1
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
2
|
He L, Guo J, Fan Z, Yang S, Zhang C, Cheng B, Xia J. Exosomal miR-146b-5p derived from cancer-associated fibroblasts promotes progression of oral squamous cell carcinoma by downregulating HIPK3. Cell Signal 2023; 106:110635. [PMID: 36813147 DOI: 10.1016/j.cellsig.2023.110635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVES Cancer-associated fibroblasts (CAFs) are vital constituents of the tumor microenvironment (TME) and play a predominant role in oral squamous cell carcinoma (OSCC) progression. We aimed to investigate the effect and mechanism of exosomal miR-146b-5p derived from CAFs on the malignant biological behavior of OSCC. MATERIALS AND METHODS Illumina small RNA (sRNA) sequencing was conducted to determine the differential expression patterns of microRNAs (miRNAs) in exosomes derived from CAFs and normal fibroblasts (NFs). Transwell and cell counting kit-8 (CCK-8) assays and xenograft tumor models in nude mice were used to investigate the effect of CAF exosomes and miR-146b-p on the malignant biological behavior of OSCC. Reverse transcription quantitative real-time PCR (qRT-PCR), luciferase reporter, western blotting (WB) and immunohistochemistry assays were employed to investigate the underlying mechanisms involved in CAF exosomes that promote OSCC progression. RESULTS We demonstrated that CAF-derived exosomes were taken up by OSCC cells and enhanced the proliferation, migration, and invasion ability of OSCC. Compared with NFs, the expression of miR-146b-5p was increased in exosomes and their parent CAFs. Further studies showed that the decreased expression of miR-146b-5p inhibited the proliferation, migration and invasion ability of OSCC cells in vitro and the growth of OSCC cells in vivo. Mechanistically, miR-146b-5p overexpression led to the suppression of HIKP3 by directly targeting the 3'-UTR of HIPK3, as confirmed by luciferase assay. Reciprocally, HIPK3 knockdown partially reversed the inhibitory effect of the miR-146b-5p inhibitor on the proliferation, migration, and invasion ability of OSCC cells and restored their malignant phenotype. CONCLUSIONS Our results revealed that CAF-derived exosomes contained higher levels of miR-146b-5p than NFs, and miR-146b-5p overexpression in exosomes promoted the malignant phenotype of OSCC by targeting HIPK3. Therefore, inhibiting exosomal miR-146b-5p secretion may be a promising therapeutic modality for OSCC.
Collapse
Affiliation(s)
- Lihong He
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Jiaxin Guo
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Zhaona Fan
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Shiwen Yang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Chi Zhang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Lu G, Du R, Feng B, Wang J, Zhang F, Pei J, Wang Y, Shang Y. A Novel Gene Signature Associated with Inflammatory Responses and Immune Status Assists in Prognosis and Intervention for Patients with HCC. J Inflamm Res 2022; 15:6729-6743. [PMID: 36536645 PMCID: PMC9759026 DOI: 10.2147/jir.s390113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Tumor growth depends on tumor cells and the tumor microenvironment, which are regulated by inflammation and immune responses. However, the roles of inflammation and immune status in hepatocellular carcinoma (HCC) remain unclear. The aim of this study was to evaluate the prognostic value of an inflammatory response- related gene signature associated with immune status, which may provide insight into new treatment options for HCC patients. MATERIALS AND METHODS Differentially expressed genes associated with inflammation were obtained from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus, and the Molecular Signatures Database. An inflammation-associated prognostic gene signature was constructed and validated using TCGA and the International Cancer Genome Consortium datasets, respectively, using LASSO Cox regression analysis. Log-rank was performed to compare the overall survival of low- and high-risk score cohorts. Immune cell infiltration and immune-related functions were analyzed using single-sample gene enrichment analysis. The structures of the drugs identified by the prognostic model were predicted using PubChem. The drugs sensitivity of bleomycin, simvastatin and zoledronate detected by CCK8 colorimetric assay. The mRNA levels of 7 genes in HCC after drug treatment analyzed via qRT-PCR. RESULTS Inflammation-associated genes, including ITGA5, MEP1A, P2RX4, RIPK2, SLC7A1 and SRI, were identified and found to be associated with the prognosis of HCC. We further found that the high-risk patients experienced poor prognosis, which was observed to be an independent and significant risk factor for prognosis. Moreover, we observed elevated expression levels in multiple immune cell types and immune function. Lastly, we validated that bleomycin, simvastatin and zoledronate could regulate these genes in HCC. CONCLUSION The inflammatory-response-associated gene signature could predict the prognosis and the immunological status of HCC patients. Additionally, bleomycin, simvastatin and zoledronate may represent potential drug candidates that could inhibit these genes. This may constitute a new approach for the treatment of HCC.
Collapse
Affiliation(s)
- Guofang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, People’s Republic of China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Bin Feng
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, People’s Republic of China
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jianlin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
4
|
Islam F, Gopalan V, Lam AK. Roles of MicroRNAs in Esophageal Squamous Cell Carcinoma Pathogenesis. Methods Mol Biol 2021; 2129:241-257. [PMID: 32056182 DOI: 10.1007/978-1-0716-0377-2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotides long single-stranded noncoding RNAs. They regulate gene expression posttranscriptionally by base pairing with the complementary sequences in the 3'-untranslated region of their targeted mRNA. Aberrant expression of miRNAs leads to alterations in the expression of oncogenes and tumor suppressors, thereby affecting cellular growth, proliferation, apoptosis, motility, and invasion capacity of gastrointestinal cells, including cells of esophageal squamous cell carcinoma (ESCC). Thus, alterations in miRNAs expression associated with the pathogenesis and progression of ESCC. In addition, expression profiles of miRNAs correlated with various clinicopathological factors, including pathological stages, histological differentiation, invasion, metastasis of cancer, as well as survival rates and therapy response of patients with ESCC. Consequently, expression profiles of miRNAs could be useful as diagnostic, prognostic, and prediction biomarkers in ESCC. Herein, we describe the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and microarray methods for detection and quantitate miRNAs in ESCC. In addition, we summarize the roles of miRNAs in ESCC pathogenesis, progression, and prognosis.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
5
|
Li W, Liu S, Su S, Chen Y, Sun G. Construction and validation of a novel prognostic signature of microRNAs in lung adenocarcinoma. PeerJ 2021; 9:e10470. [PMID: 33510968 PMCID: PMC7798616 DOI: 10.7717/peerj.10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
MicroRNA (miRNA, miR) has been reported to be highly implicated in a wide range of biological processes in lung cancer (LC), and identification of differentially expressed miRNAs between normal and LC samples has been widely used in the discovery of prognostic factors for overall survival (OS) and response to therapy. The present study was designed to develop and evaluate a miRNA-based signature with prognostic value for the OS of lung adenocarcinoma (LUAD), a common histologic subtype of LC. In brief, the miRNA expression profiles and clinicopathological factors of 499 LUAD patients were collected from The Cancer Genome Atlas (TCGA) database. Kaplan-Meier (K-M) survival analysis showed significant correlations between differentially expressed miRNAs and LUAD survival outcomes. Afterward, 1,000 resample LUAD training matrices based on the training set was applied to identify the potential prognostic miRNAs. The least absolute shrinkage and selection operator (LASSO) cox regression analysis was used to constructed a six-miRNA based prognostic signature for LUAD patients. Samples with different risk scores displayed distinct OS in K-M analysis, indicating considerable predictive accuracy of this signature in both training and validation sets. Furthermore, time-dependent receiver operating characteristic (ROC) analysis demonstrated the nomogram achieved higher predictive accuracy than any other clinical variables after incorporating the clinical information (age, sex, stage, and recurrence). In the stratification analysis, the prognostic value of this classifier in LUAD patients was validated to be independent of other clinicopathological variables, such as age, gender, tumor recurrence, and early stage. Gene set annotation analyses were also conducted through the Hallmark gene set and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating target genes of the six miRNAs were positively related to various molecular pathways of cancer, such as hallmark UV response, Wnt signaling pathway and mTOR signaling pathway. In addition, fresh cancer tissue samples and matched adjacent tissue samples from 12 LUAD patients were collected to verify the expression of miR-582's target genes in the model, further revealing the potential relationship between SOX9, RASA1, CEP55, MAP4K4 and LUAD tumorigenesis, and validating the predictive value of the model. Taken together, the present study identified a robust signature for the OS prediction of LUAD patients, which could potentially aid in the individualized selection of therapeutic approaches for LUAD patients.
