1
|
Cai Q, Li Q, Zhong S, Chen M, Zhong L, Li S, Li H, Chen Y, Wu J. Ultrasound-targeted microbubble destruction rapidly improves left ventricular function in rats with ischemic cardiac dysfunction. Int J Cardiol 2024; 404:131943. [PMID: 38458386 DOI: 10.1016/j.ijcard.2024.131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Previous studies have demonstrated the efficacy of ultrasound-targeted microbubble destruction (UTMD) in the treatment of ischemic heart failure (HF). The purpose of this study was to explore the mechanism by which UTMD improves ischemic HF. METHODS An ischemic heart failure model was established using Sprague-Dawley rats. Rats were randomly divided into 7 groups: sham group, HF group, HF + MB group, HF + ultrasound (US) group, HF + UTMD group, HF + UTMD+LY294002 group, and HF + LY294002 group. Serum BNP level and echocardiographic parameters were measured to evaluate cardiac function. PI3K/Akt/eNOS signaling pathway protein levels were detected by immunohistochemistry (IHC) and western blotting. The concentrations of nitrous oxide (NO) and ATP were detected by ELISA, and hematoxylin and eosin (HE) staining was used to evaluate myocardial tissue. RESULTS UTMD rapidly improved ejection fraction (EF) (HF: 37.16 ± 1.21% vs. HF + UTMD: 46.31 ± 3.00%, P < 0.01) and fractional shortening (FS) (HF: 18.53 ± 0.58% vs. HF + UTMD: 24.05 ± 1.84%, P < 0.01) in rats with ischemic HF. UTMD activated the PI3K/AKT/eNOS signaling pathway (HF vs. HF + UTMD, P < 0.01) and promoted the release of NO and ATP (HF vs. HF + UTMD, both, P < 0.05). Inhibition of the PI3K/AKT/eNOS signaling pathway by LY294002 worsened EF (HF: 37.16 ± 1.21% vs. HF + LY294002: 32.73 ± 3.05%, P < 0.05), and the release of NO and ATP by UTMD (HF + UTMD vs. HF + UTMD+LY294002, P < 0.05). CONCLUSIONS UTMD can rapidly improve cardiac function in ischemic HF by activating the PI3K/Akt/eNOS signaling pathway and promoting the release of NO and ATP.
Collapse
Affiliation(s)
- Qianyun Cai
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenrong Zhong
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaona Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longhe Zhong
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shasha Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoqi Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanqi Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Wang J, Luo T, Chen J, Liu Z, Wang J, Zhang X, Li H, Ma Y, Zhang F, Ju H, Wang W, Wang Y, Zhu Q. Enhancement of Tumor Perfusion and Antiangiogenic Therapy in Murine Models of Clear Cell Renal Cell Carcinoma Using Ultrasound-Stimulated Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:680-689. [PMID: 38311538 DOI: 10.1016/j.ultrasmedbio.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE To explore the effect of ultrasound-stimulated microbubble cavitation (USMC) on enhancing antiangiogenic therapy in clear cell renal cell carcinoma. MATERIALS AND METHODS We explored the effects of USMC with different mechanical indices (MIs) on tumor perfusion, 36 786-O tumor-bearing nude mice were randomly assigned into four groups: (i) control group, (ii) USMC0.25 group (MI = 0.25), (iii) USMC1.4 group (MI = 1.4) (iv) US1.4 group (MI = 1.4). Tumor perfusion was assessed by contrast-enhanced ultrasound (CEUS) before the USMC treatment and 30 min, 4h and 6h after the USMC treatment, respectively. Then we evaluated vascular normalization(VN) induced by low-MI (0.25) USMC treatment, 12 tumor-bearing nude mice were randomly divided into two groups: (i) control group (ii) USMC0.25 group. USMC treatment was performed, and tumor microvascular imaging and blood perfusion were analyzed by MicroFlow imaging (MFI) and CEUS 30 min after each treatment. In combination therapy, a total of 144 tumor-bearing nude mice were randomly assigned to six groups (n = 24): (i) control group, (ii) USMC1.4 group, (iii) USMC0.25 group, (iv) bevacizumab(BEV) group, (v) USMC1.4 +BEV group, (vi) USMC0.25 +BEV group. BEV was injected on the 6th, 10th, 14th, and 18th d after the tumors were inoculated, while USMC treatment was performed 24 h before and after every BEV administration. We examined the effects of the combination therapy through a series of experiments. RESULTS Tumor blood perfusion enhanced by USMC with low MI (0.25)could last for more than 6h, inducing tumor VN and promoting drug delivery. Compared with other groups, USMC0.25+BEV combination therapy had the strongest inhibition on tumor growth, led to the longest survival time of the mice. CONCLUSION The optimized USMC is a promising therapeutic approach that can be combined with antiangiogenic therapy to combat tumor progression.
Collapse
Affiliation(s)
- Juan Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianghong Chen
- Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Juan Wang
- Department of Pathology,The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiiazhuang, Hebei, China
| | - Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yulin Ma
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Ju
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wengang Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yueheng Wang
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Perera RH, Berg FM, Abenojar EC, Nittayacharn P, Kim Y, Wang X, Basilion JP, Exner A. Ultrasound-mediated drug-free theranostics for treatment of prostate cancer. Bioact Mater 2024; 35:45-55. [PMID: 38304914 PMCID: PMC10831121 DOI: 10.1016/j.bioactmat.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. Prior work demonstrates that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) results in enhanced cellular internalization and prolongs NB retention with persistent, cancer-cell specific acoustic activity. In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency unfocused therapeutic US (TUS) will lead to selective damage and induce a specific therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. We observed that the internalized NBs and cellular compartments were disrupted after the PSMA-NB + TUS (targeted NB therapy or TNT) application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.4 ± 9.3 %, p < 0.01) compared to controls. TNT treatment significantly inhibited the PSMA expressing tumor growth and increased median survival time by 103 %, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in an orthotopic rabbit PCa model. Results demonstrate that cavitation of PSMA-NBs internalized via receptor-mediated endocytosis into target PCa cells using unfocused ultrasound results in significant, tumor-specific bioeffects. The effects, while not lethal to PSMA-expressing cancer cells in vitro, result in significant in vivo reduction in tumor progression in two models of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.
Collapse
Affiliation(s)
| | - Felipe Matias Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Hospital Israelita Albert Einstein, São Paulo, SP, 05652-900, Brazil
| | - Eric Chua Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, 73170, Thailand
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Xinning Wang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - James Peter Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Agata Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| |
Collapse
|
4
|
Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 2024; 367:135-147. [PMID: 38237687 DOI: 10.1016/j.jconrel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe M Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Li R, Lu L, Huang Z, Gao Y. Downregulation of carbonic anhydrase IX expression in mouse xenograft nasopharyngeal carcinoma model via doxorubicin nanobubble combined with ultrasound. Open Med (Wars) 2024; 19:20240910. [PMID: 38463523 PMCID: PMC10921437 DOI: 10.1515/med-2024-0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
The purpose of this study was to investigate whether doxorubicin nanobubbles (DOX-NB) combined with diagnostic ultrasound (DUS) irradiation could downregulate the expression of carbonic anhydrase IX (CAIX) in mouse xenograft nasopharyngeal carcinoma (NPC) model. In this study, the prepared DOX-NB was round and well dispersed. The average diameter of DOX-NB was 250.9 ± 50.8 nm, with an average polydispersity of 0.321 ± 0.05. The cumulative release of DOX in the DOX-NB + DUS group was significantly higher compared with that of the DOX-NB group (p < 0.05). DOX-NB combined with DUS irradiation could significantly inhibit cell viability (p < 0.05). The expression of CAIX and microvessel density (MVD) in the xenografted tumors was the lowest in the DOX-NB + DUS group compared with that of other groups (p < 0.05). In conclusion, DOX-NB combined with DUS irradiation could improve DOX-NB drug release and synergistically inhibit NPC cell activity. DOX-NB combined with DUS irradiation can downregulate the expression of CAIX in mouse xenograft NPC model. This may be due to the synergistic effect of DUS combined with DOX-NB in reducing MVD in NPC.
