1
|
Kocagöz R, Onat İ, Öz MD, Turna B, Kumbaracı BS, Orman MN, Süzen HS, Orhan H. The role of tissue persistent organic pollutants and genetic polymorphisms in patients with benign and malignant kidney tumors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104495. [PMID: 38950873 DOI: 10.1016/j.etap.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
This study aimed to explore whether there is an association between environmental exposure to POPs and kidney tumor induction, and whether blood POP concentrations reflect kidney tissue concentrations. POP derivatives were determined in blood, tumor tissue, tumor surrounding tissue, and perirenal fat tissue samples taken from patients who underwent surgery for renal tumors. A voluntary control group was recruited for blood and urine samples as well. Urinary excretions of o,o'-dityrosine, chlorotyrosine, nitrotyrosine, and 8-OHdG were measured in the same patients. The possible role of genetic polymorphisms in CYP1A1, GST isozymes P, M, and T, and hOGG1 genes on the predisposition to renal cancer was investigated. Some POPs have been found to be associated with kidney cancer, as evidenced by their significantly high ORs. 8-OHdG levels were significantly higher compared to the control group. The GSTT1 null polymorphism can be a risk factor for malignant but not for benign kidney tumors.
Collapse
Affiliation(s)
- Rasih Kocagöz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - İlgen Onat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - Merve Demirbügen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Türki̇ye
| | | | | | - Mehmet Nurullah Orman
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - Halit Sinan Süzen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Türki̇ye
| | - Hilmi Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye; İzmir Biomedicine and Genome Center (İBG-İzmir), Balcova, İzmir 35340, Türkiye.
| |
Collapse
|
2
|
Ghareghomi S, Moosavi-Movahedi F, Saso L, Habibi-Rezaei M, Khatibi A, Hong J, Moosavi-Movahedi AA. Modulation of Nrf2/HO-1 by Natural Compounds in Lung Cancer. Antioxidants (Basel) 2023; 12:antiox12030735. [PMID: 36978983 PMCID: PMC10044870 DOI: 10.3390/antiox12030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Oxidative stresses (OSs) are considered a pivotal factor in creating various pathophysiological conditions. Cells have been able to move forward by modulating numerous signaling pathways to moderate the defects of these stresses during their evolution. The company of Kelch-like ECH-associated protein 1 (Keap1) as a molecular sensing element of the oxidative and electrophilic stress and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) as a master transcriptional regulator of the antioxidant response makes a master cytoprotective antioxidant pathway known as the Keap1/Nrf2 pathway. This pathway is considered a dual-edged sword with beneficial features for both normal and cancer cells by regulating the gene expression of the array of endogenous antioxidant enzymes. Heme oxygenase-1 (HO-1), a critical enzyme in toxic heme removal, is one of the clear state indicators for the duality of this pathway. Therefore, Nrf2/HO-1 axis targeting is known as a novel strategy for cancer treatment. In this review, the molecular mechanism of action of natural antioxidants on lung cancer cells has been investigated by relying on the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Faezeh Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran;
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| |
Collapse
|
3
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
4
|
Trifunovic S, Smiljanić K, Sickmann A, Solari FA, Kolarevic S, Divac Rankov A, Ljujic M. Electronic cigarette liquids impair metabolic cooperation and alter proteomic profiles in V79 cells. Respir Res 2022; 23:191. [PMID: 35840976 PMCID: PMC9285873 DOI: 10.1186/s12931-022-02102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although still considered a safer alternative to classical cigarettes, growing body of work points to harmful effects of electronic cigarettes (e-cigarettes) affecting a range of cellular processes. The biological effect of e-cigarettes needs to be investigated in more detail considering their widespread use. Methods In this study, we treated V79 lung fibroblasts with sub-cytotoxic concentration of e-cigarette liquids, with and without nicotine. Mutagenicity was evaluated by HPRT assay, genotoxicity by comet assay and the effect on cellular communication by metabolic cooperation assay. Additionally, comprehensive proteome analysis was performed via high resolution, parallel accumulation serial fragmentation-PASEF mass spectrometry. Results E-cigarette liquid concentration used in this study showed no mutagenic or genotoxic effect, however it negatively impacted metabolic cooperation between V79 cells. Both e-cigarette liquids induced significant depletion in total number of proteins and impairment of mitochondrial function in treated cells. The focal adhesion proteins were upregulated, which is in accordance with the results of metabolic cooperation assay. Increased presence of posttranslational modifications (PTMs), including carbonylation and direct oxidative modifications, was observed. Data are available via ProteomeXchange with identifier PXD032071. Conclusions Our study revealed impairment of metabolic cooperation as well as significant proteome and PTMs alterations in V79 cells treated with e-cigarette liquid warranting future studies on e-cigarettes health impact. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02102-w.
Collapse
Affiliation(s)
- Sara Trifunovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia.
| | - Katarina Smiljanić
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-14, 11000, Belgrade, Serbia
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, 44801, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, AB243FX, Scotland, UK
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany
| | - Stoimir Kolarevic
- Department of Hydroecology and Water Protection, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mila Ljujic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Turna Demir F. In vivo effects of 1,4-dioxane on genotoxic parameters and behavioral alterations in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:414-430. [PMID: 35023806 DOI: 10.1080/15287394.2022.2027832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane (DXN) is used as solvent in different consumer products including cosmetics, paints, surfactants, and waxes. In addition, DXN is released as an unwanted contaminating by-product as a result of some reactions including ethoxylation of alcohols, which occurs with in personal care products. Consequently, DXN pollution was detected in drinking water and is considered as an environmental problem. At present, the genotoxicity effects attributed to DXN are controversial. The present study using an in vivo model organism Drosophila melanogaster aimed to determine the toxic/genotoxic, mutagenic/recombinogenic, oxidative damage as evidenced by ROS production, phenotypic alterations as well as behavioral and developmental alterations that are closely related to neuronal functions. Data demonstrated that nontoxic DXN concentration (0.1, 0.25, 0.5, or 1%) induced mutagenic (1%) and recombinogenic (0.1, 0.25, or 0.5%) effects in wing spot test and genotoxicity in hemocytes using comet assay. The nontoxic concentrations of DXN (0.1, 0.25, 0.5, or 1%) significantly increased oxidative stress, climbing behavior, thermal sensivity and abnormal phenotypic alterations. Our findings show that in contrast to in vitro exposure, DXN using an in vivo model Drosophila melanogaster this compound exerts toxic and genotoxic effects. Data suggest that additional studies using other in vivo models are thus warranted.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
6
|
Liao Z, Fang Z, Gou S, Luo Y, Liu Y, He Z, Li X, Peng Y, Fu Z, Li D, Chen H, Luo Z. The role of diet in renal cell carcinoma incidence: an umbrella review of meta-analyses of observational studies. BMC Med 2022; 20:39. [PMID: 35109847 PMCID: PMC8812002 DOI: 10.1186/s12916-021-02229-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evidence associating diet with the incidence of renal cell carcinoma (RCC) is inconclusive. We aimed to summarize evidence associating dietary factors with RCC incidence and assess the strength and validity of this evidence. METHODS We conducted an umbrella review of systematic reviews or meta-analyses (SRoMAs) that assessed the association between diet and RCC incidence. Through April 2021, PubMed, Web of Science, Embase, The Cochrane Library, Scopus, and WCRF were searched. Two independent reviewers selected studies, extracted data, and appraised the quality of SRoMAs. According to credibility assessment criteria, evidence can be divided into five categories: convincing (class I), highly suggestive (class II), suggestive (class III), weak (class IV), and nonsignificant (class V). RESULTS Twenty-nine meta-analyses were obtained after screening. After excluding 7 overlapping meta-analyses, 22 meta-analyses including 502 individual studies and 64 summary hazard ratios for RCC incidence were included: dietary patterns or dietary quality indices (n = 6), foods (n = 13), beverages (n = 4), alcohol (n = 7), macronutrients (n =15), and micronutrients (n =19). No meta-analyses had high methodological quality. Five meta-analyses exhibited small study effects; one meta-analysis showed evidence of excess significance bias. No dietary factors showed convincing or highly suggestive evidence of association with RCC in the overall analysis. Two protective factors had suggestive evidence (vegetables (0.74, 95% confidence interval 0.63 to 0.86) and vitamin C (0.77, 0.66 to 0.90)) in overall analysis. One protective factor had convincing evidence (moderate drinking (0.77, 0.70 to 0.84)) in Europe and North America and one protective factor had highly suggestive evidence (cruciferous vegetables (0.78, 0.70 to 0.86)) in North America. CONCLUSIONS Although many meta-analyses have assessed associations between dietary factors and RCC, no high-quality evidence exists (classes I and II) in the overall analysis. Increased intake of vegetables and vitamin C is negatively associated with RCC risk. Moderate drinking might be beneficial for Europeans and North Americans, and cruciferous vegetables might be beneficial to North Americans, but the results should be interpreted with caution. More researches are needed in the future. TRIAL REGISTRATION PROSPERO CRD42021246619.
