1
|
Basler M, Schliehe C. In memory of Prof. Dr. Marcus Groettrup (1964-2022). Eur J Immunol 2024; 54:e2451341. [PMID: 39540575 DOI: 10.1002/eji.202451341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Michael Basler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Yan J, Chen Y, Luo M, Hu X, Li H, Liu Q, Zou Z. Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 2023; 30:8. [PMID: 36707854 PMCID: PMC9883141 DOI: 10.1186/s12929-023-00903-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.
Collapse
Affiliation(s)
- Jiajing Yan
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Yibing Chen
- grid.207374.50000 0001 2189 3846Department of Gynecology and Obstetrics, First Affiliated Hospital, Genetic and Prenatal Diagnosis Center, Zhengzhou University, Zhengzhou, 450001 China
| | - Minhua Luo
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Xinyu Hu
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Hongsheng Li
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Quentin Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510631 China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning China
| | - Zhengzhi Zou
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
3
|
PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. Eur J Pharm Sci 2022; 175:106209. [DOI: 10.1016/j.ejps.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
|
4
|
The Acute Immune Responses of the Common Carp Cyprinus carpio to PLGA Microparticles-The Interactions of a Teleost Fish with a Foreign Material. Biomolecules 2022; 12:biom12020326. [PMID: 35204827 PMCID: PMC8869309 DOI: 10.3390/biom12020326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Poly lactic-co-glycolic acid (PLGA) particles safely and effectively deliver pharmaceutical ingredients, with many applications approved for clinical use in humans. In fishes, PLGA particles are being considered as carriers of therapeutic drugs and vaccine antigens. However, existing studies focus mainly on vaccine antigens, the endpoint immune responses to these (e.g., improved antibody titres), without deeper understanding of whether fishes react to the carrier. To test whether or not PLGA are recognized by or interact at all with the immune system of a teleost fish, we prepared, characterized and injected PLGA microparticles intraperitoneally into common carp. The influx, phenotype of inflammatory leukocytes, and their capacity to produce reactive oxygen species and phagocytose PLGA microparticles were tested by flow cytometry, qPCR, and microscopy. PLGA microparticles were indeed recognized. However, they induced only transient recruitment of inflammatory leukocytes that was resolved 4 days later whereas only the smallest µm-sized particles were phagocytosed. The overall response resembled that described in mammals against foreign materials. Given the similarities between our findings and those described in mammals, PLGA particles can be adapted to play a dual role as both antigen and drug carriers in fishes, depending on the administered dose and their design.
Collapse
|
5
|
Volovat SR, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022; 14:397. [PMID: 35214129 PMCID: PMC8875018 DOI: 10.3390/pharmaceutics14020397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Liliana Gheorghe Moisii
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iaşi, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Dragos Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania;
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Maricel Agop
- Physics Department, “Gheorghe Asachi” Technical University, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iaşi, Romania;
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| |
Collapse
|
6
|
Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials 2022; 280:121297. [PMID: 34902729 PMCID: PMC8725170 DOI: 10.1016/j.biomaterials.2021.121297] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Landmark successes in oncoimmunology have led to development of therapeutics boosting the host immune system to eradicate local and distant tumors with impactful tumor reduction in a subset of patients. However, current immunotherapy modalities often demonstrate limited success when involving immunologically cold tumors and solid tumors. Here, we describe the role of various biomaterials to formulate cancer vaccines as a form of cancer immunotherapy, seeking to utilize the host immune system to activate and expand tumor-specific T cells. Biomaterial-based cancer vaccines enhance the cancer-immunity cycle by harnessing cellular recruitment and activation against tumor-specific antigens. In this review, we discuss biomaterial-based vaccine strategies to induce lymphocytic responses necessary to mediate anti-tumor immunity. We focus on strategies that selectively attract dendritic cells via immunostimulatory gradients, activate them against presented tumor-specific antigens, and induce effective cross-presentation to T cells in secondary lymphoid organs, thereby generating immunity. We posit that personalized cancer vaccines are promising targets to generate long-term systemic immunity against patient- and tumor-specific antigens to ensure long-term cancer remission.
