1
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
2
|
Zhang W, Fu H, Liu ZR, Xu L, Che X, Ning YT, Zhan ZY, Zhou GC. Transarterial chemoembolization combined with lenvatinib vs transarterial chemoembolization combined with sorafenib for unresectable hepatocellular carcinoma: A systematic review and meta-analysis. World J Gastrointest Oncol 2025; 17:105887. [DOI: 10.4251/wjgo.v17.i6.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 04/23/2025] [Indexed: 06/13/2025] Open
Abstract
BACKGROUND Lenvatinib and sorafenib are tyrosine kinase inhibitors that are effective in the treatment of unresectable hepatocellular carcinoma (uHCC). The efficacy of which of them is better suited to combine transarterial chemoembolization (TACE) for the treatment of uHCC is ripe.
AIM To compare the effectiveness of TACE combined with lenvatinib (TACE-lenvatinib) and TACE combined with sorafenib (TACE-sorafenib) in the treatment of uHCC, this study was carried out.
METHODS Publicly available studies comparing the efficacy of TACE-lenvatinib and TACE-sorafenib in the treatment of uHCC were collected from PubMed, Embase and Cochrane Library, with a cut-off date of December 2024. Stata SE 15 software was used for statistical analysis.
RESULTS A total of six studies involving 547 patients were included, 248 in the TACE-lenvatinib group and 299 in the TACE-sorafenib group. Meta-analysis results showed that TACE-lenvatinib was more effective than TACE-sorafenib in complete response [relative risk (RR) = 1.81, 95% confidence interval (CI): 1.11-2.96, P = 0.02], partial response (RR = 1.38, 95%CI: 1.12-1.70, P = 0.002), objective response rate (RR = 1.47, 95%CI: 1.24-1.74, P < 0.0001) and disease control rate (RR = 1.22, 95%CI: 1.00-1.49, P = 0.05). TACE-lenvatinib was significantly lower than TACE-sorafenib in progressive disease rate (RR = 0.54, 95%CI: 0.39-0.74, P = 0.002). No significant difference was found in stable disease rate (RR = 0.89, 95%CI: 0.60-1.33, P = 0.58) between the two groups. TACE-lenvatinib was significantly more effective than TACE-sorafenib in overall survival (hazard ratio = 2.00, 95%CI: 1.59-2.50, P < 0.05) and progression free survival (hazard ratio = 2.04, 95%CI: 1.49-2.86, P < 0.05). As regards adverse events, TACE-lenvatinib was better in reducing the incidence of hypertension than TACE-sorafenib, while no significant difference was found in overall adverse events, abdominal pain, fever, fatigue, nausea and vomiting, decreased appetite, liver dysfunction, hand-foot skin reaction, diarrhea, thrombocytopenia, and rash between the two groups.
CONCLUSION In patients with uHCC, TACE-lenvatinib induced a better tumor response rate and survival outcome than TACE-sorafenib, while TACE-lenvatinib resulted in a higher incidence of hypertension than TACE-sorafenib. However, these conclusions are derived from currently available medical evidence, and further confirmation by more rigorously designed randomized controlled studies is still needed.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Hua Fu
- Department of Hepatobiliary Surgery, People’s Hospital of Xiangxi Autonomous Prefecture, Jishou 416000, Hunan Province, China
| | - Zi-Rong Liu
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Lin Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Xu Che
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Yan-Ting Ning
- Department of Nursing, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Zheng-Yin Zhan
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Guo-Chao Zhou
- Department of Hepatobiliary Surgery, People’s Hospital of Xiangxi Autonomous Prefecture, Jishou 416000, Hunan Province, China
| |
Collapse
|
3
|
Zhu J, Wang L, Nie X, Ou S, Shen J, Zhang S, Wu G. RBMS3-loss impedes TRIM21-induced ubiquitination of ANGPT2 in an RNA-independent manner and drives sorafenib resistance in hepatocellular carcinoma. Oncogene 2025; 44:1620-1633. [PMID: 40069332 DOI: 10.1038/s41388-025-03335-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 05/23/2025]
Abstract
Sorafenib, a first-line targeted drug for advanced hepatocellular carcinoma (HCC), has limited clinical application due to intrinsic/acquired resistance. In this study, we have identified the RNA-binding protein RBMS3 as a pivotal regulator involved in sorafenib resistance among patients with HCC. Loss- and gain-of-function experiments further demonstrate that downregulation of RBMS3 promotes angiogenesis and confers resistance to sorafenib by augmenting the capacity of HCC cells to express and secrete ANGPT2, while upregulation of RBMS3 reverse these phenotypes.Through immunoprecipitation mass spectrometry experiments and co-immunoprecipitation (co-IP), we further verified that RBMS3 can facilitate the K48-linked ubiquitination and subsequent protein degradation of ANGPT2 by recruiting the ubiquitin E3 ligase TRIM21 in an RNA-independent manner.Additionally, RBMS3 is found to be deleted in HCC tissues and exhibits a significant positive correlation with angiogenesis and resistance to sorafenib treatment. Importantly, the combination of ANGPT2 antibody in RBMS3-deficient HCC cells restores sensitivity to sorafenib both in vitro and in vivo. These findings uncovered a novel molecular basis for post-translational upregulation of ANGPT2, suggesting that RBMS3-loss plays an oncogenic role in HCC by promoting angiogenesis and conferring resistance to sorafenib treatment.
Collapse
Affiliation(s)
- Jinrong Zhu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Lei Wang
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaoya Nie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shengming Ou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, PR China
| | - Shuxia Zhang
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, PR China.
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
4
|
Al-Qahtani WK, Alkhuriji AF, Babay ZA, Kaabi AMH, Al-Malahi NM, Alshammari JO. Genetic Polymorphisms of Vascular Endothelial Growth Factor and Their Impact on Recurrent Spontaneous Miscarriage in Saudi Women. Int J Mol Sci 2025; 26:4757. [PMID: 40429899 PMCID: PMC12112548 DOI: 10.3390/ijms26104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/03/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Recurrent spontaneous miscarriage (RSM) is defined as the loss of three or more clinically recognized pregnancies before 20 weeks of gestation. Angiogenesis, a crucial process in early pregnancy, is regulated by vascular endothelial growth factor (VEGF), a protein that plays a pivotal role in successful pregnancy. Disruptions in vascular development, such as those due to variations in VEGF gene expression, may contribute to infertility and pregnancy complications. Therefore, there is a need for more studies that show the effect of VEGF on RSM. This study investigated the impact of VEGF gene polymorphisms on RSM in Saudi women. Blood samples were collected from 200 Saudi women (100 cases with RSM and 100 controls). DNA was extracted from the buffy coat and analyzed for VEGF polymorphisms (rs10434, rs3025053, rs699947, rs2010963, rs833061, and rs25648) using TaqMan Real-Time PCR. Plasma VEGF levels were measured using the Human VEGF ELISA Kit. There was no significant association between rs10434, rs833061, and rs25648 and RSM. However, rs2010963, rs3025053, and rs699947 were significantly associated with an increased risk of miscarriage (p < 0.05). Furthermore, VEGF concentrations were significantly lower in the RSM case group (both pregnant and non-pregnant) compared to the control group (p < 0.05). VEGF polymorphisms, along with reduced VEGF serum levels, are associated with an increased risk of RSM in Saudi women. Further studies are needed to explore the underlying mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Wadha Khalid Al-Qahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.K.A.-Q.); (A.F.A.); (J.O.A.)
| | - Afrah Fahad Alkhuriji
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.K.A.-Q.); (A.F.A.); (J.O.A.)
| | - Zeneb Ahmed Babay
- Department of Obstetrics and Gynaecology, King Khalid University Hospital, King Saud University, Riyadh 11461, Saudi Arabia;
| | | | - Nawal M. Al-Malahi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.K.A.-Q.); (A.F.A.); (J.O.A.)
| | - Jamilah Obaid Alshammari
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.K.A.-Q.); (A.F.A.); (J.O.A.)
| |
Collapse
|
5
|
Chen T, Baldauf CE, Gill KS, Ingles SA, Pickering TA, Wilson ML. Soluble Fms-like tyrosine kinase-1 polymorphisms associated with severe-spectrum hypertensive disorders of pregnancy. Arch Gynecol Obstet 2025; 311:609-619. [PMID: 39806130 PMCID: PMC11920004 DOI: 10.1007/s00404-024-07917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND sFLT-1 has been implicated in the pathogenesis of HDP. We aimed to examine the role of maternal and fetal polymorphisms in risk of HDP and severe-spectrum disease. METHODS Cases of HDP (143) and controls (169) from mother-baby dyads were recruited at the Los Angeles County Women's and Children's Hospital (WCH). Cases of severe disease (99) and controls (31) from mother-father-baby triads were recruited through HELLP syndrome websites. Four sFLT-1 SNPs (rs7993594, rs3751395, rs7983774, and rs664393) were genotyped. Data was analyzed using a log-linear regression model in the Haplin package in R. RESULTS Maternal double dose of the A allele (rs7993594) exhibited a nominally significant increased risk of HDP (RR = 3.52, 95% CI 1.08, 11.20). In the severe-spectrum cohort, a marginally significant protective effect among mothers carrying infants with a single dose of the A allele (rs7993594) was observed (RR = 0.59, 95% CI 0.36, 0.98) and double-dose maternal carriage of the G-t-G-G haplotype increased risk of severe disease (RR = 4.13, 95% CI 1.22, 13.80). CONCLUSION The maternal rs7993594 A allele appears to be associated with increased risk of HDP. Double-dose maternal carriage of the G-t-G-G haplotype increased risk of severe disease whereas the fetal rs7983774 A allele appears to be associated with decreased risk.
Collapse
Affiliation(s)
- Tracy Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Claire E Baldauf
- Fetal and Neonatal Institute, Division of Neonatology, Department of Pediatrics, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Kevin S Gill
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sue Ann Ingles
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Trevor A Pickering
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Melissa L Wilson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
El-Sheshtawy AM, Werida RH, Bahgat MH, El-Etreby S, El-Bassiouny NA. Pharmacogenomic insights: IL-23R and ATG-10 polymorphisms in Sorafenib response for hepatocellular carcinoma. Clin Exp Med 2025; 25:51. [PMID: 39921803 PMCID: PMC11807022 DOI: 10.1007/s10238-025-01576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Sorafenib is the first FDA-approved systemic therapy for advanced HCC. This study investigates the influence of IL-23R (rs7517847) and ATG-10 (rs10514231) genetic polymorphisms on Sorafenib response, survival outcomes, average tolerable dose, and adverse events. This prospective open-label cohort study included 100 HCC patients, assessing IL-23R and ATG-10 genotypes via real-time polymerase chain reaction (RT-PCR). Patient's responses were evaluated using modified RECIST criteria. Statistical analyses evaluated the association of genetic variants with response, progression-free survival (PFS), overall survival (OS), average tolerable Sorafenib dose, and adverse events. IL-23R TT carriers had the highest Sorafenib response rate (80%) compared to GT (13.3%) and GG (6.7%) (P = 0.021), while ATG-10 TT carriers had a 13.9-fold increased response likelihood (P = 0.001). The T allele in ATG-10 significantly predicted longer PFS (P = 0.025) and OS (P = 0.011), suggesting a potential prognostic role. IL-23R GG carriers received significantly higher Sorafenib doses than TT (P = 0.0174) and GT (P = 0.0227), whereas ATG-10 had no effect on dosage. However, its CT genotype was significantly associated with a higher risk of Hand-Foot Syndrome (P = 0.012), and independent of dose (P = 0.0018). IL-23R and ATG-10 polymorphisms influence Sorafenib response, survival, and tolerability in HCC patients. Genetic screening may improve personalized treatment strategies by optimizing Sorafenib efficacy and minimizing toxicity.This trial was registered on clinicaltrials.gov with registration number NCT06030895, registered on "September 11th, 2023," retrospectively.