Collapse
Affiliation(s)
- Zhanchen Liao
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zhitao Fang
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Siqi Gou
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Yong Luo
- The Second Affiliated Hospital, Trauma Center & Critical Care Medicine, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Yiqi Liu
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zhun He
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Xin Li
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Yansong Peng
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zheng Fu
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Dongjin Li
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Haiyun Chen
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zhigang Luo
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
7
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Motooka Y, Akatsuka S. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr 2022; 71:78-88. [PMID: 36213789 PMCID: PMC9519419 DOI: 10.3164/jcbn.22-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
Any independent life requires iron to survive. Whereas iron deficiency causes oxygen insufficiency, excess iron is a risk for cancer, generating a double-edged sword. Iron metabolism is strictly regulated via specific systems, including iron-responsive element (IRE)/iron regulatory proteins (IRPs) and the corresponding ubiquitin ligase FBXL5. Here we briefly reflect the history of bioiron research and describe major recent advancements. Ferroptosis, a newly coined Fe(II)-dependent regulated necrosis, is providing huge impact on science. Carcinogenesis is a process to acquire ferroptosis-resistance and ferroptosis is preferred in cancer therapy due to immunogenicity. Poly(rC)-binding proteins 1/2 (PCBP1/2) were identified as major cytosolic Fe(II) chaperone proteins. The mechanism how cells retrieve stored iron in ferritin cores was unraveled as ferritinophagy, a form of autophagy. Of note, ferroptosis may exploit ferritinophagy during the progression. Recently, we discovered that cellular ferritin secretion is through extracellular vesicles (EVs) escorted by CD63 under the regulation of IRE/IRP system. Furthermore, this process was abused in asbestos-induced mesothelial carcinogenesis. In summary, cellular iron metabolism is tightly regulated by multi-system organizations as surplus iron is shared through ferritin in EVs among neighbor and distant cells in need. However, various noxious stimuli dramatically promote cellular iron uptake/storage, which may result in ferroptosis.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| |
Collapse
|
8
|
Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, Kroll J. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol 2020; 37:101723. [PMID: 32980661 PMCID: PMC7519378 DOI: 10.1016/j.redox.2020.101723] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Increased methylglyoxal (MG) formation is associated with diabetes and its complications. In zebrafish, knockout of the main MG detoxifying system Glyoxalase 1, led to limited MG elevation but significantly elevated aldehyde dehydrogenases (ALDH) activity and aldh3a1 expression, suggesting the compensatory role of Aldh3a1 in diabetes. To evaluate the function of Aldh3a1 in glucose homeostasis and diabetes, aldh3a1−/− zebrafish mutants were generated using CRISPR-Cas9. Vasculature and pancreas morphology were analysed by zebrafish transgenic reporter lines. Corresponding reactive carbonyl species (RCS), glucose, transcriptome and metabolomics screenings were performed and ALDH activity was measured for further verification. Aldh3a1−/− zebrafish larvae displayed retinal vasodilatory alterations, impaired glucose homeostasis, which can be aggravated via pdx1 silencing induced hyperglycaemia. Unexpectedly, MG was not altered, but 4-hydroxynonenal (4-HNE), another prominent lipid peroxidation RCS exhibited high affinity with Aldh3a1, was increased in aldh3a1 mutants. 4-HNE was responsible for the retinal phenotype via pancreas disruption induced hyperglycaemia and can be rescued via l-Carnosine treatment. Furthermore, in type 2 diabetic patients, serum 4-HNE was increased and correlated with disease progression. Thus, our data suggest impaired 4-HNE detoxification and elevated 4-HNE concentration as biomarkers but also the possible inducers for diabetes, from genetic susceptibility to the pathological progression. Aldh3a1 mutant was generated using CRISPR/Cas9 and displayed impaired glucose homeostasis. Elevated 4-Hydroxynonenal (4-HNE) was responsible for hyperglycaemia in aldh3a1 mutants and was rescued by Carnosine. Patient serum 4-HNE level was correlated with HbA1c and fasting glucose. Impaired 4-HNE detoxification acts as possible inducers for diabetes, from genetic susceptibility to pathological progress.
Collapse
Affiliation(s)
- Bowen Lou
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research (ZMF), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Zuyi Yuan
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
10
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
11
|
A nanocomposite consisting of cuprous oxide supported on graphitic carbon nitride nanosheets for non-enzymatic electrochemical sensing of 8-hydroxy-2'-deoxyguanosine. Mikrochim Acta 2020; 187:459. [PMID: 32686000 DOI: 10.1007/s00604-020-04416-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Graphitic carbon nitrides supported cuprous oxide architecture is reported as an efficient electrode material for supercapacitors, especially due to its high charge-transfer conductivity of the electrochemical devices. Herein, we present an electrochemical sensor to specifically detect 8-hydroxy-2'-deoxyguanosine (8-HDG) oxidative stress biomarker using graphitic carbon nitrides that decorate a cuprous oxide cubes modified electrode. The fabricated electrochemical sensor was characterized and proved by electrochemical methods, EDX, FESEM, and amperometry (i-t). In the presence of 8-hydroxy-2'-deoxyguanosine (8-HDG), the effective interaction between graphitic carbon nitrides and 8-HDG favors the accumulation on the Cu2O/g-C3N4/GCE, which increases the electrocatalytic property and amperometric response. The proposed electrochemical sensor exhibits a wide linear range for 8-HDG in 0.1 M phosphate buffer (pH 7.0) from 25 nM to 0.91 mM, and the limit of detection (LOD) is 4.5 nM. The stability of the Cu2O/g-C3N4/GCE is improved when stored at 4 °C. The repeatability and reproducibility of this electrochemical sensor is good and the sensor retains its current response for 8-HDG detection also after long time storage. The modified sensor proved high selectivity and sensitivity for 8-HDG, which made it possible to determine 8-HDG in biological samples. Furthermore, the Cu2O/g-C3N4/GCE offered a favorable electron transfer between the Cu2O/g-C3N4 and the electrode interface compared to Cu2O/GCE, g-C3N4/GCE, and unmodified GCE. Graphical abstract Electrochemical detection of oxidative stress marker based on Cu2O@g-C3N4 materials modified electrode.
Collapse
|
12
|
Jakovčević A, Žarković K, Jakovčević D, Rakušić Z, Prgomet D, Waeg G, Šunjić SB, Žarković N. The Appearance of 4-Hydroxy-2-Nonenal (HNE) in Squamous Cell Carcinoma of the Oropharynx. Molecules 2020; 25:molecules25040868. [PMID: 32079077 PMCID: PMC7070326 DOI: 10.3390/molecules25040868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor growth is associated with oxidative stress, which causes lipid peroxidation. The most intensively studied product of lipid peroxidation is 4-hydroxy-2-nonenal (HNE), which is considered as a “second messenger of free radicals” that binds to proteins and acts as a growth-regulating signaling factor. The incidence of squamous cell carcinoma of the oropharynx is associated with smoking, alcohol and infection of human papilloma virus (HPV), with increasing incidence world-wide. The aim of this retrospective study involving 102 patients was to determine the immunohistochemical appearance of HNE-protein adducts as a potential biomarker of lipid peroxidation in squamous cell carcinoma of the oropharynx. The HNE-protein adducts were detected in almost all tumor samples and in the surrounding non-tumorous tissue, while we found that HNE is differentially distributed in squamous cell carcinomas in dependence of clinical stage and histological grading of these tumors. Namely, the level of HNE-immunopositivity was increased in comparison to the normal oropharyngeal epithelium in well- and in moderately-differentiated squamous cell carcinoma, while it was decreasing in poorly differentiated carcinomas and in advanced stages of cancer. However, more malignant and advanced cancer was associated with the increase of HNE in surrounding, normal tissue. This study confirmed the onset of lipid peroxidation, generating HNE-protein adducts that can be used as a valuable bioactive marker of carcinogenesis in squamous cell carcinoma of the oropharynx, as well as indicating involvement of HNE in pathophysiological changes of the non-malignant tissue in the vicinity of cancer.
Collapse
Affiliation(s)
- Antonia Jakovčević
- Clinical Hospital Centre Zagreb, Clinical Department of Pathology and Cytology, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-123-880-89
| | - Kamelija Žarković
- Clinical Hospital Centre Zagreb, Clinical Department of Pathology and Cytology, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Danica Jakovčević
- Department of Pathology, Clinical Hospital “Sv. Duh”, Ul. Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Zoran Rakušić
- Department of Oncology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Drago Prgomet
- Clinic for Ear, Nose and Throat Diseases and Head and Neck Surgeries, University Hospital Center Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University, Humboldtstrasse 50, A-8010 Graz, Austria;
| | - Suzana Borović Šunjić
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.Š.); (N.Ž.)
| | - Neven Žarković
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.Š.); (N.Ž.)
| |
Collapse
|
13
|
An AR, Kim KM, Park HS, Jang KY, Moon WS, Kang MJ, Lee YC, Kim JH, Chae HJ, Chung MJ. Association between Expression of 8-OHdG and Cigarette Smoking in Non-small Cell Lung Cancer. J Pathol Transl Med 2019; 53:217-224. [PMID: 30853705 PMCID: PMC6639704 DOI: 10.4132/jptm.2019.02.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Exposure to cigarette smoking (CS) is a major risk factor for the development of lung cancer. CS is known to cause oxidative DNA damage and mutation of tumor-related genes, and these factors are involved in carcinogenesis. 8-Hydroxydeoxyguanosine (8-OHdG) is considered to be a reliable biomarker for oxidative DNA damage. Increased levels of 8-OHdG are associated with a number of pathological conditions, including cancer. There are no reports on the expression of 8-OHdG by immunohistochemistry in non-small cell lung cancer (NSCLC). METHODS We investigated the expression of 8-OHdG and p53 in 203 NSCLC tissues using immunohistochemistry and correlated it with clinicopathological features including smoking. RESULTS The expression of 8-OHdG was observed in 83.3% of NSCLC. It was significantly correlated with a low T category, negative lymph node status, never-smoker, and longer overall survival (p < .05) by univariate analysis. But multivariate analysis revealed that 8-OHdG was not an independent prognostic factor for overall survival in NSCLC patients. The aberrant expression of p53 significantly correlated with smoking, male, squamous cell carcinoma, and Ki-67 positivity (p < .05). CONCLUSIONS The expression of 8-OHdG was associated with good prognostic factors. It was positively correlated with never-smokers in NSCLC, suggesting that oxidative damage of DNA cannot be explained by smoking alone and may depend on complex control mechanisms.