Collapse
Affiliation(s)
- Wanzhen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shiqing Liu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.,Key cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Shihong Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Kong L, Sun Y, Chen M, Dai Y, Liu Z. Downregulation of microRNA-320a inhibits proliferation and induces apoptosis of retinoblastoma cells via targeting TUSC3. Exp Ther Med 2020; 20:9. [PMID: 32934674 PMCID: PMC7471862 DOI: 10.3892/etm.2020.9137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miR)-320a is specific to vertebrates and has been indicated to serve a role in a number of cancer types, such as gastric, colorectal, pancreatic and ovarian cancer. miR-320a has been reported to be expressed at high levels in retinoblastoma tissues; however its role and mechanism of function in retinoblastoma remain to be elucidated. The aim of the present study was to investigate the role of miR-320a in retinoblastoma cells and the underlying mechanisms. The expression of miR-320a in retinoblastoma cell lines Y79 and WERI-Rb-1, and normal human retinal pigment epithelial cell line ARPE-19 was examined via reverse transcription-quantitative PCR (RT-qPCR). TargetScan bioinformatics analysis and dual-luciferase reporter assay were used to predict and reveal the target gene of miR-320a. Target gene expression was detected via RT-qPCR in retinoblastoma cell lines and ARPE-19 cells. Subsequently, gain- or loss-of-function experiments for miR-320a and tumor suppressor candidate 3 (TUSC3) were performed to study the role of miR-320a/TUSC3 in retinoblastoma cells. Cell viability and apoptosis were assessed via MTT and flow cytometry analysis, respectively. Compared with ARPE-19 cells, miR-320a was prominently expressed in retinoblastoma cell lines. TUSC3 was predicted to be a target gene of miR-320a. Compared with ARPE-19 cells, the expression of TUSC3 in retinoblastoma cell lines was reduced. The results of MTT and flow cytometry analysis revealed that overexpression of TUSC3 reduced the viability of retinoblastoma cells and induced apoptosis. Additional analysis indicated that miR-320a inhibitor enhanced the expression of the target gene TUSC3, thereby inhibiting retinoblastoma cell viability and inducing apoptosis. The effects of miR-320a inhibitor on retinoblastoma cells were inhibited by TUSC3-short hairpin RNA. miR-320a regulated the viability and apoptosis of retinoblastoma cells via targeting TUSC3. Therefore, the present study provided a reference for investigating a potential target for the clinical treatment of retinoblastoma.
Collapse
Affiliation(s)
- Li Kong
- Department of Ophthalmology, Chongqing Aier Eye Hospital, Chongqing 400020, P.R. China
| | - Yang Sun
- Department of Ophthalmology, Chongqing Aier Eye Hospital, Chongqing 400020, P.R. China
| | - Maosheng Chen
- Department of Ophthalmology, Chongqing Aier Eye Hospital, Chongqing 400020, P.R. China
| | - Yan Dai
- Department of Ophthalmology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Zhen Liu
- Department of Ophthalmology, Chongqing Aier Eye Hospital, Chongqing 400020, P.R. China
| |
Collapse
|
7
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
8
|
Lai J, Chen B, Zhang G, Wang Y, Mok H, Wen L, Pan Z, Su F, Liao N. Identification of a novel microRNA recurrence-related signature and risk stratification system in breast cancer. Aging (Albany NY) 2019; 11:7525-7536. [PMID: 31548433 PMCID: PMC6781975 DOI: 10.18632/aging.102268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
Abstract
Increasing evidence has revealed that microRNAs (miRNAs) play vital roles in breast cancer (BC) prognosis. Thus, we aimed to identify recurrence-related miRNAs and establish accurate risk stratification system in BC patients. A total of 381 differentially expressed miRNAs were confirmed by analyzing 1044 BC tissues and 102 adjacent normal samples from The Cancer Genome Atlas (TCGA). Then, based on the association between each miRNAs and disease-free survival (DFS), we identified miRNA recurrence-related signature to construct a novel prognostic nomogram using Cox regression model. Target genes of the four miRNAs were analyzed via Gene Ontology and KEGG pathway analyses. Time-dependent receiver operating characteristic analysis indicated that a combination of the miRNA signature and tumor-node-metastasis (TNM) stage had better predictive performance than that of TNM stage (0.710 vs 0.616, P<0.0001). Furthermore, risk stratification analysis suggested that the miRNA-based model could significantly classify patients into the high- and low-risk groups in the two cohorts (all P<0.0001), and was independent of other clinical features. Functional enrichment analysis demonstrated that the 46 target genes mainly enrichment in important cell biological processes, protein binding and cancer-related pathways. The miRNA-based prognostic model may facilitate individualized treatment decisions for BC patients.
Collapse
Affiliation(s)
- Jianguo Lai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yulei Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
9
|
Lai J, Wang H, Pan Z, Su F. A novel six-microRNA-based model to improve prognosis prediction of breast cancer. Aging (Albany NY) 2019; 11:649-662. [PMID: 30696800 PMCID: PMC6366967 DOI: 10.18632/aging.101767] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
Abstract
Current tumor-node-metastasis (TNM) stage is unable to accurately predict the overall survival (OS) in breast cancer (BC) patients. This study aimed to construct a microRNA (miRNA)-based model to improve survival prediction of BC. We confirmed 99 differentially expressed miRNAs (DEMs) in 1044 BC samples compared to 102 adjacent normal breast tissues from The Cancer Genome Atlas (TCGA) database. Prognostic DEMs were used to establish a miRNA-based nomogram via Cox regression model. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) were executed to analyze target genes of miRNAs. A six-miRNA signature was screened to effectively distinguish high-risk patients in the primary and validation cohort (all P<0.001). Furthermore, we established a novel prognostic model incorporating the six-miRNA signature and clinical risk factors to predict 5-year OS of BC. Time-dependent receiver operating characteristic analysis suggested that the predictive accuracy of the six-miRNA-based nomogram was distinctly higher than that of TNM stage (0.758 vs 0.650, P<0.001). GO and KEGG pathway analyses showed that the 39 target genes mainly enrichment in protein binding, cytoplasm and MAPK signaling pathway. Our six-miRNA-based model is a reliable prognostic tool for survival prediction and provides information for individualized treatment decisions in BC patients.
Collapse
Affiliation(s)
- Jianguo Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongli Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Prognostic Value of MicroRNAs in Esophageal Carcinoma: A Meta-Analysis. Clin Transl Gastroenterol 2018; 9:203. [PMID: 30420592 PMCID: PMC6232177 DOI: 10.1038/s41424-018-0070-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Numerous articles have reported that abnormal expression levels of microRNAs (miRNAs) are related to the survival times of esophageal carcinoma (EC) patients, which contains esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Nevertheless, there has not been a comprehensive meta-analysis to assess the accurate prognostic value of miRNAs in EC. Methods Studies published in English up to April 12, 2018 that evaluated the correlation of the expression levels of miRNAs with overall survival (OS) in EC were identified by online searches in PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews performed by two independent authors. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate the correlation between OS and miRNA expression. HR ≥ 2 was considered cutoff for considering the miRNA as prognostic candidate. Results Forty-four pertinent articles with 22 miRNAs and 4310 EC patients were ultimately included. EC patients with tissue expression levels of high miR-21 or low miR-133a (HR = 2.48, 95% CI = 1.50–4.12), miR-133b (HR = 2.15, 95% CI = 1.27–3.62), miR-138 (HR = 2.27, 95% CI = 1.68–3.08), miR-203 (HR = 2.83, 95% CI = 1.35–5.95), miR-375 and miR-655 (HR = 2.66, 95% CI = 1.16–6.12) had significantly poorer OS (P < 0.05). In addition, EC patients with blood expression levels of high miR-21 (HR = 2.19, 95% CI = 1.31–3.68) and miR-223 had significantly shorter OS (P < 0.05). Conclusions In conclusion, tissue expression levels of miR-21, miR-133a, miR-133b, miR-138, miR-203, miR-375, and miR-655 and blood expression levels of miR-21 and miR-223 demonstrate significant prognostic value. Among them, the expression levels of miR-133a, miR-133b, miR-138, miR-203, and miR-655 in tissue and the expression level of miR-21 in blood are potential prognostic candidates for predicting OS in EC.