Collapse
Affiliation(s)
- Rong Li
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 530021Guangxi, China
| | - Liugui Lu
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 530021Guangxi, China
| | - Zhaoxi Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 530021Guangxi, China
| | - Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021Guangxi, China
| |
Collapse
|
6
|
Pellow C, Jafari Sojahrood A, Zhao X, Kolios MC, Exner AA, Goertz DE. Synchronous Intravital Imaging and Cavitation Monitoring of Antivascular Focused Ultrasound in Tumor Microvasculature Using Monodisperse Low Boiling Point Nanodroplets. ACS NANO 2024; 18:410-427. [PMID: 38147452 PMCID: PMC10786165 DOI: 10.1021/acsnano.3c07711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Focused ultrasound-stimulated microbubbles can induce blood flow shutdown and ischemic necrosis at higher pressures in an approach termed antivascular ultrasound. Combined with conventional therapies of chemotherapy, immunotherapy, and radiation therapy, this approach has demonstrated tumor growth inhibition and profound synergistic antitumor effects. However, the lower cavitation threshold of microbubbles can potentially yield off-target damage that the polydispersity of clinical agent may further exacerbate. Here we investigate the use of a monodisperse nanodroplet formulation for achieving antivascular effects in tumors. We first develop stable low boiling point monodisperse lipid nanodroplets and examine them as an alternative agent to mediate antivascular ultrasound. With synchronous intravital imaging and ultrasound monitoring of focused ultrasound-stimulated nanodroplets in tumor microvasculature, we show that nanodroplets can trigger blood flow shutdown and do so with a sharper pressure threshold and with fewer additional events than conventionally used microbubbles. We further leverage the smaller size and prolonged pharmacokinetic profile of nanodroplets to allow for potential passive accumulation in tumor tissue prior to antivascular ultrasound, which may be a means by which to promote selective tumor targeting. We find that vascular shutdown is accompanied by inertial cavitation and complex-order sub- and ultraharmonic acoustic signatures, presenting an opportunity for effective feedback control of antivascular ultrasound.
Collapse
Affiliation(s)
- Carly Pellow
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Amin Jafari Sojahrood
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto M5B 1T8, Canada
| | - Xiaoxiao Zhao
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto M5B 1T8, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - David E Goertz
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| |
Collapse
|
7
|
Zhou H, Li F, Luo L, Xiong X, Zhou K, Zhu H, Zhang J, Li P. Safety of Sonazoid in Assisting High-Intensity Focused Ultrasound Ablation Therapy for Advanced Liver Malignant Lesions: A Single-Arm Clinical Study. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:134-141. [PMID: 37865612 DOI: 10.1016/j.ultrasmedbio.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE The aim of the study described here was to evaluate the safety of Sonazoid-assisted high-intensity focused ultrasound (HIFU) in the treatment of advanced malignant liver lesions. METHODS A single-arm study was designed to enroll participants who were diagnosed with advanced primary liver cancer or liver metastases and proposed to receive Sonazoid assistance during HIFU treatment. Serological examination was conducted within 1 wk, and side effects in each patient were monitored for 1 mo. To evaluate therapeutic efficacy, the contrast-enhanced magnetic resonance imaging was performed 1 mo after treatment, and short-term follow-up was conducted a year later. RESULTS A total of 17 participants (12 male, 5 female) with an average age of 58 y (range: 46-73 y) were enrolled, including 11 patients with hepatocellular carcinoma, 2 patients with hepatic metastasis and 4 patients with cholangiocarcinoma. The total volume of tumor mass was 111.82 (11.01-272.30) cm3. The average total ablation time for a patient was 2021 ± 1030 s, and the energy efficiency factor was 5979.7 (3108.0, 45634.5) J/cm3. Immediately after HIFU treatment, 1 patient (5.9%) achieved complete response (CR), 4 patients (23.5%) had a moderate response, 8 patients (47.1%) had partial reperfusion and 4 patients (23.5%) had stable disease (SD). The average ablation rate for all the tumors was 51.5 ± 26.7%. The level of glutamic-pyruvic transaminase (ALT) was mildly increased in 71.6% (12/17) of patients after HIFU therapy. Mean ALT values before and after treatment were 22 (14, 35) U/L and 36 (25, 41) U/L, respectively (Z = 1.947, p = 0.051). Mild or obvious edema in skin and subcutaneous soft tissues were observed in 76.5% of patients, but no serious side effects were found. Twelve months after treatment, the follow-up results revealed that 1 patient (5.8%) achieved a CR, 8 patients (47.1%) had SD and 8 patients (47.1%) had progressive disease. The estimated median time to progression was 11 mo after treatment, with a 95% confidence interval of 6, 11 for all involved patients. CONCLUSION Use of Sonazoid is safe and feasible for improving HIFU ablation efficiency during the treatment of advanced malignant liver lesions. The therapeutic efficacy of Sonazoid-assisted HIFU needs to be explored in additional controlled clinical investigations.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Ultrasound & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Fang Li
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Luo
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Xialin Xiong
- Department of Ultrasound & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Zhou
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pan Li
- Department of Ultrasound & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Zhang Y, Zhang J, Luo T, Cai Z, Yang G, Li H, Wei J, Zhu Q, Li P, Dong X, Liu Z. Sononeoperfusion effect by ultrasound and microbubble promotes nitric oxide release to alleviate hypoxia in a mouse MC38 tumor model. ULTRASONICS SONOCHEMISTRY 2023; 100:106619. [PMID: 37757603 PMCID: PMC10550768 DOI: 10.1016/j.ultsonch.2023.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Tumor hypoperfusion not only impedes therapeutic drug delivery and accumulation, but also leads to a hypoxic and acidic tumor microenvironment, resulting in tumor proliferation, invasion, and therapeutic resistance. Sononeoperfusion effect refers to tumor perfusion enhancement using ultrasound and microbubbles. This study aimed to further investigate hypoxia alleviation by sononeoperfusion effect and explore the characteristics and mechanism of sononeoperfusion effect. To stimulate the sononeoperfusion effect, mice bearing MC38 colon cancers were included in this study and diagnostic ultrasound for therapy was set at a mechanical index (MI) of 0.1, 0.3, and 0.5, frequency of 3 MHz, pulse length of 5 cycles, and pulse repetition frequency of 2000 Hz. The results demonstrated that a single ultrasound and microbubble (USMB) treatment resulted in tumor perfusion enhancement at MI = 0.3, and nitric oxide (NO) concentration increased at MI = 0.3/0.5 (P < 0.05). However, there were no significant difference in the hypoxia-inducible factor-1α (HIF-1α) or D-lactate (D-LA) (P > 0.05) levels. Multiple sononeoperfusion effects were observed at MI = 0.3/0.5 (P < 0.05). For each treatment, USMB slightly but steadily improved the tumor tissue oxygen partial pressure (pO2) during and post treatment. It alleviated tumor hypoxia by decreasing HIF-1α, D-LA level and the hypoxic immunofluorescence intensity at MI = 0.3/0.5 (P < 0.05). The sononeoperfusion effect was not stimulated after eNOS inhibition. In conclusion, USMB with appropriate MI could lead to a sononeoperfusion effect via NO release, resulting in hypoxia amelioration. The tumors were not resistant to multiple sononeoperfusion effects. Repeated sononeoperfusion is a promising approach for relieving tumor hypoxia and resistance to therapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhiping Cai
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Ultrasound, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Guoliang Yang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junshuai Wei
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Ultrasound, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Ultrasound, 953th Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Peijing Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
9
|
Perera RH, Berg FM, Abenojar EC, Nittayacharn P, Kim Y, Wang X, Basilion JP, Exner AA. Ultrasound-mediated drug-free theranostics for treatment of prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.555594. [PMID: 37745586 PMCID: PMC10515807 DOI: 10.1101/2023.09.13.555594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Rationale Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. We have previously shown that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) enhances the cellular internalization and prolongs retention of NBs with persistent acoustic activity (~hrs.). In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency therapeutic US (TUS) will lead to selective damage and induce a therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. Methods PSMA-targeted NBs were formulated by following our previously established protocol. Cellular internalization of fluorescent PSMA-NBs was evaluated by confocal imaging using late endosome/lysosome staining pre- and post-TUS application. Two animal models were used to assess the technique. Mice with dual tumors (PSMA expressing and PSMA negative) received PSMA-NB injection via the tail vein followed by TUS 1 hr. post injection (termed, targeted NB therapy or TNT). Twenty-four hours after treatment mice were euthanized and tumor cell apoptosis evaluated via TUNEL staining. Mice with single tumors (either PSMA + or -) were used for survival studies. Tumor size was measured for 80 days after four consecutive TNT treatments (every 3 days). To test the approach in a larger model, immunosuppressed rabbits with orthotopic human PSMA expressing tumors received PSMA-NB injection via the tail vein followed by TUS 30 min after injection. Tumor progression was assessed via US imaging and at the end point apoptosis was measured via TUNEL staining. Results In vitro TNT studies using confocal microscopy showed that the internalized NBs and cellular compartments were disrupted after the TUS application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.45 ± 9.3%, p < 0.01) compared to the other groups. TNT treatment significantly inhibited the PSMA (+) tumor growth and overall survival significantly improved (median survival time increase by 103%, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in the rabbit model in intraprostatic (90%) and in extraprostatic lesions (94%) (p = 0.069 and 0.003, respectively). Conclusion We demonstrate for the first time the effect of PSMA-targeted nanobubble intracellular cavitation on cancer cell viability and tumor progression in two animal models. Data demonstrate that the targeted nanobubble therapy (TNT) approach relies primarily on mechanical disruption of intracellular vesicles and the resulting bioeffects appear to be more specific to target cancer cells expressing the PSMA receptor. The effect, while not lethal in vitro, resulted in significant tumor apoptosis in vivo in both a mouse and a rabbit model of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.