Collapse
Affiliation(s)
- Ae Ri An
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Kyoung Min Kim
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Ho Sung Park
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Kyu Yun Jang
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Woo Sung Moon
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Myoung Jae Kang
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Jong Hun Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Han Jung Chae
- Department of Pharmacology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Myoung Ja Chung
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
14
|
Milena D, Elzbieta P. Determination of DNA Damage in the Retina Photoreceptors of Drosophila. Bio Protoc 2018; 8:e2708. [PMID: 34179251 DOI: 10.21769/bioprotoc.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 11/02/2022] Open
Abstract
The retina is sensitive for light damages, because of direct light exposure, especially intense blue and UV light, which increase level of ROS and other toxic phototransduction products in photoreceptor cells. In our previous work ( Damulewicz et al., 2017a and 2017b), we used 8-oxo-deoxyguanosine (8-OHdG) as a marker for oxidative stress to investigate the role of heme oxygenase in DNA protection against UV light. In this protocol, we showed how to determine the level of DNA damages in the retina using immunohistochemical staining.
Collapse
Affiliation(s)
- Damulewicz Milena
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Pyza Elzbieta
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Zarkovic K, Jakovcevic A, Zarkovic N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radic Biol Med 2017; 111:110-126. [PMID: 27993730 DOI: 10.1016/j.freeradbiomed.2016.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Excessive production of reactive oxygen species can induce peroxidation of the polyunsaturated fatty acids thus generating reactive aldehydes like 4-hydroxy-2-nonenal (HNE), denoted as "the second messenger of free radicals". Because HNE has high binding affinity for cysteine, histidine and lysine it forms relatively stable and hardly metabolized protein adducts. By changing structure and function of diverse structural and regulatory proteins, HNE achieves not only cytotoxic, but also regulatory functions in various pathophysiological processes. Numerous animal model studies and clinical trials confirmed HNE as one of the crucial factors in development and progression of many disorders, in particular of cancer, (neuro)degenerative, metabolic and inflammatory diseases. Since HNE has multiple biological effects and is in the living system usually bound to proteins and peptides, many research groups work on development of specific immunochemical methods targeting the HNE-histidine adducts as major bioactive marker of lipid peroxidation, following the research pathway initiated by Hermann Esterbauer, who discovered HNE in 60's. Such immunohistochemical studies did not only prove the high biomedical importance of HNE, but have also given new insights into major diseases of the modern man. Immunohistochemical studies have shown reversibility of formation of the HNE-protein adducts, as well as differential onset of the HNE-mediated lipid peroxidation between age- associated atherosclerosis and photoaging, revealing eventually selective anti-cancer effects of HNE produced by non-malignant cells in vicinity of cancer. This review summarizes some of the HNE-histidine immunohistochemistry findings we believe are of broad biomedical interest and could inspire new studies in the field.
Collapse
Affiliation(s)
- Kamelija Zarkovic
- University of Zagreb, School of Medicine, Clinical Hospital Centre Zagreb, Croatia.
| | - Antonia Jakovcevic
- University of Zagreb, School of Medicine, Clinical Hospital Centre Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Zagreb, Croatia
| |
Collapse
|
16
|
Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic Biol Med 2017; 108:610-626. [PMID: 28433662 DOI: 10.1016/j.freeradbiomed.2017.04.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Epidemiological data indicate a constant worldwide increase in cancer mortality, although the age of onset is increasing. Recent accumulation of genomic data on human cancer via next-generation sequencing confirmed that cancer is a disease of genome alteration. In many cancers, the Nrf2 transcription system is activated via mutations either in Nrf2 or Keap1 ubiquitin ligase, leading to persistent activation of the genes with antioxidative functions. Furthermore, deep sequencing of passenger mutations is clarifying responsible cancer causative agent(s) in each case, including aging, APOBEC activation, smoking and UV. Therefore, it is most likely that oxidative stress is the principal initiating factor in carcinogenesis, with the involvement of two essential molecules for life, iron and oxygen. There is evidence based on epidemiological and animal studies that excess iron is a major risk for carcinogenesis, suggesting the importance of ferroptosis-resistance. Microscopic visualization of catalytic Fe(II) has recently become available. Although catalytic Fe(II) is largely present in lysosomes, proliferating cells harbor catalytic Fe(II) also in the cytosol and mitochondria. Oxidative stress catalyzed by Fe(II) is counteracted by thiol systems at different functional levels. Nitric oxide, carbon monoxide and hydrogen (per)sulfide modulate these reactions. Mitochondria generate not only energy but also heme/iron sulfur cluster cofactors and remain mostly dysfunctional in cancer cells, leading to Warburg effects. Cancer cells are under persistent oxidative stress with a delicate balance between catalytic iron and thiols, thereby escaping ferroptosis. Thus, high-dose L-ascorbate and non-thermal plasma as well as glucose/glutamine deprivation may provide additional benefits as cancer therapies over preexisting therapeutics.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kyoko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
17
|
Eichler DR, Hamann HA, Harte KA, Papadantonakis GA. Hydration effects on the photoionization energy of 2′-deoxyguanosine 5′-phosphate and activation barriers for guanine methylation by carcinogenic methane diazonium ions. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Mohamadkhani A, Pourshams A, Viti J, Cellai F, Mortazavi K, Sharafkhah M, Sotoudeh M, Malekzadeh R, Boffetta P, Peluso M. Pancreatic Cancer is Associated with Peripheral Leukocyte Oxidative DNA Damage. Asian Pac J Cancer Prev 2017; 18:1349-1355. [PMID: 28612585 PMCID: PMC5555546 DOI: 10.22034/apjcp.2017.18.5.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background: DNA damage accumulation has been linked to the cancer phenotype. The purpose of this study was to compare the levels of DNA base 8-hydroxy-2’-deoxyguanosine (8-OHdG) and C-reactive protein (CRP) inflammatory markers in healthy controls and pancreatic cancer patients from a hospital-based case-control study. Materials and Methods: Fifty-five pancreatic cancer patients and 55 healthy controls were enrolled from a pool of patients referred to the Endoscopic Ultrasound (EUS) center. Analysis of DNA content of peripheral blood cells was conducted for 8-OHdG with the 32P-postlabelling assay. Serum CRP levels were measured by high-sensitivity assays and demographic data for comparison were collected from individual medical records. Results: The group of cases showed significant increased median (IQR) 8-OHdG DNA adducts/106 nucleotides and CRP compared to the controls (208.8 (138.0-340.8) vs 121.8 (57.7-194.8) RAL value; P<0.001) and (3.5 (1.5-8.6) vs 0.5 (0.2-1.5) mg/L P<0.001). A number of conditional regression models confirmed associations of pancreatic cancer with oxidative DNA damage in peripheral leukocytes. Conclusions: Our findings suggest the importance of leukocyte 8-OHdG adducts as an indicator for systemic oxidative DNA damage in pancreatic cancer patients. In addition to increase in the CRP inflammatory marker, this supports the impact of inflammation in the occurrence of pancreatic cancer as well as inflammatory responses during cancer development.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Toyokuni S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch Biochem Biophys 2016; 595:46-9. [PMID: 27095214 DOI: 10.1016/j.abb.2015.11.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/06/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
After the conquest of numerous infectious diseases, the average life span for humans has been enormously prolonged, reaching more than 80 years in many developed countries. However, cancer is one of the top causes of death, and its incidence continues to increase in many countries, including Japan. I was deeply influenced during my career as a cancer researcher by the concept of oxidative stress, which was established by Helmut Sies in 1985. I have no doubt that oxidative stress is a major cause of carcinogenesis in humans but that other factors and chemicals modify it. Notably, established cancer cells are more oxidatively stressed than their non-tumorous counterparts are, and this stress may be associated with selection under oxidative stress and, thus, faster proliferation compared with non-tumorous cells. For cancer prevention, both avoidance of specific risks that are associated with genetic susceptibility and decreasing oxidative stress in general should delay carcinogenesis. For cancer therapy, individualization and precision medicine require further research in the future. In addition to the currently burgeoning array of humanized antibodies and protein kinase inhibitors, novel methods to increase oxidative stress only in cancer cells would be helpful.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
20
|
Breitzig M, Bhimineni C, Lockey R, Kolliputi N. 4-Hydroxy-2-nonenal: a critical target in oxidative stress? Am J Physiol Cell Physiol 2016; 311:C537-C543. [PMID: 27385721 DOI: 10.1152/ajpcell.00101.2016] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022]
Abstract
In this perspective, we summarize and discuss critical advancements in the study of 4-hydroxy-2-nonenal (4-HNE) as it relates to diseases and clinical complications either caused or exacerbated by oxidative stress. Since its identification in 1980, 4-HNE has been extensively studied with an emphasis on its formation, its role in pathology, and its targets. As a reactive aldehyde, and a product of lipid peroxidation, studies corroborate its ability to disrupt signal transduction and protein activity, as well as induce inflammation and trigger cellular apoptosis in conditions of oxidative stress. Notably, we discuss the role of natural enzymes involved in the regulation of 4-HNE, and how they can be applied to its detoxification in various physiological conditions.