Collapse
Affiliation(s)
- Asmaa M El-Sheshtawy
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Rehab H Werida
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Monir Hussein Bahgat
- Department of Hepatology and Gastroenterology, Mansoura Specialized Medical Hospital, Mansoura, Egypt
| | - Shahira El-Etreby
- Department of Hepatology and Gastroenterology, Mansoura Specialized Medical Hospital, Mansoura, Egypt
| | - Noha A El-Bassiouny
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
Wang Y, Ma X, Chen X, Wen Z, Bi C, Xu Z, Liu W. Gold(I) complexes bearing EGFR-inhibiting ligands as anti-HCC agents through dual targeting of EGFR and TrxR. Eur J Med Chem 2025; 283:117137. [PMID: 39693862 DOI: 10.1016/j.ejmech.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) and thioredoxin reductase (TrxR) are commonly associated with an adverse prognosis in hepatocellular carcinoma (HCC). This makes them key targets for the treatment of HCC. Studies have shown that the clinical efficacy of the EGFR tyrosine kinase inhibitor gefitinib alone in treating HCC is limited. Herein, we developed a series of novel gold(I) complexes using a "dual-targeting strategy" by combining gold(I) complexes with different gefitinib derivatives. Among them, the best complex 6g exhibits significant antiproliferative activity against Huh7 cells and Huh7R (lenvatinib-resistant) cells. Remarkably, complex 6g inhibits the expression of phosphorylated EGFR while also effectively inhibiting intracellular TrxR activity. In addition, complex 6g causes a significant increase in the accumulation of reactive oxygen species (ROS), disrupts mitochondrial membrane potential (MMP), arrests the cell cycle in the G0/G1 phase, and induces apoptosis. Collectively, our findings demonstrate that complex 6g exhibits potential anti-HCC effects via dual-targeting of EGFR and TrxR.
Collapse
Affiliation(s)
- Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xuejie Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunyang Bi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215031, PR China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
Hussain T, Badshah Y, Shabbir M, Abid F, Kamal GM, Fayyaz A, Trembley JH, Afsar T, Husain FM, Razak S. Pathogenic nsSNPs of protein kinase C-eta with hepatocellular carcinoma susceptibility. Cancer Cell Int 2024; 24:346. [PMID: 39448958 PMCID: PMC11515447 DOI: 10.1186/s12935-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global health concern. Due to late diagnosis and limited therapeutic strategies, HCC based mortality rate is exponentially increasing globally. Genetic predisposition is a non-avoidable intrinsic factor that could alter the genome sequence, ultimately leading to HCC. Protein kinase C eta (PKCη) is involved in key physiological roles, hence alteration in PKCη could aid in cancer progression. Research indicates association between non-synonymous (ns) SNPs and HCC onset. However, effect of nsSNP variants of PKCη on HCC development has not been explored yet. Hence, this study aimed to investigate the association between pathogenic nsSNPs of PKCη with HCC. METHODS Non-synonymous (missense) variants of PKCη were obtained from Ensembl genome browser. These variants were filtered out to obtain pathogenic nsSNPs of PKCη. Genotyping of nsSNPs was done through Tetra ARMS PCR. For that, blood samples of 348 HCC patients and 337 controls were collected. The clinical factors that influence HCC were studied. Relative risk (RR) and Odds Ratio (OR) with 95% confidence interval was calculated by Chi-square test and P-value < 0.05 was deemed significant. RESULTS Five nsSNP variants of PKCη including rs1162102190 (T/C), rs868127012 (G/T), rs750830348 (G/T), rs768619375 (T/C), and rs752329416 (T/C) were identified. The retrieved nsSNPs were frequently identified in HCC patients. However, rs752329416 T/C was significantly prevalent in patients having HCC family history. Moreover, all the variants were found in HCC patients manifesting the stage II than the advance stages of HCC. CONCLUSION This study can be utilized to identify potential genetic markers for early screening of HCC. Moreover, consideration of further clinical factors, and mechanistic approach would enhance the understanding that how alteration in nsSNPs could impact the HCC onset.
Collapse
Affiliation(s)
- Tayyaba Hussain
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Fizzah Abid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Ghulam Murtaza Kamal
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Amna Fayyaz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Wang C, Wei F, Sun X, Qiu W, Yu Y, Sun D, Zhi Y, Li J, Fan Z, Lv G, Wang G. Exploring potential predictive biomarkers through historical perspectives on the evolution of systemic therapies into the emergence of neoadjuvant therapy for the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1429919. [PMID: 38993637 PMCID: PMC11236692 DOI: 10.3389/fonc.2024.1429919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a type of liver cancer, ranks as the sixth most prevalent cancer globally and represents the third leading cause of cancer-related deaths. Approximately half of HCC patients miss the opportunity for curative treatment and are then limited to undergoing systemic therapies. Currently, systemic therapy has entered the era of immunotherapy, particularly with the advent of immune-checkpoint inhibitors (ICIs), which have significantly enhanced outcomes for patients with advanced HCC. Neoadjuvant treatment for HCC has become a possibility-findings from the IMbrave 050 trial indicated that ICIs offer the benefit of recurrence-free survival for high-risk HCC patients post-resection or local ablation. However, only a small fraction of individuals benefit from systemic therapy. Consequently, there is an urgent need to identify predictive biomarkers for treatment response and outcome assessment. This study reviewed the historical progression of systemic therapy for HCC, highlighting notable therapeutic advancements. This study examined the development of systemic therapies involving conventional drugs and clinical trials utilized in HCC treatment, as well as potential predictive biomarkers for advanced and/or locally advanced HCC. Various studies have revealed potential biomarkers in the context of HCC treatment. These include the association of dendritic cells (DCs) with a favorable response to neoadjuvant therapy, the presence of enriched T effector cells and tertiary lymphoid structures, the identification of CD138+ plasma cells, and distinct spatial arrangements of B cells in close proximity to T cells among responders with locally advanced HCC receiving neoadjuvant cabozantinib and nivolumab treatment. Furthermore, pathological response has been associated with intratumoral cellular triads consisting of progenitor CD8+ T cells and CXCL13+ CD4+ T helper cells surrounding mature DCs in patients receiving neoadjuvant cemiplimab for resectable HCC. Despite no widely recognized predictive biomarkers for HCC individualized treatment, we believe neoadjuvant trials hold the most promise in identifying and validating them. This is because they can collect multiple samples from resectable HCC patients across stages, especially with multi-omics, bridging preclinical and clinical gaps.
Collapse
Affiliation(s)
- Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dawei Sun
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| |
Collapse
|
11
|
Wu TKH, Hui RWH, Mak LY, Fung J, Seto WK, Yuen MF. Hepatocellular carcinoma: Advances in systemic therapies. F1000Res 2024; 13:104. [PMID: 38766497 PMCID: PMC11099512 DOI: 10.12688/f1000research.145493.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is traditionally associated with limited treatment options and a poor prognosis. Sorafenib, a multiple tyrosine kinase inhibitor, was introduced in 2007 as a first-in-class systemic agent for advanced HCC. After sorafenib, a range of targeted therapies and immunotherapies have demonstrated survival benefits in the past 5 years, revolutionizing the treatment landscape of advanced HCC. More recently, evidence of novel combinations of systemic agents with distinct mechanisms has emerged. In particular, combination trials on atezolizumab plus bevacizumab and durvalumab plus tremelimumab have shown encouraging efficacy. Hence, international societies have revamped their guidelines to incorporate new recommendations for these novel systemic agents. Aside from treatment in advanced HCC, the indications for systemic therapy are expanding. For example, the combination of systemic therapeutics with locoregional therapy (trans-arterial chemoembolization or stereotactic body radiation therapy) has demonstrated promising early results in downstaging HCC. Recent trials have also explored the role of systemic therapy as neoadjuvant treatment for borderline-resectable HCC or as adjuvant treatment to reduce recurrence risk after curative resection. Despite encouraging results from clinical trials, the real-world efficacy of systemic agents in specific patient subgroups (such as patients with advanced cirrhosis, high bleeding risk, renal impairment, or cardiometabolic diseases) remains uncertain. The effect of liver disease etiology on systemic treatment efficacy warrants further research. With an increased understanding of the pathophysiological pathways and accumulation of clinical data, personalized treatment decisions will be possible, and the field of systemic treatment for HCC will continue to evolve.
Collapse
Affiliation(s)
- Trevor Kwan-Hung Wu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
12
|
Guleria K, Sambyal V, Walia SK, Sudan M, Uppal MS. Association of VEGFA polymorphisms with the risk of oesophageal cancer in Punjab, India: A case-control study. Indian J Med Res 2024; 159:502-510. [PMID: 39382410 PMCID: PMC11463243 DOI: 10.25259/ijmr_1862_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Vascular endothelial growth factor (VEGF) is one of the most important angiogenic factors which stimulates tumour progression induction of endothelial cell migration and division, inhibition of the apoptosis of endothelial cells, induction of serine protease activity and enhancement of vascular permeability. This study aimed to investigate the correlation of VEGF+405G/C,-7C/T and+936C/T polymorphisms with oesophageal cancer risk. Methods DNA samples of 464 subjects (231 sporadic oesophageal cancer affected individuals and 233 controls) were genotyped forVEGF+936C/T,+405G/C and-7C/T polymorphisms. VEGF+936C/T and +405G/C polymorphisms were genotyped by PCR-RFLP method whereas VEGF-7C/T polymorphism was genotyped using Amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Results CT genotype of VEGF-7C/T polymorphism was significantly associated with reduced risk of oesophageal cancer. VEGF-7C/T polymorphism was significantly associated with reduced risk of oesophageal cancer underdominant, co-dominant, over dominant and log-additive genetic models in total patients and in the female group. C+936G+405T-7 haplotype was significantly associated with decreased risk (P=0.01)of oesophageal cancer in total patients and also in the male group (P=0.02). Interpretation & conclusions In future, replication of the findings of the present study in a larger sample from different ethnic groups, along with functional analysis, may be insightful for the role of VEGFA polymorphisms in the pathogenesis of oesophageal cancer. Identification of the correlation of VEGF variants with specific therapy in oesophageal cancer may help in better selection of patients and monitoring treatment response in VEGF-therapy.
Collapse
Affiliation(s)
- Kamlesh Guleria
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vasudha Sambyal
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur Walia
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Meena Sudan
- Department of Radiation Oncology, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India
| | - Manjit Singh Uppal
- Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India
| |
Collapse
|
13
|
Corrias G, Lai E, Ziranu P, Mariani S, Donisi C, Liscia N, Saba G, Pretta A, Persano M, Fanni D, Spanu D, Balconi F, Loi F, Deidda S, Restivo A, Pusceddu V, Puzzoni M, Solinas C, Massa E, Madeddu C, Gerosa C, Zorcolo L, Faa G, Saba L, Scartozzi M. Prediction of Response to Anti-Angiogenic Treatment for Advanced Colorectal Cancer Patients: From Biological Factors to Functional Imaging. Cancers (Basel) 2024; 16:1364. [PMID: 38611042 PMCID: PMC11011199 DOI: 10.3390/cancers16071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) is a leading tumor worldwide. In CRC, the angiogenic pathway plays a crucial role in cancer development and the process of metastasis. Thus, anti-angiogenic drugs represent a milestone for metastatic CRC (mCRC) treatment and lead to significant improvement of clinical outcomes. Nevertheless, not all patients respond to treatment and some develop resistance. Therefore, the identification of predictive factors able to predict response to angiogenesis pathway blockade is required in order to identify the best candidates to receive these agents. Unfortunately, no predictive biomarkers have been prospectively validated to date. Over the years, research has focused on biologic factors such as genetic polymorphisms, circulating biomarkers, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and microRNA. Moreover, research efforts have evaluated the potential correlation of molecular biomarkers with imaging techniques used for tumor assessment as well as the application of imaging tools in clinical practice. In addition to functional imaging, radiomics, a relatively newer technique, shows real promise in the setting of correlating molecular medicine to radiological phenotypes.
Collapse
Affiliation(s)
- Giuseppe Corrias
- Department of Radiology, University of Cagliari, 09042 Cagliari, Italy;
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Nicole Liscia
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Daniela Fanni
- Division of Pathology, Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (D.F.); (C.G.); (G.F.)
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Francesco Loi
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Simona Deidda
- Colorectal Surgery Unit, A.O.U. Cagliari, Department of Surgical Science, University of Cagliari, 09042 Cagliari, Italy; (S.D.); (A.R.); (L.Z.)
| | - Angelo Restivo
- Colorectal Surgery Unit, A.O.U. Cagliari, Department of Surgical Science, University of Cagliari, 09042 Cagliari, Italy; (S.D.); (A.R.); (L.Z.)