Collapse
|
11
|
Li C, Miao R, Liu S, Wan Y, Zhang S, Deng Y, Bi J, Qu K, Zhang J, Liu C. Down-regulation of miR-146b-5p by long noncoding RNA MALAT1 in hepatocellular carcinoma promotes cancer growth and metastasis. Oncotarget 2018; 8:28683-28695. [PMID: 28404923 PMCID: PMC5438683 DOI: 10.18632/oncotarget.15640] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/25/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs play an important role in liver cancer genesis and progression. In this study, we identified down-regulation of miR-146b-5p associated with tumor growth, metastasis and poor survival in hepatocellular carcinoma (HCC) patients. miR-146b-5p could suppress proliferation, migration, and invasion and induced apoptosis in vitro and in vivo. Remarkably, TNF receptor associated factor 6 (TRAF6) was confirmed as a direct target of miR-146b-5p in HCC and miR-146b-5p exerted the tumor suppression roles through inhibiting the phosphorylation of Akt mediated by TRAF6. Furthermore, we identified long non-coding RNA MALAT1 as a molecular sponge of miR-146b-5p to down-regulate its expression in HCC. In general, our results indicate that miR-146b-5p inhibits tumor growth and metastasis of HCC by targeting TRAF6 mediated Akt phosphorylation.
Collapse
Affiliation(s)
- Chao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Sushun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Simin Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yan Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jianbin Bi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
12
|
Mei LL, Qiu YT, Zhang B, Shi ZZ. MicroRNAs in esophageal squamous cell carcinoma: Potential biomarkers and therapeutic targets. Cancer Biomark 2018; 19:1-9. [PMID: 28269750 DOI: 10.3233/cbm-160240] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Esophageal cancer is a common cause of cancer-related deaths worldwide. Squamous cell carcinoma (SCC) is the major histological type of esophageal cancer in developing countries including China, and the prognosis is very poor. Many microRNAs are involved in several important biological and pathologic processes, and promote tumorigenesis. To better understand the prognostic and therapeutic roles of microRNAs in ESCC, we reviewed the diagnosis and prognosis associated oncogenic microRNAs (e.g. miR-21 and miR-17-92 cluster) and tumor suppressor microRNAs (e.g. miR-375, miR-133a and miR-133b), and diagnosis and prognosis associated oncogenic target genes (e.g. PDCD4 and CCND1) and tumor suppressor target genes (e.g. EZH2 and PDK1). We also summarized the prognostic microRNA and target gene pairs (e.g. miR-296 and CCND1, miR214 and EZH2). Taken together, our review highlights the opportunities and challenges for microRNAs in the molecular diagnosis and target therapy of ESCC.
Collapse
|
13
|
The role of microRNAs in the occurrence and development of esophageal squamous cell carcinoma. ACTA ACUST UNITED AC 2017. [DOI: 10.31491/csrc.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Fong LY, Taccioli C, Jing R, Smalley KJ, Alder H, Jiang Y, Fadda P, Farber JL, Croce CM. MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency. Oncotarget 2017; 7:10723-38. [PMID: 26918602 PMCID: PMC4905434 DOI: 10.18632/oncotarget.7561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC), and marginal ZD is prevalent in humans. In rats, marked-ZD (3 mg Zn/kg diet) induces a proliferative esophagus with a 5-microRNA signature (miR-31, -223, -21, -146b, -146a) and promotes ESCC. Here we report that moderate and mild-ZD (6 and 12 mg Zn/kg diet) also induced esophageal hyperplasia, albeit less pronounced than induced by marked-ZD, with a 2-microRNA signature (miR-31, -146a). On exposure to an environmental carcinogen, ∼16% of moderate/mild-ZD rats developed ESCC, a cancer incidence significantly greater than for Zn-sufficient rats (0%) (P ≤ 0.05), but lower than marked-ZD rats (68%) (P < 0.001). Importantly, the high ESCC, marked-ZD esophagus had a 15-microRNA signature, resembling the human ESCC miRNAome, with miR-223, miR-21, and miR-31 as the top-up-regulated species. This signature discriminated it from the low ESCC, moderate/mild-ZD esophagus, with a 2-microRNA signature (miR-31, miR-223). Additionally, Fbxw7, Pdcd4, and Stk40 (tumor-suppressor targets of miR-223, -21, and -31) were downregulated in marked-ZD cohort. Bioinformatics analysis predicted functional relationships of the 3 tumor-suppressors with other cancer-related genes. Thus, microRNA dysregulation and ESCC progression depend on the extent of dietary Zn deficiency. Our findings suggest that even moderate ZD may promote esophageal cancer and dietary Zn has preventive properties against ESCC. Additionally, the deficiency-associated miR-223, miR-21, and miR-31 may be useful therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Louise Y Fong
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristian Taccioli
- Animal Medicine, Production and Health Department, University of Padua, Padua, Italy
| | - Ruiyan Jing
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karl J Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yubao Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paolo Fadda
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - John L Farber
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Saito M, Okayama H, Saito K, Ando J, Kumamoto K, Nakamura I, Ohki S, Ishi Y, Takenoshita S. CDX2 is involved in microRNA-associated inflammatory carcinogenesis in gastric cancer. Oncol Lett 2017; 14:6184-6190. [PMID: 29113265 DOI: 10.3892/ol.2017.6956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 06/15/2017] [Indexed: 12/18/2022] Open
Abstract
The development of gastric cancer is significantly associated with chronic inflammation, such as caused by Helicobacter pylori (H. pylori) infection. Caudal-type homeobox 2 (CDX2) is a homeobox protein involved in intestinal differentiation in normal and in aberrant locations, and is associated with inflammation. The authors of the present study have previously reported that CDX2 may have a suppressive role in the progression and carcinogenesis of gastric carcinoma. In the present study, the authors initially confirmed that a decreased expression of CDX2, as detected by immunohistochemistry, is associated with poor cancer-specific survival in 210 gastric cancer cases, which is consistent with several previously published studies. To elucidate the potential mechanisms underlying this association, the authors investigated the mechanism of CDX2 suppression, which included interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3) and p53 signaling pathways. The present study confirmed that CDX2 was suppressed by activation of the IL-6/STAT3 signaling pathway via miR-181b in vitro. It was further revealed that gastric cancer with negative CDX2 expression is associated with negative p53 staining, and this association was particularly significant in undifferentiated gastric cancer. The activation of the IL-6/STAT3 signaling pathway suppressed miR-34a, which is induced by p53. This suggests that the activation of the IL-6/STAT3 signaling pathway inflammation signaling pathway suppresses the p53 signaling pathway in tumors without TP53 mutation, which results in poor prognostic outcomes. In conclusion, CDX2 may be a useful prognostic biomarker for gastric cancer and is associated with p53 inactivation.