Collapse
Affiliation(s)
| | - Felipe Matias Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eric Chua Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xinning Wang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Nittayacharn P, Abenojar E, Cooley M, Berg F, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555196. [PMID: 37732235 PMCID: PMC10508722 DOI: 10.1101/2023.09.01.555196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe Berg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Padilla F, Brenner J, Prada F, Klibanov AL. Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown. Theranostics 2023; 13:4079-4101. [PMID: 37554276 PMCID: PMC10405856 DOI: 10.7150/thno.70372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2023] [Indexed: 08/10/2023] Open
Abstract
Ultrasound-triggered microbubbles destruction leading to vascular shutdown have resulted in preclinical studies in tumor growth delay or inhibition, lesion formation, radio-sensitization and modulation of the immune micro-environment. Antivascular ultrasound aims to be developed as a focal, targeted, non-invasive, mechanical and non-thermal treatment, alone or in combination with other treatments, and this review positions these treatments among the wider therapeutic ultrasound domain. Antivascular effects have been reported for a wide range of ultrasound exposure conditions, and evidence points to a prominent role of cavitation as the main mechanism. At relatively low peak negative acoustic pressure, predominantly non-inertial cavitation is most likely induced, while higher peak negative pressures lead to inertial cavitation and bubbles collapse. Resulting bioeffects start with inflammation and/or loose opening of the endothelial lining of the vessel. The latter causes vascular access of tissue factor, leading to platelet aggregation, and consequent clotting. Alternatively, endothelium damage exposes subendothelial collagen layer, leading to rapid adhesion and aggregation of platelets and clotting. In a pilot clinical trial, a prevalence of tumor response was observed in patients receiving ultrasound-triggered microbubble destruction along with transarterial radioembolization. Two ongoing clinical trials are assessing the effectiveness of ultrasound-stimulated microbubble treatment to enhance radiation effects in cancer patients. Clinical translation of antivascular ultrasound/microbubble approach may thus be forthcoming.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | - Francesco Prada
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Ultrasound Neuroimaging and Therapy Lab, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alexander L Klibanov
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Wu N, Cao Y, Liu Y, Zhou Y, He H, Tang R, Wan L, Wang C, Xiong X, Zhong L, Li P. Low-intensity focused ultrasound targeted microbubble destruction reduces tumor blood supply and sensitizes anti-PD-L1 immunotherapy. Front Bioeng Biotechnol 2023; 11:1173381. [PMID: 37139047 PMCID: PMC10150078 DOI: 10.3389/fbioe.2023.1173381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Immune checkpoint blockade (ICB) typified by anti-PD-1/PD-L1 antibodies as a revolutionary treatment for solid malignancies has been limited to a subset of patients due to poor immunogenicity and inadequate T cell infiltration. Unfortunately, no effective strategies combined with ICB therapy are available to overcome low therapeutic efficiency and severe side effects. Ultrasound-targeted microbubble destruction (UTMD) is an effective and safe technique holding the promise to decrease tumor blood perfusion and activate anti-tumor immune response based on the cavitation effect. Herein, we demonstrated a novel combinatorial therapeutic modality combining low-intensity focused ultrasound-targeted microbubble destruction (LIFU-TMD) with PD-L1 blockade. LIFU-TMD caused the rupture of abnormal blood vessels to deplete tumor blood perfusion and induced the tumor microenvironment (TME) transformation to sensitize anti-PD-L1 immunotherapy, which markedly inhibited 4T1 breast cancer's growth in mice. We discovered immunogenic cell death (ICD) in a portion of cells induced by the cavitation effect from LIFU-TMD, characterized by the increased expression of calreticulin (CRT) on the tumor cell surface. Additionally, flow cytometry revealed substantially higher levels of dendritic cells (DCs) and CD8+ T cells in draining lymph nodes and tumor tissue, as induced by pro-inflammatory molecules like IL-12 and TNF-α. These suggest that LIFU-TMD as a simple, effective, and safe treatment option provides a clinically translatable strategy for enhancing ICB therapy.
Collapse
Affiliation(s)
- Nianhong Wu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The Third People’s Hospital of Chengdu City, Chengdu, China
| | - Ying Zhou
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongye He
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Tang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xialin Xiong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Pan Li,
| |
Collapse
|
13
|
Zhao X, Pellow C, Goertz DE. Intravital imaging and cavitation monitoring of antivascular ultrasound in tumor microvasculature. Theranostics 2023; 13:250-266. [PMID: 36593952 PMCID: PMC9800738 DOI: 10.7150/thno.79186] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Focused ultrasound-stimulated microbubbles have been shown to be capable of inducing blood flow shutdown and necrosis in a range of tissue types in an approach termed antivascular ultrasound or nonthermal ablation. In oncology, this approach has demonstrated tumor growth inhibition, and profound synergistic antitumor effects when combined with traditional platforms of chemo-, radiation- and immune-therapies. However, the exposure schemes employed have been broad and underlying mechanisms remain unclear with fundamental questions about exposures, vessel types and sizes involved, and the nature of bubble behaviors and their acoustic emissions resulting in vascular damage - impeding the establishment of standard protocols. Methods: Here, ultrasound transmitters and receivers are integrated into a murine dorsal window chamber tumor model for intravital microscopy studies capable of real-time visual and acoustic monitoring during antivascular ultrasound. Vessel type (normal and tumor-affected), caliber, and viability are assessed under higher pressure conditions (1, 2, and 3 MPa), and cavitation signatures are linked to the biological effects. Results: Vascular events occurred preferentially in tumor-affected vessels with greater incidence in smaller vessels and with more severity as a function of increasing pressure. Vascular blood flow shutdown was found to be due to a combination of focal disruption events and network-related flow changes. Acoustic emissions displayed elevated broadband noise and distinct sub- and ultra-harmonics and their associated third-order peaks with increasing pressure. Conclusions: The observed vascular events taken collectively with identified cavitation signatures provide an improved mechanistic understanding of antivascular ultrasound at the microscale, with implications for establishing a specific treatment protocol and control platform.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Medical Biophysics, University of Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | | | - David E. Goertz
- Department of Medical Biophysics, University of Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
14
|
Morrison RG, Karmacharya MB, Sehgal CM. Contrast-Enhanced Ultrasound Tumor Therapy With Abdominal Imaging Transducer. J Med Device 2022; 16:041010. [PMID: 36353366 PMCID: PMC9445316 DOI: 10.1115/1.4055112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Indexed: 11/08/2022] Open
Abstract
A diagnostic ultrasound machine add-on module (AOM) was created to enable an off-the-shelf abdominal imaging transducer to perform contrast-enhanced therapeutic ultrasound. The AOM creates plane-wave ultrasound through an abdominal imaging transducer targeting intravascular microbubbles within tumors. This therapeutic antivascular ultrasound (AVUS) causes heating and cavitation effects that destroy tumor vasculature and starves it of nutrients. The AOM can switch between therapeutic and imaging modes for monitoring AVUS treatment. The therapeutic capability of the AOM was validated in murine hepatocellular carcinomas (HCC) grown in adult mice. Contrast-enhanced ultrasound imaging performed before and after the therapeutic treatment evaluated the AVUS response to the treatment. The peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) were measured for the control and AOM treatment groups. The AOM group showed a substantial decrease in these parameters compared to the control group. The difference between the pre- and post-therapy was significant, (p < 0.001) for the AOM group and not significant (p > 0.5) for the control group. Tumor temperatures increased markedly for the AOM group with a thermal dose (CEM43) of 124.8 (±2.5). Histochemical analysis of the excised HCC samples revealed several hemorrhagic pools in tumors from the AOM group, absent in the tumors of the control group. These results demonstrate the theranostic potential of the AOM to induce and monitor vascular disruption within murine tumors.
