECtin knockout nude mice and anti-LSECtin antibody. LSECtin promoting the migration of LS174T and LoVo cells was determined by transwell experiment. The serum levels of soluble LSECtin in patients were elevated by ELISA. RESULTS LSECtin was found to adhere to LS174T and LoVo colon cancer cells in vitro and in vivo. Deficiency or blocking of LSECtin significantly decreased hepatic metastases of LS174T and LoVo cells. Primary colon cancer cells from patients also exhibited remarkably low rates of hepatic metastasis in LSECtin knockout mice. LSECtin promoted the migration of LS174T and LoVo cells and increased the expression of c-Met in these cells. Serum soluble LSECtin was detected at significantly higher levels in colon cancer patients with or without hepatic metastases compared with healthy controls and was also increased in colon cancer patients with metastases compared with those without metastases. CONCLUSION The results indicate that LSECtin plays an important role in colorectal carcinoma liver metastasis and may be a promising new target for intervention in metastasis formation.
Collapse
Affiliation(s)
- Yunfei Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sehgal P, Kumar N, Praveen Kumar VR, Patil S, Bhattacharya A, Vijaya Kumar M, Mukherjee G, Kondaiah P. Regulation of protumorigenic pathways by insulin like growth factor binding protein2 and its association along with β-catenin in breast cancer lymph node metastasis. Mol Cancer 2013; 12:63. [PMID: 23767917 PMCID: PMC3698021 DOI: 10.1186/1476-4598-12-63] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 05/15/2013] [Indexed: 12/27/2022] Open
Abstract
Background Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of β-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for β-catenin and IGFBP2 expression. Results Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of β- catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of β-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and β-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion This study highlights regulation of β-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and β-catenin is associated with lymph node metastasis of breast tumors.
Collapse
Affiliation(s)
- Priyanka Sehgal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes Metab 2013; 15:503-12. [PMID: 23121289 DOI: 10.1111/dom.12029] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 12/15/2022]
Abstract
Outside of the biological arena the term 'repression' often has a negative connotation. However, in the pancreatic β-cell a small group of genes, which are abundantly expressed in most if not all other mammalian tissues, are highly selectively repressed, with likely functional consequences. The two 'founder' members of this group, lactate dehydrogenase A (Ldha) and monocarboxylate transporter-1 (MCT-1/Slc16a1), are inactivated by multiple mechanisms including histone modifications and microRNA-mediated silencing. Their inactivation ensures that pyruvate and lactate, derived from muscle during exercise, do not stimulate insulin release inappropriately. Correspondingly, activating mutations in the MCT-1 promoter underlie 'exercise-induced hyperinsulinism' (EIHI) in man, a condition mimicked by forced over-expression of MCT-1 in the β-cell in mice. Furthermore, LDHA expression in the β-cell is upregulated in both human type 2 diabetes and in rodent models of the disease. Recent work by us and by others has identified a further ∼60 genes which are selectively inactivated in the β-cell, a list which we refine here up to seven by detailed comparison of the two studies. These genes include key regulators of cell proliferation and stimulus-secretion coupling. The present, and our earlier results, thus highlight the probable importance of shutting down a subset of 'disallowed' genes for the differentiated function of β-cells, and implicate previously unsuspected signalling pathways in the control of β-cell expansion and insulin secretion. Targeting of deregulated 'disallowed' genes in these cells may thus, in the future, provide new therapeutic avenues for type 2 diabetes.