Collapse
Affiliation(s)
- Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charishma Bhimineni
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
21
|
Kanazawa K, Sakamoto M, Kanazawa K, Ishigaki Y, Aihara Y, Hashimoto T, Mizuno M. Lipid peroxides as endogenous oxidants forming 8-oxo-guanosine and lipid-soluble antioxidants as suppressing agents. J Clin Biochem Nutr 2016; 59:16-24. [PMID: 27499574 PMCID: PMC4933685 DOI: 10.3164/jcbn.15-122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022] Open
Abstract
The oxidation of guanosine to 8-oxo-2'-deoxyguanosine (8-oxo-dG) in DNA is closely associated with induction of various diseases, but the endogenous oxidant species involved remains unclear. Hydrogen peroxides (H2O2) have been considered to be the oxidant, while lipid peroxides are another possible oxidant because generated easily in bio-membranes surrounding DNA. The oxidant potency was compared between lipid peroxides and H2O2. Linoleic acid hydroperoxides (LOOH) formed 8-oxo-dG at a higher level than H2O2 in guanosine or double-stranded DNA. In the presence of a physiological concentration of Fe(2+) to produce hydroxyl radicals, LOOH was also a stronger oxidant. In a lipid micelle, LOOH markedly produced 8-oxo-dG at a concentration one-tenth of that of H2O2. Upon adding to rat hepatic mitochondria, phosphatidylcholine hydroperoxides produced 8-oxo-dG abundantly. Employing HepG2 cells after pretreated with glutathione peroxidase inhibitor, LOOH formed 8-oxo-dG more abundantly than H2O2. Then, antioxidants to suppress the 8-oxo-dG formation were examined, when the nuclei of pre-incubated HepG2 with antioxidants were exposed to LOOH. Water-soluble ascorbic acid, trolox, and N-acetyl cysteine showed no or weak antioxidant potency, while lipid-soluble 2,6-dipalmitoyl ascorbic acid, α-tocopherol, and lipid-soluble phytochemicals exhibited stronger potency. The present study shows preferential formation of 8-oxo-dG upon LOOH and the inhibition by lipid-soluble antioxidants.
Collapse
Affiliation(s)
- Kazuki Kanazawa
- School of Agricultural Regional Vitalization, Kibi International University, Sareo 370-1, Sichi, Minami Awaji 656-0484, Japan
| | - Miku Sakamoto
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Ko Kanazawa
- School of Agricultural Regional Vitalization, Kibi International University, Sareo 370-1, Sichi, Minami Awaji 656-0484, Japan
| | - Yoriko Ishigaki
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yoshiko Aihara
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Hashimoto
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Masashi Mizuno
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
22
|
Toyokuni S. The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol Int 2016; 66:245-59. [DOI: 10.1111/pin.12396] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses; Nagoya University Graduate School of Medicine; Nagoya Japan
- Sydney Medical School; The University of Sydney; NSW Australia
| |
Collapse
|
23
|
Ravi S, Johnson MS, Chacko BK, Kramer PA, Sawada H, Locy ML, Wilson LS, Barnes S, Marques MB, Darley-Usmar VM. Modification of platelet proteins by 4-hydroxynonenal: Potential Mechanisms for inhibition of aggregation and metabolism. Free Radic Biol Med 2016; 91:143-53. [PMID: 26475426 PMCID: PMC4761519 DOI: 10.1016/j.freeradbiomed.2015.10.408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 01/23/2023]
Abstract
Platelet aggregation is an essential response to tissue injury and is associated with activation of pro-oxidant enzymes, such as cyclooxygenase, and is also a highly energetic process. The two central energetic pathways in the cell, glycolysis and mitochondrial oxidative phosphorylation, are susceptible to damage by reactive lipid species. Interestingly, how platelet metabolism is affected by the oxidative stress associated with aggregation is largely unexplored. To address this issue, we examined the response of human platelets to 4-hydroxynonenal (4-HNE), a reactive lipid species which is generated during thrombus formation and during oxidative stress. Elevated plasma 4-HNE has been associated with renal failure, septic shock and cardiopulmonary bypass surgery. In this study, we found that 4-HNE decreased thrombin stimulated platelet aggregation by approximately 60%. The metabolomics analysis demonstrated that underlying our previous observation of a stimulation of platelet energetics by thrombin glycolysis and TCA (Tricarboxylic acid) metabolites were increased. Next, we assessed the effect of both 4-HNE and alkyne HNE (A-HNE) on bioenergetics and targeted metabolomics, and found a stimulatory effect on glycolysis, associated with inhibition of bioenergetic parameters. In the presence of HNE and thrombin glycolysis was further stimulated but the levels of the TCA metabolites were markedly suppressed. Identification of proteins modified by A-HNE followed by click chemistry and mass spectrometry revealed essential targets in platelet activation including proteins involved in metabolism, adhesion, cytoskeletal reorganization, aggregation, vesicular transport, protein folding, antioxidant proteins, and small GTPases. In summary, the biological effects of 4-HNE can be more effectively explained in platelets by the integrated effects of the modification of an electrophile responsive proteome rather than the isolated effects of candidate proteins.
Collapse
Affiliation(s)
- Saranya Ravi
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Michelle S Johnson
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Balu K Chacko
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Philip A Kramer
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Hirotaka Sawada
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Morgan L Locy
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | | | - Stephen Barnes
- The Targeted Metabolomics and Proteomics Laboratory; Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Victor M Darley-Usmar
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology.
| |
Collapse
|
24
|
Jia L, Jia Q, Shang Y, Dong X, Li L. Vitamin C intake and risk of renal cell carcinoma: a meta-analysis. Sci Rep 2015; 5:17921. [PMID: 26643589 PMCID: PMC4672306 DOI: 10.1038/srep17921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/22/2015] [Indexed: 01/20/2023] Open
Abstract
Studies have showed that vitamin C intake is linked to renal cell carcinoma risk, however, the results were inconsistent. Hence, the present meta-analysis was to examine the association between vitamin C intake and RCC risk. We searched the published studies that reported the relationship between vitamin C intake and RCC risk using PubMed and Embase up to January 2015. Based on a fixed effects model, RR and the corresponding 95% CI were used to assess the pooled risk. 3 prospective cohort studies and 7 case-control studies were included. The overall RR (95% CI) of RCC for the highest vs. the lowest levels of vitamin C intake was 0.78(0.69,0.87). Little evidence of heterogeneity was found. In the subgroup analyses, we found an inverse association between vitamin C intake and RCC risk in the case-control studies but not in the prospective cohort studies. Additionally, this association between vitamin C intake and RCC risk was not differed by population distribution. Our study provides evidence that vitamin C intake is associated with a reduced RCC risk. However, our conclusion was just based on ten including studies, so more high-quality of case-control studies or cohort studies which report this topic are needed.
Collapse
Affiliation(s)
- Li Jia
- Department of urology, Xinqiao Hospital, Third Military University, Chongqing, 40037, China
| | - Qingling Jia
- Department of Nephrology, Xinqiao Hospital, Third Military University, Chongqing, 40037, China
| | - Yonggang Shang
- Department of urology, Xinqiao Hospital, Third Military University, Chongqing, 40037, China
| | - Xingyou Dong
- Department of urology, Xinqiao Hospital, Third Military University, Chongqing, 40037, China
| | - Longkun Li
- Department of urology, Xinqiao Hospital, Third Military University, Chongqing, 40037, China
| |
Collapse
|
25
|
Aldemir M, Karaguzel E, Okulu E, Gudeloglu A, Ener K, Ozayar A, Erel O. Evaluation of oxidative stress status and antioxidant capacity in patients with renal cell carcinoma. Cent European J Urol 2015; 68:415-20. [PMID: 26855793 PMCID: PMC4742443 DOI: 10.5173/ceju.2015.656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/11/2015] [Accepted: 07/30/2015] [Indexed: 02/03/2023] Open
Abstract
Introduction We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. Material and methods The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (MPO) and ceruloplasmin. Results Patients’ mean age was 58.5 ±12.3 and 56.9 ±15.8 years, respectively, in Group 1 and 2. No statistically significant differences were detected between the groups in terms of oxidative stress parameters and antioxidant capacity measured in the serum of patients including, TOS, TAC, PON1, arylesterase, total thiol, CAT, MPO, and ceruloplasmin levels (p >0.05 for all parameters). The PON-1 value was significantly higher in patients with pT1 stage than pT3 stage (p = 0.007). The arylesterase value was significantly higher in patients with Fuhrman's nuclear grade 3 than grade 2 (p = 0.035). There was no correlation between these parameters level and Fuhrman's nuclear grade, stage, or histopathological tumor type. Conclusions Our results demonstrated that evaluation of these parameters in the serum of patients with localized RCC may not be used as a marker to discriminate between patients with RCC and healthy people.