Collapse
Affiliation(s)
- Motonobu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.,Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hirokazu Okayama
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Jin Ando
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kensuke Kumamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Izumi Nakamura
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shinji Ohki
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yoshimasa Ishi
- Department of Surgery, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama 963-8558, Japan
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
16
|
Wang Y, Zhang J, Zhao W, Wang D, Ma W, Shang S, Feng C, Yu H. MicroRNA expression in esophageal squamous cell carcinoma: Novel diagnostic and prognostic biomarkers. Mol Med Rep 2017; 15:3833-3839. [PMID: 28440443 DOI: 10.3892/mmr.2017.6479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/22/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to identify more effective molecular diagnostic biomarkers for esophageal squamous cell carcinoma (ESCC). The non‑coding RNA profile GSE43732, generated from 238 paired frozen tissues from 119 patients, was analyzed. Raw data were preprocessed and the differentially expressed miRNAs were screened by limma package with log2 fold change >2. Prognosis‑associated miRNAs were identified using receiver operating characteristic (ROC) and Kaplan-Meier (KM) curve analysis. miRNAs with an area under the ROC curve of ≥0.7 were selected. miRNA target genes were identified from verification and predictive databases, and an miRNA regulatory network was constructed and visualized using Cytoscape software. Gene Ontology and pathway enrichment analyses of the target genes were performed using TargetMine. A total of 107 differentially expressed miRNAs, including 54 upregulated and 53 downregulated miRNAs, were obtained. The KM survival curves revealed that 44 miRNAs were significantly associated with prognosis. Furthermore, 9 upregulated and 3 downregulated miRNAs were obtained. Two upregulated miRNAs, hsa‑miR‑143‑3p and hsa‑miR‑145‑5p, and two downregulated miRNAs, hsa‑miR‑182‑5p and hsa‑miR‑455‑5p, were identified and demonstrated to be associated with prognosis in ESCC. In addition, 8 known and 245 predicted target genes of hsa‑miR‑455‑5p were screened and the regulatory networks were constructed. Furthermore, these genes were functionally associated with macromolecule metabolic process and melanoma. In conclusion, two novel tumor suppressive miRNAs including miR‑182‑5p and miR‑455‑5p were identified. miR‑455‑5p in particular may be involved in the regulation of ESCC. These miRNAs may be used to predict the prognosis of ESCC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jinnan Zhang
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wei Zhao
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Donglin Wang
- Department of General Surgery, Green Garden Changchun City Hospital, Changchun, Jilin 130062, P.R. China
| | - Wenduan Ma
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Shengtao Shang
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chao Feng
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Haixin Yu
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
17
|
Fendereski M, Zia MF, Shafiee M, Safari F, Saneie MH, Tavassoli M. MicroRNA-196a as a Potential Diagnostic Biomarker for Esophageal Squamous Cell Carcinoma. Cancer Invest 2017; 35:78-84. [PMID: 28095062 DOI: 10.1080/07357907.2016.1254228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We observed significant up-regulation of miR-196a in esophageal squamous cell carcinoma (ESCC) as compared with their adjacent normal tissue (p = .002). Receiver operating characteristics curve analysis confirmed the suitability of miR-196a as a potential tumor marker for diagnosis of ESCC. Furthermore, analysis of miR-196a levels in saliva samples determined an average of 27-fold up-regulations in ESCC patients compared with healthy group. Our results suggest that salivary miR-196a may be a suitable noninvasive biomarker for diagnosis of ESCC. In addition, molecular pathway enrichment analysis of microRNA (miR)-196a determined focal adhesion, spliceosome and p53 signaling pathways as the most relevant pathways with miR-196a targetome.
Collapse
Affiliation(s)
- Mona Fendereski
- a Department of Biology, Faculty of Sciences , University of Isfahan , Isfahan , Iran
| | - Mohammad Farid Zia
- b Department of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences , Isfahan University of Medical Sciences , Gorgan , Iran
| | - Mohammad Shafiee
- c Department of Medical Genetics, School of Advanced Medical Technologies , Golestan University of Medical Sciences , Gorgan , Iran
| | - Forousan Safari
- a Department of Biology, Faculty of Sciences , University of Isfahan , Isfahan , Iran
| | | | - Manoochehr Tavassoli
- a Department of Biology, Faculty of Sciences , University of Isfahan , Isfahan , Iran
| |
Collapse
|
18
|
He Y, Jin J, Wang L, Hu Y, Liang D, Yang H, Liu Y, Shan B. Evaluation of miR-21 and miR-375 as prognostic biomarkers in oesophageal cancer in high-risk areas in China. Clin Exp Metastasis 2016; 34:73-84. [PMID: 27885434 PMCID: PMC5285435 DOI: 10.1007/s10585-016-9828-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
Abstract
MicroRNAs have been associated with prognosis in oesophageal cancer (EC), suggesting that miRNAs could play a role in guiding treatment decisions. The aim of this study was to evaluate the prognostic potential of miRNAs found to be associated with zinc deficiency in a geographical area with a high incidence of EC. miRNAs found to be associated with zinc deficiency were isolated from EC cell lines cultured with various Zn levels. The expression levels of the miRNAs were quantified using qRT-PCR. The potential prognostic value of the selected miRNAs was assessed in a cohort study of 88 patients from an area in China with a high incidence of EC. Correlations between miRNAs and patient characteristics were assessed using χ2 statistical tests or Fisher's exact test. A Cox proportional hazards model was used to assess the correlations between miRNAs and overall survival (OS). Forest plots were performed to evaluate the prognostic impact of the miRNAs examined in the present study in the Asian population. The expression levels of miR-21, miR-31, miR-93 and miR-375 were different when Zn levels were varied in EC cell lines, but only miR-21 and miR-375 were associated with patient characteristics and prognosis in patients with EC from an area of China with a high incidence of EC. The patients expressing high levels of miR-21 had poor OS (HR 2.15, 95% CI 1.16-3.97), whereas those with high levels of miR-375 had improved OS (HR 0.47, 95% CI 0.26-0.87).The patients with both a high level of miR-375 and a low level of miR-21 had significantly better outcomes. Forest plots based on an analysis of this Asian population indicated that a high level of miR-21 significantly predicted a shortened OS (HR 1.83, 95% CI 1.42-2.37), whereas a high level of miR-375 was significantly correlated with increased survival (HR 0.56, 95% CI 0.43-0.73). MiR-21 and miR-375 could be used as prognostic biomarkers in areas with a high incidence of EC, and combining these markers may results in a better effect.
Collapse
Affiliation(s)
- Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050011, China
| | - Jing Jin
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050011, China
| | - LiQun Wang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050011, China
| | - Yuejiao Hu
- Hospital Medical Insurance Department, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Di Liang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050011, China
| | - Huichai Yang
- Pathology Department, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Yueping Liu
- Pathology Department, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Baoen Shan
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, 050011, China.
| |
Collapse
|
19
|
Zhang HF, Qin JJ, Ren PF, Shi JX, Xia JF, Ye H, Wang P, Song CH, Wang KJ, Zhang JY. A panel of autoantibodies against multiple tumor-associated antigens in the immunodiagnosis of esophageal squamous cell cancer. Cancer Immunol Immunother 2016; 65:1233-42. [PMID: 27553002 PMCID: PMC11029584 DOI: 10.1007/s00262-016-1886-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in China with very low 5-year survival rate mostly due to the paucity of effective early diagnostic methods. Serum autoantibodies against 9 tumor-associated antigens (TAAs) from ESCC patients and healthy controls were detected by enzyme-linked immunosorbent assay to evaluate their performances in the immunodiagnosis of ESCC. Logistic regression models were generated to predict the probability of individuals being diagnosed with ESCC in training cohort (648 participants) and further validated in another independent cohort (372 participants). Finally, a panel of four TAAs showed high diagnostic accuracy with areas under the receiver operating characteristic curve of 0.838 in training cohort and 0.872 in validation cohort, respectively. The percentages of individuals correctly classified were 77.01 % in training cohort and 78.49 % in validation cohort, respectively. This model could discriminate early-stage (AJCC stage 0, I and II) ESCC patients from normal controls, with true-positive rate (TPR) of 67.57 % in training cohort and TPR of 63.33 % in validation cohort, and the overall TPR for early-stage ESCC was 66.85 % when the two cohorts were combined. The diagnostic performance of this model showed no significant difference between early-stage and late-stage (AJCC stage III and IV) ESCC patients. In summary, the optimized model with 4 TAAs has a high diagnostic performance for ESCC detection, especially for early-stage ESCC.
Collapse
Affiliation(s)
- Hong-Fei Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Jie-Jie Qin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng-Fei Ren
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Xiang Shi
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun-Fen Xia
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Ye
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Chun-Hua Song
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Juan Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Ying Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450052, China.
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
20
|
Abstract
MicroRNAs (miRNA) are 22-nucleotide non-coding RNAs that post-transcriptionally regulate gene expression by base pairing to partially complementary sequences in the 3'-untranslated region of their target messenger RNA. Altered miRNA expression also changes the expression of oncogenes and tumor suppressors, affecting the proliferation, apoptosis, motility and invasibility of gastrointestinal cancer cells, including the cells of esophageal squamous cell carcinoma (ESCC). It has been suggested that various miRNA expression profiles may provide useful biomarkers and therapeutic targets, but to date few studies have been published on the role of miRNA in ESCC. In this review we summarize the identification and characterization of miRNAs involved in ESCC and discuss their potential as biomarkers and therapeutic targets.