Collapse
Affiliation(s)
- Ryan G. Morrison
- Ultrasound Research Laboratory, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Mrigendra B. Karmacharya
- Ultrasound Research Laboratory, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Chandra M. Sehgal
- Ultrasound Research Laboratory, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
15
|
Guo S, Zhang S, Chen K, Chen X, Hu F. Effects of diagnostic ultrasound with cRGD-microbubbles on simultaneous detection and treatment of atherosclerotic plaque in ApoE−/− mice. Front Cardiovasc Med 2022; 9:946557. [PMID: 35935617 PMCID: PMC9354833 DOI: 10.3389/fcvm.2022.946557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atherosclerotic vulnerable plaque is the leading cause of acute fatal cardiovascular events. Thus, early rapid identification and appropriate treatment of atherosclerotic plaque maybe can prevent fatal cardiovascular events. However, few non–invasive molecular imaging techniques are currently available for the simultaneous detection and targeted treatment of atherosclerotic plaques. We hypothesized that diagnostic ultrasound (DU) combined with cyclic Arg-Gly-Asp-modified microbubbles (MBR) could provide targeted imaging and dissolution of activated platelets to identify advanced atherosclerotic plaques and improve plaque instability. Methods Three mouse models, apolipoprotein E-deficient mice on a hypercholesterolemic diet (HCD) or normal chow diet and wild-type mice on an HCD were used. The most appropriate ultrasonic mechanical index (MI) was determined based on the expression of GP IIb/IIIa in sham, DU alone and DUMBR-treated groups at MI values of 0.5, 1.5, and 1.9. The video intensity (VI) values, activated platelets and plaque instability were analyzed by ultrasound molecular imaging, scanning electron microscopy and histopathological methods. Results We found that the VI values of ultrasound molecular imaging of MBR were positively correlated with plaque GP IIb/IIIa expression, vulnerability index and necrotic center / fiber cap ratio. 24 h after treatment at different MIs, compared with those of the other groups, both the VI values and GP IIb/IIIa expression were significantly reduced in MI 1.5 and MI 1.9 DUMBR-treated groups. The plaque vulnerability index and necrotic center / fiber cap ratio were significantly decreased in MI 1.5-treated group, which may be due to targeted dissolution of activated platelets, with a reduction in von Willebrand factor expression. Conclusion DUMBR targeting GP IIb/IIIa receptors could rapidly detect advanced atherosclerotic plaques and simultaneously give targeted therapy by dissolving activated and aggregated platelets. This technology may represent a novel approach for the simultaneous identification and treatment of atherosclerotic plaques.
Collapse
|
16
|
Han Y, Sun J, Wei H, Hao J, Liu W, Wang X. Ultrasound-Targeted Microbubble Destruction: Modulation in the Tumor Microenvironment and Application in Tumor Immunotherapy. Front Immunol 2022; 13:937344. [PMID: 35844515 PMCID: PMC9283646 DOI: 10.3389/fimmu.2022.937344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor immunotherapy has shown strong therapeutic potential for stimulating or reconstructing the immune system to control and kill tumor cells. It is a promising and effective anti-cancer treatment besides surgery, radiotherapy and chemotherapy. Presently, some immunotherapy methods have been approved for clinical application, and numerous others have demonstrated promising in vitro results and have entered clinical trial stages. Although immunotherapy has exhibited encouraging results in various cancer types, however, a large proportion of patients are limited from these benefits due to specific characteristics of the tumor microenvironment such as hypoxia, tumor vascular malformation and immune escape, and current limitations of immunotherapy such as off-target toxicity, insufficient drug penetration and accumulation and immune cell dysfunction. Ultrasound-target microbubble destruction (UTMD) treatment can help reduce immunotherapy-related adverse events. Using the ultrasonic cavitation effect of microstreaming, microjets and free radicals, UTMD can cause a series of changes in vascular endothelial cells, such as enhancing endothelial cells' permeability, increasing intracellular calcium levels, regulating gene expression, and stimulating nitric oxide synthase activities. These effects have been shown to promote drug penetration, enhance blood perfusion, increase drug delivery and induce tumor cell death. UTMD, in combination with immunotherapy, has been used to treat melanoma, non-small cell lung cancer, bladder cancer, and ovarian cancer. In this review, we summarized the effects of UTMD on tumor angiogenesis and immune microenvironment, and discussed the application and progress of UTMD in tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolei Wang
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Gong JE, Jin YJ, Kim JE, Choi YJ, Lee SJ, Kim KS, Jung YS, Cho JY, Lim Y, Kang HG, Hwang DY. Comparison of cisplatin-induced anti-tumor response in CT26 syngeneic tumors of three BALB/c substrains. Lab Anim Res 2021; 37:33. [PMID: 34876239 PMCID: PMC8653566 DOI: 10.1186/s42826-021-00110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background To determine whether the background of BALB/c substrains affects the response to anti-tumor drugs, we measured for alterations in tumor growth, histopathological structure of the tumor, and expressions of tumor-related proteins in three BALB/c substrains derived from different sources (BALB/cKorl, BALB/cA and BALB/cB), after exposure to varying concentrations of cisplatin (0.1, 1 and 5 mg/kg).
Results Cisplatin treatment induced similar responses for body and organ weights, serum analyzing factors, and blood analyzing factors in all BALB/c substrains with CT26 syngeneic tumor. Few differences were detected in the volume and histopathological structure of the CT26 tumor. Growth inhibition of CT26 tumors after exposure to cisplatin was greater in the BALB/cB substrain than BALB/cKorl and BALB/cA substrains, and a similar pattern was observed in the histopathological structure of tumors. However, the expression levels of other tumor-related factors, including Ki67, p27, p53, Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), caspase-3 (Cas-3), matrix metallopeptidase 2 (MMP2) and vascular endothelial growth factor (VEGF) proteins, were constantly maintained in the tumors of all three substrains after cisplatin treatment. A similar decrease pattern was observed for the expressions of inflammatory cytokines, including interleukin (IL)-1β, IL-6 and IL-10, in the CT26 tumors of the three BALB/c substrains. Conclusions Taken together, results of the present study indicate that the genetic background of the three BALB/c substrains has no major effect on the therapeutic responsiveness of cisplatin, except growth and histopathology of the CT26 syngeneic tumor. Supplementary Information The online version contains supplementary material available at 10.1186/s42826-021-00110-3.
Collapse
Affiliation(s)
- Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - You Jung Jin
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Kil Soo Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Young Suk Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Joon Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, South Korea
| | - Yong Lim
- Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan, South Korea
| | - Hyun Gu Kang
- Department of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea.
| |
Collapse
|
18
|
Keller SB, Wang YN, Totten S, Yeung RS, Averkiou MA. Safety of Image-Guided Treatment of the Liver with Ultrasound and Microbubbles in an in Vivo Porcine Model. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3211-3220. [PMID: 34362584 DOI: 10.1016/j.ultrasmedbio.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound and microbubbles are useful for both diagnostic imaging and targeted drug delivery, making them ideal conduits for theranostic interventions. Recent reports have indicated the preclinical success of microbubble cavitation for enhancement of chemotherapy in abdominal tumors; however, there have been limited studies and variable efficacy in clinical implementation of this technique. This is likely because in contrast to the high pressures and long cycle lengths seen in successful preclinical work, current clinical implementation of microbubble cavitation for drug delivery generally involves low acoustic pressures and short cycle lengths to fit within clinical guidelines. To translate the preclinical parameter space to clinical adoption, a relevant safety study in a healthy large animal is required. Therefore, the purpose of this work was to evaluate the safety of ultrasound cavitation treatment (USCTx) in a healthy porcine model using a modified Philips EPIQ with S5-1 as the focused source. We performed USCTx on eight healthy pigs and monitored health over the course of 1 wk. We then performed an acute study of USCTx to evaluate immediate tissue damage. Contrast-enhanced ultrasound exams were performed before and after each treatment to investigate perfusion changes within the treated areas, and blood and urine were evaluated for liver damage biomarkers. We illustrate, through quantitative analysis of contrast-enhanced ultrasound data, blood and urine analyses and histology, that this technique and the parameter space considered are safe within the time frame evaluated. With its safety confirmed using a clinical-grade ultrasound scanner and contrast agent, USCTx could be easily translated into clinical trials for improvement of chemotherapy delivery. This represents the first safety study assessing the bio-effects of microbubble cavitation from relevant ultrasound parameters in a large animal model.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Stephanie Totten
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
19
|
Feng S, Qiao W, Tang J, Yu Y, Gao S, Liu Z, Zhu X. Chemotherapy Augmentation Using Low-Intensity Ultrasound Combined with Microbubbles with Different Mechanical Indexes in a Pancreatic Cancer Model. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3221-3230. [PMID: 34362582 DOI: 10.1016/j.ultrasmedbio.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The aim of the study was to explore the optimal mechanical indexes (MIs) for low-intensity ultrasound (LIUS) combined with microbubbles to enhance tumor blood perfusion and improve drug concentration in pancreatic cancer-bearing nude mice. Fifty-four nude mice bearing bilateral pancreatic tumors on the hind legs were randomly divided into three groups (the MI was set at 0.3, 0.7 and 1.1 in groups A, B and C, respectively). Five nude mice in each group were intravenously injected with the fluorescent dye DiR iodide (DiIC18(7),1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide); for each mouse, one tumor was treated with LIUS combined with microbubbles, and the contralateral tumor was exposed to sham ultrasound. In vivo fluorescence imaging was performed to detect the enrichment of intratumoral DiR iodide. Twelve mice in each group were intravenously injected with doxorubicin (DOX) and underwent ultrasound therapy as described above. Tumor blood perfusion changes were quantitatively evaluated with pre- and post-treatment contrast-enhanced ultrasound (CEUS, MI = 0.08). One hour after the post-treatment CEUS, nude mice were sacrificed to determine the DOX concentration in tumor tissue; one mouse in each group was sacrificed after ultrasound treatment for tumor hematoxylin-eosin staining examination. CEUS quantitative analysis and in vivo fluorescence images confirmed that LIUS at MI = 0.3 combined with microbubbles was able to enhance tumor blood flow and increase regional fluorescence dye DiR iodide concentration. The DOX concentration on the therapeutic side was significantly higher than that on the control side after ultrasound-stimulated (MI = 0.3) microbubble cavitation (USMC) treatment (1.45 ± 0.53 μg/g vs. 1.07 ± 0.46 μg/g, t = -5.163, p = 0.001). However, in groups B and C, there were no significant differences in DOX concentration between the therapeutic and control sides (Z = -0.297, -0.357, p = 0.766, 0.721). No hemorrhage or other tissue damage was observed in hematoxylin-eosin-stained tumor specimens of both sides in all groups. LIUS at MI = 0.3 combined with microbubbles was able to enhance tumor blood perfusion and improve local drug concentration in nude mice bearing pancreatic cancer.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Ultrasound, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Wei Qiao
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yanlan Yu
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theatre Command, Wuhan, China
| | - Zheng Liu
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiansheng Zhu
- Department of Ultrasound, General Hospital of Southern Theatre Command, Guangzhou, China.