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Cinzia Solinas
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Elena Massa
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Clelia Madeddu
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| | - Clara Gerosa
- Division of Pathology, Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (D.F.); (C.G.); (G.F.)
| | - Luigi Zorcolo
- Colorectal Surgery Unit, A.O.U. Cagliari, Department of Surgical Science, University of Cagliari, 09042 Cagliari, Italy; (S.D.); (A.R.); (L.Z.)
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (D.F.); (C.G.); (G.F.)
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09042 Cagliari, Italy;
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (E.L.); (P.Z.); (S.M.); (C.D.); (G.S.); (A.P.); (M.P.); (D.S.); (F.B.); (F.L.); (V.P.); (M.P.); (C.S.); (E.M.); (C.M.); (M.S.)
| |
Collapse
|
14
|
You Q, Li R, Yao J, Zhang YC, Sui X, Xiao CC, Zhang JB, Xiao JQ, Chen HT, Li H, Zhang J, Zheng J, Yang Y. Insights into lenvatinib resistance: mechanisms, potential biomarkers, and strategies to enhance sensitivity. Med Oncol 2024; 41:75. [PMID: 38381181 DOI: 10.1007/s12032-023-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.
Collapse
Affiliation(s)
- Qiang You
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying-Cai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cui-Cui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jie-Bin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Qi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hai-Tian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Becht R, Kiełbowski K, Wasilewicz MP. New Opportunities in the Systemic Treatment of Hepatocellular Carcinoma-Today and Tomorrow. Int J Mol Sci 2024; 25:1456. [PMID: 38338736 PMCID: PMC10855889 DOI: 10.3390/ijms25031456] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Liver cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease represent major risk factors of HCC. Multiple different treatment options are available, depending on the Barcelona Clinic Liver Cancer (BCLC) algorithm. Systemic treatment is reserved for certain patients in stages B and C, who will not benefit from regional treatment methods. In the last fifteen years, the arsenal of available therapeutics has largely expanded, which improved treatment outcomes. Nevertheless, not all patients respond to these agents and novel combinations and drugs are needed. In this review, we aim to summarize the pathway of trials investigating the safety and efficacy of targeted therapeutics and immunotherapies since the introduction of sorafenib. Furthermore, we discuss the current evidence regarding resistance mechanisms and potential novel targets in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Michał P. Wasilewicz
- Liver Unit, Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| |
Collapse
|
16
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
17
|
Bodard S, Liu Y, Guinebert S, Yousra K, Asselah T. Prognostic value of genotyping in hepatocellular carcinoma: A systematic review. J Viral Hepat 2023; 30:582-587. [PMID: 36922710 DOI: 10.1111/jvh.13833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in sequencing technology are opening genomics to widespread application for diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of genotyping for risk stratification and prognostication of HCC. We performed a systematic review of manuscripts published on MEDLINE from 1 January 2009 to 1 January 2022, addressing the value of genotyping for HCC risk stratification and prognostication. Publication information for each has been collected using a standardized data extraction form. Twenty-five articles were analysed. This study showed that various genomics approaches (i.e., NGS, SNP, CASP or polymorphisms in circadian genes' association) provided predictive and prognostic information, such as disease control rate, median progression-free survival, and shorter median overall survival. Genotyping, which advances in understanding the molecular origin, could be a solution to predict prognosis or treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- AP-HP-centre, Service d'Imagerie Adulte, Hôpital Necker Enfants Malades, Paris, F-75015, France
- Université de Paris Cité, Paris, F-75006, France
- Sorbonne Université, CNRS UMR, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, F-75006, France
| | - Yan Liu
- Faculty of Life Science and Medicine, King's College London, London, UK
- Median Technologies, 1800 Route des Crêtes, Valbonne, F-06560, France
| | - Sylvain Guinebert
- AP-HP-centre, Service d'Imagerie Adulte, Hôpital Necker Enfants Malades, Paris, F-75015, France
- Université de Paris Cité, Paris, F-75006, France
| | | | - Tarik Asselah
- Université de Paris Cité, Paris, F-75006, France
- APHP.Nord, Service d'hépatologie, INSERM, Hôpital Beaujon, Clichy, F-92110, France
| |
Collapse
|
18
|
Shi Y, Qiu P, Zhao K, Li X, Feng Y, Deng Z, Wang J. Identifying a novel cuproptosis-related necroptosis gene subtype-related signature for predicting the prognosis, tumor microenvironment, and immunotherapy of hepatocellular carcinoma. Front Mol Biosci 2023; 10:1165243. [PMID: 37287752 PMCID: PMC10242026 DOI: 10.3389/fmolb.2023.1165243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Background: Cuproptosis and necroptosis represent two distinct programmed cell death modalities implicated in neoplastic progression; however, the role of combining cuproptosis and necroptosis in hepatocellular carcinoma (HCC) remains to be elucidated. Methods: A total of 29 cuproptosis-related necroptosis genes (CRNGs) were identified, followed by an extensive analysis of their mutational characteristics, expression patterns, prognostic implications, and associations with the tumor microenvironment (TME). Subsequently, a CRNG subtype-related signature was developed, and its value of prognostic prediction, TME, and therapeutic responses in HCC were thoroughly investigated. Last, quantitative real-time PCR and Western blotting were employed for investigating the signature gene expression in 15 paired clinical tissue samples. Results: Two distinct CRNG subtypes were discerned, demonstrating associations between CRNG expression patterns, clinicopathological attributes, prognosis, and the TME. A CRNG subtype-related prognostic signature, subjected to external validation, was constructed, serving as an independent prognostic factor for HCC patients, indicating poor prognosis for high-risk individuals. Concurrently, the signature's correlations with an immune-suppressive TME, mutational features, stemness properties, immune checkpoint genes, chemoresistance-associated genes, and drug sensitivity were observed, signifying its utility in predicting treatment responses. Subsequently, highly accurate and clinically convenient nomograms were developed, and the signature genes were validated via quantitative real-time PCR and Western blotting, further substantiating the stability and dependability of the CRNG subtype-related prognostic signature. Conclusion: Overall, this investigation presented an extensive panorama of CRNGs and developed the CRNG subtype-related prognostic signature, which holds potential for implementation in personalized treatment strategies and prognostic forecasting for HCC patients.
Collapse
Affiliation(s)
- Yuanxin Shi
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Liu S, Han Y, Zhang Z, Wu F. Effectiveness of c-TACE Combined With Sorafenib Versus c-TACE Monotherapy in Advanced Hepatocellular Carcinoma: A Retrospective Study. Clin Med Insights Oncol 2023; 17:11795549221146648. [PMID: 36844388 PMCID: PMC9950601 DOI: 10.1177/11795549221146648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/30/2022] [Indexed: 02/25/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) has insidious onset. Most HCC patients are in advanced stage at the time of initial diagnosis, and the treatment response is poor. The purpose of this study was to compare the clinical effectiveness of conventional transcatheter arterial chemoembolization (c-TACE) combined with sorafenib versus c-TACE monotherapy in the treatment of advanced HCC. Methods A retrospective analysis was performed on patients with advanced HCC (stage C based on the Barcelona Clinic Liver Cancer staging system) admitted to the Affiliated Hospital of Southwest Medical University from December 9, 2013, to February 25, 2021. After screening for inclusion and exclusion criteria, 120 patients were finally included, including 60 patients in the c-TACE group and 60 patients in c-TACE + sorafenib group. There were no statistically significant differences in general data between the 2 groups before treatment. Overall survival (OS) and progression-free survival (PFS) were compared between the 2 groups, and prognostic factors were assessed by Cox proportional risk model. Results The study found that median PFS was 7.37 months in the c-TACE + sorafenib group and 5.97 months in c-TACE group, a statistically significant difference (χ2 = 5.239, P = .022 < .05). The median OS was 22.9 months in the combination group and 12.1 months in c-TACE monotherapy group, also a statistically significant difference (χ2 = 5.848, P = .016 < .05). The Cox proportional risk model found that c-TACE number and presence of ascites were common risk factors among patients in both groups (P < .05). Conclusion c-TACE + sorafenib was superior to c-TACE alone in the treatment of advanced HCC and yielded significant improvements in PFS and OS in our study. The number of c-TACE and presence of ascites were common risk factors affecting the survival of patients in the 2 groups.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of General Medicine, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated
Hospital of Southwest Medical University, Luzhou, China
| | - Zhihong Zhang
- Department of General Medicine, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Wu
- Department of Thyroid surgery, The
Affiliated Hospital of Southwest Medical University, Luzhou, China,Fei Wu, Department of Thyroid surgery, The
Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou
646000, China.
| |
Collapse
|
20
|
Allyl Isothiocyanate (AITC) Induces Apoptotic Cell Death In Vitro and Exhibits Anti-Tumor Activity in a Human Glioblastoma GBM8401/luc2 Model. Int J Mol Sci 2022; 23:ijms231810411. [PMID: 36142326 PMCID: PMC9499574 DOI: 10.3390/ijms231810411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Some clinically used anti-cancer drugs are obtained from natural products. Allyl isothiocyanate (AITC), a plant-derived compound abundant in cruciferous vegetables, has been shown to possess an anti-cancer ability in human cancer cell lines in vitro, including human brain glioma cells. However, the anti-cancer effects of AITC in human glioblastoma (GBM) cells in vivo have not yet been examined. In the present study, we used GBM8401/luc2 human glioblastoma cells and a GBM8401/luc2-cell-bearing animal model to identify the treatment efficacy of AITC. Here, we confirm that AITC reduced total cell viability and induced cell apoptosis in GBM8401/luc2 cells in vitro. Furthermore, Western blotting also showed that AITC induced apoptotic cell death through decreased the anti-apoptotic protein BCL-2, MCL-1 expression, increased the pro-apoptotic protein BAX expression, and promoted the activities of caspase-3, -8, and -9. Therefore, we further investigated the anti-tumor effects of AITC on human GBM8401/luc2 cell xenograft mice. The human glioblastoma GBM8401/luc2 cancer cells were subcutaneously injected into the right flank of BALB/c nude mice to generate glioblastoma xenograft mice. The animals were randomly divided into three groups: group I was treated without AITC (control); group II with 0.1 mg/day of AITC; and group III with 0.2 mg/day of AITC every 3 days for 27 days. Bodyweight, and tumor volume (size) were recorded every 3 days. Tumors exhibiting Luc2 intensity were measured, and we quantified intensity using Living Image software on days 0, 12, and 24. After treatment, tumor weight from each mouse was recorded. Tumor tissues were examined for histopathological changes using H&E staining, and we analyzed the protein levels via immunohistochemical analysis. Our results indicate that AITC significantly inhibited tumor growth at both doses of AITC due to the reduction in tumor size and weight. H&E histopathology analysis of heart, liver, spleen, and kidney samples revealed that AITC did not significantly induce toxicity. Body weight did not show significant changes in any experiment group. AITC significantly downregulated the protein expression levels of MCL-1, XIAP, MMP-9, and VEGF; however, it increased apoptosis-associated proteins, such as cleaved caspase-3, -8, and -9, in the tumor tissues compared with the control group. Based on these observations, AITC exhibits potent anti-cancer activity in the human glioblastoma cell xenograft model via inhibiting tumor cell proliferation and the induction of cell apoptosis. AITC may be a potential anti-GBM cancer drug that could be used in the future.