Collapse
|
21
|
Wang J, Zhang G, Wang J, Wang L, Huang X, Cheng Y. The role of cancer-associated fibroblasts in esophageal cancer. J Transl Med 2016; 14:30. [PMID: 26822225 PMCID: PMC4732002 DOI: 10.1186/s12967-016-0788-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/17/2016] [Indexed: 01/04/2023] Open
Abstract
Fibroblasts are known as critical stromal cells in wound healing by synthesizing extracellular matrix and collagen. A subpopulation of them is called cancer-associated fibroblasts (CAFs), because their production of proteins participated in various biological activities including tumor cell proliferation, invasion and metastasis. Currently some studies shed light on their role in esophageal cancer which was an aggressive cancer with a dismal survival and high rate of metastasis. Thus, to find cures for it relies on elucidating the epithelial-fibroblasts crosstalk. Herein, we reviewed the present knowledge of the CAFs’ role in esophageal premalignant condition, cancer initiation, progression, metastasis and prognosis prediction and further provided some insights into its clinical application.
Collapse
Affiliation(s)
- Jiangfeng Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, No 107 West Wenhua Road, Jinan, 250012, People's Republic of China.
| | - Guangyu Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, No 107 West Wenhua Road, Jinan, 250012, People's Republic of China.
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, No 107 West Wenhua Road, Jinan, 250012, People's Republic of China.
| | - Lu Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, No 107 West Wenhua Road, Jinan, 250012, People's Republic of China.
| | - Xiaochen Huang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, No 107 West Wenhua Road, Jinan, 250012, People's Republic of China.
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, No 107 West Wenhua Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
22
|
Zhang L, Huang C, Guo Y, Gou X, Hinsdale M, Lloyd P, Liu L. MicroRNA-26b Modulates the NF-κB Pathway in Alveolar Macrophages by Regulating PTEN. THE JOURNAL OF IMMUNOLOGY 2015; 195:5404-14. [PMID: 26503952 DOI: 10.4049/jimmunol.1402933] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 09/23/2015] [Indexed: 02/06/2023]
Abstract
NF-κB is one of the best-characterized transcription factors, providing the link between early membrane-proximal signaling events and changes in many inflammatory genes. MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. In this study, we evaluated the role of miR-26b in the LPS-induced inflammatory response in bovine alveolar macrophages (bAMs). LPS stimulation of bAMs upregulated miR-26b at 1 h and downregulated it at 6 and 36 h. Overexpression of miR-26b in bAMs enhanced the LPS-induced mRNA expression of proinflammatory cytokines and chemokines, including TNF-α, IL-1β, IL-8, and IL-10, but it directly inhibited that of IL-6. A similar trend was observed for the release of these cytokines and chemokines from bAMs. miR-26b directly bound the 3'-untranslated region of PTEN, leading to the reduction of PTEN protein in bAMs. miR-26b also enhanced the LPS-induced NF-κB signaling pathway, as revealed by increased NF-κB transcriptional activity and phosphorylation of p65, IκBα, IκB kinase, and Akt. Moreover, PTEN silencing increased the LPS-induced mRNA expression of TNF-α, IL-1β, IL-6, IL-8, and IL-10 and upregulated the NF-κB pathway. Taken together, we conclude that miR-26b participates in the inflammatory response of LPS-stimulated bAMs by modulating the NF-κB pathway through targeting PTEN.
Collapse
Affiliation(s)
- Li Zhang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Yujie Guo
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Xuxu Gou
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Myron Hinsdale
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 74126
| | - Pamela Lloyd
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| |
Collapse
|
23
|
Winther M, Alsner J, Tramm T, Baeksgaard L, Holtved E, Nordsmark M. Evaluation of miR-21 and miR-375 as prognostic biomarkers in esophageal cancer. Acta Oncol 2015; 54:1582-91. [PMID: 26481465 DOI: 10.3109/0284186x.2015.1064161] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been associated with prognosis in esophageal cancer, suggesting a role for miRNAs to help guide treatment decisions. Especially, miR-21 and miR-375 have been investigated as prognostic biomarkers. The aim of this study was to evaluate the prognostic potential of miR-21 and miR-375 in primary esophageal squamous cell carcinomas (ESCC) and esophagogastric adenocarcinomas (EAC). MATERIAL AND METHODS Pre-therapeutic tumor specimens from 195 patients with loco-regional esophageal cancer treated with neoadjuvant or definitive chemoradiotherapy or perioperative chemotherapy were analyzed. Expression levels of miR-21 and miR-375 were quantified using Affymetrix GeneChip miRNA 1.0 Array. The Cox proportional hazards model was used to assess the correlation of miR-21 and miR-375 with disease-specific survival (DSS) and overall survival (OS). Forest plots were performed to evaluate the prognostic impact of miR-21 and miR-375 in the present study and previously published reports. RESULTS In ESCC, patients with miR-21 expression levels above median showed a trend towards poorer DSS and OS. When dividing miR-21 expression by tertiles, high levels of miR-21 significantly correlated with shortened DSS [HR 1.76 (95% CI 1.05-2.97) but not OS. Similarly for EAC, a significant association between miR-21 expression above median and DSS was observed [HR 3.37 (95% CI 1.41-8.05)], in addition to a trend towards poorer OS for patients with miR-21 expression above median. Multivariate analyses identified miR-21 as an independent prognostic marker for DSS in EAC [HR 3.52 (95% CI 1.06-11.69)]. High miR-375 was not correlated with improved prognosis in either histology. However, Forest plots demonstrated that both miR-21 and miR-375 were of prognostic impact in ESCC. CONCLUSION In this study, miR-21 was identified as an independent prognostic biomarker for DSS in patients with EAC whereas miR-21 failed to show independent prognostic significance in ESCC. High miR-375 was not associated with enhanced survival in either histology.
Collapse
Affiliation(s)
- Mette Winther
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jan Alsner
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Trine Tramm
- b Department of Pathology , Aarhus University Hospital , Aarhus , Denmark
| | - Lene Baeksgaard
- c Department of Oncology , Rigshospitalet , Copenhagen , Denmark
| | - Eva Holtved
- d Department of Oncology , Odense University Hospital , Odense , Denmark
| | - Marianne Nordsmark
- e Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
24
|
Sharma P, Sharma R. miRNA-mRNA crosstalk in esophageal cancer: From diagnosis to therapy. Crit Rev Oncol Hematol 2015; 96:449-62. [PMID: 26257289 DOI: 10.1016/j.critrevonc.2015.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/11/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
The asymptomatic nature of esophageal cancer (EC) at early stages results in late clinical presentation leading to poor prognosis and limited success of therapeutic modalities. Efforts to identify diagnostic/prognostic markers have proven to be unsuccessful for translation into clinics. Hence, there is a pressing need for establishment of novel non-invasive biomarker for early diagnosis/better prognosis of EC. Recently, alteration in microRNA (miRNA) expression has emerged as an important hallmark of cancer. This review summarizes the differential expression of miRNAs in EC and addresses how their aberrant expression influences crucial biological processes such as apoptosis, cell proliferation, invasion and metastasis. Additionally, this review highlights the current status of circulating miRNA based diagnostic/prognostic markers. An effort has been made to find a connection between different miRNAs involved in EC and a detailed analysis has been done to screen out micoRNAs involved in prognosis and multidrug resistance. Further, investigation of these miRNAs would not only provide a gene therapy based strategy to prevent/treat cancer but also to reverse multidrug resistance leading to decreased requirement of harmful chemotherapeutic drugs.
Collapse
Affiliation(s)
- Priyanka Sharma
- Research Scholar, University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India.
| | - Rinu Sharma
- Assistant Professor, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi 110078, India.
| |
Collapse
|
25
|
Skinner HD, Lee JH, Bhutani MS, Weston B, Hofstetter W, Komaki R, Shiozaki H, Wadhwa R, Sudo K, Elimova E, Song S, Ye Y, Huang M, Ajani J, Wu X. A validated miRNA profile predicts response to therapy in esophageal adenocarcinoma. Cancer 2014; 120:3635-41. [PMID: 25091571 PMCID: PMC4239178 DOI: 10.1002/cncr.28911] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/30/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND In the current study we present a validated miRNA signature to predict pathologic complete response (pCR) to neoadjuvant chemoradiation in esophageal adenocarcinoma. METHODS Three patient cohorts (discovery, n = 10; model, n = 43; and validation, n = 65) with locally advanced esophageal adenocarcinoma were analyzed. In the discovery cohort 754 miRNAs were examined in pretreatment tumor biopsy specimens using a TaqMan array. Of these, the 44 most significantly altered between tumors with pCR and non-pCR were examined in an additional 43 tumors using a Fluidigm 48.48 array. The 4 miRNAs (mir-505*, mir-99b, mir-451, and mir-145*) significantly predicting pCR in both cohorts were examined in an additional validation cohort (n = 65) using an Illumina array. These 4 miRNAs were used to generate an miRNA expression profile (MEP) score. RESULTS The 4 miRNAs profiled are highly significantly associated with pCR in the model cohort (Ptrend = .008), the validation cohort (Ptrend = .025), and the combined cohort (Ptrend = 4.6 × 10(-4) ). The receiver-operator characteristic areas under the curves (AUCs) for the MEP score were 0.78 for the model cohort, 0.71 for the validation cohort, and 0.72 for the combined cohort. When combined with clinical variables, the MEP score AUCs increased to 0.89, 0.77, and 0.81, respectively Estimates from logistic regression based on the MEP were determined and used to generate a probability of pCR plot, which identifies a group of patients with very high (≥80%) and very low (≤10%) probability of pCR. CONCLUSIONS The MEP score provides a validated means of predicting pCR to neoadjuvant chemoradiotherapy in esophageal adenocarcinoma that is robust across several analysis platforms.