Collapse
Affiliation(s)
- Dixita Ishani Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - David P Huston
- Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Immunotherapy that can activate immunity or enhance the immunogenicity of tumors has emerged as one of the most effective methods for cancer therapy. Nevertheless, single-mode immunotherapy is still confronted with several critical challenges, such as the low immune response, the low tumor infiltration, and the complex immunosuppression tumor microenvironment. Recently, the combination of immunotherapy with other therapeutic modalities has emerged as a powerful strategy to augment the therapeutic outcome in fighting against cancer. In this review, recent research advances of the combination of immunotherapy with chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, metabolic therapy, and microwave thermotherapy are summarized. Critical challenges and future research direction of immunotherapy-based cancer therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
8
|
Koerner J, Horvath D, Herrmann VL, MacKerracher A, Gander B, Yagita H, Rohayem J, Groettrup M. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nat Commun 2021; 12:2935. [PMID: 34006895 PMCID: PMC8131648 DOI: 10.1038/s41467-021-23244-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
With emerging supremacy, cancer immunotherapy has evolved as a promising therapeutic modality compared to conventional antitumor therapies. Cancer immunotherapy composed of biodegradable poly(lactic-co-glycolic acid) (PLGA) particles containing antigens and toll-like receptor ligands induces vigorous antitumor immune responses in vivo. Here, we demonstrate the supreme adjuvant effect of the recently developed and pharmaceutically defined double-stranded (ds)RNA adjuvant Riboxxim especially when incorporated into PLGA particles. Encapsulation of Riboxxim together with antigens potently activates murine and human dendritic cells, and elevated tumor-specific CD8+ T cell responses are superior to those obtained using classical dsRNA analogues. This PLGA particle vaccine affords primary tumor growth retardation, prevention of metastases, and prolonged survival in preclinical tumor models. Its advantageous therapeutic potency was further enhanced by immune checkpoint blockade that resulted in reinvigoration of cytotoxic T lymphocyte responses and tumor ablation. Thus, combining immune checkpoint blockade with immunotherapy based on Riboxxim-bearing PLGA particles strongly increases its efficacy.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cells, Cultured
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Drug Synergism
- Female
- Humans
- Immune Checkpoint Inhibitors/administration & dosage
- Immune Checkpoint Inhibitors/immunology
- Immunotherapy/methods
- Ligands
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Scanning
- Nanoparticles/chemistry
- Nanoparticles/ultrastructure
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/therapy
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Polylactic Acid-Polyglycolic Acid Copolymer/immunology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- THP-1 Cells
- Toll-Like Receptor 3/immunology
- Toll-Like Receptor 3/metabolism
- Treatment Outcome
- Mice
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Valerie L Herrmann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Boehringer Ingelheim Pharma, Cancer Immunology + Immune Modulation, Biberach/ Riß, Germany
| | - Anna MacKerracher
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jacques Rohayem
- Riboxx GmbH, BioInnovationszentrum, Dresden, Germany
- Institute of Virology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
- Biotechnology Institute Thurgau at the University of Konstanz (BITg), Kreuzlingen, Switzerland.
| |
Collapse
|
9
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
10
|
Shae D, Baljon JJ, Wehbe M, Becker KW, Sheehy TL, Wilson JT. At the bench: Engineering the next generation of cancer vaccines. J Leukoc Biol 2019; 108:1435-1453. [PMID: 31430398 DOI: 10.1002/jlb.5bt0119-016r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/29/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer vaccines hold promise as an immunotherapeutic modality based on their potential to generate tumor antigen-specific T cell responses and long-lived antitumor responses capable of combating metastatic disease and recurrence. However, cancer vaccines have historically failed to deliver significant therapeutic benefit in the clinic, which we maintain is due in part to drug delivery challenges that have limited vaccine immunogenicity and efficacy. In this review, we examine some of the known and putative failure mechanisms of common first-generation clinical cancer vaccines, and describe how the rational design of materials engineered for vaccine delivery and immunomodulation can address these shortcomings. First, we outline vaccine design principles for augmenting cellular immunity to tumor antigens and describe how well-engineered materials can improve vaccine efficacy, highlighting recent innovations in vaccine delivery technology that are primed for integration into neoantigen vaccine development pipelines. We also discuss the importance of sequencing, timing, and kinetics in mounting effective immune responses to cancer vaccines, and highlight examples of materials that potentiate antitumor immunity through spatiotemporal control of immunomodulation. Furthermore, we describe several engineering strategies for improving outcomes of in situ cancer vaccines, which leverage local, intratumoral delivery to stimulate systemic immunity. Finally, we highlight recent innovations leveraging nanotechnology for increasing the immunogenicity of the tumor microenvironment (TME), which is critical to enhancing tumor infiltration and function of T cells elicited in response to cancer vaccines. These immunoengineering strategies and tools complement ongoing advances in cancer vaccines as they reemerge as an important component of the immunotherapeutic armamentarium.