Collapse
|
21
|
Zhang JX, Chen YX, Zhou CG, Liu J, Liu S, Shi HB, Zu QQ. Transarterial chemoembolization combined with lenvatinib versus transarterial chemoembolization combined with sorafenib for unresectable hepatocellular carcinoma: A comparative retrospective study. Hepatol Res 2022; 52:794-803. [PMID: 35698267 DOI: 10.1111/hepr.13801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
AIM Tyrosine kinase inhibitors target transarterial chemoembolization (TACE)-mediated vascular endothelial growth factor to inhibit tumor revascularization and to slow tumor progression. The present study aimed to compare the clinical outcomes of TACE combined with lenvatinib (TACE-lenvatinib) and TACE combined with sorafenib (TACE-sorafenib) in patients with unresectable hepatocellular carcinoma (HCC). METHODS The clinical data of patients diagnosed with unresectable HCC who received TACE-lenvatinib or TACE-sorafenib between January 2018 and April 2021 were retrospectively reviewed. The tumor response, progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were evaluated and compared between the two groups. RESULTS A total of 112 patients were enrolled and classified into the TACE-lenvatinib group (n = 53) and the TACE-sorafenib group (n = 59). The objective response rates of patients in the TACE-lenvatinib and TACE-sorafenib groups were 54.7% and 44.1%, respectively (p = 0.260), and the disease control rates (DCRs) were 81.1% and 61.0% (p = 0.020). The median PFS time was significantly longer in the TACE-lenvatinib group than in the TACE-sorafenib group (10.7 vs. 6.0 months; p = 0.002). The median OS time between the TACE-lenvatinib and TACE-sorafenib groups also showed a significant difference (30.5 vs. 20.5 months, p = 0.018). All treatment-related AEs and grade 3/4 AEs were comparable between the two groups (p > 0.05). CONCLUSION Compared to TACE-sorafenib, TACE-lenvatinib was associated with better DCR, PFS and OS outcomes in patients with unresectable HCC. In subgroups of Barcelona Clinic Liver Cancer B stage or TACE-refractory patients, TACE-lenvatinib also showed a trend of superiority.
Collapse
Affiliation(s)
- Jin-Xing Zhang
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yu-Xing Chen
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chun-Gao Zhou
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jin Liu
- Department of Clinical Medicine Research Institution, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qing-Quan Zu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Blánquez-Martínez D, Díaz-Villamarín X, García-Rodríguez S, Antúnez-Rodríguez A, Pozo-Agundo A, Martínez-González LJ, Muñoz-Ávila JI, Dávila-Fajardo CL. Genetic Polymorphisms in VEGFR Coding Genes ( FLT1/ KDR) on Ranibizumab Response in High Myopia and Choroidal Neovascularization Patients. Pharmaceutics 2022; 14:pharmaceutics14081555. [PMID: 35893809 PMCID: PMC9330346 DOI: 10.3390/pharmaceutics14081555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
A severe form of myopia defined as pathologic/high myopia is the main cause of visual impairment and one of the most frequent causes of blindness worldwide. It is characterized by at least 6 diopters or axial length (AL) of eyeball > 26 mm and choroidal neovascularization (CNV) in 5 to 10% of cases. Ranibizumab is a humanized recombinant monoclonal antibody fragment targeted against human vascular endothelial growth factor A (VEGF-A) used in the treatment of CNV. It acts by preventing VEGF-A from interacting with its receptors (VEGFR-1 and -2) encoded by the FLT1 and KDR genes. Several studies found that the KDR and FLT1 genotypes may represent predictive determinants of efficacy in ranibizumab-treated neovascular age-related macular degeneration (nAMD) patients. We performed a retrospective study to evaluate the association of single nucleotide polymorphisms (SNPs) in VEGFR coding genes with the response rate to ranibizumab in patients with high myopia and CNV. In the association study of genotypes in FLT1 with the response to ranibizumab, we found a significant association between two FLT1 variants (rs9582036, rs7993418) with ranibizumab efficacy at the 12-month follow-up. About the KDR gene, we found that two KDR variants (rs2305948, rs2071559) are associated with best-corrected visual acuity (BCVA) improvement and KDR (rs2239702) is associated with lower rates of BCVA worsening considering a 12-month follow-up period.
Collapse
Affiliation(s)
| | - Xando Díaz-Villamarín
- Pharmacology Department, University of Granada (UGR), 18016 Granada, Spain
- Correspondence:
| | - Sonia García-Rodríguez
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), 18016 Granada, Spain; (S.G.-R.); (A.A.-R.); (A.P.-A.)
- Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), 18016 Granada, Spain;
| | - Alba Antúnez-Rodríguez
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), 18016 Granada, Spain; (S.G.-R.); (A.A.-R.); (A.P.-A.)
- Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), 18016 Granada, Spain;
| | - Ana Pozo-Agundo
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), 18016 Granada, Spain; (S.G.-R.); (A.A.-R.); (A.P.-A.)
- Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), 18016 Granada, Spain;
| | - Luis Javier Martínez-González
- Genomics Unit, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), 18016 Granada, Spain;
| | - José Ignacio Muñoz-Ávila
- Ophthalmology Department, Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain;
| | - Cristina Lucía Dávila-Fajardo
- Pharmacy Department, Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospital Universitario Virgen de las Nieves, 18016 Granada, Spain;
| |
Collapse
|
23
|
Wang F, Liu G. Influence of KDR Genetic Variation on the Effectiveness and Safety of Bevacizumab in the First-Line Treatment for Patients with Advanced Colorectal Cancer. Int J Gen Med 2022; 15:5651-5659. [PMID: 35734201 PMCID: PMC9208669 DOI: 10.2147/ijgm.s362366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Bevacizumab is usually considered a first-line anti-tumor therapy, which inhibits tumor growth by downregulating the vascular endothelial growth factor (VEGF) that further silences the activity of the kinase insert region receptor (KDR) gene. In the current study, we investigated the treatment response of bevacizumab in advanced colorectal cancer (CRC) patients bearing 889 C>T mutation in the KDR gene. Methods A total of 135 advanced CRC patients were treated with bevacizumab along with chemotherapy at the seventh medical center of the People’s Liberation Army general hospital from January 2012 to June 2021 and were analyzed retrospectively. The KDR genotyping and mRNA expression analyses were performed in 57 patients. Results The KDR genotyping revealed 97 (71.85%) cases with CC genotype, 34 (25.19%) cases with CT, and 4 (2.96%) cases with TT genotype, while the minor allele frequency of 889 C>T was found as 0.16. The median progression-free survival (PFS) of the patients with CT/TT genotype and CC genotype was found to be 6.1 and 9.7 months, respectively (P = 0.009). The median overall survival (OS) of the two genotypes was 13.7 and 19.7 (P = 0.025), respectively. Multivariable Cox regression analysis of PFS, CT/TT genotype was found to be an independent factor for PFS (odds ratio (OR) = 1.88, P = 0.023). Additionally, the mRNA expression of KDR in 57 biopsies taken from patients with CT/TT genotypes was significantly higher than that of patients with CC genotype (P < 0.001). Additionally, in terms of safety, 55 patients experienced grade 2 or higher fatigue (incidence rate 40.74%) after receiving bevacizumab along with chemotherapy. Conclusion The 889 C>T mutation in KDR gene affects the KDR expression in colorectal cancer patients, thereby affecting the effectiveness of bevacizumab therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Oncology, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Gang Liu
- Department of General Surgery, The First Medical Center of People's Liberation Army General Hospital, Beijing, People's Republic of China
| |
Collapse
|
24
|
YOKOTA S, YONEZAWA T, MOMOI Y, MAEDA S. Sorafenib inhibits tumor cell growth and angiogenesis in canine transitional cell carcinoma. J Vet Med Sci 2022; 84:666-674. [PMID: 35387955 PMCID: PMC9177404 DOI: 10.1292/jvms.21-0478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Canine transitional cell carcinoma (cTCC) is the most common naturally occurring bladder cancer and accounts for 1-2% of canine tumors. The prognosis is poor due to the high rate of invasiveness and metastasis at diagnosis. Sorafenib is a multi-kinase inhibitor that targets rapidly accelerated fibrosarcoma (RAF), vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, platelet-derived growth factor receptor-β (PDGFR-β), and KIT. In previous studies, a somatic mutation of B-rapidly accelerated fibrosarcoma (BRAF) and expressions of VEGFR-2 and PDGFR-β were observed in over 80% of patients with cTCC. Therefore, in this study, we investigated the anti-tumor effects of sorafenib on cTCC. Five cTCC cell lines were used in the in vitro experiments. All five cTCC cell lines expressed VEGFR-2 and PDGFR-β and sorafenib showed growth inhibitory effect on cTCC cell lines. Cell cycle arrest at the G0/G1 phase and subsequent apoptosis were observed following sorafenib treatment. In the in vivo experiments, cTCC (Sora) cells were subcutaneously injected into nude mice. Mice were orally administered with sorafenib (30 mg/kg daily) for 14 days. Sorafenib inhibited tumor growth compared to vehicle control. The necrotic area in the tumor tissues was increased in the sorafenib-treated group. Sorafenib also inhibited angiogenesis in the tumor microenvironment. Thus, sorafenib may be potential therapeutic agent for cTCC via its direct anti-tumor effect and inhibition of angiogenesis.
Collapse
Affiliation(s)
- Shohei YOKOTA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro YONEZAWA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki MOMOI
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Tian Y, Lei Y, Fu Y, Sun H, Wang J, Xia F. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors Associated with Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:454-462. [PMID: 35362393 DOI: 10.2174/1568009622666220330151725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, which can be attributed to the high incidence and first diagnosis at an advanced stage. Tyrosine kinase inhibitors (TKIs), a class of small-molecule targeting drugs, are primarily used for the clinical treatment of HCC after chemotherapy because they show significant clinical efficacy and low incidence of clinical adverse reactions. However, resistance to sorafenib and other TKIs, which can be used to treat advanced HCC, poses a significant challenge. Recent mechanistic studies have shown that epithelial-mesenchymal transition or transformation (EMT), ATP binding cassette (ABC) transporters, hypoxia, autophagy, and angiogenesis are involved in apoptosis, angiogenesis, HCC cell proliferation, and TKI resistance in patients with HCC. Exploring and overcoming such resistance mechanisms is essential to extend the therapeutic benefits of TKIs to patients with TKI-resistant HCC. This review aims to summarize the potential resistance mechanism proposed in recent years and methods to reverse TKI resistance in the context of HCC.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| |
Collapse
|
26
|
Song S, Bai M, Li X, Gong S, Yang W, Lei C, Tian H, Si M, Hao X, Guo T. Early Predictive Value of Circulating Biomarkers for Sorafenib in Advanced Hepatocellular Carcinoma. Expert Rev Mol Diagn 2022; 22:361-378. [PMID: 35234564 DOI: 10.1080/14737159.2022.2049248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Sorafenib is currently the first-line therapeutic regimen for patients with advanced hepatocellular carcinoma (HCC). However, many patients did not experience any benefit and suffered extreme adverse events and heavy economic burden. Thus, the early identification of patients who are most likely to benefit from sorafenib is needed. AREAS COVERED This review focused on the clinical application of circulating biomarkers (including conventional biomarkers, immune biomarkers, genetic biomarkers, and some novel biomarkers) in advanced HCC patients treated with sorafenib. An online search on PubMed, Web of Science, Embase, and Cochrane Library was conducted from the inception to Aug 15, 2021. Studies investigating the predictive or prognostic value of these biomarkers were included. EXPERT OPINION The distinction of patients who may benefit from sorafenib treatment is of utmost importance. The predictive roles of circulating biomarkers could solve this problem. Many biomarkers can be obtained by liquid biopsy, which is a less or non-invasive approach. The short half-life of sorafenib could reflect the dynamic changes of tumor progression and monitor the treatment response. Circulating biomarkers obtained from liquid biopsy resulted as a promising assessment method in HCC, allowing for better treatment decisions in the near future.