| |
Collapse
|
20
|
Keller SB, Averkiou MA. The Role of Ultrasound in Modulating Interstitial Fluid Pressure in Solid Tumors for Improved Drug Delivery. Bioconjug Chem 2021; 33:1049-1056. [PMID: 34514776 DOI: 10.1021/acs.bioconjchem.1c00422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The unique microenvironment of solid tumors, including desmoplasia within the extracellular matrix, enhanced vascular permeability, and poor lymphatic drainage, leads to an elevated interstitial fluid pressure which is a major barrier to drug delivery. Reducing tumor interstitial fluid pressure is one proposed method of increasing drug delivery to the tumor. The goal of this topical review is to describe recent work using focused ultrasound with or without microbubbles to modulate tumor interstitial fluid pressure, through either thermal or mechanical effects on the extracellular matrix and the vasculature. Furthermore, we provide a review on techniques in which ultrasound imaging may be used to diagnose elevated interstitial fluid pressure within solid tumors. Ultrasound-based techniques show high promise in diagnosing and treating elevated interstitial pressure to enhance drug delivery.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Michalakis A Averkiou
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Kang MJ, Kim JE, Park JW, Choi HJ, Bae SJ, Choi SI, Hong JT, Hwang DY. Effects of Gallotannin-Enriched Extract of Galla Rhois on the Activation of Apoptosis, Cell Cycle Arrest, and Inhibition of Migration Ability in LLC1 Cells and LLC1 Tumors. Pathol Oncol Res 2021; 27:588084. [PMID: 34257536 PMCID: PMC8262247 DOI: 10.3389/pore.2021.588084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022]
Abstract
Gallotannin (GT) and GT-enriched extracts derived from various sources are reported to have anti-tumor activity in esophageal, colon and prostate tumors, although their anti-tumor effects have not been determined in lung carcinomas. To investigate the anti-tumor activity of GT-enriched extract of galla rhois (GEGR) against lung carcinomas, alterations in the cytotoxicity, apoptosis activation, cell cycle progression, migration ability, tumor growth, histopathological structure, and the regulation of signaling pathways were analyzed in Lewis lung carcinoma (LLC1) cells and LLC1 tumor bearing C57BL/6NKorl mice, after exposure to GEGR. A high concentration of GT (69%) and DPPH scavenging activity (IC50=7.922 µg/ml) was obtained in GEGR. GEGR treatment exerted strong cytotoxicity, cell cycle arrest at the G2/M phase and subsequent activation of apoptosis, as well as inhibitory effects on the MAPK pathway and PI3K/AKT mediated cell migration in LLC1 cells. In the in vivo syngeneic model, exposure to GEGR resulted in suppressed growth of the LLC1 tumors, as well as inhibition of NF-κB signaling and their inflammatory cytokines. Taken together, our results provide novel evidence that exposure to GEGR induces activation of apoptosis, cell cycle arrest, and inhibition of cell migration via suppression of the MAPK, NF-κB and PI3K/AKT signaling pathways in LLC1 cells and the LLC1 syngeneic model.
Collapse
Affiliation(s)
- Mi Ju Kang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hyun Jun Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Su Ji Bae
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Sun Il Choi
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
22
|
Keller SB, Sheeran PS, Averkiou MA. Cavitation Therapy Monitoring of Commercial Microbubbles With a Clinical Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1144-1154. [PMID: 33112743 DOI: 10.1109/tuffc.2020.3034532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor cavitation activity during ultrasound and microbubble-mediated procedures is of high clinical value. However, there has been little reported literature comparing the cavitation characteristics of different clinical microbubbles, nor have current clinical scanners been used to perform passive cavitation detection in real time. The goal of this work was to investigate and characterize standard microbubble formulations (Optison, Sonovue, Sonazoid, and a custom microbubble made with similar components as Definity) with a custom passive cavitation detector (two confocal single-element focused transducers) and with a Philips EPIQ scanner with a C5-1 curvilinear probe passively listening. We evaluated three different methods for investigating cavitation thresholds, two from previously reported work and one developed in this work. For all three techniques, it was observed that the inertial cavitation thresholds were between 0.1 and 0.3 MPa for all agents when detected with both systems. Notably, we found that most microbubble formulations in bulk solution behaved generally similarly, with some differences. We show that these characteristics and thresholds are maintained when using a diagnostic ultrasound system for detecting cavitation activity. We believe that a systematic evaluation of the frequency response of the cavitation activity of different microbubbles in order to inform real-time therapy monitoring using a clinical ultrasound device could make an immediate clinical impact.
Collapse
|
23
|
Abstract
Gas-filled microbubbles are currently in clinical use as blood pool contrast agents for ultrasound imaging. The goal of this review is to discuss the trends and issues related to these relatively unusual intravascular materials, which are not small molecules per se, not polymers, not even nanoparticles, but larger micrometer size structures, compressible, flexible, elastic, and deformable. The intent is to connect current research and initial studies from 2 to 3 decades ago, tied to gas exchange between the bubbles and surrounding biological medium, in the following areas of focus: (1) parameters of microbubble movement in relation to vasculature specifics; (2) gas uptake and loss from the bubbles in the vasculature; (3) adhesion of microbubbles to target receptors in the vasculature; and (4) microbubble interaction with the surrounding vessels and tissues during insonation.Microbubbles are generally safe and require orders of magnitude lower material doses than x-ray and magnetic resonance imaging contrast agents. Application of microbubbles will soon extend beyond blood pool contrast and tissue perfusion imaging. Microbubbles can probe molecular and cellular biomarkers of disease by targeted contrast ultrasound imaging. This approach is now in clinical trials, for example, with the aim to detect and delineate tumor nodes in prostate, breast, and ovarian cancer. Imaging of inflammation, ischemia-reperfusion injury, and ischemic memory is also feasible. More importantly, intravascular microbubbles can be used for local deposition of focused ultrasound energy to enhance drug and gene delivery to cells and tissues, across endothelial barrier, especially blood-brain barrier.Overall, microbubble behavior, stability and in vivo lifetime, bioeffects upon the action of ultrasound and resulting enhancement of drug and gene delivery, as well as targeted imaging are critically dependent on the events of gas exchange between the bubbles and surrounding media, as outlined in this review.