Collapse
Affiliation(s)
- Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessalyn J Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Mohamed Wehbe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kyle W Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Taylor L Sheehy
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - John Tanner Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
12
|
Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. J Control Release 2019; 297:79-90. [PMID: 30659906 DOI: 10.1016/j.jconrel.2019.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tumour-specific, immuno-based therapeutic interventions can be considered as safe and effective approaches for cancer therapy. Exploitation of nano-vaccinology to intensify the cancer vaccine potency may overcome the need for administration of high vaccine doses or additional adjuvants and therefore could be a more efficient approach. Carbon nanotube (CNT) can be described as carbon sheet(s) rolled up into a cylinder that is nanometers wide and nanometers to micrometers long. Stemming from the observed capacities of CNTs to enter various types of cells via diversified mechanisms utilising energy-dependent and/or passive routes of cell uptake, the use of CNTs for the delivery of therapeutic agents has drawn increasing interests over the last decade. Here we review the previous studies that demonstrated the possible benefits of these cylindrical nano-vectors as cancer vaccine delivery systems as well as the obstacles their clinical application is facing.
Collapse
Affiliation(s)
- Hatem A F M Hassan
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Sandra S Diebold
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Lesley A Smyth
- School of Health, Sport and Biosciences, University of East London, Stratford Campus, Water Lane, London E15 4LZ, United Kingdom
| | - Adam A Walters
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Giovanna Lombardi
- School of Immunology and Microbial Sciences, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
13
|
Hos BJ, Tondini E, van Kasteren SI, Ossendorp F. Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Front Immunol 2018; 9:884. [PMID: 29755468 PMCID: PMC5932164 DOI: 10.3389/fimmu.2018.00884] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Progress made in peptide-based vaccinations to induce T-cell-dependent immune responses against cancer has invigorated the search for optimal vaccine modalities. Design of new vaccine strategies intrinsically depends on the knowledge of antigen handling and optimal epitope presentation in both major histocompatibility complex class I and -II molecules by professional antigen-presenting cells to induce robust CD8 and CD4 T-cell responses. Although there is a steady increase in the understanding of the underlying mechanisms that bridges innate and adaptive immunology, many questions remain to be answered. Moreover, we are in the early stage of exploiting this knowledge to clinical advantage. Several adaptations of peptide-based vaccines like peptide-adjuvant conjugates have been explored and showed beneficial outcomes in preclinical models; but in the clinical trials conducted so far, mixed results were obtained. A major limiting factor to unravel antigen handling mechanistically is the lack of tools to efficiently track peptide vaccines at the molecular and (sub)cellular level. In this mini-review, we will discuss options to develop molecular tools for improving, as well as studying, peptide-based vaccines.