Collapse
Affiliation(s)
- Shaoming Song
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Mingzhen Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaofei Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shiyi Gong
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,School of Basic Medical Sciences, Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China
| | - Wenwen Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China
| | - Caining Lei
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,School of Basic Medical Sciences, Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China
| | - Hongwei Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| | - Moubo Si
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| | - Tiankang Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| |
Collapse
|
27
|
Marin JJG, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Sanchez-Martin A, Fabris L, Briz O. Mechanisms of Pharmacoresistance in Hepatocellular Carcinoma: New Drugs but Old Problems. Semin Liver Dis 2022; 42:87-103. [PMID: 34544160 DOI: 10.1055/s-0041-1735631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis when diagnosed at advanced stages in which curative treatments are no longer applicable. A small group of these patients may still benefit from transarterial chemoembolization. The only therapeutic option for most patients with advanced HCC is systemic pharmacological treatments based on tyrosine kinase inhibitors (TKIs) and immunotherapy. Available drugs only slightly increase survival, as tumor cells possess additive and synergistic mechanisms of pharmacoresistance (MPRs) prior to or enhanced during treatment. Understanding the molecular basis of MPRs is crucial to elucidate the genetic signature underlying HCC resistome. This will permit the selection of biomarkers to predict drug treatment response and identify tumor weaknesses in a personalized and dynamic way. In this article, we have reviewed the role of MPRs in current first-line drugs and the combinations of immunotherapeutic agents with novel TKIs being tested in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.,Department of Internal Medicine, Yale Liver Center (YLC), School of Medicine, Yale University New Haven, Connecticut
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
28
|
Wang C, Lv Y, Sha Z, Zhang J, Wu J, Qi Y, Guo Z. Dicer Enhances Bevacizumab-Related Inhibition of Hepatocellular Carcinoma via Blocking the Vascular Endothelial Growth Factor Pathway. J Hepatocell Carcinoma 2022; 8:1643-1653. [PMID: 35004391 PMCID: PMC8721026 DOI: 10.2147/jhc.s327258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) family members contribute greatly to the development and angiogenesis of hypervascular hepatocellular carcinoma (HCC). We have previously shown that Dicer inhibited HCC growth. In this study, we aimed to determine the relationship between Dicer and VEGF in HCC. Methods Gain-of-function studies were performed to determine the effect of different treatments on the proliferation, migration, and invasion of HCC cells. Expression of VEGF-A in xenograft tumor tissues was analysed using Western blotting, and that of CD31 using immunohistochemical analysis. Results We found that Dicer inhibited proliferation, migration and invasion of HCC cells by suppressing VEGF-A expression. Interestingly, VEGF-A165, which is the most prominent VEGF-A isoform, counteracted Dicer-induced inhibition of HCC cells. In addition, a monoclonal anti-VEGF antibody (bevacizumab) enhanced Dicer-induced inhibition of HCC in vitro and in vivo. Further, immunohistochemical analysis of CD31 indicated bevacizumab and Dicer synergized to reduce tumor microvessel density. Conclusion Our data demonstrated that Dicer enhanced bevacizumab-related inhibition of HCC cell via the VEGF pathway; therefore, Dicer in coordination with bevacizumab may provide another potential approach for HCC therapy.
Collapse
Affiliation(s)
- Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalei Lv
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ziyue Sha
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yixin Qi
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
29
|
Moldogazieva NT, Zavadskiy SP, Sologova SS, Mokhosoev IM, Terentiev AA. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev Mol Diagn 2021; 21:1147-1164. [PMID: 34582293 DOI: 10.1080/14737159.2021.1987217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRβ have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.m. Sechenov First Moscow State Medical University (Sechenov University);, Moscow, Russia
| | - Sergey P Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Susanna S Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Innokenty M Mokhosoev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
30
|
Atwa SM, Odenthal M, El Tayebi HM. Genetic Heterogeneity, Therapeutic Hurdle Confronting Sorafenib and Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:4343. [PMID: 34503153 PMCID: PMC8430643 DOI: 10.3390/cancers13174343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the latest advances in hepatocellular carcinoma (HCC) screening and treatment modalities, HCC is still representing a global burden. Most HCC patients present at later stages to an extent that conventional curative options are ineffective. Hence, systemic therapy represented by the tyrosine kinase inhibitor, sorafenib, in the first-line setting is the main treatment modality for advanced-stage HCC. However, in the two groundbreaking phase III clinical trials, the SHARP and Asia-Pacific trials, sorafenib has demonstrated a modest prolongation of overall survival in almost 30% of HCC patients. As HCC develops in an immune-rich milieu, particular attention has been placed on immune checkpoint inhibitors (ICIs) as a novel therapeutic modality for HCC. Yet, HCC therapy is hampered by the resistance to chemotherapeutic drugs and the subsequent tumor recurrence. HCC is characterized by substantial genomic heterogeneity that has an impact on cellular response to the applied therapy. And hence, this review aims at giving an insight into the therapeutic impact and the different mechanisms of resistance to sorafenib and ICIs as well as, discussing the genomic heterogeneity associated with such mechanisms.
Collapse
Affiliation(s)
- Sara M. Atwa
- Pharmaceutical Biology Department, German University in Cairo, Cairo 11865, Egypt;
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Margarete Odenthal
- Institute for Pathology, University Hospital Cologne, 50924 Cologne, Germany;
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
31
|
Geng N, Su J, Liu Z, Ding C, Xie S, Hu W. The Influence of KDR Genetic Variation on the Efficacy and Safety of Patients With Advanced NSCLC Receiving First-Line Bevacizumab Plus Chemotherapy Regimen. Technol Cancer Res Treat 2021; 20:15330338211019433. [PMID: 34060368 PMCID: PMC8173991 DOI: 10.1177/15330338211019433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: Angiogenesis plays an important role in the growth and metastasis of non-small cell lung cancer (NSCLC). Bevacizumab is a humanized monoclonal antibody that mainly acts on vascular endothelial growth factor A (VEGFA). Kinase insert domain receptor (KDR) is the most important target of VEGFA. The aim of present study was to investigate the influence of KDR genetic variation on the efficacy and safety of patients with advanced NSCLC receiving first-line bevacizumab plus chemotherapy regimen. Methods: A total of 169 patients with advanced NSCLC who received bevacizumab combined with chemotherapy were recruited in this study. Clinical outcome of the regimens was evaluated in the hospital. Peripheral blood and biopsy tissue specimens of patients were collected for the genotyping of KDR genetic variation and KDR mRNA expression, respectively. The association between KDR genotype status and other variables were analyzed. Univariate analysis of genotype status and prognosis was implemented using the Kaplan-Meier survival analysis method. Multivariate Cox regression analysis was performed to adjust the confounding factors. Results: Of the polymorphisms analyzed, only V297 L was of clinical significance. The prevalence of V297 L among the study population were as follows: CC genotype 123 cases (72.8%), CT genotype 41 cases (24.3%), TT genotype 5 cases (2.9%). The minimum allele frequency is 0.15. The distribution frequencies of the 3 genotypes corresponded with Hardy-Weinberg equilibrium (P = 0.489). Patients with TT and CT genotypes were merged in the subsequent comparison of clinical outcomes. The analysis of efficacy exhibited that the objective response rates (ORR) of patients with CC genotype and CT/TT genotypes were 52.8% and 47.8% (P = 0.561), respectively. Prognosis indicated that the median progression free survival (PFS) of patients with CC genotype and CT/TT genotype were 8.9 and 5.5 months, respectively (P = 0.006). The median OS of the 2 genotypes were 20.0 and 14.9 months, respectively (P = 0.021). Adjusted in multivariate Cox regression analysis of PFS, CT/TT genotypes were an independent factor for PFS [hazard ratio (HR) = 1.59, P = 0.011). Safety profile according to genotype status of V297 L failed to find significant difference. Interestingly, the expression of KDR mRNA of patients with CT/TT genotype was significantly higher than that of patients with CC genotype in the 58 cancer tissue specimens (P < 0.001). Conclusion: The clinical comes of patients with advanced NSCLC receiving first-line bevacizumab plus chemotherapy regimens might be impacted by polymorphism V297 L through mediating the mRNA expression of KDR.
Collapse
Affiliation(s)
- Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jingwei Su
- Department of Third Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhikun Liu
- Department of Radiotherapy, East Hospital of The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Cuimin Ding
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shaonan Xie
- Department of Second Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wenxia Hu
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
32
|
Donisi C, Puzzoni M, Ziranu P, Lai E, Mariani S, Saba G, Impera V, Dubois M, Persano M, Migliari M, Pretta A, Liscia N, Astara G, Scartozzi M. Immune Checkpoint Inhibitors in the Treatment of HCC. Front Oncol 2021; 10:601240. [PMID: 33585218 PMCID: PMC7874239 DOI: 10.3389/fonc.2020.601240] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the typical inflammation-induced neoplasia. It often prospers where a chronic liver disease persists, thus leading a strong rationale for immune therapy. Several immune-based treatments, including immune checkpoint inhibitors (ICI), cytokines, adoptive cell transfer, and vaccines, have been tested in the treatment of HCC. In this review, we summarize the role of the ICI in HCC patients in various sets of treatment. As for advanced HCC, the anti-Programmed cell Death protein 1 (PD1) antibodies and the anti-Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) antibodies have been examined in patients with enthusiastic results in phase I-II-III studies. Overall, this led the Food and Drug Administration (FDA) to approve pembrolizumab, nivolumab, and nivolumab + ipilimumab in the second-line setting. The anti- Programmed Death-Ligand 1 (PDL-1) antibodies have also been evaluated. Thanks to the results obtained from phase III IMbrave study, atezolizumab + bevacizumab is now the standard of care in the first-line advanced setting of HCC. As for localized HCC, the putative immunological effect of locoregional therapies led to evaluate the combination strategy with ICI. This way, chemoembolization, ablation with radiofrequency, and radioembolization combined with ICI are currently under study. Likewise, the study of adjuvant immunotherapy following surgical resection is underway. In addition, the different ICI has been studied in combination with other ICI as well as with multikinase inhibitors and anti-angiogenesis monoclonal antibody. The evidence available suggests that combining systemic therapies and locoregional treatments with ICI may represent an effective strategy in this context.
Collapse
Affiliation(s)
- Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valentino Impera
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Nicole Liscia
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Giorgio Astara
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| |
Collapse
|
33
|
Geng N, Ding CM, Liu ZK, Song S, Hu WX. Influence of VEGFR2 gene polymorphism on the clinical outcomes of apatinib for patients with chemotherapy-refractory extensive-stage SCLC: a real-world retrospective study. Int J Clin Oncol 2021; 26:670-683. [PMID: 33392882 DOI: 10.1007/s10147-020-01849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Great individual differences were observed regarding the efficacy of apatinib clinically. The aim of present study was to investigate the influence of vascular endothelial growth factor receptor2 (VEGFR2) gene polymorphism on the clinical outcomes of apatinib for patients with chemotherapy-refractory extensive-stage small cell lung cancer (ES-SCLC). METHODS A total of 128 patients with chemotherapy-refractory ES-SCLC who were treated with apatinib at an initial dosage of 250 or 500 mg were included in this study. The change of target lesions was assessed. Overall response rate (ORR) was evaluated. Prognosis was carried out and safety profile was documented. Additionally, peripheral blood and biopsy cancer tissue specimens of the patients with SCLC were collected for the analysis of polymorphism and VEGFR2 gene mRNA expression, respectively. The association between genotype status and baseline characteristics was performed. Univariate analysis of genotype status and prognosis was carried out using Kaplan-Meier survival analysis and multivariate analysis were adjusted by Cox regression analysis. RESULTS Efficacy of apatinib included partial response (PR) in 15 patients, stable disease (SD) in 86 patients, progressive disease (PD) in 27 patients. Therefore, ORR of the 128 patients with ES-SCLC was 11.7%, and disease control rate (DCR) was 78.9%. Prognosis suggested that the median progression-free survival (PFS) and overall survival (OS) of the 128 patients with ES-SCLC was 4.2 months and 8.2 months, respectively. The polymorphism analysis focusing on VEGFR2 gene indicated that one single nucleotide polymorphism 889C>T was of clinical significance. Prevalence of 889C>T among the 128 patients with SCLC were as follows: CC genotype 87 cases (68.0%), CT genotype 38 cases (29.7%) and TT genotype 3 cases (2.3%), the minor allele frequency of 889C>T was 0.17, which was in accordance with Hardy-Weinberg Equilibrium (P = 0.628). Patients with CT and TT genotypes were merged in the subsequent analysis. Prognosis analysis exhibited that the median PFS of patients with CT/TT genotype and CC genotype was 3.3 and 5.0 months, respectively (P = 0.02). Furthermore, the median OS of patients was 5.5 and 9.0 months, respectively (P = 0.008). Additionally, multivariate Cox regression analysis of OS demonstrated that CT/TT genotype was an independent factor for OS [Hazard ratio (HR) = 0.64, P = 0.019]. However, the safety profile according to genotype status of 889C>T failed to show significant difference. Interestingly, mRNA expression analysis suggested that the mRNA expression of VEGFR2 in cancer tissues were significantly different according to CC and CT/TT genotypes (P < 0.001). CONCLUSION The administration with apatinib for patients with chemotherapy-refractory ES-SCLC was of potential clinical significance. The clinical outcomes of patients with ES-SCLC who were treated with apatinib could be impacted by VEGFR2 889C>T polymorphism through mediating the VEGFR2 mRNA expression.