Collapse
Affiliation(s)
- Alexander L Klibanov
- From the Cardiovascular Division, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine; and Departments of Biomedical Engineering, and Radiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
24
|
Tang Y, Chen LY, Zhang A, Liao CP, Gross ME, Kim ES. In Vivo Non-Thermal, Selective Cancer Treatment With High-Frequency Medium-Intensity Focused Ultrasound. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:122051-122066. [PMID: 35321234 PMCID: PMC8939762 DOI: 10.1109/access.2021.3108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Focused ultrasound (FUS) has proven its efficacy in non-invasive, radiation-free cancer treatment. However, the commonly used low-frequency high-intensity focused ultrasound (HIFU) destroys both cancerous and healthy tissues non-specifically through extreme heat and inertial cavitation with low spatial resolution. To address this issue, we evaluate the therapeutic effects of pulsed (60 Hz pulse repetition frequency, 1.45 ms pulse width) high-frequency (20.7 MHz) medium-intensity (spatial-peak pulse-average intensity ISPPA < 279.1 W/cm2, spatial-peak temporal-average intensity ISPTA < 24.3 W/cm2) focused ultrasound (pHFMIFU) for selective cancer treatment without thermal damage and with low risk of inertial cavitation (mechanical index < 0.66), in an in vivo subcutaneous B16F10 melanoma tumor growth model in mice. The pHFMIFU with 104 μm focal diameter is generated by a microfabricated self-focusing acoustic transducer (SFAT) with a Fresnel acoustic lens. A three-axis positioning system has been developed for automatic scanning of the transducer to cover a larger treatment volume, while a water-cooling system is custom-built for dissipating non-acoustic heat from the transducer surface. Initial testing revealed that pHFMIFU treatment can be applied to a living animal while maintaining skin temperature under 35.6 °C without damaging normal skin and tissue. After eleven days of treatment with pHFMIFU, the treated tumors were significantly smaller with large areas of necrosis and apoptosis in the treatment field compared to untreated controls. Potential mechanisms of this selective, non-thermal killing effect, as well as possible causes of and solutions to the variation in treatment results, have been analyzed and proposed. The pHFMIFU could potentially be used as a new therapeutic modality for safer cancer treatment especially in critical body regions, due to its cancer-specific effects and high spatial resolution.
Collapse
Affiliation(s)
- Yongkui Tang
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Leng-Ying Chen
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Ailin Zhang
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Chun-Peng Liao
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Mitchell Eric Gross
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Eun Sok Kim
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
Li N, Liao Y, Tang J. Characteristic Blood-Perfusion Reduction of Walker 256 Tumor Induced by Diagnostic Ultrasound and Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3069-3079. [PMID: 32782088 DOI: 10.1016/j.ultrasmedbio.2020.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Tumor angiogenesis is characterized by a defective, leaky and fragile microvascular construction, and microbubble-enhanced ultrasound (MEUS) with high-pressure amplitude is capable of disrupting tumor microvasculature and arresting blood perfusion. In this study, we tried to investigate whether the blood perfusion of a malignant tumor can be characteristically interrupted by combining microbubbles and diagnostic ultrasound (US). Twenty-nine Sprague-Dawley (SD) rats with subcutaneous Walker 256 tumors and seven healthy SD rats were included. Fifteen tumors were treated by MEUS, which combined constant microbubble injection and 20 episodes of irradiation by diagnostic US (i.e., acoustic radiation force impulse [ARFI] imaging). The other 14 tumors were treated by ARFI or sham US only. Seven skeleton muscles from healthy SD rats were also treated with MEUS, serving as the control. Contrast-enhanced ultrasound (CEUS) was performed before and after all treatments. The blood perfusion of the tumor MEUS group showed a significant drop immediately after treatment, followed by a quick, incomplete perfusion recovery within 10-20 min. The visual perfusion scoring result was consistent with the quantitative analysis by CEUS peak intensity. However, there were no significant perfusion changes in the tumor control groups or the muscle control group. Histologic examination found severe microvascular disruption and hemorrhage in the MEUS-treated tumors but not in the control groups. Therefore, the treatment combining diagnostic US and microbubbles can specifically decrease or interrupt the blood perfusion of Walker 256 tumors, which could be a potential new imaging method for diagnosing malignant tumors.
Collapse
Affiliation(s)
- Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiyi Liao
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
26
|
Tumor perfusion enhancement by ultrasound stimulated microbubbles potentiates PD-L1 blockade of MC38 colon cancer in mice. Cancer Lett 2020; 498:121-129. [PMID: 33129956 DOI: 10.1016/j.canlet.2020.10.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy holds tremendous promise as a strategy for eradicating solid tumors, and its therapeutic effect highly relies on sufficient CD8+ T cells infiltration. Here, we demonstrate that ultrasound stimulated microbubble cavitation (USMC) promotes tumor perfusion, thereby increasing CD8+ T cells infiltration and anti-PD-L1 antibody delivery, then further enhancing the PD-L1 blockade of MC38 colon cancer in mice. Firstly, we optimized the mechanic index (MI) of ultrasound, and found that USMC with MI of 0.4 (equal to peak negative pressure of 0.8 MPa) significantly improved the peak intensity and area under curve of tumor contrast-enhanced ultrasound. Also, flow cytometry exhibited higher percentage of infiltrating CD8+ T cells in the USMC (MI = 0.4)-treated tumors than that of the control. We further explored the combination therapy of optimized USMC with anti-PD-L1 antibody. The combination therapy enhanced tumor perfusion and even led to the tumor vascular normalization. More importantly, flow cytometry showed that the combination not only increased the percentage and absolute number of tumor infiltrating CD8+ T cells, but also promoted the expression of Ki67 as well as the secretions of IFN γ and granzyme B, therefore, the combination therapy achieved greater tumor growth inhibition and longer survival than that of the monotherapies. These suggest that USMC is a promising therapeutic modality for combining immune checkpoint blockade against solid tumors.
Collapse
|
27
|
Keller SB, Suo D, Wang YN, Kenerson H, Yeung RS, Averkiou MA. Image-Guided Treatment of Primary Liver Cancer in Mice Leads to Vascular Disruption and Increased Drug Penetration. Front Pharmacol 2020; 11:584344. [PMID: 33101038 PMCID: PMC7554611 DOI: 10.3389/fphar.2020.584344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Despite advances in interventional procedures and chemotherapeutic drug development, hepatocellular carcinoma (HCC) is still the fourth leading cause of cancer-related deaths worldwide with a <30% 5-year survival rate. This poor prognosis can be attributed to the fact that HCC most commonly occurs in patients with pre-existing liver conditions, rendering many treatment options too aggressive. Patient survival rates could be improved by a more targeted approach. Ultrasound-induced cavitation can provide a means for overcoming traditional barriers defining drug uptake. The goal of this work was to evaluate preclinical efficacy of image-guided, cavitation-enabled drug delivery with a clinical ultrasound scanner. To this end, ultrasound conditions (unique from those used in imaging) were designed and implemented on a Philips EPIQ and S5-1 phased array probe to produced focused ultrasound for cavitation treatment. Sonovue® microbubbles which are clinically approved as an ultrasound contrast agent were used for both imaging and cavitation treatment. A genetically engineered mouse model was bred and used as a physiologically relevant preclinical analog to human HCC. It was observed that image-guided and targeted microbubble cavitation resulted in selective disruption of the tumor blood flow and enhanced doxorubicin uptake and penetration. Histology results indicate that no gross morphological damage occurred as a result of this process. The combination of these effects may be exploited to treat HCC and other challenging malignancies and could be implemented with currently available ultrasound scanners and reagents.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Dingjie Suo
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, WA, United States
| | - Heidi Kenerson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
28
|