Collapse
Affiliation(s)
- Heath D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Jeffrey H Lee
- Deparment of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Manoop S Bhutani
- Deparment of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Brian Weston
- Deparment of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Wayne Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Hironori Shiozaki
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Roopma Wadhwa
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Kazuki Sudo
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Elena Elimova
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Shumei Song
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Jaffer Ajani
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| |
Collapse
|
26
|
Saito M, Shiraishi K, Matsumoto K, Schetter AJ, Ogata-Kawata H, Tsuchiya N, Kunitoh H, Nokihara H, Watanabe SI, Tsuta K, Kumamoto K, Takenoshita S, Yokota J, Harris CC, Kohno T. A three-microRNA signature predicts responses to platinum-based doublet chemotherapy in patients with lung adenocarcinoma. Clin Cancer Res 2014; 20:4784-93. [PMID: 25142144 DOI: 10.1158/1078-0432.ccr-14-1096] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE To examine the clinical utility of intratumor microRNAs (miRNA) as a biomarker for predicting responses to platinum-based doublet chemotherapy in patients with recurring lung adenocarcinoma (LADC). EXPERIMENTAL DESIGN The expression of miRNAs was examined in LADC tissues surgically resected from patients treated with platinum-based doublet chemotherapy at the time of LADC recurrence. Microarray-based screening of 904 miRNAs followed by quantitative reverse transcription-PCR-based verification in 40 test cohort samples, including 16 (40.0%) responders, was performed to identify miRNAs that are differentially expressed in chemotherapy responders and nonresponders. Differential expression was confirmed in a validation cohort (n = 63 samples), including 18 (28.6%) responders. An miRNA signature that predicted responses to platinum-based doublet chemotherapy was identified and its accuracy was examined by principal component and support vector machine analyses. Genotype data for the TP53-Arg72Pro polymorphism, which is associated with responses to platinum-based doublet chemotherapy, were subsequently incorporated into the prediction analysis. RESULTS A signature comprising three miRNAs (miR1290, miR196b, and miR135a*) enabled the prediction of a chemotherapeutic response (rather than progression-free and overall survival) with high accuracy in both the test and validation cohorts (82.5% and 77.8%). Examination of the latter was performed using miRNAs extracted from archived formalin-fixed paraffin-embedded tissues. Combining this miRNA signature with the TP53-Arg72Pro polymorphism genotype marginally improved the predictive power. CONCLUSION The three-miRNA signature in surgically resected primary LADC tissues may by clinically useful for predicting responsiveness to platinum-based doublet chemotherapy in patients with LADC recurrence.
Collapse
Affiliation(s)
- Motonobu Saito
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan. Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Aaron J Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hiroko Ogata-Kawata
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoto Tsuchiya
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Nokihara
- Division of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Division of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Tsuta
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kensuke Kumamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jun Yokota
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan. Cancer Genome Biology, Institute of Predictive and Personalized Medicine of Cancer, Barcelona, Spain
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
27
|
Zhu W, Xu B. MicroRNA-21 identified as predictor of cancer outcome: a meta-analysis. PLoS One 2014; 9:e103373. [PMID: 25098165 PMCID: PMC4123876 DOI: 10.1371/journal.pone.0103373] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/29/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Growing evidence from recent studies has revealed the association of microRNA-21 (mir-21) with outcomes in multiple cancers, but inconsistent findings have been reported, which rationalized a summary and analysis of available data to investigate the prognostic role of mir-21. MATERIALS AND METHODS Eligible studies were identified through several search strategies and assessed for quality. Data was extracted from studies in terms of baseline characteristics and key statistics such as hazard ratio (HR), 95% confidence interval (CI) and P value, which were utilized to calculate pooled effect size. RESULTS 25 studies were included in the meta-analysis to evaluate the prognostic role of mir-21 in malignant tumors. Elevated mir-21 level was demonstrated to moderately predict poor overall survival (OS) (HR = 1.903, 95% CI: 1.713-2.113, P = 0.000) and disease-free survival (DFS) (HR = 1.574, 95% CI: 1.139-2.175, P = 0.006) by the fixed and random effect model respectively. Importantly, subgroup analysis disclosed significant association between increased mir-21 level in cancerous tissue and worse survival status. Furthermore, over-expression of mir-21 was an independent prognostic factor for non-small cell lung cancer (NSCLC) and pancreatic cancer patients, with the pooled HR being 2.153 (95% CI: 1.693-2.739, P = 0.000) and 1.976 (95% CI: 1.639-2.384, P = 0.000). CONCLUSIONS Over-expression of mir-21, especially in cancerous tissue, was effectively predictive of worse prognosis in various carcinomas. Non-invasive circulating mir-21, however, exhibited modest ability to discriminate outcomes. Major concerns about mir-21 assay standardization and selection of specimen need to be fully addressed before its practical implementation in management of cancer.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Medical Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Zheng X, Xing S, Liu XM, Liu W, Liu D, Chi PD, Chen H, Dai SQ, Zhong Q, Zeng MS, Liu WL. Establishment of using serum YKL-40 and SCCA in combination for the diagnosis of patients with esophageal squamous cell carcinoma. BMC Cancer 2014; 14:490. [PMID: 25001061 PMCID: PMC4094903 DOI: 10.1186/1471-2407-14-490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022] Open
Abstract
Background Elevated serum YKL-40 levels have been observed in various cancers. We evaluated the diagnostic performance of serum YKL-40 alone or in combination with the CEA, CYFRA21-1 and SCCA tumor markers for patients with esophageal squamous cell carcinoma (ESCC). Methods YKL-40 was detected in ESCC cell lines and tissues by real-time RT-PCR, Western blotting and ELISA. YKL-40 protein expression was determined in 20 ESCC tumor tissues using immunohistochemistry. Serum YKL-40 was measured by ELISA in 126 healthy donors, 59 patients with benign esophageal diseases and 150 patients with ESCC. Serum CEA, CYFRA21-1 and SCCA were determined by electrochemiluminescence. Results YKL-40 mRNA and protein were observed in ESCC cancer cell lines, tissues and cell culture media, respectively. YKL-40 expression was observed in 17 of 20 ESCC samples (85%). Serum YKL-40 concentration was significantly elevated in patients with ESCC (Range: 6.95-502.10 ng/ml) compared with patients with benign diseases (Range: 1.21-429.30 ng/ml; P = 0.038) and healthy controls (Range: 2.56-132.26 ng/ml; P < 0.001). ROC curves demonstrated that serum YKL-40 has a sensitivity of 72.70%, a specificity of 84.13% and an AUC of 0.874 for the diagnosis of ESCC, which was superior to CEA (Sen: 8.00%; Spe: 96.80%, AUC = 0.652), CYFRA21-1 (Sen: 40.00%; Spe: 92.06%, AUC = 0.746) and SCCA (Sen: 32.67%; Spe: 94.44%, AUC = 0.789). The YKL-40 and SCCA combination was better for diagnosing ESCC (Sen: 82.00%, Spe: 79.37%, PPV: 82.55 and NPV: 78.74; AUC = 0.917) than the YKL-40 and CEA combination (Sen: 74.00%, Spe: 83.20%, PPV: 84.09 and NPV: 72.73; AUC = 0.877), the YKL-40 and CYFRA21-1 combination (Sen: 82.00%, Spe: 77.78%, PPV: 81.46% and NPV: 78.40%; AUC = 0.897) or the CEA, CYFRA21-1 and SCCA combination (Sen: 56.67%, Spe: 84.80%, PPV: 81.73 and NPV: 61.99; AUC = 0.831). Associations between serum YKL-40 levels and the clinic characteristics of ESCC were not significant, with the exception of age (p = 0.001). Conclusions ESCC tumor cells and tissues express YKL-40. Serum YKL-40 may be a potential biomarker for ESCC. Serum YKL-40 in combination with SCCA significantly increases the sensitivity of detecting ESCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.