Collapse
Affiliation(s)
- Brett J Hos
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Elena Tondini
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Sommershof A, Scheuermann L, Koerner J, Groettrup M. Chronic stress suppresses anti-tumor T CD8+ responses and tumor regression following cancer immunotherapy in a mouse model of melanoma. Brain Behav Immun 2017; 65:140-149. [PMID: 28457810 DOI: 10.1016/j.bbi.2017.04.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022] Open
Abstract
Animal tumor models and human cancer studies have provided convergent evidence that chronic psychological stress plays a decisive role in modulating anti-tumor T cell immunity. However, whether chronic stress also affects anti-cancer vaccine strategies that rely on the induction of functional tumor-specific TCD8+ cells has not been investigated yet. In this study we provide direct evidence that chronic stress suppresses the therapeutic efficacy of a biodegradable poly(d,l-lactide-co-glycolide) microsphere (PLGA-MS) based cancer vaccine in a murine melanoma model. Exposure of mice to social disruption stress (SDR), a well-established model mimicking psychological chronic stress in humans, significantly impaired tumor protection in response to cancer vaccination under both prophylactic and therapeutic conditions. Vaccine failure in stressed mice correlated with significantly reduced generation of interferon-γ (IFN-γ)-producing TCD8+ effectors and CTL-mediated killing. Phenotypic analysis of dendritic cells (DCs) revealed that both migratory and lymphoid-resident DCs failed to undergo full maturation upon antigen uptake. Notably, decreased DC maturation was associated with a significant impairment of peripheral DCs to migrate to draining LNs and to prime subsequent TCD8+ responses in vivo. In conclusion, chronic stress represents an important factor mediating immunosuppression in cancer-vaccinated hosts by impairing DC functions and subsequent TCD8+ priming. Potentially, the mechanistic insights gained in this study open new avenues in utilizing the full potential of anti-cancer vaccination strategies.
Collapse
Affiliation(s)
- Annette Sommershof
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | - Lisa Scheuermann
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| |
Collapse
|
15
|
Takagi S, Takahashi Y, Sugimura K, Nishikawa M, Takakura Y. Application of Magnesium Pyrophosphate-Based Sponge-Like Microparticles to Enhance the Delivery Efficiency and Adjuvant Effects of Polyriboinosinic-Polyribocytidylic Acid in Immune Cells. J Pharm Sci 2016; 105:766-772. [PMID: 26869429 DOI: 10.1016/j.xphs.2015.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022]
Abstract
The magnesium pyrophosphate particle (MgPP) is a unique and safe carrier that is prepared by simply mixing magnesium chloride and sodium pyrophosphate. In this study, we investigated whether MgPP can be used to deliver nucleic acid-based adjuvants to immune cells. Polyriboinosinic-polyribocytidylic acid (polyI:C), a ligand for toll-like receptor 3, was selected as a model nucleic acid-based adjuvant. PolyI:C-loaded MgPP (polyI:C-MgPP) was prepared by adding polyI:C during the MgPP preparation process. Efficient loading of polyI:C into MgPP was confirmed by measuring the absorbance at 260 nm after disruption of polyI:C-MgPP by ethylenediaminetetraacetic acid. Scanning electron microscopy revealed that both MgPP and polyI:C-MgPP had a unique sponge-like shape with a diameter of approximately 1 μm. PolyI:C-MgPP was more efficiently taken up by toll-like receptor 3-positive RAW264.7 cells than naked polyI:C, and its uptake stimulated increased tumor necrosis factor-α production. When the presentation of ovalbumin (OVA), a model antigen, was evaluated after the addition of OVA along with naked polyI:C or polyI:C-MgPP to mouse dendritic DC2.4 cells, polyI:C-MgPP substantially increased OVA presentation. These results indicate that MgPP is a useful delivery vehicle for polyI:C and that polyI:C-MgPP is an effective immune cell adjuvant.