He Y, Yu M, Wang J, Xi F, Zhong J, Yang Y, Jin H, Liu J. Improving the Therapeutic Effect of Ultrasound Combined With Microbubbles on Muscular Tumor Xenografts With Appropriate Acoustic Pressure. Front Pharmacol 2020; 11:1057. [PMID: 32760276 PMCID: PMC7373785 DOI: 10.3389/fphar.2020.01057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Ultrasound combined with microbubbles (USMB) is a promising antitumor therapy because of its capability to selectively disrupt tumor perfusion. However, the antitumor effects of repeated USMB treatments have yet to be clarified. In this study, we established a VX2 muscular tumor xenograft model in rabbits, and performed USMB treatments at five different peak negative acoustic pressure levels (1.0, 2.0, 3.0, 4.0, or 5.0 MPa) to determine the appropriate acoustic pressure. To investigate whether repeated USMB treatments could improve the antitumor effects, a group of tumor-bearing rabbits was subjected to one USMB treatment per day for three consecutive days for comparison with the single-treatment group. Contrast-enhanced ultrasonic imaging and histological analyses showed that at an acoustic pressure of 4.0 MPa, USMB treatment contributed to substantial cessation of tumor perfusion, resulting in severe damage to the tumor cells and microvessels without causing significant effects on the normal tissue. Further, the percentages of damaged area and apoptotic cells in the tumor were significantly higher, and the tumor growth inhibition effect was more obvious in the multiple-treatment group than in the single USMB treatment group. These findings indicate that with an appropriate acoustic pressure, the USMB treatment can selectively destroy tumor vessels in muscular tumor xenograft models. Moreover, the repeated treatments strategy can significantly improve the antitumor effect. Therefore, our results provide a foundation for the clinical application of USMB to treat solid tumors using a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yan He
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Meiling Yu
- Department of Functional Examination, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Jie Wang
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fen Xi
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiali Zhong
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuwen Yang
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
30
|
Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials 2020; 232:119723. [DOI: 10.1016/j.biomaterials.2019.119723] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/15/2019] [Accepted: 12/21/2019] [Indexed: 01/13/2023]
|
31
|
Li X, Guo S, Xu T, He X, Sun Y, Chen X, Cao S, Si X, Liao W, Liao Y, Han Y, Bin J. Therapeutic ultrasound combined with microbubbles improves atherosclerotic plaque stability by selectively destroying the intraplaque neovasculature. Theranostics 2020; 10:2522-2537. [PMID: 32194817 PMCID: PMC7052908 DOI: 10.7150/thno.39553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: The current antiangiogenic therapy for atherosclerotic plaques was mainly achieved by the use of antiangiogenic drugs, but serious side effects have limited the clinical application. The present study investigated whether therapeutic ultrasound (TUS) treatment with appropriate pressure could selectively deplete the neovasculature in vulnerable plaques to improve its stability with no side effects on the body; the underlying mechanisms were also explored. Methods and Results: A mouse model of advanced atherosclerosis was generated by maintaining apolipoprotein E-deficient (ApoE-/-) mice on a hypercholesterolemic diet (HCD). Plaque, skeletal muscle, mesentery and skin tissue from 114 atheroma-bearing mice were subjected to sham therapy, an ultrasound application combined with microbubbles at four different ultrasound pressures (1.0, 2.0, 3.0, 5.0 MPa), or ultrasound at 5.0 MPa alone. Microvessel density (MVD) was assessed by immunofluorescence and immunohistochemical methods. The plaque necrotic center/fiber cap (NC/FC) ratio and vulnerability index were calculated to evaluate plaque vulnerability. Twenty-four hours after TUS treatment at 3.0 MPa, the MVD in the plaque was substantially decreased by 84% (p < 0.05), while there was almost no change in MVD and neovessel density (NVD) in normal tissues, including skeletal muscle, mesentery and skin. Additionally, a marked reduction in the number of immature vessels was observed in the plaques (reduced by 90%, p < 0.05), whereas the number of mature vessels was not significantly decreased. Furthermore, TUS treatment at 3.0 MPa significantly improved plaque stability, as reflected by the NC/FC ratio and vulnerability index, which may be due to the selective destruction of intraplaque neovascularization by TUS treatment, thereby decreasing the extravasation of erythrocytes and leading to vascular inflammation alleviation and thin-cap fibroatheroma reduction. Conclusions: TUS treatment at 3.0 MPa selectively depleted plaque neovessels and improved the stability of vulnerable plaques through a reduction in erythrocyte extravasation and inflammatory mediator influx, with no significant effect on normal tissue.
Collapse
|
32
|
Adipocytes initiate an adipose-cerebral-peripheral sympathetic reflex to induce insulin resistance during high-fat feeding. Clin Sci (Lond) 2019; 133:1883-1899. [PMID: 31477624 DOI: 10.1042/cs20190412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 01/22/2023]
Abstract
The underlying mechanism by which amassing of white adipose tissue in obesity regulates sympathetic nerve system (SNS) drive to the tissues responsible for glucose disposal, and causes insulin resistance (IR), remains unknown. We tested the hypothesis that high-fat (HF) feeding increases afferent impulses from white adipose tissue that reflexively elevate efferent nerve activity to skeletal muscle (SM) and adipose tissue to impair their local glucose uptake. We also investigated how salt-intake can enhance IR. HF-fed rats received a normal salt (0.4%) or high salt (4%) diet for 3 weeks. High-salt intake in HF fed rats decreased insulin-stimulated 2-deoxyglucose uptake by over 30% in white adipose tissue and SM, exacerbated inflammation, and impaired their insulin signaling and glucose transporter 4 (Glut4) trafficking. Dietary salt in HF fed rats also increased the activity of the adipose-cerebral-muscle renin-angiotensin system (RAS) axes, SNS, and reactive oxygen species (ROS). Insulin sensitivity was reduced by 32% in HF rats during high-salt intake, but was improved by over 62% by interruption of central RAS and SNS drive, and by over 45% by denervation or deafferentation of epididymal fat (all P<0.05). Our study suggest that a HF diet engages a sympathetic reflex from the white adipose tissue that activates adipose-cerebral-muscle RAS/ROS axes and coordinates a reduction in peripheral glucose uptake. These are all enhanced by salt-loading. These findings provide new insight into the role of a reflex initiated in adipose tissue in the regulation of glucose homeostasis during HF feeding that could lead to new therapeutic approaches to IR.
Collapse
|
33
|
Roovers S, Segers T, Lajoinie G, Deprez J, Versluis M, De Smedt SC, Lentacker I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10173-10191. [PMID: 30653325 DOI: 10.1021/acs.langmuir.8b03779] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the last couple of decades, ultrasound-driven microbubbles have proven excellent candidates for local drug delivery applications. Besides being useful drug carriers, microbubbles have demonstrated the ability to enhance cell and tissue permeability and, as a consequence, drug uptake herein. Notwithstanding the large amount of evidence for their therapeutic efficacy, open issues remain. Because of the vast number of ultrasound- and microbubble-related parameters that can be altered and the variability in different models, the translation from basic research to (pre)clinical studies has been hindered. This review aims at connecting the knowledge gained from fundamental microbubble studies to the therapeutic efficacy seen in in vitro and in vivo studies, with an emphasis on a better understanding of the response of a microbubble upon exposure to ultrasound and its interaction with cells and tissues. More specifically, we address the acoustic settings and microbubble-related parameters (i.e., bubble size and physicochemistry of the bubble shell) that play a key role in microbubble-cell interactions and in the associated therapeutic outcome. Additionally, new techniques that may provide additional control over the treatment, such as monodisperse microbubble formulations, tunable ultrasound scanners, and cavitation detection techniques, are discussed. An in-depth understanding of the aspects presented in this work could eventually lead the way to more efficient and tailored microbubble-assisted ultrasound therapy in the future.
Collapse
Affiliation(s)
- Silke Roovers
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| |
Collapse
|
34
|
DeOre BJ, Galie PA, Sehgal CM. Fluid flow rate dictates the efficacy of low-intensity anti-vascular ultrasound therapy in a microfluidic model. Microcirculation 2019; 26:e12576. [PMID: 31140665 DOI: 10.1111/micc.12576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Low-intensity anti-vascular ultrasound therapy is an effective means of disrupting the blood supply in the tumor microenvironment. Its diminished effect on the surrounding vasculature is thought to be due to higher blood flow rates outside the tumor that decreases the interaction time between the endothelial lining and the microbubbles, which transduce acoustic energy to thermal heat. However, investigating the effect of circulation rate on the response to low-intensity ultrasound is complicated by the heterogeneity of the in vivo vascular microenvironment. Here, a 3D microfluidic model is used to directly interrogate the dynamics of ultrasound stimulation. METHODS A 3D in vitro vessel consisting of LifeACT transfected endothelial cells facilitate real-time analysis of actin dynamics during ultrasound treatment. Using an integrated testing platform, both the flow rate of microbubbles within the vessel and the magnitude of insonation can be varied. RESULTS Morphological measurements and dextran transport assays indicate that lower flow rates exacerbate the effect of low-intensity ultrasound on vessel integrity. Additionally, immunostaining for VE-cadherin and transmission electron microscopy provide further insight into structural changes in cell-cell junctions following insonation. CONCLUSIONS Overall, these results reveal that blood flow rate is an important parameter to consider during the refinement of anti-vascular low-intensity ultrasound therapies.