| | | |
Collapse
|
29
|
Fu W, Pang L, Chen Y, Yang L, Zhu J, Wei Y. The microRNAs as prognostic biomarkers for survival in esophageal cancer: a meta-analysis. ScientificWorldJournal 2014; 2014:523979. [PMID: 25097879 PMCID: PMC4109072 DOI: 10.1155/2014/523979] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/24/2014] [Accepted: 06/18/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES We performed this meta-analysis to summarize all the results from available studies, aiming delineating the prognostic role of miRNA in esophageal cancer. DESIGN AND METHODS We searched the electronic databases PubMed, EMBASE, and ISI Web of Science without time restrictions for the correlative literature to aggregate the survival results. Relevant data were extracted from studies investigating the relationship between miRNAs expression and survival in esophageal cancer patients. Pooled hazard ratios of miR-21 and miR-375 for OS in ESCC were calculated. RESULTS A total of 25 studies involving 2,258 subjects analyzed the relationship between miRNA and prognosis of EC. In all, thirty-nine miRNAs associated with prognosis were reported in these studies. The pooled HR of higher miR-21 expression compared with lower miR-21 expression in ESCC was 1.84 (95% CI: 1.41-2.40, P < 0.001), which could significantly predict poorer OS in ESCC. Besides, higher miR-375 was also a significant predictor for OS in ESCC, with a pooled HR of 0.55 (95% CI: 0.42-0.72, P < 0.001). CONCLUSIONS Our results support that miR-21 and miR-375 have a prognostic role in ESCC and may be useful therapeutic targets for the treatment of ESCC and meticulous follow-up for early detection of recurrence.
Collapse
Affiliation(s)
- Wenbo Fu
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
- Department of Thoracic and Cardiovascular Surgery, Hospital of Xinjiang Production and Construction Corps, Urumchi, Xinjiang 830002, China
| | - Lijuan Pang
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yunzhao Chen
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Lan Yang
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Janbo Zhu
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yutao Wei
- Department of Thoracic and Cardiovascular Surgery, Hospital of Xinjiang Production and Construction Corps, Urumchi, Xinjiang 830002, China
- Department of Thoracic and Cardiovascular Surgery, First Hospital Affiliated to Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
30
|
Fu C, Dong W, Wang Z, Li H, Qin Q, Li B. The expression of miR-21 and miR-375 predict prognosis of esophageal cancer. Biochem Biophys Res Commun 2014; 446:1197-203. [PMID: 24680681 DOI: 10.1016/j.bbrc.2014.03.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNA is a class of small, well-conserved, non-coding RNAs, and could play a potential role as diagnostic and prognostic biomarkers of esophageal cancers. We aimed to review comprehensively the evidence of microRNA as prognostic biomarkers in esophageal cancers. METHODS Studies were identified by searching PubMed, Embase and Web of Science until November 2013. Descriptive characteristics of studies were described and an additional meta-analysis for specific microRNAs which were studied most frequently was performed. Pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated. Fixed model or random model method was chosen depending on the heterogeneity among the studies. RESULTS Twenty-two studies including a total of 1946 participants were enrolled after a strict filtering and qualifying process. Among 33 prognostic microRNAs identified for esophageal cancer, miR-21 and miR-375 appeared more frequently. The median study size was 70.5 patients (29-249 patients) and the median HR was 3.305 (IQR=1.615-7.31). For the studies evaluating miR-21's association with overall survival (OS), the pooled HR suggested that high level of miR-21 has a negative impact on OS (HR=1.52[1.17-1.98], P=0.001). As for miR-375, the pooled HR for OS (high/low) was 0.53 (95% CI: 0.39-0.73, P<0.001), indicated that low level of miR-375 has a negative impact on OS. These results indicated that microRNAs show promising associations with prognosis in esophageal cancer. Up-regulation of miR-21 and down-regulation of miR-375 can predict unfavourable prognosis in esophageal cancer.
Collapse
Affiliation(s)
- Chengrui Fu
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, China; School of Medicine and Life Sciences, University of Jinan - Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wei Dong
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, China; Department of Radiation Oncology, Cancer Hospital, Tianjin Medical University, Tianjin Province, China
| | - Zhiwu Wang
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, China; Department of Radiation Oncology, Cancer Hospital, Tianjin Medical University, Tianjin Province, China
| | - Hongsheng Li
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, China
| | - Qin Qin
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, China
| | - Baosheng Li
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, China.
| |
Collapse
|
31
|
Li J, Shan F, Xiong G, Wang JM, Wang WL, Xu X, Bai Y. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells. Biochem Biophys Res Commun 2014; 446:267-71. [PMID: 24589738 DOI: 10.1016/j.bbrc.2014.02.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/27/2022]
Abstract
Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Junxia Li
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Xiong
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Lin Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Xueqing Xu
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | - Yun Bai
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung SCJ, Zhang H. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 2014; 5:e1088. [PMID: 24577086 PMCID: PMC3944271 DOI: 10.1038/cddis.2014.59] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/31/2013] [Accepted: 01/22/2014] [Indexed: 02/05/2023]
Abstract
The antidiabetic drug metformin exerts chemopreventive and antineoplastic effects in many types of malignancies. However, the mechanisms responsible for metformin actions appear diverse and may differ in different types of cancer. Understanding the molecular and cellular mechanisms specific for different cancers is important to optimize strategy for metformin treatment in different cancer types. Here, we investigate the in vitro and in vivo effects of metformin on esophageal squamous cell carcinoma (ESCC) cells. Metformin selectively inhibited cell growth in ESCC tumor cells but not immortalized noncancerous esophageal epithelial cells. In addition to apoptosis, metformin triggered autophagy. Pharmacological or genetic inhibition of autophagy sensitized ESCC cells to metformin-induced apoptotic cell death. Mechanistically, signal transducer and activator of transcription 3 (Stat3) and its downstream target Bcl-2 was inactivated by metformin treatment. Accordingly, small interfering RNA (siRNA)-mediated Stat3 knockdown enhanced metformin-induced autophagy and apoptosis, and concomitantly enhanced the inhibitory effect of metformin on cell viability. Similarly, the Bcl-2 proto-oncogene, an inhibitor of both apoptosis and autophagy, was repressed by metformin. Ectopic expression of Bcl-2 protected cells from metformin-mediated autophagy and apoptosis. In vivo, metformin downregulated Stat3 activity and Bcl-2 expression, induced apoptosis and autophagy, and inhibited tumor growth. Together, inactivation of Stat3-Bcl-2 pathway contributes to metformin-induced growth inhibition of ESCC by facilitating crosstalk between apoptosis and autophagy.
Collapse
Affiliation(s)
- Y Feng
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - C Ke
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Q Tang
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - H Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - X Zheng
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - W Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - J Ke
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - J Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - S-CJ Yeung
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Zhang
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China. Tel: +86 754 88900406; Fax: +86 754 88900406; E-mail:
| |
Collapse
|
33
|
Hong L, Han Y, Zhang H, Zhao Q, Wu K, Fan D. Prognosis-related microRNAs in esophageal cancer. Expert Opin Biol Ther 2014; 14:483-9. [PMID: 24506707 DOI: 10.1517/14712598.2014.882896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite improvements in detection, surgical resection and adjuvant therapy, the prognosis of esophageal cancer (EC) patients is dismal. A number of microRNAs (miRNAs) are related with the prognosis of EC. AREAS COVERED This review summarises the recent advances in prognosis-related miRNAs in EC and also analyses the molecular functions that they provide. This study further envisages future developments in the potential clinical applications of these miRNAs. EXPERT OPINION Altered miRNA expression of cancer tissues is useful for predicting the prognosis of EC patients. Individual circulating miRNAs have the potential to be used as novel biomarkers. Continued basic studies are warranted to gain more mechanistic insights into the functional effect of prognosis-related miRNAs on EC. More clinical trials should be performed to promote the clinical use of prognosis-related miRNAs.