Collapse
Affiliation(s)
- Shoichi Takagi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kanako Sugimura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Herrmann VL, Wieland DE, Legler DF, Wittmann V, Groettrup M. The STEAP1(262-270) peptide encapsulated into PLGA microspheres elicits strong cytotoxic T cell immunity in HLA-A*0201 transgenic mice--A new approach to immunotherapy against prostate carcinoma. Prostate 2016; 76:456-68. [PMID: 26715028 DOI: 10.1002/pros.23136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND PLGA microsphere-based vaccination has been proven to be effective in immunotherapy of syngeneic model tumors in mice. The critical step for the translation to humans is the identification of immunogenic tumor antigens and potent vaccine formulations to overcome immune tolerance. METHODS HLA-A*0201 transgenic mice were immunized with eight different human prostate cancer peptide antigens co-encapsulated with TLR ligands into PLGA microspheres and analyzed for antigen-specific and functional cytotoxic T lymphocyte responses. RESULTS Only vaccination with STEAP1(262-270) peptide encapsulated in PLGA MS could effectively crossprime CTLs in vivo. These CTLs recognized STEAP1(262-270) /HLA-A*0201 complexes on human dendritic cells and prostate cancer cell lines and specifically lysed target cells in vivo. Vaccination with PLGA microspheres was much more potent than with incomplete Freund's adjuvant. CONCLUSIONS Our data suggests that there exist great differences in the immunogenicity of human PCa peptide antigens despite comparable MHC class I binding characteristics. Immunogenic STEAP1(262-270) peptide encapsulated into PLGA microspheres however was able to induce vigorous and functional antigen-specific CTLs and therefore is a promising novel approach for immunotherapy against advanced stage prostate cancer.
Collapse
Affiliation(s)
- Valerie L Herrmann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Daniel E Wieland
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
17
|
Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016; 12:1056-69. [PMID: 26752261 PMCID: PMC4962933 DOI: 10.1080/21645515.2015.1117714] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.
Collapse
Affiliation(s)
- A L Silva
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - P C Soema
- b Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - B Slütter
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands.,c Cluster BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - F Ossendorp
- d Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - W Jiskoot
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| |
Collapse
|
18
|
Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, de Gruijl T, Löwik C, Oostendorp J, van der Burg SH, Ossendorp F. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 2015; 40:88-97. [DOI: 10.1016/j.biomaterials.2014.10.053] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/19/2014] [Indexed: 12/14/2022]
|
19
|
Poly-(lactic-co-glycolic-acid)-based particulate vaccines: Particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 2015; 33:847-54. [DOI: 10.1016/j.vaccine.2014.12.059] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
|
20
|
Rahimian S, Kleinovink JW, Fransen MF, Mezzanotte L, Gold H, Wisse P, Overkleeft H, Amidi M, Jiskoot W, Löwik CW, Ossendorp F, Hennink WE. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: In vivo tracking and evaluation of antigen-specific CD8(+) T cell immune response. Biomaterials 2014; 37:469-77. [PMID: 25453974 DOI: 10.1016/j.biomaterials.2014.10.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/05/2014] [Indexed: 11/29/2022]
Abstract
Particulate antigen delivery systems aimed at the induction of antigen-specific T cells form a promising approach in immunotherapy to replace pharmacokinetically unfavorable soluble antigen formulations. In this study, we developed a delivery system using the model protein antigen ovalbumin (OVA) encapsulated in nanoparticles based on the hydrophilic polyester poly(lactide-co-hydroxymethylglycolic acid) (pLHMGA). Spherical nanoparticles with size 300-400 nm were prepared and characterized and showed a strong ability to deliver antigen to dendritic cells for cross-presentation to antigen-specific T cells in vitro. Using near-infrared (NIR) fluorescent dyes covalently linked to both the nanoparticle and the encapsulated OVA antigen, we tracked the fate of this formulation in mice. We observed that the antigen and the nanoparticles are efficiently co-transported from the injection site to the draining lymph nodes, in a more gradual and durable manner than soluble OVA protein. OVA-loaded pLHMGA nanoparticles efficiently induced antigen cross-presentation to OVA-specific CD8+ T cells in the lymph nodes, superior to soluble OVA vaccination. Together, these data show the potential of pLHMGA nanoparticles as attractive antigen delivery vehicles.