Collapse
Affiliation(s)
- Mustafa Aldemir
- Ankara Atatürk Training and Research Hospital, Department of Urology, Ankara, Turkey
| | - Ersagun Karaguzel
- Karadeniz Technical University, Faculty of Medicine, Department of Urology, Trabzon, Turkey
| | - Emrah Okulu
- Ankara Atatürk Training and Research Hospital, Department of Urology, Ankara, Turkey
| | - Ahmet Gudeloglu
- Memorial Ankara Hospital, Department of Urology, Ankara, Turkey
| | - Kemal Ener
- Ankara Atatürk Training and Research Hospital, Department of Urology, Ankara, Turkey
| | - Asim Ozayar
- Ankara Atatürk Training and Research Hospital, Department of Urology, Ankara, Turkey
| | - Ozcan Erel
- Ankara Atatürk Training and Research Hospital, Department of Urology, Ankara, Turkey
| |
Collapse
|
26
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
27
|
Visalli G, Riso R, Facciolà A, Mondello P, Caruso C, Picerno I, Di Pietro A, Spataro P, Bertuccio MP. Higher levels of oxidative DNA damage in cervical cells are correlated with the grade of dysplasia and HPV infection. J Med Virol 2015; 88:336-44. [DOI: 10.1002/jmv.24327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Romana Riso
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Alessio Facciolà
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | | | - Carmela Caruso
- Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences; University of Messina; Messina Italy
| | - Isa Picerno
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Angela Di Pietro
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Pasquale Spataro
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Maria Paola Bertuccio
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| |
Collapse
|
28
|
Mahalingaiah PKS, Ponnusamy L, Singh KP. Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol 2015; 230:1916-28. [PMID: 25546616 DOI: 10.1002/jcp.24922] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2014] [Accepted: 12/18/2014] [Indexed: 12/30/2022]
Abstract
Oxidative injury to cellular macromolecules has been suggested as a common pathway shared by multiple etiological factors for kidney cancer. Whether the chronic oxidative stress alone is sufficient to induce malignant transformation in human kidney cells is not clear. Therefore, the objective of this study was to evaluate the effect of H2O2-induced chronic oxidative stress on growth, and malignant transformation of HK-2 normal kidney epithelial cells. This study revealed that chronic oxidative stress causes increased growth and neoplastic transformation in normal kidney epithelial cells at non-cytotoxic dose and increased adaptation to cytotoxic level. This was confirmed by gene expression changes, cell cycle analysis, anchorage independent growth assay and in vivo tumorigenicity in nude mice. Stem cells characteristics as revealed by up-regulation of stem cell marker genes, and morphological changes indicative of EMT with up regulation of mesenchymal markers were also observed in cells exposed to chronic oxidative stress. Antioxidant NAC did not reverse the chronic oxidative stress-induced growth, and adaptation suggesting that perturbed biological function in these cells are permanent. Partial reversal of oxidative stress-induced growth, and adaptation by silencing of Oct 4 and Snail1, respectively, suggest that these changes are mediated by acquisition of stem cell and EMT characteristics. In summary, this study for the first time suggests that chronic exposure to elevated levels of oxidative stress is sufficient to induce malignant transformation in kidney epithelial cells through acquisition of stem cell characteristics. Additionally, the EMT plays an important role in increased adaptive response of renal cells to oxidative stress.
Collapse
Affiliation(s)
- Prathap Kumar S Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | | | | |
Collapse
|
29
|
Rajamani K, Renju VC, Sethupathy S, Thirugnanasambandan SS. Ameliorative effect of polyphenols from Padina boergesenii against ferric nitrilotriacetate induced renal oxidative damage: With inhibition of oxidative hemolysis and in vitro free radicals. ENVIRONMENTAL TOXICOLOGY 2015; 30:865-76. [PMID: 24458998 DOI: 10.1002/tox.21951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate the antioxidant activities of diethyl ether (DEE) and methanol (M) extracts from brown alga Padina boergesenii using in vitro and in vivo antioxidant assay, which may help to relate the antioxidant properties with the possible outline of its ameliorative effect. M extract showed higher radical scavenging activity through ferric reducing antioxidant power 139.11 µmol tannic acid equivalent/g; DPPH 71.32 ± 0.56%; deoxyribose radical 88.31 ± 0.47%, and total antioxidant activity 0.47 ± 0.02 mg ascorbic acid equivalents/g. Oxidative red blood cell (RBC) hemolysis inhibition rate was significantly higher in M extract (150 mg/kg body weight) in reference to total phenolic content (r = 0.935). Rats administered with DEE and M extracts (150 mg/kg body weight) for seven days before the administration of ferric nitrilotriacetate (9 mg of Fe/mg/kg bodyweight). Rats pretreated with extracts significantly changed the level of renal microsomal lipid peroxidation, glutathione, and antioxidant enzymes in post-mitochondrial supernatant (P < 0.05). Ameliorative effect of extracts against renal oxidative damage was evident in rat kidney through changes in necrotic and epithelial cells. HPTLC technique has identified the presence of rutin with reference to retardation factor (Rf ) in both the extracts. These findings support the source of polyphenols (rutin) from P. boergesenii had potent antioxidant activity; further work on isolation of bioactive compounds can be channeled to develop as a natural antioxidant.
Collapse
Affiliation(s)
- Karthikeyan Rajamani
- Department of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
- Department of Pathology and Laboratory Medicine, UBC James Hogg Research Centre, St. Paul's Hospital, Vancouver-V6Z 1Y6, British Columbia, Canada
| | - V C Renju
- Department of Medical Biochemistry, Rajah Muthiah Medical College, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| | - S Sethupathy
- Department of Medical Biochemistry, Rajah Muthiah Medical College, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| | - Somasundaram S Thirugnanasambandan
- Department of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
30
|
Jin Z, Berthiaume JM, Li Q, Henry F, Huang Z, Sadhukhan S, Gao P, Tochtrop GP, Puchowicz MA, Zhang GF. Catabolism of (2E)-4-hydroxy-2-nonenal via ω- and ω-1-oxidation stimulated by ketogenic diet. J Biol Chem 2014; 289:32327-32338. [PMID: 25274632 DOI: 10.1074/jbc.m114.602458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress triggers the peroxidation of ω-6-polyunsaturated fatty acids to reactive lipid fragments, including (2E)-4-hydroxy-2-nonenal (HNE). We previously reported two parallel catabolic pathways of HNE. In this study, we report a novel metabolite that accumulates in rat liver perfused with HNE or 4-hydroxynonanoic acid (HNA), identified as 3-(5-oxotetrahydro-2-furanyl)propanoyl-CoA. In experiments using a combination of isotopic analysis and metabolomics studies, three catabolic pathways of HNE were delineated following HNE conversion to HNA. (i) HNA is ω-hydroxylated to 4,9-dihydroxynonanoic acid, which is subsequently oxidized to 4-hydroxynonanedioic acid. This is followed by the degradation of 4-hydroxynonanedioic acid via β-oxidation originating from C-9 of HNA breaking down to 4-hydroxynonanedioyl-CoA, 4-hydroxyheptanedioyl-CoA, or its lactone, 2-hydroxyglutaryl-CoA, and 2-ketoglutaric acid entering the citric acid cycle. (ii) ω-1-hydroxylation of HNA leads to 4,8-dihydroxynonanoic acid (4,8-DHNA), which is subsequently catabolized via two parallel pathways we previously reported. In catabolic pathway A, 4,8-DHNA is catabolized to 4-phospho-8-hydroxynonanoyl-CoA, 3,8-dihydroxynonanoyl-CoA, 6-hydroxyheptanoyl-CoA, 4-hydroxypentanoyl-CoA, propionyl-CoA, and acetyl-CoA. (iii) The catabolic pathway B of 4,8-DHNA leads to 2,6-dihydroxyheptanoyl-CoA, 5-hydroxyhexanoyl-CoA, 3-hydroxybutyryl-CoA, and acetyl-CoA. Both in vivo and in vitro experiments showed that HNE can be catabolically disposed via ω- and ω-1-oxidation in rat liver and kidney, with little activity in brain and heart. Dietary experiments showed that ω- and ω-1-hydroxylation of HNA in rat liver were dramatically up-regulated by a ketogenic diet, which lowered HNE basal level. HET0016 inhibition and mRNA expression level suggested that the cytochrome P450 4A are main enzymes responsible for the NADPH-dependent ω- and ω-1-hydroxylation of HNA/HNE.