Collapse
Affiliation(s)
- Liu Hong
- Fourth Military Medical University, Xijing Hospital, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province , China +86 29 84773974 ; +86 29 82539041 ; ,
| | | | | | | | | | | |
Collapse
|
34
|
Li P, Mao WM, Zheng ZG, Dong ZM, Ling ZQ. Down-regulation of PTEN expression modulated by dysregulated miR-21 contributes to the progression of esophageal cancer. Dig Dis Sci 2013; 58:3483-93. [PMID: 24221338 DOI: 10.1007/s10620-013-2854-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/20/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM miR-21, a putative tumor oncomiR, is a frequently overexpressed miRNA in a variety of tumors. Because it targets tumor-suppressor genes it has been linked to tumor progression. In this study we investigated the role of miR-21 in esophageal squamous cell carcinoma (ESCC), and its possible mechanism. METHODS Expression of miR-21 was detected by stem-loop RT-PCR in tissue from 76 invasive ESCC at stage I-IV and in their corresponding para-cancerous histological normal tissues (PCHNT). Thirty endoscopic esophageal mucosal biopsy specimens from non-tumor patients were used as controls. Expression of PTEN in 76 paired ESCC and PCHNT was investigated by real-time RT-PCR and an immunohistochemical method, respectively. Paired tumor and PCHNT specimens of 20 ESCC cases were randomly selected for western blot analysis. The effect of miR-21 on PTEN expression was assessed in the ESCC cell line with an miR-21 inhibitor to reduce miR-21 expression. Furthermore, the roles of miR-21 in cell biology were analyzed by use of miR-21 inhibitor-transfected cells. RESULTS Stem-loop RT-PCR revealed miR-21 was significantly overexpressed in ESCC tissues and cell lines. Overexpression of miR-21 correlated with tumor status, lymph node metastasis, and clinical stage. We demonstrated that knockdown of miR-21 significantly increased expression of PTEN protein. Consequent PTEN expression reduced cell proliferation, invasion, and migration. CONCLUSIONS Our findings suggest that miR-21 could be a potential oncomiR, probably by regulation of PTEN, and a novel prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China,
| | | | | | | | | |
Collapse
|
35
|
Oue N, Anami K, Schetter AJ, Moehler M, Okayama H, Khan MA, Bowman ED, Mueller A, Schad A, Shimomura M, Hinoi T, Aoyagi K, Sasaki H, Okajima M, Ohdan H, Galle PR, Yasui W, Harris CC. High miR-21 expression from FFPE tissues is associated with poor survival and response to adjuvant chemotherapy in colon cancer. Int J Cancer 2013; 134:1926-34. [PMID: 24122631 DOI: 10.1002/ijc.28522] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/27/2013] [Indexed: 12/14/2022]
Abstract
Colon cancer (CC) is a leading cause of cancer mortality. Novel biomarkers are needed to identify CC patients at high risk of recurrence and those who may benefit from therapeutic intervention. The aim of this study is to investigate if miR-21 expression from RNA isolated from formalin-fixed paraffin-embedded (FFPE) tissue sections is associated with prognosis and therapeutic outcome for patients with CC. The expression of miR-21 was measured by quantitative reverse transcriptase-polymerase chain reaction in a Japanese cohort (stage I-IV, n = 156) and a German cohort (stage II, n = 145). High miR-21 expression in tumors was associated with poor survival in both the stage II/III Japanese (p = 0.0008) and stage II German (p = 0.047) cohorts. These associations were independent of other clinical covariates in multivariable models. Receipt of adjuvant chemotherapy was not beneficial in patients with high miR-21 in either cohort. In the Japanese cohort, high miR-21 expression was significantly associated with poor therapeutic outcome (p = 0.0001) and adjuvant therapy was associated with improved survival in patients with low miR-21 (p = 0.001). These results suggest that miR-21 is a promising biomarker to identify patients with poor prognosis and can be accurately measured in FFPE tissues. The expression of miR-21 may also identify patients who will benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Naohide Oue
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sun X, Qiu JJ, Zhu S, Cao B, Sun L, Li S, Li P, Zhang S, Dong S. Oncogenic features of PHF8 histone demethylase in esophageal squamous cell carcinoma. PLoS One 2013; 8:e77353. [PMID: 24146981 PMCID: PMC3795633 DOI: 10.1371/journal.pone.0077353] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/30/2013] [Indexed: 12/23/2022] Open
Abstract
Esophageal cancer is the sixth leading cause of cancer-related deaths worldwide. It has been reported that histone demethylases are involved in the carcinogenesis of certain types of tumors. Here, we studied the role of one of the histone lysine demethylases, plant homeodomain finger protein 8 (PHF8), in the carcinogenesis of esophageal squamous cell carcinoma (ESCC). Using short hairpin RNA via lentiviral infection, we established stable ESCC cell lines with constitutive downregulation of PHF8 expression. Knockdown of PHF8 in ESCC cells resulted in inhibition of cell proliferation and an increase of apoptosis. Moreover, there were reductions of both anchorage-dependent and -independent colony formation. In vitro migration and invasion assays showed that knockdown of PHF8 led to a reduction in the number of migratory and invasive cells. Furthermore, downregulation of PHF8 attenuated the tumorigenicity of ESCC cells in vivo. Taken together, our study revealed the oncogenic features of PHF8 in ESCC, suggesting that PHF8 may be a potential diagnostic marker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xiujing Sun
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jihui Julia Qiu
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lin Sun
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sen Li
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shuo Dong
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Plum PS, Bollschweiler E, Hölscher AH, Warnecke-Eberz U. Novel diagnostic and prognostic biomarkers in esophageal cancer. ACTA ACUST UNITED AC 2013; 7:557-71. [PMID: 24093836 DOI: 10.1517/17530059.2013.843526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION This article provides an overview of actual biomarkers with an impact on improvement of diagnosis and treatment of esophageal cancer patients. AREAS COVERED Recent literature has been analyzed and provides information regarding the potential role of molecular markers as a diagnostic or prognostic factor in esophageal cancer. EXPERT OPINION Until now, the role of molecular markers is far from being firmly established for routine use and is not without obstacles. However, with reliable standardized methods, established cut-off values and promising candidates in marker panels with markers of genetic, epigenetic and proteomic origin might result in a marker tool worthwhile of being validated in large, prospective, randomized trials. Novel validated marker combinations have to be clinically applied to prove their putative role in complementing clinical techniques within the development of better detection concepts of esophageal cancer, improving patients' long-term prognosis by early and purposive therapy within individualized treatment concepts.
Collapse
Affiliation(s)
- Patrick S Plum
- University of Cologne, Department of General, Visceral and Cancer Surgery , Kerpener Str. 62, Cologne, 50937 , Germany +49 221 4786273 ; +49 221 4785076 ;
| | | | | | | |
Collapse
|
38
|
The potential of molecular markers to improve interventions through the natural history of oesophageal squamous cell carcinoma. Biosci Rep 2013; 33:BSR20130063. [PMID: 23837802 PMCID: PMC3747595 DOI: 10.1042/bsr20130063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
EC (oesophageal cancer) is one of the ten most frequent and fatal tumours worldwide and ESCC (oesophageal squamous cell carcinoma) accounts for about 80% of the cases. The first symptoms of ESCC arise late during the progression of the disease and, therefore, the diagnosis is usually done in advanced stages. This leads to an inefficient treatment and consequently to a poor prognosis. Thus, a comprehensive knowledge of ESCC biology is of major importance to identify risk factors, especially in high-incidence areas and biomarkers which could enable ESCC prevention and interventions throughout the natural history of the disease. In this review, we present the current knowledge regarding ESCC aetiology as well as the different genetic and epigenetic alterations already described in this tumour. We also discuss how these alterations could be used to anticipate ESCC diagnosis as well as how they can help improving treatment. A molecular natural history of the disease is proposed pointing out potential markers that may improve interventions at different points of ESCC development. Only when the different layers of complexity behind this tumour are elucidated, it will be possible to successfully perform prevention at different levels.
Collapse
|
39
|
Epigenetic alterations and their clinical implications in esophageal squamous cell carcinoma. Gen Thorac Cardiovasc Surg 2013; 61:262-9. [DOI: 10.1007/s11748-013-0235-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Indexed: 12/31/2022]
|