Collapse
Affiliation(s)
- Sima Rahimian
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrik Gold
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Patrick Wisse
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hermen Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Clemens W Löwik
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Wang Q, Tan MT, Keegan BP, Barry MA, Heffernan MJ. Time course study of the antigen-specific immune response to a PLGA microparticle vaccine formulation. Biomaterials 2014; 35:8385-93. [PMID: 24986256 DOI: 10.1016/j.biomaterials.2014.05.067] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Microparticle-based vaccine delivery systems are known to promote enhanced immune responses to protein antigens and can elicit TH1-biased responses when used in combination with Toll-like receptor (TLR) agonists. It is important to understand the kinetics of the immune responses to microparticle-based protein vaccines in order to predict the duration of protective immunity and to optimize prime-boost vaccination regimens. We carried out a 10-week time course study to investigate the magnitude and kinetics of the antibody and cellular immune responses to poly(lactic-co-glycolic acid) (PLGA) microparticles containing 40 μg ovalbumin (OVA) protein and 16 μg CpG-ODN adjuvant (MP/OVA/CpG) in comparison to OVA-containing microparticles, soluble OVA plus CpG, or OVA formulated with Alhydrogel(®) aluminum adjuvant. Mice vaccinated with MP/OVA/CpG developed the highest TH1-associated IgG2b and IgG2c antibody titers, while also eliciting TH2-associated IgG1 antibody titers on par with Alhydrogel(®)-formulated OVA, with all IgG subtype titers peaking at day 56. The MP/OVA/CpG vaccine also induced the highest antigen-specific splenocyte IFN-γ responses, with high levels of IFN-γ responses persisting until day 42. Thus the MP/OVA/CpG formulation produced a sustained and heightened humoral and cellular immune response, with an overall TH1 bias, while maintaining high levels of IgG1 antibody equivalent to that seen with Alhydrogel(®) adjuvant. The time course kinetics study provides a useful baseline for designing vaccination regimens for microparticle-based protein vaccines.
Collapse
Affiliation(s)
- Qian Wang
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA
| | - Melody T Tan
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Brian P Keegan
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA
| | - Meagan A Barry
- Medical Scientist Training Program and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael J Heffernan
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA; Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Abstract
Research in cancer immunotherapy has gained momentum in the last two decades, with many studies and clinical trials showing positive therapeutic outcomes. Immunotherapy can elicit not only a strong anticancer immune response which could even control metastases, but could also induce immunological memory, resulting in long-lasting protection in the prophylactic setting and protection against possible recurrence. Nanocarriers offer an attractive means for delivery of a multitude of therapeutic immunomodulators which are readily taken up by immune cells and can initiate a particular arm of an immunostimulatory cascade leading to tumor cell killing. This review focuses on recent advances in nanocarrier-mediated immunotherapy for the treatment of cancer. Both in vitro and in vivo studies as well as clinical progress are discussed in various sections. Description of the specific role of nanoparticle technology in immunotherapy highlights the way particles can be tailor-made in terms of size, structure, payload, and surface properties for active targeting to antigen-presenting cells and/or enhanced accumulation in the solid tumor.
Collapse
Affiliation(s)
- Manu Smriti Singh
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Sangeeta Bhaskar
- Product Development Cell, National Institute of Immunology, New Delhi, India
| |
Collapse
|
23
|
Saini V, Verma SK, Murthy PK, Kohli D. Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens. Vaccine 2013; 31:4183-91. [DOI: 10.1016/j.vaccine.2013.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 06/19/2013] [Indexed: 11/16/2022]
|
24
|
Rosalia RA, Silva AL, Camps M, Allam A, Jiskoot W, van der Burg SH, Ossendorp F, Oostendorp J. Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles. Cancer Immunol Immunother 2013; 62:1161-73. [PMID: 23613147 PMCID: PMC11029091 DOI: 10.1007/s00262-013-1411-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/27/2013] [Indexed: 01/26/2023]
Abstract
Protein antigen (Ag)-based immunotherapies have the advantage to induce T cells with a potentially broad repertoire of specificities. However, soluble protein Ag is generally poorly cross-presented in MHC class I molecules and not efficient in inducing robust cytotoxic CD8(+) T cell responses. In the present study, we have applied poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) which strongly improve protein Ag presentation by dendritic cells (DC) in the absence of additional Toll-like receptor ligands or targeting devices. Protein Ag-loaded DC were used as antigen presenting cells to stimulate T cells in vitro and subsequently analyzed in vivo for their anti-tumor effect via adoptive transfer, a treatment strategy widely studied in clinical trials as a therapy against various malignancies. In a direct comparison with soluble protein Ag, we show that DC presentation of protein encapsulated in plain PLGA-NP results in efficient activation of CD4(+) and CD8(+) T cells as reflected by high numbers of activated CD69(+) and CD25(+), interferon (IFN)-γ and interleukin (IL)-2-producing T cells. Adoptive transfer of PLGA-NP-activated CD8(+) T cells in tumor-bearing mice displayed good in vivo expansion capacity, potent Ag-specific cytotoxicity and IFN-γ cytokine production, resulting in curing mice with established tumors. We conclude that delivery of protein Ag through encapsulation in plain PLGA-NP is a very efficient and simple procedure to stimulate potent anti-tumor T cells.