Collapse
Affiliation(s)
- Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, 12 Jian-Kang Road, Shijiazhuang, 050012, People's Republic of China
| | - Cui-Min Ding
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, 12 Jian-Kang Road, Shijiazhuang, 050012, People's Republic of China
| | - Zhi-Kun Liu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050012, People's Republic of China
| | - Shan Song
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, 12 Jian-Kang Road, Shijiazhuang, 050012, People's Republic of China
| | - Wen-Xia Hu
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, 12 Jian-Kang Road, Shijiazhuang, 050012, People's Republic of China.
| |
Collapse
|
34
|
Germline Genetic Variants of the Renin-Angiotensin System, Hypoxia and Angiogenesis in Non-Small Cell Lung Cancer Progression: Discovery and Validation Studies. Cancers (Basel) 2020; 12:cancers12123834. [PMID: 33353148 PMCID: PMC7766842 DOI: 10.3390/cancers12123834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The presence of polymorphic gene variants in the human genome provides extensive genetic (and eventually phenotypic) variation affecting both normal physiological mechanisms and cancer pathogenesis. Functional genetic polymorphisms might have predictive and/or prognostic value in lung cancer, opening novel opportunities to improve prediction and guide clinical reasoning and therapeutics in lung cancer patients. Recent knowledge pinpoints a pleiotropic role for renin-angiotensin system, particularly in the lung and mainly through locally regulated alternative molecules and secondary pathways. Dysregulation of this system play a role in cell proliferation, hypoxia and angiogenesis, which processes are involved in lung cancer progression. Here we suggest that polymorphic variants in genes coding for renin-angiotensin system might play a role in Non-Small Cell Lung Cancer progression. Abstract Introduction: The renin–angiotensin system (RAS) is involved in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. Our aim was to study the association of putatively functional genetic polymorphisms in genes coding for proteins involved in RAS, hypoxia and angiogenesis with non-small cell lung cancer (NSCLC) prognosis. Methods: Genotyping of 52 germline variants from genes of the RAS and hypoxic/angiogenic factors/receptors was performed using MassARRAY iPLEX Gold in a retrospective cohort (n = 167) of advanced NSCLC patients. Validation of the resulting genetic markers was conducted in an independent group (n = 190), matched by clinicopathological characteristics. Results: Multivariate analysis on the discovery set revealed that MME rs701109 C carriers were protected from disease progression in comparison with homozygous T (hazard ratio (HR) = 0.5, 95% confidence interval (CI) = 0.2–0.8, p = 0.010). Homozygous A and T genotypes for KDR rs1870377 were at increased risk for disease progression and death compared to heterozygous (HR = 1.7, 95% CI = 1.2–2.5, p = 0.005 and HR = 2.1, 95% CI = 1.2–3.4, p = 0.006, respectively). Carriers of homozygous genotypes for ACE2 rs908004 presented increased risk for disease progression, only in the subgroup of patients without tumour actionable driver mutations (HR = 2.9, 95% CI = 1.3–6.3, p = 0.010). Importantly, the association of homozygous genotypes in MME rs701109 with risk for disease progression was confirmed after multivariate analysis in the validation set. Conclusion: This study provides evidence that MME polymorphism, which encodes neprilysin, may modulate progression-free survival in advanced NSCLC. Present genetic variation findings will foster basic, translational, and clinical research on their role in NSCLC.
Collapse
|
35
|
Miller H, Czigany Z, Lurje I, Reichelt S, Bednarsch J, Strnad P, Trautwein C, Roderburg C, Tacke F, Gaisa NT, Knüchel-Clarke R, Neumann UP, Lurje G. Impact of Angiogenesis- and Hypoxia-Associated Polymorphisms on Tumor Recurrence in Patients with Hepatocellular Carcinoma Undergoing Surgical Resection. Cancers (Basel) 2020; 12:cancers12123826. [PMID: 33352897 PMCID: PMC7767259 DOI: 10.3390/cancers12123826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma remains a leading cause of cancer-related death and the most common primary hepatic malignancy in the Western hemisphere. Previous research found that angiogenesis-related cytokines and elevated levels of interleukin 8 and vascular endothelial growth factor (VEGF) shorten the expected time of survival. Moreover, factors of tumor angiogenesis- and hypoxia-driven signaling pathways are already associated with worse outcome in disease-free survival in several tumor entities. Our study investigates the prognosis of hepatocellular carcinoma patients based on a selection of ten different single-nucleotide polymorphisms from angiogenesis, carcinogenesis, and hypoxia pathways. Our study with 127 patients found supporting evidence that polymorphisms in angiogenesis-associated pathways corelate with disease-free survival and clinical outcome in patients with hepatocellular carcinoma. Abstract Tumor angiogenesis plays a pivotal role in hepatocellular carcinoma (HCC) biology. Identifying molecular prognostic markers is critical to further improve treatment selection in these patients. The present study analyzed a subset of 10 germline polymorphisms involved in tumor angiogenesis pathways and their impact on prognosis in HCC patients undergoing partial hepatectomy in a curative intent. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from 127 HCC patients at a German primary care hospital. Genomic DNA was extracted, and genotyping was carried out using polymerase chain reaction (PCR)–restriction fragment length polymorphism-based protocols. Polymorphisms in interleukin-8 (IL-8) (rs4073; p = 0.047, log-rank test) and vascular endothelial growth factor (VEGF C + 936T) (rs3025039; p = 0.045, log-rank test) were significantly associated with disease-free survival (DFS). After adjusting for covariates in the multivariable model, IL-8 T-251A (rs4073) (adjusted p = 0.010) and a combination of “high-expression” variants of rs4073 and rs3025039 (adjusted p = 0.034) remained significantly associated with DFS. High-expression variants of IL-8 T-251A may serve as an independent molecular marker of prognosis in patients undergoing surgical resection for HCC. Assessment of the patients’ individual genetic risks may help to identify patient subgroups at high risk for recurrence following curative-intent surgery.
Collapse
Affiliation(s)
- Hannah Miller
- Charité–Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (H.M.); (S.R.)
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Isabella Lurje
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
- Charité–Universitätsmedizin Berlin, Department of Gastroenterology and Hepatology, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (C.R.); (F.T.)
| | - Sophie Reichelt
- Charité–Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (H.M.); (S.R.)
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Christoph Roderburg
- Charité–Universitätsmedizin Berlin, Department of Gastroenterology and Hepatology, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (C.R.); (F.T.)
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Frank Tacke
- Charité–Universitätsmedizin Berlin, Department of Gastroenterology and Hepatology, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (C.R.); (F.T.)
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Nadine Therese Gaisa
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (N.T.G.); (R.K.-C.)
| | - Ruth Knüchel-Clarke
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (N.T.G.); (R.K.-C.)
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Georg Lurje
- Charité–Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (H.M.); (S.R.)
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
- Correspondence: ; Tel.: +49-30-450-652339
| |
Collapse
|
36
|
Lai E, Astara G, Ziranu P, Pretta A, Migliari M, Dubois M, Donisi C, Mariani S, Liscia N, Impera V, Persano M, Tolu S, Balconi F, Pinna G, Spanu D, Pireddu A, Saba G, Camera S, Musio F, Puzzoni M, Pusceddu V, Madeddu C, Casadei Gardini A, Scartozzi M. Introducing immunotherapy for advanced hepatocellular carcinoma patients: Too early or too fast? Crit Rev Oncol Hematol 2020; 157:103167. [PMID: 33271389 DOI: 10.1016/j.critrevonc.2020.103167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is the most frequent liver cancer. Immunotherapy has been explored in this disease in order to improve survival outcomes. Nowadays, scientific research is focusing especially on immune checkpoint inhibitors, in particular anti-PD1, anti-PD-L1 and anti-CTLA4 monoclonal antibodies (mAbs), as single-agent or in combination with other immunotherapy agents, target therapies, anti-vascular endothelial growth factor (VEGF) and other agents targeting specific molecular pathways. Other immunotherapy strategies have been assessed or are under investigation in advanced HCC, namely cytokines, adoptive cell therapy, oncolytic virus, cancer vaccines. Each treatment presents specific efficacy and toxicity profiles, strictly related to their mechanism of action and to advanced HCC tumour microenvironment (TME). The aim of this review is to outline the state-of-the-art of immunotherapy in advanced HCC treatment, highlighting data on already investigated treatment strategies, safety and toxicity (including HBV/HCV-related HCC), and ongoing clinical trials focusing on new promising therapeutic weapons.
Collapse
Affiliation(s)
- Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Giorgio Astara
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Simona Tolu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Giovanna Pinna
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Annagrazia Pireddu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Silvia Camera
- Department of Medical Oncology, Università Vita-Salute, San Raffaele Hospital IRCCS, 20019, Milan, Italy. Dipartimento di Oncologia, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy.
| | - Francesca Musio
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Clelia Madeddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Andrea Casadei Gardini
- Department of Medical Oncology, Università Vita-Salute, San Raffaele Hospital IRCCS, 20019, Milan, Italy. Dipartimento di Oncologia, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy.
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
37
|
Cheng Z, He L, Guo Y, Song Y, Song S, Zhang L. The combination therapy of transarterial chemoembolisation and sorafenib is the preferred palliative treatment for advanced hepatocellular carcinoma patients: a meta-analysis. World J Surg Oncol 2020; 18:243. [PMID: 32917226 PMCID: PMC7488414 DOI: 10.1186/s12957-020-02017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background To compare the efficacy of three types of palliative therapy for advanced hepatocellular carcinoma (HCC), including transarterial chemoembolisation (TACE) monotherapy, sorafenib alone and their combination. Methods The databases of PubMed, Embase and Cochrane Library were retrieved. The odds ratio (OR) with its 95% confidence interval (CI) was used to investigate the binary variables, and the standardised mean difference (SMD) with its 95% CI was employed to evaluate the continuous variables. All statistical tests were performed by using Stata/SE, version 12.0. Results Thirty-one clinical studies, containing 5125 unique cases of patients with advanced HCC, were included. There were significant improvements in overall survival (OS) (pooled SMD = 2.54; 95% CI 1.74–3.34) and time to progression (TTP) (pooled SMD = 2.49; 95% CI 0.87–4.12) of the patients after receiving the combination therapy of TACE and sorafenib, compared to TACE monotherapy, and the OS in the combined treatment cohort was also longer than that in the sorafenib-alone cohort (pooled SMD = 2.92; 95% CI 1.72–4.13). The combination therapy group in comparison to the TACE group benefited a significantly increased overall response rate (ORR) (pooled OR = 2.61; 95% CI 1.43–4.77), 1-year (pooled OR = 2.96; 95% CI 1.71–5.14) and 2-year (pooled OR = 1.64; 95% CI 1.18–2.28) survival rates and reduced disease progression rate (DPR) (pooled OR = 0.47; 95% CI 0.33–0.68); in parallel, the ORR in the group was also significantly higher than that in the sorafenib-alone group (pooled OR = 3.62; 95% CI 1.28–10.22), although without a difference in the DPR (pooled OR = 0.28; 95% CI 0.05–1.48). In addition, we discovered that the 1-year (pooled OR = 1.39; 95% CI 0.84–2.29) and 2-year (pooled OR = 1.70; 95% CI 0.69–4.18) survival rates in the TACE monotherapy cohort were not significantly different to those in the sorafenib-alone cohort. Conclusion The combination therapy is more effective than monotherapy in improving the prognostic outcomes of patients with advanced HCC. Therefore, we recommend it as the preferred treatment intervention for those patients.