Collapse
Affiliation(s)
- Zhicheng Jin
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jessica M Berthiaume
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106; Departments of Physiology and Biophysics, and Case Western Reserve University, Cleveland, Ohio 44106
| | - Qingling Li
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Fabrice Henry
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhong Huang
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sushabhan Sadhukhan
- Departments of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Peng Gao
- Departments of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Gregory P Tochtrop
- Departments of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michelle A Puchowicz
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Guo-Fang Zhang
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
31
|
Sadhukhan S, Han Y, Jin Z, Tochtrop GP, Zhang GF. Glutathionylated 4-hydroxy-2-(E)-alkenal enantiomers in rat organs and their contributions toward the disposal of 4-hydroxy-2-(E)-nonenal in rat liver. Free Radic Biol Med 2014; 70:78-85. [PMID: 24556413 PMCID: PMC4040968 DOI: 10.1016/j.freeradbiomed.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/22/2023]
Abstract
The major route for elimination of 4-hydroxy-2-(E)-nonenal (4-HNE) has long been considered to be through glutathionylation and eventual excretion as a mercapturic acid conjugate. To better quantitate the glutathionylation process, we developed a sensitive LC-MS/MS method for the detection of glutathione (GSH) conjugates of 4-hydroxy-2-(E)-alkenal enantiomers having a carbon skeleton of C5 to C12. The newly developed method enabled us to quantify 4-hydroxy-2-(E)-alkenal-glutathione diastereomers in various organs, i.e., liver, heart, and brain. We identified the addition of iodoacetic acid as a critical step during sample preparation to avoid an overestimation of glutathione-alkenal conjugation. Specifically, we found that in the absence of a quenching step reduced GSH and 4-hydroxy-2-(E)-alkenals react very rapidly during the extraction and concentration steps of sample preparation. Rat liver perfused with d11-4-hydroxy-2-(E)-nonenal (d11-4-HNE) revealed enantioselective conjugation with GSH and transportation out of the liver. In the d11-4-HNE-perfused rat livers, the amount of d11-(S)-4-HNE-GSH released from the rat liver was higher than that of d11-(R)-4-HNE-GSH, and more d11-(R)-4-HNE-GSH than d11-(S)-4-HNE-GSH remained in the perfused liver tissues. Overall, the glutathionylation pathway was found to account for only 8.7% of the disposition of 4-HNE, whereas catabolism to acetyl-CoA, propionyl-CoA, and formate represented the major detoxification pathway.
Collapse
Affiliation(s)
- Sushabhan Sadhukhan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhicheng Jin
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Guo-Fang Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Gatbonton-Schwager TN, Sadhukhan S, Zhang GF, Letterio JJ, Tochtrop GP. Identification of a negative feedback loop in biological oxidant formation fegulated by 4-hydroxy-2-(E)-nonenal. Redox Biol 2014; 2:755-63. [PMID: 25009777 PMCID: PMC4085345 DOI: 10.1016/j.redox.2014.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
4-Hydroxy-2-(E)-nonenal (4-HNE) is one of the major lipid peroxidation product formed during oxidative stress. At high concentrations, 4-HNE is cytotoxic and exerts deleterious effects that are often associated with the pathology of oxidative stress-driven disease. Alternatively, at low concentrations it functions as a signaling molecule that can activate protective pathways including the antioxidant Nrf2-Keap1 pathway. Although these biphasic signaling properties have been enumerated in many diseases and pathways, it has yet to be addressed whether 4-HNE has the capacity to modulate oxidative stress-driven lipid peroxidation. Here we report an auto-regulatory mechanism of 4-HNE via modulation of the biological oxidant nitric oxide (NO). Utilizing LPS-activated macrophages to induce biological oxidant production, we demonstrate that 4-HNE modulates NO levels via inhibition of iNOS expression. We illustrate a proposed model of control of NO formation whereby at low concentrations of 4-HNE a negative feedback loop maintains a constant level of NO production with an observed inflection at approximately 1 µM, while at higher 4-HNE concentrations positive feedback is observed. Further, we demonstrate that this negative feedback loop of NO production control is dependent on the Nrf2-Keap1 signaling pathway. Taken together, the careful regulation of NO production by 4-HNE argues for a more fundamental role of this lipid peroxidation product in normal physiology. 4-HNE production is auto-regulated via modulation of the biological oxidant NO. NO levels are controlled by 4-HNE via suppression of iNOS expression. Negative feedback loop of NO production control by 4-HNE is dependent on Nrf2. High 4-HNE concentrations results in positive feedback. Regulation of NO by 4-HNE argues for a more fundamental role of this LPO.
Collapse
Affiliation(s)
| | - Sushabhan Sadhukhan
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Guo-Fang Zhang
- Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - John J Letterio
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA ; Department of Pediatrics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Gregory P Tochtrop
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA ; Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima K, Sakurai T, Kudo M. Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig Dis 2013; 31:459-66. [PMID: 24281021 DOI: 10.1159/000355245] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic hepatitis C (CHC) triggers oxidative stress and contributes to the emergence of hepatocellular carcinoma (HCC). We previously reported that tumor suppressor gene (TSG) methylation is a critical factor during the early stages of hepatocarcinogenesis. In this study, we clarify the association between oxidative stress and epigenetic alterations during hepatocarcinogenesis. We examined DNA oxidation and methylation profiles in 128 liver biopsy samples from CHC patients. The DNA oxidation and methylated TSG numbers were quantified using immunohistochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG) and quantitative PCR for 11 TSGs, respectively. The quantitative chromatin immunoprecipitation-PCR (ChIP-qPCR) assay in HepG2 and fetal liver Hc cells treated with H2O2 was used to quantify trimethyl-H3K4, acetylated-H4K16 (an active chromatin marker), trimethyl-H3K27 (a repressive chromatin marker) and 8-OHdG. We analyzed 30 promoters of 25 different TSGs by qPCR. The high levels of 8-OHdG was the only variable that was significantly associated with the increased number of methylated TSGs in CHC (p < 0.0001). The ChIP-qPCR revealed that after H2O2 treatment of the cell lines, the 8-OHdG-bound promoters showed a modification from an active chromatin (trimethyl-H3K4 and acetylated-H4K16 dominant) to a repressive chromatin (trimethyl-H3K27 dominant) status. We conclude that oxidative stress alters the chromatin status, which leads to abnormal methylation of TSGs, and contributes to hepatocarcinogenesis in CHC patients.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kinki University School of Medicine, Osakasayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mishra N, Hall J. Identification of patients at risk for hereditary colorectal cancer. Clin Colon Rectal Surg 2013; 25:67-82. [PMID: 23730221 DOI: 10.1055/s-0032-1313777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diagnosis of hereditary colorectal cancer syndromes requires clinical suspicion and knowledge of such syndromes. Lynch syndrome is the most common cause of hereditary colorectal cancer. Other less common causes include familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome (PJS), juvenile polyposis syndrome, and others. There have been a growing number of clinical and molecular tools used to screen and test at risk individuals. Screening tools include diagnostic clinical criteria, family history, genetic prediction models, and tumor testing. Patients who are high risk based on screening should be referred for genetic testing.
Collapse
Affiliation(s)
- Nitin Mishra
- Department of Colon and Rectal Surgery, Lahey Clinic, Burlington, Massachusetts
| | | |
Collapse
|
35
|
Krzyściak W, Kowalska J, Kózka M, Papież MA, Kwiatek WM. Iron content (PIXE) in competent and incompetent veins is related to the vein wall morphology and tissue antioxidant enzymes. Bioelectrochemistry 2012; 87:114-23. [DOI: 10.1016/j.bioelechem.2011.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/18/2011] [Accepted: 12/30/2011] [Indexed: 12/26/2022]
|
36
|
Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India. Tumour Biol 2011; 33:111-9. [PMID: 22081374 DOI: 10.1007/s13277-011-0253-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/18/2011] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the sixth most common cancer globally, and in India, it accounts for 30% of all cancer cases. Epidemiological studies have shown a positive association between defective DNA repair capacity and SCCHN. The underlying mechanism of their involvement is not well understood. In the present study, we have analyzed the relationship between SCCHN and the expression of DNA repair genes namely X-ray repair cross-complementing group 1 (XRCC1), xeroderma pigmentosum group D (XPD), and 8-oxoguanine DNA glycosylase (OGG1) in 75 SCCHN cases and equal number of matched healthy controls. Additionally, levels of DNA adduct [8-hydroxyguanine (8-OHdG)] in 45 SCCHN cases and 45 healthy controls were also determined, to ascertain a link between mRNA expression of these three genes and DNA adducts. The relative expression of XRCC1, XPD, and OGG1 in head and neck cancer patients was found to be significantly low as compared to controls. The percent difference of mean relative expression between cases and controls demonstrated maximum lowering in OGG1 (47.3%) > XPD (30.7%) > XRCC1 (25.2%). A negative Spearmen correlation between XRCC1 vs. 8-OHdG in cases was observed. In multivariate logistic regression analysis (adjusting for age, gender, smoking status, and alcohol use), low expression of XRCC1, XPD, and OGG1 was associated with a statistically significant increased risk of SCCHN [crude odds ratios (ORs) (95%CI) OR 2.10; (1.06-4.17), OR 2.76; (1.39-5.49), and 5.24 (2.38-11.52), respectively]. In conclusion, our study demonstrated that reduced expression of XRCC1, XPD, and OGG1 is associated with more than twofold increased risk in SCCHN.
Collapse
|
37
|
Abstract
Thiopurines were examined for their ability to produce singlet oxygen ((1)O(2)) with UVA light. The target compounds were three thiopurine prodrugs, azathioprine (Aza), 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), and their S-methylated derivatives of 6-methylmercaptopurine (me6-MP) and 6-methylthioguanine (me6-TG). Our results showed that these thiopurines were efficient (1)O(2) sensitizers under UVA irradiation but rapidly lost their photoactivities for (1)O(2) production over time by a self-sensitized photooxidation of sulfur atoms in the presence of oxygen and UVA light. The initial quantum yields of (1)O(2) production were determined to be in the range of 0.30-0.6 in aqueous solutions. Substitution of a hydrogen atom with a nitroimidazole or methyl group at S decreased the efficacy of photosensitized (1)O(2) production as found for Aza, me6-MP and me6-TG. (1)O(2)-induced formation of 8-oxo-7,8-dihydro-2'-dexyguanosine (8-oxodGuo) was assessed by incubation of 6-methylthiopurine/UVA-treated calf thymus DNA with human repair enzyme 8-oxodGuo DNA glycosylase (hOGG1), followed by apurinic (AP) site determination. Because more 8-oxodGuo was formed in Tris D(2)O than in Tris H(2)O, (1)O(2) is implicated as a key species in the reaction. These findings provided quantitative information on the photosensitization efficacy of thiopurines and to some extent revealed the correlations between photoactivity and phototoxicity.