Collapse
Affiliation(s)
- Rodney A Rosalia
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Silva A, Rosalia R, Sazak A, Carstens M, Ossendorp F, Oostendorp J, Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: Low-burst release is crucial for efficient CD8+ T cell activation. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface 2013; 10:20120536. [PMID: 23173193 PMCID: PMC3565688 DOI: 10.1098/rsif.2012.0536] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/01/2012] [Indexed: 12/18/2022] Open
Abstract
Polymers as an adjuvant are capable of enhancing the vaccine potential against various infectious diseases and also are being used to study the actual autoimmune responses using self-antigen(s) without involving any major immune deviation. Several natural polysaccharides and their derivatives originating from microbes and plants have been tested for their adjuvant potential. Similarly, numerous synthetic polymers including polyelectrolytes, polyesters, polyanhydrides, non-ionic block copolymers and external stimuli responsive polymers have demonstrated adjuvant capacity using different antigens. Adjuvant potential of these polymers mainly depends on their solubility, molecular weight, degree of branching and the conformation of polymeric backbone. These polymers have the ability not only to activate humoral but also cellular immune responses in the host. The depot effect, which involves slow release of antigen over a long duration of time, using different forms (particulate, solution and gel) of polymers, and enhances the co-stimulatory signals for optimal immune activation, is the underlying principle of their adjuvant properties. Possibly, polymers may also interact and activate various toll-like receptors and inflammasomes, thus involving several innate immune system players in the ensuing immune response. Biocompatibility, biodegradability, easy production and purification, and non-toxic properties of most of the polymers make them attractive candidates for substituting conventional adjuvants that have undesirable effects in the host.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Leleux J, Roy K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2013; 2:72-94. [PMID: 23225517 DOI: 10.1002/adhm.201200268] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/31/2012] [Indexed: 01/09/2023]
Abstract
The development and widespread application of vaccines has been one of the most significant achievements of modern medicine. Vaccines have not only been instrumental in controlling and even eliminating life-threatening diseases like polio, measles, diphtheria, etc., but have also been immensely powerful in enhancing the worldwide outlook of public health over the past century. Despite these successes, there are still many complex disorders (e.g., cancer, HIV, and other emerging infectious diseases) for which effective preventative or therapeutic vaccines have been difficult to develop. This failure can be attributed primarily to our inability to precisely control and modulate the highly complex immune memory response, specifically the cellular response. Dominated by B and T cell maturation and function, the cellular response is primarily initiated by potent immunostimulators and antigens. Efficient and targeted delivery of these immunomodulatory and immunostimulatory molecules to appropriate cells is key to successful development of next generation vaccine formulations. Over the past decade, particulate carriers have emerged as an attractive means for enhancing the delivery efficacy and potency of vaccines and associated immunomodulatory molecules. Specifically, polymer-based micro and nanoparticles are being extensively studied for a wide variety of applications. In this review, we discuss the immunological fundamentals for developing effective vaccines and how materials and material properties can be exploited to improve these therapies. Particular emphasis is given to polymer-based particles and how the route of administration of particulate systems affects the phenotype and robustness of an immune response. Comparison of various strategies and recent advancements in the field are discussed along with insights into current limitations and future directions.