Collapse
Affiliation(s)
- T J Pullen
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
43
|
Wang K, Li N, Yeung C, Li J, Wang H, Cooper T. Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research. ACTA ACUST UNITED AC 2012; 19:57-71. [DOI: 10.1093/molehr/gas051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Liu D, Liu X, Xing M. Epigenetic genes regulated by the BRAFV600E signaling are associated with alterations in the methylation and expression of tumor suppressor genes and patient survival in melanoma. Biochem Biophys Res Commun 2012; 425:45-50. [PMID: 22820187 DOI: 10.1016/j.bbrc.2012.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/11/2012] [Indexed: 01/20/2023]
Abstract
We have previously reported that the BRAFV600E signaling causes genome-wide aberrations in gene methylation in melanoma cells. To explore the potential molecular mechanisms for this epigenetic effect of BRAFV600E, in this in silico study we analyzed 11 microarray datasets retrieved from NCBI GEO database and examined the relationship of the expression of the epigenetic genes (genes involved in epigenetic regulation) with BRAFV600E signaling, methylation and expression of tumor-suppressor genes (TSGs) in melanoma, and patient survival with this cancer. Among 273 epigenetic genes examined, 12 genes were down-regulated (named DD genes) and 16 were up-regulated (UU genes) by suppression of the BRAFV600E signaling using inhibitors. While the expression of 245 non-DD/UU genes overall had no correlation with the expression and methylation of a set of potential TSGs, the expression of DD genes was significantly correlated negatively with the TSG expression and positively with TSG methylation. Expression of UU genes was positively, albeit weakly, associated with the TSG expression. Overall, no correlation was found between UU gene expression and TSG methylation. Importantly, the expression of DD genes, but not UU genes, was significantly associated with decreased survival of patients with melanoma. Interestingly, the promoters of DD genes contain more binding motifs of c-fos and myc, two BRAFV600E signaling-related transcription factors, than those of UU and non-DD/UU genes. Thus, these results link epigenetic genes to methylation and suppression of tumor suppressor genes as a mechanism involved in BRAFV600E-promoted melanoma tumorigenesis and uncover a novel molecular signature that predicts a poor prognosis of melanoma.
Collapse
Affiliation(s)
- Dingxie Liu
- Division of Endocrinology and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
45
|
Majid S, Saini S, Dahiya R. Wnt signaling pathways in urological cancers: past decades and still growing. Mol Cancer 2012; 11:7. [PMID: 22325146 PMCID: PMC3293036 DOI: 10.1186/1476-4598-11-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 02/25/2023] Open
Abstract
The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, 4150 Clement Street, San Francisco CA 94121, USA
| | | | | |
Collapse
|
46
|
Contois LW, Nugent DP, Caron JM, Cretu A, Tweedie E, Akalu A, Liebes L, Friesel R, Rosen C, Vary C, Brooks PC. Insulin-like growth factor binding protein-4 differentially inhibits growth factor-induced angiogenesis. J Biol Chem 2011; 287:1779-89. [PMID: 22134921 DOI: 10.1074/jbc.m111.267732] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An in-depth understanding of the molecular and cellular complexity of angiogenesis continues to advance as new stimulators and inhibitors of blood vessel formation are uncovered. Gaining a more complete understanding of the response of blood vessels to both stimulatory and inhibitory molecules will likely contribute to more effective strategies to control pathological angiogenesis. Here, we provide evidence that endothelial cell interactions with structurally altered collagen type IV may suppress the expression of insulin-like growth factor binding protein-4 (IGFBP-4), a well documented inhibitor of the IGF-1/IGF-1R signaling axis. We report for the first time that IGFBP-4 differentially inhibits angiogenesis induced by distinct growth factor signaling pathways as IGFBP-4 inhibited FGF-2- and IGF-1-stimulated angiogenesis but failed to inhibit VEGF-induced angiogenesis. The resistance of VEGF-stimulated angiogenesis to IGFBP-4 inhibition appears to depend on sustained activation of p38 MAPK as blocking its activity restored the anti-angiogenic effects of IGFBP-4 on VEGF-induced blood vessel growth in vivo. These novel findings provide new insight into how blood vessels respond to endogenous inhibitors during angiogenesis stimulated by distinct growth factor signaling pathways.