Collapse
Affiliation(s)
- Zhoujing Cheng
- Department of Gastroenterology, The Second Hospital of Anhui Medical University, No.678 Furong Road, Jingkai District, Hefei, Anhui Province, China
| | - Lin He
- Breast Center B ward, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, China
| | - Yingjie Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, China
| | - Yuhua Song
- Breast Center B ward, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, China
| | - Shasha Song
- Department of Gastroenterology, The Second Hospital of Anhui Medical University, No.678 Furong Road, Jingkai District, Hefei, Anhui Province, China
| | - Lijiu Zhang
- Department of Gastroenterology, The Second Hospital of Anhui Medical University, No.678 Furong Road, Jingkai District, Hefei, Anhui Province, China.
| |
Collapse
|
38
|
Lin L, Yan L, Liu Y, Qu C, Ni J, Li H. The Burden and Trends of Primary Liver Cancer Caused by Specific Etiologies from 1990 to 2017 at the Global, Regional, National, Age, and Sex Level Results from the Global Burden of Disease Study 2017. Liver Cancer 2020; 9:563-582. [PMID: 33083281 PMCID: PMC7548973 DOI: 10.1159/000508568] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/02/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Liver cancer is one of the leading causes of cancer-related deaths worldwide. The primary causes of liver cancer include hepatitis B virus (HBV), hepatitis C virus (HCV), alcohol consumption, nonalcoholic fatty liver disease, and other factors. AIMS The objective of this study was to evaluate the global and sex-, age-, region-, country-, and etiology-related liver cancer burden, as well as the trends in liver cancer caused by different etiologies. METHODS The causes of liver cancer from 1990 to 2017, including global, regional, and national liver cancer incidence, mortality, and etiology, were collected from the Global Burden of Disease study 2017, and the time-dependent change in the trends of liver cancer burden was evaluated by annual percentage change. RESULTS The global liver cancer incidence and mortality have been increasing. There were 950,000 newly-diagnosed liver cancer cases and over 800,000 deaths in 2017, which is more than twice the numbers recorded in 1990. HBV and HCV are the major causes of liver cancer. HBV is the major risk factor of liver cancer in Asia, while HCV and alcohol abuse are the major risk factors in the high sociodemographic index and high human development index regions. The mean onset age and incidence of liver cancer with different etiologies have gradually increased in the past 30 years. CONCLUSIONS The global incidence is still rising and the causes have national, regional, or population specificities. More targeted prevention strategies must be developed for the different etiologic types in order to reduce liver cancer burden.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Yan
- Fengtai District Community Health Center, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changhai Qu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Hui Li, Institute of Chinese Materia Medica, China Academy, of Chinese Medical Sciences, Dongcheng District, Dongzhimen Nanxiaojie within 16, Beijing 100700 (China), , Jian Ni, School of Chinese Material Medica, Beijing University, of Chinese Medicine, Chaoyang District, Bei San Huan Dong Lu No. 11, Beijing 100029 (China),
| |
Collapse
|
39
|
Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther 2020; 5:146. [PMID: 32782275 PMCID: PMC7419547 DOI: 10.1038/s41392-020-00264-x] [Citation(s) in RCA: 472] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The last 3 years have seen the emergence of promising targeted therapies for the treatment of hepatocellular carcinoma (HCC). Sorafenib has been the mainstay of treatment for a decade and newer modalities were ineffective and did not confer any increased therapeutic benefit until the introduction of lenvatinib which was approved based on its non-inferiority to sorafenib. The subsequent success of regorafenib in HCC patients who progress on sorafenib treatment heralded a new era of second-line treatment and was quickly followed by ramucirumab, cabozantinib, and the most influential, immune checkpoint inhibitors (ICIs). Over the same period combination therapies, including anti-angiogenesis agents with ICIs, dual ICIs and targeted agents in conjunction with surgery or other loco-regional therapies, have been extensively investigated and have shown promise and provided the basis for exciting clinical trials. Work continues to develop additional novel therapeutic agents which could potentially augment the presently available options and understand the underlying mechanisms responsible for drug resistance, with the goal of improving the survival of patients with HCC.
Collapse
Affiliation(s)
- Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Yan Z, Gu YY, Hu XD, Zhao Q, Kang HL, Wang M, Duan W, Guan Y. Clinical outcomes and safety of apatinib monotherapy in the treatment of patients with advanced epithelial ovarian carcinoma who progressed after standard regimens and the analysis of the VEGFR2 polymorphism. Oncol Lett 2020; 20:3035-3045. [PMID: 32782621 DOI: 10.3892/ol.2020.11857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/05/2020] [Indexed: 12/30/2022] Open
Abstract
The aims of the present study were to investigate the clinical outcomes and safety of apatinib monotherapy in the treatment of patients with advanced epithelial ovarian carcinoma (EOC) who have progressed after standard regimens, and to analyze the vascular endothelial growth factor receptor 2 (VEGFR2) rs2071559 polymorphism. A total of 118 patients with advanced EOC who received apatinib treatment were included in the study. Tumor response was evaluated using progression-free survival (PFS) and overall survival (OS) time, and safety data were documented. Additionally, peripheral blood and peripheral blood mononuclear cell (PBMC) specimens from the patients with EOC were collected to perform the genotyping of genetic polymorphism and assess the mRNA expression of VEGFR2, respectively. The objective response rate across the 118 patients with advanced EOC was 38.98%, the disease control rate was 63.56%, the median PFS time was 4.65 months and the median OS time was 15.10 months. Regarding the polymorphism analysis, the prevalence of rs2071559 in VEGFR2 among the 118 patients with advanced EOC was recorded as the TT genotype in 72 cases (61.02%), TC genotype in 41 cases (34.75%) and CC genotype in 5 cases (4.23%), and the minor allele frequency of rs2071559 was 0.22. The distribution of the three genotypes was in accordance with the Hardy-Weinberg equilibrium (P=0.781). TC and CC genotypes were merged in the subsequent analysis. The prognosis analyses suggested that the median PFS time of patients with the TC/CC genotype and the TT genotype was 3.10 and 5.40 months, respectively (P=0.015). Moreover, the median OS time of the two genotypes was 12.60 and 17.50 months, respectively (P=0.009). However, no association was noted between genotype status of the polymorphism and adverse reactions. Additionally, the mRNA expression analysis indicated that the mRNA expression levels of VEGFR2 in PBMC specimens were significantly different between TT and TC/CC genotypes (P<0.001). The present study suggested that the clinical outcomes of patients with advanced EOC, who progressed after standard regimens and received apatinib treatment, might be influenced by the VEGFR2 rs2071559 polymorphism.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yuan-Yuan Gu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiao-Di Hu
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Qun Zhao
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Hai-Li Kang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Miao Wang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Wei Duan
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yin Guan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
41
|
Dal Bo M, De Mattia E, Baboci L, Mezzalira S, Cecchin E, Assaraf YG, Toffoli G. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resist Updat 2020; 51:100702. [DOI: 10.1016/j.drup.2020.100702] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
|
42
|
Marin JJ, Macias RI, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG, Espinosa-Escudero R, Reviejo M, Bohorquez LH, Briz O. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061663. [PMID: 32585893 PMCID: PMC7352164 DOI: 10.3390/cancers12061663] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.
Collapse
Affiliation(s)
- Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| | - Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Alvaro G. Temprano
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Ricardo Espinosa-Escudero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Laura H. Bohorquez
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| |
Collapse
|
43
|
Cabral LKD, Tiribelli C, Sukowati CHC. Sorafenib Resistance in Hepatocellular Carcinoma: The Relevance of Genetic Heterogeneity. Cancers (Basel) 2020; 12:1576. [PMID: 32549224 PMCID: PMC7352671 DOI: 10.3390/cancers12061576] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in biomedicine, the incidence and the mortality of hepatocellular carcinoma (HCC) remain high. The majority of HCC cases are diagnosed in later stages leading to the less than optimal outcome of the treatments. Molecular targeted therapy with sorafenib, a dual-target inhibitor targeting the serine-threonine kinase Raf and the tyrosine kinases VEGFR/PDGFR, is at present the main treatment for advanced-stage HCC, either in a single or combinatory regimen. However, it was observed in a large number of patients that its effectiveness is hampered by drug resistance. HCC is highly heterogeneous, within the tumor and among individuals, and this influences disease progression, classification, prognosis, and naturally cellular susceptibility to drug resistance. This review aims to provide an insight on how HCC heterogeneity influences the different primary mechanisms of chemoresistance against sorafenib including reduced drug intake, enhanced drug efflux, intracellular drug metabolism, alteration of molecular targets, activation/inactivation of signaling pathways, changes in the DNA repair machinery, and negative balance between apoptosis and survival of the cancer cells. The diverse variants, mutations, and polymorphisms in molecules and their association with drug response can be a helpful tool in treatment decision making. Accordingly, the existence of heterogeneous biomarkers in the tumor must be considered to strengthen multi-target strategies in patient-tailored treatment.
Collapse
Affiliation(s)
| | | | - Caecilia H. C. Sukowati
- Fondazione Italiana Fegato (Italian Liver Foundation), AREA Science Park, Basovizza, 34149 Trieste, Italy; (L.K.D.C.); (C.T.)
| |
Collapse
|
44
|
Caputo F, Dadduzio V, Tovoli F, Bertolini G, Cabibbo G, Cerma K, Vivaldi C, Faloppi L, Rizzato MD, Piscaglia F, Celsa C, Fornaro L, Marisi G, Conti F, Silvestris N, Silletta M, Lonardi S, Granito A, Stornello C, Massa V, Astara G, Delcuratolo S, Cascinu S, Scartozzi M, Casadei-Gardini A. The role of PNI to predict survival in advanced hepatocellular carcinoma treated with Sorafenib. PLoS One 2020; 15:e0232449. [PMID: 32379785 PMCID: PMC7205300 DOI: 10.1371/journal.pone.0232449] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS The present study aims to investigate the role of the prognostic nutritional index (PNI) on survival in patients with advanced hepatocellular carcinoma (HCC) treated with sorafenib. METHODS This multicentric study included a training cohort of 194 HCC patients and three external validation cohorts of 129, 76 and 265 HCC patients treated with Sorafenib, respectively. The PNI was calculated as follows: 10 × serum albumin (g/dL) + 0.005 × total lymphocyte count (per mm3). Univariate and multivariate analyses were performed to investigate the association between the covariates and the overall survival (OS). RESULTS A PNI cut-off value of 31.3 was established using the ROC analysis. In the training cohort, the median OS was 14.8 months (95% CI 12-76.3) and 6.8 months (95% CI 2.7-24.6) for patients with a high (>31.3) and low (<31.3) PNI, respectively. At both the univariate and the multivariate analysis, low PNI value (p = 0.0004), a 1-unit increase of aspartate aminotransferase (p = 0.0001), and age > 70 years (p< 0.0038) were independent prognostic factors for OS. By performing the same multivariate analysis of the training cohort, the PNI <31.3 versus >31.3 was found to be an independent prognostic factor for predicting OS in all the three validation cohorts. CONCLUSIONS PNI represents a prognostic tool in advanced HCC treated with first-line Sorafenib. It is readily available and low-cost, and it could be implemented in clinical practice in patients with HCC.
Collapse
Affiliation(s)
- Francesco Caputo
- Division of Oncology, Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Dadduzio
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesco Tovoli
- Azienda Ospedaliera Universitaria S.Orsola-Malpighi Bologna, Bologna, Italy
| | | | - Giuseppe Cabibbo
- Section of Gastroenterology & Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Krisida Cerma
- Division of Oncology, Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Luca Faloppi
- Medical Oncology Unit, Macerata General Hospital, Macerata, Italy
| | - Mario Domenico Rizzato
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Fabio Piscaglia
- Azienda Ospedaliera Universitaria S.Orsola-Malpighi Bologna, Bologna, Italy
| | - Ciro Celsa
- Section of Gastroenterology & Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | | | - Giorgia Marisi
- Medical Oncology Unit IRCSS-IRST Meldola, Meldola, Italy
| | - Fabio Conti
- Department of Internal Medicine, Degli Infermi Hospital, Faenza, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Giovanni Paolo II Cancer Center, Bari, Italy
| | - Marianna Silletta
- Medical Oncology Department, Campus Biomedico, University of Rome, Rome, Italy
| | - Sara Lonardi
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Alessandro Granito
- Azienda Ospedaliera Universitaria S.Orsola-Malpighi Bologna, Bologna, Italy
| | | | | | - Giorgio Astara
- Department of Medical Oncology, University of Cagliari, Cagliari, Italy
| | - Sabina Delcuratolo
- Medical Oncology Unit, IRCCS Giovanni Paolo II Cancer Center, Bari, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Scartozzi
- Department of Medical Oncology, University of Cagliari, Cagliari, Italy
| | - Andrea Casadei-Gardini
- Division of Oncology, Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
45
|
Marin JJG, Serrano MA, Monte MJ, Sanchez-Martin A, Temprano AG, Briz O, Romero MR. Role of Genetic Variations in the Hepatic Handling of Drugs. Int J Mol Sci 2020; 21:E2884. [PMID: 32326111 PMCID: PMC7215464 DOI: 10.3390/ijms21082884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
The liver plays a pivotal role in drug handling due to its contribution to the processes of detoxification (phases 0 to 3). In addition, the liver is also an essential organ for the mechanism of action of many families of drugs, such as cholesterol-lowering, antidiabetic, antiviral, anticoagulant, and anticancer agents. Accordingly, the presence of genetic variants affecting a high number of genes expressed in hepatocytes has a critical clinical impact. The present review is not an exhaustive list but a general overview of the most relevant variants of genes involved in detoxification phases. The available information highlights the importance of defining the genomic profile responsible for the hepatic handling of drugs in many ways, such as (i) impaired uptake, (ii) enhanced export, (iii) altered metabolism due to decreased activation of prodrugs or enhanced inactivation of active compounds, and (iv) altered molecular targets located in the liver due to genetic changes or activation/downregulation of alternative/compensatory pathways. In conclusion, the advance in this field of modern pharmacology, which allows one to predict the outcome of the treatments and to develop more effective and selective agents able to overcome the lack of effect associated with the existence of some genetic variants, is required to step forward toward a more personalized medicine.