Collapse
|
38
|
Kirkali G, Keles D, Canda AE, Terzi C, Reddy PT, Jaruga P, Dizdaroglu M, Oktay G. Evidence for upregulated repair of oxidatively induced DNA damage in human colorectal cancer. DNA Repair (Amst) 2011; 10:1114-20. [PMID: 21924963 DOI: 10.1016/j.dnarep.2011.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/01/2011] [Accepted: 08/17/2011] [Indexed: 02/07/2023]
Abstract
Carcinogenesis may involve overproduction of oxygen-derived species including free radicals, which are capable of damaging DNA and other biomolecules in vivo. Increased DNA damage contributes to genetic instability and promote the development of malignancy. We hypothesized that the repair of oxidatively induced DNA base damage may be modulated in colorectal malignant tumors, resulting in lower levels of DNA base lesions than in surrounding pathologically normal tissues. To test this hypothesis, we investigated oxidatively induced DNA damage in cancerous tissues and their surrounding normal tissues of patients with colorectal cancer. The levels of oxidatively induced DNA lesions such as 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine and (5'S)-8,5'-cyclo-2'-deoxyadenosine were measured by gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution tandem mass spectrometry. We found that the levels of these DNA lesions were significantly lower in cancerous colorectal tissues than those in surrounding non-cancerous tissues. In addition, the level of DNA lesions varied between colon and rectum tissues, being lower in the former than in the latter. The results strongly suggest upregulation of DNA repair in malignant colorectal tumors that may contribute to the resistance to therapeutic agents affecting the disease outcome and patient survival. The type of DNA base lesions identified in this work suggests the upregulation of both base excision and nucleotide excision pathways. Development of DNA repair inhibitors targeting both repair pathways may be considered for selective killing of malignant tumors in colorectal cancer.
Collapse
Affiliation(s)
- Güldal Kirkali
- Department of Biochemistry, School of Medicine, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Krzyściak W, Cierniak A, Kózka M, Kozieł J. Oxidative DNA Damage in Blood of CVD Patients Taking Detralex. Open Cardiovasc Med J 2011; 5:179-87. [PMID: 21912579 PMCID: PMC3162189 DOI: 10.2174/1874192401105010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 12/12/2022] Open
Abstract
The main goal of the work reported here was to determine the degree of oxidative/alkali-labile DNA damages in peripheral blood as well as in the blood stasis from varicose vein of (chronic venous disorder) CVD patients. Moreover, determination of the impact of Detralex usage on the level of (oxidative) DNA damages in CVD patients was evaluated as well. The degree of oxidative DNA damages was studied in a group consisted of thirty patients with diagnosed chronic venous insufficiency (CVI) in the 2nd and 3rd degree, according to clinical state, etiology, anatomy and pathophysiology (CEAP), and qualified to surgical procedure. The control group consisted of normal volunteers (blood donors) qualified during standard examinations at Regional Centers of Blood Donation and Blood Therapy. The comet assay was used for determination of DNA damages. Analyses of the obtained results showed increase in the level of oxidative/alkali-labile DNA damages in lymphocytes originating from antebrachial blood of CVD patients as compared to the control group (Control) (p < 0.002; ANOVA). In addition, it was demonstrated that the usage of Detralex® resulted in decrease of the level of oxidative/alkali-labile DNA damages in CVD patients as compared to patients without Detralex® treatment (p < 0.001; ANOVA). Based on findings from the study, it may be hypothesized about occurrence of significant oxidative DNA damages as the consequence of strong oxidative stress in CVD. In addition, antioxidative effectiveness of Detralexu® was observed at the recommended dose, one tablet twice daily.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Pharmacy Faculty, Krakow, Poland
| | | | | | | |
Collapse
|
40
|
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711:193-201. [DOI: 10.1016/j.mrfmmm.2010.12.016] [Citation(s) in RCA: 644] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/22/2010] [Accepted: 12/31/2010] [Indexed: 04/08/2023]
|
41
|
Chronic unpredictable stress exacerbates 7,12-dimethylbenz (a) anthracene induced hepatotoxicity and nephrotoxicity in Swiss albino mice. Mol Cell Biochem 2011; 355:117-26. [PMID: 21533768 DOI: 10.1007/s11010-011-0845-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress, a pervasive condition induced by stress has been implicated and recognized to be a prominent feature of various pathological states including cancer and their progression. The present study sought to validate the effectiveness of chronic unpredictable stress (CUS) on hepatic and renal toxicity in terms of alterations of various in vivo biochemical parameters, oxidative stress markers and the extent of DNA damage in Swiss albino mice. Animals were randomized into different groups based on their exposure to CUS alone, 7,12-dimethylbenz (a) anthracene (DMBA) alone (topical), DMBA-12-O-tetradecanoylphorbol-13-acetate (TPA) (topical), and exposure to CUS prior to DMBA or DMBA-TPA treatment, and sacrificed after 16 weeks of treatment. Prior exposure to CUS increased the pro-oxidant effect of carcinogen as depicted by significantly compromised levels of antioxidants; superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, reduced glutathione in hepatic and renal tissues accompanied by a significant elevation of thiobarbituric acid reactive species (TBARS) as compared to DMBA alone or DMBA-TPA treatments. Loss of structural integrity at the cellular level due to stress-induced oxidative damage was demonstrated by significant increases in the hepatic levels of intracellular marker enzymes such as glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and alkaline phosphatase, and significantly reduced levels of uric acid in kidney tissues. The results of DNA damage studies further positively correlated with all the above biochemical measurements. Thus, exposure to physical or psychological stress may significantly enhance the hepatotoxic and nephrotoxic potential of carcinogens through enhanced oxidative stress even if the treatment is topical.
Collapse
|
42
|
Khadem-Ansari MH, Shahsavari Z, Rasmi Y, Mahmoodlo R. Elevated levels of urinary 8-hydroxy-2'-deoxyguanosine and 8-isoprostane in esophageal squamous cell carcinoma. J Carcinog 2011; 10:14. [PMID: 21712961 PMCID: PMC3122113 DOI: 10.4103/1477-3163.79683] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Aims: To measure oxidative DNA and lipid damages, urinary levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), and 8-isoprostane in esophageal squamous cell carcinoma (SCC) patients and compare the values with that in controls. Materials and Methods: The urinary concentrations of 8-OHdG and 8-isoprostane were measured in 32 SCC patients (13 female/19 male; mean age: 61.4 ± 10.5 years) and 45 controls (22 female/23 male; mean age: 58.1 ± 8.3 years). Results: Squamous cell carcinoma patients showed significantly higher levels of urinary 8-OHdG (15.6 ± 5.1 ng/mg creatinine) than controls (5.8 ± 2.1 ng/mg creatinine) (P<.001). Increased urinary concentrations of 8-isoprostane were also detected in SCC patients (35.4 ± 6.5 ng/mmol creatinine) as compared to the controls (16.9 ± 4.0 ng/mmol creatinine) (P<.001). Conclusions: Our results show the presence of oxidative DNA and lipid damage in the SCC patients. This may have a connection to carcinogenesis in the esophagus.
Collapse
|
43
|
Abstract
Although inherited predisposition to colorectal cancer (CRC) has been suspected for more than 100 years, definitive proof of Mendelian syndromes had to await maturation of molecular genetic technologies. Since the l980s, the genetics of several clinically distinct entities has been revealed. Five disorders that share a hereditary predisposition to CRC are reviewed in this article.
Collapse
|
44
|
Sverko A, Sobočanec S, Kušić B, Mačak-Šafranko Z, Sarić A, Leniček T, Kraus O, Andrišić L, Korolija M, Balog T, Sunjić SB, Marotti M. Superoxide dismutase and cytochrome P450 isoenzymes might be associated with higher risk of renal cell carcinoma in male patients. Int Immunopharmacol 2011; 11:639-45. [PMID: 21238623 DOI: 10.1016/j.intimp.2010.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/21/2010] [Accepted: 12/24/2010] [Indexed: 11/24/2022]
Abstract
Literature data support the hypothesis that oxidative stress and the accompanying antioxidant defense might play an important role in renal cell carcinoma (RCC) growth and progression. It is also known that the incidence of renal tumors is two times higher in men than in women. Thus, the aim of this study was to determine whether the oxidant/antioxidant profile of renal cell carcinoma tissue, adjacent to tumor tissue and nontumor tissue was different in male and female patients. Significantly higher lipid peroxidation (LPO) in renal cell carcinoma tissue compared to nontumor tissue was demonstrated only in male patients. Besides, gender-related difference in copper zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) in nontumor and renal cell carcinoma tissue was obtained at the level of transcription, translation and activity of these antioxidant isoenzymes. Morever, we demonstrated that the gene expression of 3 CYPs out of 7 was altered; CYP2D6 mRNA was decreased in both sexes while gender-related suppression of mRNA for CYP2E1 (women) and CYP2C19 (men) was observed. Taken together, these parameters might be potentially responsible for higher risk of renal cell carcinoma in men than in women.