Collapse
Affiliation(s)
- Liangru W Contois
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oikonomopoulos A, Sereti KI, Conyers F, Bauer M, Liao A, Guan J, Crapps D, Han JK, Dong H, Bayomy AF, Fine GC, Westerman K, Biechele TL, Moon RT, Force T, Liao R. Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3. Circ Res 2011; 109:1363-74. [PMID: 22034491 DOI: 10.1161/circresaha.111.250282] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Recent work in animal models and humans has demonstrated the presence of organ-specific progenitor cells required for the regenerative capacity of the adult heart. In response to tissue injury, progenitor cells differentiate into specialized cells, while their numbers are maintained through mechanisms of self-renewal. The molecular cues that dictate the self-renewal of adult progenitor cells in the heart, however, remain unclear. OBJECTIVE We investigate the role of canonical Wnt signaling on adult cardiac side population (CSP) cells under physiological and disease conditions. METHODS AND RESULTS CSP cells isolated from C57BL/6J mice were used to study the effects of canonical Wnt signaling on their proliferative capacity. The proliferative capacity of CSP cells was also tested after injection of recombinant Wnt3a protein (r-Wnt3a) in the left ventricular free wall. Wnt signaling was found to decrease the proliferation of adult CSP cells, both in vitro and in vivo, through suppression of cell cycle progression. Wnt stimulation exerted its antiproliferative effects through a previously unappreciated activation of insulin-like growth factor binding protein 3 (IGFBP3), which requires intact IGF binding site for its action. Moreover, injection of r-Wnt3a after myocardial infarction in mice showed that Wnt signaling limits CSP cell renewal, blocks endogenous cardiac regeneration and impairs cardiac performance, highlighting the importance of progenitor cells in maintaining tissue function after injury. CONCLUSIONS Our study identifies canonical Wnt signaling and the novel downstream mediator, IGFBP3, as key regulators of adult cardiac progenitor self-renewal in physiological and pathological states.
Collapse
Affiliation(s)
- Angelos Oikonomopoulos
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Renal cell carcinoma (RCC) is the most lethal of all the genitourinary cancers, as it is generally refractory to current treatment regimens, including chemotherapy and radiation therapy. Targeted therapies against critical signaling pathways associated with RCC pathogenesis, such as vascular endothelial growth factor, von Hippel-Lindau tumor suppressor and mammalian target of rapamycin, have shown limited efficacy so far. Thus, Wnt signaling, which is known to be intricately involved in the pathogenesis of RCC, has attracted much interest. Several Wnt signaling components have been examined in RCC, and, while studies suggest that Wnt signaling is constitutively active in RCC, the molecular mechanisms differ considerably from other human carcinomas. Increasing evidence indicates that secreted Wnt antagonists have important roles in RCC pathogenesis. Considering these vital roles, it has been postulated--and supported by experimental evidence--that the functional loss of Wnt antagonists, for example by promoter hypermethylation, can contribute to constitutive activation of the Wnt pathway, resulting in carcinogenesis through dysregulation of cell proliferation and differentiation. However, subsequent functional studies of these Wnt antagonists have demonstrated the inherent complexities underlying their role in RCC pathogenesis.
Collapse
|
49
|
Li H, Zuo S, Pasha Z, Yu B, He Z, Wang Y, Yang X, Ashraf M, Xu M. GATA-4 promotes myocardial transdifferentiation of mesenchymal stromal cells via up-regulating IGFBP-4. Cytotherapy 2011; 13:1057-65. [PMID: 21846294 DOI: 10.3109/14653249.2011.597380] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AIMS GATA-4 is a cardiac transcription factor and plays an important role in cell lineage differentiation during development. We investigated whether overexpression of GATA-4 increases adult mesenchymal stromal cell (MSC) transdifferentiation into a cardiac phenotype in vitro. METHODS MSC were harvested from rat bone marrow (BM) and transduced with GATA-4 (MSC(GATA-4)) using a murine stem cell virus (pMSCV) retroviral expression system. Gene expression in MSC(GATA-4) was analyzed using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Native cardiomyocytes (CM) were isolated from ventricles of neonatal rats. Myocardial transdifferentiation of MSC was determined by immunostaining and electrophysiologic recording. The transdifferentiation rate was calculated directly from flow cytometery. RESULTS The expression of cardiac genes, including brain natriuretic peptide (BNP), Islet-1 and α-sarcomeric actinin (α-SA), was up-regulated in MSC(GATA-4) compared with control cells that were transfected with Green Fluorescent Protein (GFP) only (MSC(Null)). At the same time, insulin-like growth factor-binding protein (IGFBP)-4 was significantly up-regulated in MSC(GATA-4). A synchronous beating of MSC with native CM was detected and an action potential was recorded. Some GFP (+) cells were positive for α-SA staining after MSC were co-cultured with native CM for 7 days. The transdifferentiation rate was significantly higher in MSC(GATA-4). Functional studies indicated that the differentiation potential of MSC(GATA-4) was decreased by knockdown of IGFBP-4. CONCLUSIONS Overexpression of GATA-4 significantly increases MSC differentiation into a myocardial phenotype, which might be associated with the up-regulation of IGFBP-4.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45867, USA
| | | | | | | | | | | | | | | | | |
Collapse
|