Collapse
Affiliation(s)
- Jose J. G. Marin
- HEVEFARM Group, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.A.S.); (M.J.M.); (A.S.-M.); (A.G.T.); (O.B.); (M.R.R.)
| | | | | | | | | | | | | |
Collapse
|
46
|
Liu JY, Zhu BR, Wang YD, Sun X. The efficacy and safety of Apatinib mesylate in the treatment of metastatic osteosarcoma patients who progressed after standard therapy and the VEGFR2 gene polymorphism analysis. Int J Clin Oncol 2020; 25:1195-1205. [PMID: 32215805 DOI: 10.1007/s10147-020-01644-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the efficacy and safety of Apatinib mesylate in the treatment of metastatic osteosarcoma patients who progressed after standard therapy and the VEGFR2 gene polymorphism analysis. METHODS Designed as a retrospective study, a total of 105 metastatic osteosarcoma patients who progressed after standard therapy were included in this study. The metastatic osteosarcoma patients received 500-750 mg Apatinib mesylate according to body surface area until disease progression or unacceptable toxicity with 28 days one cycle. Overall response was evaluated after two cycles Apatinib treatment, then progression-free survival (PFS) and overall survival (OS) were evaluated, and safety data were recorded. Additionally. peripheral blood and peripheral blood mononuclear cell (PBMC) specimens in the osteosarcoma patients were collected for the genotyping of VEGFR2 genetic variation and mRNA expression, respectively. Analysis on the association between genotype and baseline characteristics and VEGFR2 gene mRNA expression was analyzed. The univariate analysis of genotypes and prognosis was carried out by Kaplan-Meier survival analysis, and multivariate analysis was adjusted by Cox regression analysis. RESULTS The objective response rate (ORR) of the 105 metastatic osteosarcoma patients was 37.14%, disease control rate (DCR) was 77.14%, median PFS was 4.1 months, and median OS was 9.0 months. Regarding the VEGFR2 gene polymorphisms analysis, only - 906 T > C was of clinical significance. The prevalence of - 906 T > C in VEGFR2 among the study population was as follows: TT genotype 62 cases (59.05%), TC genotype 36 cases (34.29%) and CC genotype 7 cases (6.66%), minor allele frequency of - 906 T > C was 0.24. Compared with patients with TC/CC genotype, patients with TT genotype showed longer median PFS (5.0 versus 3.1 months, P = 0.011) and median OS (9.8 versus 7.6 months, P = 0.032). There was no correlation between the polymorphism and adverse reactions. Additionally, the mRNA expression in 69 randomly selected sample indicated that the mRNA expression of VEGFR2 of the patients with CC/TC genotypes were significantly higher than those of the TT genotype patients (P < 0.001). CONCLUSION Apatinib was safe and effective in the treatment of metastatic osteosarcoma patients who progressed after standard therapy. The clinical outcomes of Apatinib may be influenced by the polymorphism - 906 T > C of VEGFR2 through mediating the mRNA expression of VEGFR2.
Collapse
Affiliation(s)
- Jia-Yong Liu
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, P. R. China.
| | - Bao-Rang Zhu
- Department of Tumor Minimally Invasive Treatment, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Beijing, 100071, P. R. China
| | - Yu-Dong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, P. R. China
| | - Xin Sun
- Department of Orthopedic Oncology, Peking University People's Hospital, Beijing, 100044, P. R. China.
| |
Collapse
|
47
|
Xie H, Lafky JM, Morlan BW, Stella PJ, Dakhil SR, Gross GG, Loui WS, Hubbard JM, Alberts SR, Grothey A. Dual VEGF inhibition with sorafenib and bevacizumab as salvage therapy in metastatic colorectal cancer: results of the phase II North Central Cancer Treatment Group study N054C (Alliance). Ther Adv Med Oncol 2020; 12:1758835920910913. [PMID: 32201506 PMCID: PMC7066587 DOI: 10.1177/1758835920910913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/20/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Bevacizumab (BEV), a monoclonal antibody against vascular endothelial growth factor-A (VEGF-A), is a standard component of medical therapy of metastatic colorectal cancer (mCRC). Activation of alternative angiogenesis pathways has been implicated in resistance to BEV. This phase II study examines the activity of combined vertical blockade of VEGF signaling with sorafenib and BEV as salvage therapy in patients with progressive disease (PD) on all standard therapy in mCRC. METHODS mCRC patients with documented PD on standard therapy, received sorafenib (200 mg orally twice daily, days 1-5 and 8-12) and BEV (5 mg/kg intravenously, day 1) every 2 weeks. Primary endpoint was 3-month progression-free survival (PFS) rate and secondary endpoints were overall survival (OS), response rate (RR), safety, and feasibility. RESULTS Of the 83 patients enrolled, 79 were evaluable. Of these, 42 (53%) were progression-free at 3 months. Median PFS was 3.5 months and median OS was 8.3 months. One patient had a partial response and 50 patients (63.3%) had at least one stable tumor assessment. Of 79 evaluable patients, 54 (68%) experienced grade 3/4 adverse events (AEs) at least possibly related to treatment. Most frequent grade 3/4 AEs were: fatigue (24.1%), hypertension (16.5%), elevated lipase (8.9%), hand-foot skin reaction (8.9%), diarrhea (7.6%), and proteinuria (7.6%). Reasons for treatment discontinuation were PD (72%), AEs (18%), patient refusal (8%), physician decision (1%), and death (1%). CONCLUSIONS The combination of BEV and sorafenib as salvage therapy in heavily pretreated mCRC patients is tolerable and manageable, with evidence of promising activity. CLINICALTRIALSGOV IDENTIFIER NCT00826540, URL:http://clinicaltrials.gov/ct2/show/NCT00826540.
Collapse
Affiliation(s)
- Hao Xie
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jacqueline M. Lafky
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA Department of Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Bruce W. Morlan
- Department of Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Axel Grothey
- Medical Oncology, West Cancer Center, 9745 Wolf River Blvd, Germantown, TN 38138-1762, USA
| |
Collapse
|
48
|
Faloppi L, Puzzoni M, Casadei Gardini A, Silvestris N, Masi G, Marisi G, Vivaldi C, Gadaleta CD, Ziranu P, Bianconi M, Loretelli C, Demurtas L, Lai E, Giampieri R, Galizia E, Ulivi P, Battelli N, Falcone A, Cascinu S, Scartozzi M. Angiogenesis Genotyping and Clinical Outcomes in Patients with Advanced Hepatocellular Carcinoma Receiving Sorafenib: The ALICE-2 Study. Target Oncol 2020; 15:115-126. [DOI: 10.1007/s11523-020-00698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Huang A, Wang YP, Wang J, Fu PY, Zhang X, Cao Y, Fan J, Yang XR, Zhou J. Limited bias effect of intratumoral heterogeneity on genetic profiling of hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:112-120. [PMID: 32175113 PMCID: PMC7052777 DOI: 10.21037/jgo.2019.09.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Utilization of next-generation sequencing (NGS) to identify potential therapeutic targets and then prescribe matched agents provides new hope for patients with advanced cancer, such as hepatocellular carcinoma (HCC). However, intratumoral heterogeneity (ITH) challenges precise genomic profiling and may lead to target treatment failure. This study aims to evaluate whether and to what extent would genetic profiling be biased by ITH in HCC. We datamined publications focusing on the ITH of HCC and extracted the sequencing and clinicopathological information to make data reanalysis. Potential therapeutic targets and driver genes in HCC were specially pooled as reference to analyze the bias effect of ITH on genetic profiling. Five studies which analyzed ITH using NGS of multi-site samples were enrolled, with a total of 207 tumor samples from 36 HCC patients. The ITH ranged from 5.21% to 88.27% and no correlations between ITH extent and sample numbers, sequencing depth, or clinicopathological parameters were observed. In total, 72 therapeutic and 15 candidate driver genes were pooled as reference. Totally, 38.8% HCCs were found to be drugable in single-site sample, of which only 19.4% might be biased by ITH. Of the driver genes, 86% could be detected in single-site sample. HCC is a highly heterogeneous disease. While ITH indeed hinders comprehensive and precise HCC genome profiling, it has limited influences on identification of actionable and driver mutations. Single-site sampling/biopsy assayed with targeted deep sequencing might be efficient in the clinical management of HCC.
Collapse
Affiliation(s)
- Ao Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yu-Peng Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Jian Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Pei-Yao Fu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xin Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ya Cao
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Central South University, Ministry of Education, Changsha 410078, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering Fudan University, Shanghai 200433, China
| |
Collapse
|
50
|
Song ZZ, Zhao LF, Zuo J, Fan ZS, Wang L, Wang YD. Clinical Outcomes and Safety of Apatinib Mesylate in the Treatment of Advanced Non-Squamous Non-Small Cell Lung Cancer in Patients Who Progressed After Standard Therapy and Analysis of the KDR Gene Polymorphism. Onco Targets Ther 2020; 13:603-613. [PMID: 32021302 PMCID: PMC6982468 DOI: 10.2147/ott.s222985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study investigated the clinical outcomes and safety of apatinib mesylate in the treatment of advanced non-squamous non-small cell lung cancer (NSCLC) in patients who progressed after standard therapy, and analyzed the kinase insert domain receptor (KDR) gene polymorphism. Methods A total of 135 patients with advanced non-squamous NSCLC who received apatinib mesylate were included. Objective response rates were evaluated. Subsequently, progression-free survival (PFS) and overall survival (OS) were assessed and safety data were recorded. Additionally, peripheral blood and biopsy cancer tissue specimens were collected from the patients with NSCLC for the genotyping of the genetic polymorphism and mRNA expression of the KDR gene, respectively. Analysis on the association between genotypes and prognosis was conducted. Results The objective response rate of the 135 patients with NSCLC was 18.52%, disease control rate was 65.19%, median PFS was 3.95 months, and median OS was 10.05 months. Regarding the KDR gene polymorphism analysis, the distribution of the 4397T>C polymorphism genotypes was in accordance with the Hardy–Weinberg Equilibrium (P=0.868). Moreover, the prognosis analysis indicated that the median PFS of patients with the CC/TC and TT genotypes was 2.80 and 4.80 months, respectively (P=0.002). Furthermore, the median OS of patients with the two genotypes was 9.10 and 10.56 months, respectively (P=0.041). The multivariate Cox regression analysis showed that the TC/CC genotypes were an independent factor for PFS (odds ratio: 1.72, P=0.009). There was no correlation between the polymorphism and adverse reactions. Additionally, the mRNA expression analysis suggested that the mRNA levels of KDR in cancer tissues were significantly different between the TT and TC/CC genotypes (P<0.001). Conclusion The clinical outcomes of treatment with apatinib mesylate for advanced non-squamous NSCLC in patients who progressed after standard therapy may be influenced by the KDR 4397T>C polymorphism through mediation of the mRNA expression of KDR.
Collapse
Affiliation(s)
- Zi-Zheng Song
- Department of Medical Oncology, The Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Li-Fen Zhao
- Department of Respiratory and Critical Care Medicine, The Shanxi Dayi Hospital, Taiyuan, People's Republic of China
| | - Jing Zuo
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhi-Song Fan
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Long Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yu-Dong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|