Collapse
Affiliation(s)
- Ana Sverko
- University Hospital Sestre Milosrdnice, Department of Radiology, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sova H, Jukkola-Vuorinen A, Puistola U, Kauppila S, Karihtala P. 8-Hydroxydeoxyguanosine: a new potential independent prognostic factor in breast cancer. Br J Cancer 2010; 102:1018-23. [PMID: 20179711 PMCID: PMC2844025 DOI: 10.1038/sj.bjc.6605565] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND 8-Hydroxydeoxyguanosine (8-oxodG) is the commonly used marker of oxidative stress-derived DNA damage. 8-OxodG formation is regulated by local antioxidant capacity and DNA repair enzyme activity. Earlier studies have reported contradictory data on the function of 8-oxodG as a prognostic factor in different cancer types. METHODS We assessed pre-operative serum 8-oxodG levels with an enzyme-linked immunosorbent assay in a well-defined series of 173 breast cancer patients. 8-OxodG expression in the nuclei of cancer cells from 150 of these patients was examined by immunohistochemistry. RESULTS The serum 8-oxodG levels and immunohistochemical 8-oxodG expression were in concordance with each other (P<0.05). Negative 8-oxodG immunostaining was an independent prognostic factor for poor breast cancer-specific survival according to the multivariate analysis (P<0.01). This observation was even more remarkable when ductal carcinomas only (n=140) were considered (P<0.001). A low serum 8-oxodG level was associated statistically significantly with lymphatic vessel invasion and a positive lymph node status. CONCLUSIONS Low serum 8-oxodG levels and a low immunohistochemical 8-oxodG expression were associated with an aggressive breast cancer phenotype. In addition, negative 8-oxodG immunostaining was a powerful prognostic factor for breast cancer-specific death in breast carcinoma patients.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/blood
- Deoxyguanosine/metabolism
- Female
- Humans
- Immunohistochemistry
- Middle Aged
- Neoplasm Staging
- Prognosis
- Survival Analysis
Collapse
Affiliation(s)
- H Sova
- Department of Oncology and Radiotherapy, Oulu University Hospital, Finland.
| | | | | | | | | |
Collapse
|
46
|
Cooke MS, Evans MD, Mistry N, Lunec J. Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutr Res Rev 2009; 15:19-42. [PMID: 19087397 DOI: 10.1079/nrr200132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence consistently shows that diets high in fresh fruit and vegetables significantly lower cancer risk. Given the postulated role of oxidative DNA damage in carcinogenesis, the assumption has been made that it is the antioxidant properties of food constituents, such as vitamin C, E and carotenoids, which confer protection. However, epidemiological studies with specific antioxidants, either singly or in combination, have not, on the whole, supported this hypothesis. In contrast, studies examining the in vitro effect of antioxidants upon oxidative DNA damage have generally been supportive, in terms of preventing damage induction. The same, however, cannot be said for the in vivo intervention studies where overall the results have been equivocal. Nevertheless, recent work has suggested that some dietary antioxidants may confer protective properties through a novel mechanism, unrelated to their conventional free-radical scavenging abilities. Upregulation of antioxidant defence, xenobiotic metabolism, or DNA-repair genes may all limit cellular damage and hence promote maintenance of cell integrity. However, until further work has clarified whether dietary supplementation with antioxidants confers a reduced risk of cancer and the mechanism by which this effect is exerted, the recommendation for a diet rich in fruit and vegetables remains valid empirically.
Collapse
Affiliation(s)
- M S Cooke
- Oxidative Stress Group, Division of Chemical Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | |
Collapse
|
47
|
Yang Y, Tian Y, Yan C, Jin X, Tang J, Shen X. Determinants of urinary 8-hydroxy-2'-deoxyguanosine in Chinese children with acute leukemia. ENVIRONMENTAL TOXICOLOGY 2009; 24:446-452. [PMID: 18979530 DOI: 10.1002/tox.20447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidized nucleoside of DNA, not only is a widely used biomarker for the measurement of endogenous oxidative DNA damage, but might also be a risk factor for many diseases including cancer. Elevated level of urinary 8-OHdG has been detected in patients with various malignancies. In the present study, the level of urinary 8-OHdG was examined in 116 Chinese children with acute leukemia (94 acute lymphoid leukemia, ALL, 22 acute myeloid leukemia, AML), and its correlation with urinary metal elements was investigated. Our result showed that the level of urinary 8-OHdG in children with acute leukemia before treatment was significantly elevated compared with that in normal controls (11.92 +/- 15.42 vs. 4.03 +/- 4.70 ng/mg creatinine, P < 0.05). In particular, urinary 8-OHdG was higher in children with acute leukemia aged under 3 years (20.86 +/- 21.75 ng/mg creatinine) than in those aged 3-15 years (8.09 +/- 9.65 ng/mg creatinine), whereas no differences were shown in terms of gender, parental smoking and education, household income, place of residence, and use of paracetamol. In addition, urinary 8-OHdG levels were similar among different subtypes of acute lymphoid leukemia (ALL) patients. Furthermore, linear regression analysis revealed a significant correlation between urinary 8-OHdG and urinary Cr, but not Fe or As, in group aged <3 years compared with group aged 3-15 years (P = 0.041), indicating that the metal elements may be involved in increasing urinary 8-OHdG level in younger children with acute leukemia. Our results suggest that children with acute leukemia undergo an increased risk of oxidative DNA damage, which may be correlated with high level of Cr exposure in Chinese children with acute leukemia.
Collapse
Affiliation(s)
- You Yang
- Shanghai XinHua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
48
|
Zarkovic K, Uchida K, Kolenc D, Hlupic L, Zarkovic N. Tissue distribution of lipid peroxidation product acrolein in human colon carcinogenesis. Free Radic Res 2009; 40:543-52. [PMID: 16753831 DOI: 10.1080/10715760500370048] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lipid peroxidation product acrolein, well-known pollutant in tobacco and automotive smoke, accumulates in vivo bound to proteins. It suppresses p53 synthesis acting as potent carcinogenic factor for oral, respiratory and bladder carcinomas, while its possible association with colon carcinogenesis was not studied so far. We used genuine monoclonal antibody to evaluate immunohistochemical distribution of acrolein-protein adducts in 113 human colon tumours. The presence of acrolein-protein adducts was increasing with respect to colon carcinogenesis, from moderate appearance in tubular and villotubular low-grade adenomas to abundant and diffuse distribution in high-grade villotubular adenomas and Dukes A carcinomas. However, in advanced Dukes B and C carcinomas acrolein was hardly noticed, although, its protein adducts were found abundant in non-malignant colon epithelium of these patients. There was no relationship between p53 and acrolein distribution. According to these findings, acrolein seems to be lipid peroxidation product associated with transition from benign into malignant colon tumours.
Collapse
Affiliation(s)
- Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre & Medical Faculty, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
49
|
Corti A, Duarte TL, Giommarelli C, De Tata V, Paolicchi A, Jones GDD, Pompella A. Membrane gamma-glutamyl transferase activity promotes iron-dependent oxidative DNA damage in melanoma cells. Mutat Res 2009; 669:112-21. [PMID: 19505483 DOI: 10.1016/j.mrfmmm.2009.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/09/2009] [Accepted: 05/27/2009] [Indexed: 11/28/2022]
Abstract
A number of recent observations have suggested a potential role for membrane-bound gamma-glutamyltransferase (GGT) in tumor progression and appearance of more aggressive and resistant phenotypes, through redox interactions leading to production of reactive oxygen species. The present study was aimed to evaluate whether such pro-oxidant activity of GGT can promote oxidative DNA damage, thus contributing to cancer genomic instability. Human GGT-transfected melanoma cells were studied, and DNA damage was measured by using the alkaline comet assay. Our results indicate that higher levels of GGT activity are associated with higher levels of background DNA damage and oxidized bases. This association cannot be explained by differences in cell cycle distribution or apoptotic rates. GGT-over-expressing cells also presented with a markedly higher glucose uptake, a phenomenon potentially leading to higher metabolic rate and oxidative DNA damage. Anyway, when GGT-over-expressing cells were incubated in the presence of GGT substrates and a source of catalytic iron, increased levels of DNA damage and oxidized bases were observed, an effect completely prevented in the presence of GGT inhibitors or various antioxidants.The findings reported indicate that GGT activity is able to promote iron-dependent DNA oxidative damage, thus potentially representing an important mechanism in initiation/progression of neoplastic transformation.
Collapse
Affiliation(s)
- Alessandro Corti
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2008; 30:2-10. [PMID: 18978338 DOI: 10.1093/carcin/bgn250] [Citation(s) in RCA: 445] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA readily, generating a variety of DNA lesions, such as oxidized bases and strand breaks. If not properly removed, DNA damage can be potentially devastating to normal cell physiology, leading to mutagenesis and/or cell death, especially in the case of cytotoxic lesions that block the progression of DNA/RNA polymerases. Damage-induced mutagenesis has been linked to various malignancies. The major mechanism that cells use to repair oxidative damage lesions, such as 8-hydroxyguanine, formamidopyrimidines, and 5-hydroxyuracil, is base excision repair (BER). The BER pathway in the nucleus is well elucidated. More recently, BER was shown to also exist in the mitochondria. Here, we review the association of BER of oxidative DNA damage with aging, cancer and other diseases.
Collapse
Affiliation(s)
- Scott Maynard
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|