Collapse
Affiliation(s)
- Jardin Leleux
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
28
|
Nikitczuk KP, Schloss RS, Yarmush ML, Lattime EC. PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-γ response and enhances survival. ACTA ACUST UNITED AC 2013; 4:280-290. [PMID: 23741626 DOI: 10.4236/jct.2013.41035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Critical to the generation of an effective therapeutic antitumor immune response is the elicitation of effective antigen presentation coupled with overcoming tumor-immune escape mechanisms. Towards this end, we aimed to understand the therapeutic effectiveness of a polymer based vaccine approach at enhancing the anti-tumor responses in a tumor-bearing mouse model. While we and others have previously demonstrated the effectiveness of PLGA based systems in delivering antigen etc., studies scarcely focus on understanding the immunological mechanisms of polymer based therapies in tumor bearing treatment models. Considering tumors modulate the immune system and consequently the efficacy of therapies, understanding treatment mechanisms in the presence of tumor will help lead to more efficacious treatment options. We demonstrate here that a poly(lactic-co-glycolic acid) (PLGA) based delivery system encapsulating tumor antigen (OVA) and the TLR9 agonist CpG motif DNA administered into the tumor microenvironment initiates an effective type 1 mediated (IFN-γ producing) anti-tumor response in a syngeneic murine model of T cell lymphoma (E.G7-OVA). Although E.G7-OVA tumors spontaneously generate antigen specific CTLs in draining lymph nodes (LN), tumors progress rapidly. Modulation of the tumor microenvironment via local PLGA based therapy led to the generation of a systemic antigen specific Th1 response, absent in the non-polymer delivery method, subsequently associated with reduced tumor growth and prolongation of survival. These studies provide further insight into the use of a PLGA-based therapeutic approach at modulating the tumor microenvironment and highlight the need for analyzing the treatment effects in a tumor bearing model.
Collapse
Affiliation(s)
- Kevin P Nikitczuk
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854
| | | | | | | |
Collapse
|
29
|
Mueller M, Reichardt W, Koerner J, Groettrup M. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 2012; 162:159-66. [PMID: 22709589 DOI: 10.1016/j.jconrel.2012.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 01/26/2023]
Abstract
Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres (MS) deliver antigens and toll like receptor (TLR) ligands to antigen presenting cells (APC) in vitro and in vivo. PLGA-MS-microencapsulated model antigens are efficiently presented on MHC class I and II molecules of dendritic cells and stimulate strong cytotoxic and T helper cell responses enabling the eradication of pre-existing model tumors. The application of tumor lysates as a source of antigen for immunotherapy has so far not been very successful also due to a lack of suitable delivery systems. In this study we used PLGA-MS with co-encapsulated tumor lysates and CpG oligodeoxynucleotides (CpG-ODN) as well as microencapsulated polyI:C in order to elicit anti-tumor responses. Immunization of mice with such mixtures of MS yielded substantial cytotoxic T cell (CTL) responses and interfered with tumor growth in TRAMP mice, a pre-clinical transgenic mouse model of prostate carcinoma, which has previously resisted dendritic cell-based therapy. As an important step towards clinical application of PLGA-MS, we could show that γ-irradiation of PLGA-MS sterilized the MS, without reducing their efficacy in eliciting CTL and anti-tumor responses in subcutaneous tumor grafts. Since PLGA is approved for clinical application, sterilized PLGA-MS containing tumor lysates and TLR ligands hold promise as anti-tumor vaccines against prostate carcinoma in humans.
Collapse
Affiliation(s)
- Marc Mueller
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
30
|
van Hall T, van der Burg SH. Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 2012; 114:51-76. [PMID: 22449778 DOI: 10.1016/b978-0-12-396548-6.00003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of synthetic peptide vaccines capable of inducing strong and protective T-cell immunity has taken more than 20 years. Peptide vaccines come in many flavors and although their design is simple, their use is more complicated as the success of a particular peptide vaccine is influenced by many parameters. In fact, peptide vaccination may lead to tolerance, immunity or even hyper-reactivity causing death of the animals. Here we systematically dissect the parameters that influence the final outcome of peptide vaccines as examined in mouse models and this will guide the rational design of new vaccines in the future.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Experimental Cancer Immunology and Therapy, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|