Collapse
Affiliation(s)
- Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey
| | - Chandra M Sehgal
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Ultrasound Combined With Microbubbles Increase the Delivery of Doxorubicin by Reducing the Interstitial Fluid Pressure. Ultrasound Q 2019; 35:103-109. [DOI: 10.1097/ruq.0000000000000381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Li X, Sun Y, Huang S, Chen Y, Chen X, Li M, Si X, He X, Zheng H, Zhong L, Yang Y, Liao W, Liao Y, Chen G, Bin J. Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. EBioMedicine 2018; 39:69-82. [PMID: 30545799 PMCID: PMC6355659 DOI: 10.1016/j.ebiom.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND We previously found that loss of lncRNA-AZIN2 splice variant (AZIN2-sv) increases cardiomyocyte (CM) proliferation and attenuates adverse ventricular remodelling post-myocardial infarction (MI). However, whether inhibition of AZIN2-sv can simultaneously induce angiogenesis and thus improve prognosis after MI is unclear. METHODS We used in situ hybridization and quantitative PCR to determine AZIN2-sv expression in endothelial cells. Knockdown and overexpression were performed to detect the role of AZIN2-sv in endothelial cell function, angiogenesis and prognosis after MI. RNA pulldown, RNA immunoprecipitation and luciferase reporter assays were used to determine the interaction with talin1 (Tln1) protein and miRNA-214 (miR-214). DNA pulldown and chromatin immunoprecipitation (ChIP) assays were used to study AZIN2-sv binding to upstream transcription factors. FINDINGS AZIN2-sv was enriched in cardiac endothelial cells. The loss of AZIN2-sv reduced endothelial cell apoptosis and promoted endothelial sprouting and capillary network formation in vitro. Moreover, in vivo, the loss of AZIN2-sv induced angiogenesis and improved cardiac function after MI. Mechanistically, AZIN2-sv reduced Tln1 and integrin β1 (ITGB1) protein levels to inhibit neovascularization. AZIN2-sv activated the ubiquitination-dependent degradation of Tln1 mediated by proteasome 26S subunit ATPase 5 (PSMC5). In addition, AZIN2-sv could bind to miR-214 and suppress the phosphatase and tensin homologue (PTEN)/Akt pathway to inhibit angiogenesis. With regard to the upstream mechanism, Bach1, a negative regulator of angiogenesis, bound to the promoter of AZIN2-sv and increased its expression. INTERPRETATION Bach1-activated AZIN2-sv could participate in angiogenesis by promoting the PSMC5-mediated ubiquitination-dependent degradation of Tln1 and blocking the miR-214/PTEN/Akt pathway. Inhibition of AZIN2-sv induced angiogenesis and myocardial regeneration simultaneously, thus, AZIN2-sv could be an ideal therapeutic target for improving myocardial repair after MI. FUND: National Natural Science Foundations of China.
Collapse
Affiliation(s)
- Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqiang Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyun Si
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| |
Collapse
|
37
|
Cao W, Shi M, Wu L, Yang Z, Yang X, Liu H, Xu X, Liu Y, Wilcox CS, Hou FF. A renal-cerebral-peripheral sympathetic reflex mediates insulin resistance in chronic kidney disease. EBioMedicine 2018; 37:281-293. [PMID: 30429087 PMCID: PMC6286258 DOI: 10.1016/j.ebiom.2018.10.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Insulin resistance (IR) complicates chronic kidney disease (CKD). We tested the hypothesis that CKD activates a broad reflex response from the kidneys and the white adipose tissue to impair peripheral glucose uptake and investigated the role of salt intake in this process. Methods 5/6-nephrectomized rats were administered normal- or high-salt for 3 weeks. Conclusions were tested in 100 non-diabetic patients with stage 3–5 CKD. Findings High-salt in 5/6-nephrectomized rats decreased insulin-stimulated 2-deoxyglucose uptake >25% via a sympathetic nervous system (SNS) reflex that linked the IR to reactive oxygen species (ROS) and the renin-angiotensin system (RAS) in brain and peripheral tissues. Salt-loading in CKD enhanced inflammation in adipose tissue and skeletal muscle, and enhanced the impairment of insulin signaling and Glut4 trafficking. Denervation of the kidneys or adipose tissue or deafferentation of adipose tissue improved IR >40%. In patients with non-diabetic CKD, IR was positively correlated with salt intake after controlling for cofounders (r = 0.334, P = 0.001) and was linked to activation of the RAS/SNS and to impaired glucose uptake in adipose tissue and skeletal muscle, all of which depended on salt intake. Interpretation CKD engages a renal/adipose-cerebral-peripheral sympathetic reflex that activates the RAS/ROS axes to promote IR via local inflammation and impaired Glut4 trafficking that are enhanced by high-salt intake. The findings point to a role for blockade of RAS or α-and-β-adrenergic receptors to reduce IR in patients with CKD. Fund National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Wei Cao
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Meng Shi
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Liling Wu
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Zhichen Yang
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Xiaobing Yang
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Hongfa Liu
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Xin Xu
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Central, 3800 Reservoir Road, NW, 6 PHC Bldg, F6003, Washington, DC 20007, USA.
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China..
| |
Collapse
|
38
|
Shen S, Li Y, Xiao Y, Zhao Z, Zhang C, Wang J, Li H, Liu F, He N, Yuan Y, Lu Y, Guo S, Wang Y, Liao W, Liao Y, Chen Y, Bin J. Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion. Biomaterials 2018; 181:293-306. [PMID: 30096563 DOI: 10.1016/j.biomaterials.2018.07.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
Abstract
With the rapid development of cancer-targeted nanotechnology, a variety of nanoparticle-based drug delivery systems have clinically been employed in cancer therapy. However, multidrug resistance significantly impacts the therapeutic efficacy. Physical non-drug therapy has emerged as a new and promising strategy. This study aimed to determine whether novel folate-nanobubbles (F-NBs), combined with therapeutic ultrasound (US), could act as a safe and effective physical targeted cancer therapy. Using folate-conjugated N-palmitoyl chitosan (F-PLCS), we developed novel F-NBs and characterised their physicochemical properties, internalization mechanism, targeting ability, therapeutic effects, and killing mechanism. The results showed that the novel F-NBs selectively accumulated in FR-positive endothelial cells and tumour cells via FR coupled with clathrin- and caveolin-mediated endocytosis in vitro and in vivo. In addition, the F-NBs killed target cells by an intracellular explosion under US irradiation. Hoechst/PI staining demonstrated that apoptosis and necrosis accounted for a large proportion of cell death in vivo. F-NBs combined with US therapy significantly inhibited tumour growth and improved the overall survival of tumour-bearing mice. Under US irradiation, the novel F-NBs selectively killed FR-positive tumour cells in vitro and in vivo via intracellular explosion and therefore is a promising alternative for targeted cancer treatment.
Collapse
Affiliation(s)
- Shuxin Shen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ying Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yunbin Xiao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zonglei Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuanxi Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junfen Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hairui Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nvqin He
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Yuan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongkang Lu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengcun Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanmei Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
39
|
Ho YJ, Wang TC, Fan CH, Yeh CK. Spatially Uniform Tumor Treatment and Drug Penetration by Regulating Ultrasound with Microbubbles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17784-17791. [PMID: 29727168 DOI: 10.1021/acsami.8b05508] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tumor microenvironment has different morphologies of vessels in the core and rim regions, which influences the efficacy of tumor therapy. Our study proposed to improve the spatial uniformity of the antivascular effect and drug penetration within the tumor core and rim in combination therapies by regulating ultrasound-stimulated microbubble destruction (USMD). Focused ultrasound at 2 MHz and lipid-shell microbubbles (1.12 ± 0.08 μm, mean ± standard deviation) were used to perform USMD. The efficiency of the antivascular effect was evaluated by intravital imaging to determine the optimal USMD parameters. Tumor perfusion and histological alterations in the tumor core and rim were used to analyze the spatial uniformity of the antivascular effect and liposomal-doxorubicin (5 mg/kg) penetration in the combination therapy. Tumor vessels of specific sizes were disrupted by regulating USMD: vessels with sizes of 11 ± 3, 14 ± 5, 19 ± 7, and 23 ± 10 μm were disrupted by stimulation at acoustic pressures of 3, 5, 7, and 9 MPa, respectively (each p < 0.05). The effective treatment time of USMD (at 2 × 107 microbubbles/mouse, 7 MPa, and three cycles) was 60-120 min, which resulted in the disruption of 21-44% of vessels smaller than 50 μm. The reductions in perfusion and vascular density after combination therapy did not differ significantly between the tumor core and rim. This study found that regulating USMD can result in homogeneous antivascular effects and drug penetration within tumors and thereby improve the efficacy of combination therapies.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Tzu-Chia Wang
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|
40
|
|
41
|
Siemann DW, Chaplin DJ, Horsman MR. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer. Cancer Invest 2017; 35:519-534. [DOI: 10.1080/07357907.2017.1364745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- D. W. Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | | - M. R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University, Denmark
| |
Collapse
|
42
|
Ho YJ, Yeh CK. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization. Acta Biomater 2017; 49:472-485. [PMID: 27836803 DOI: 10.1016/j.actbio.2016.11.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/03/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Drug-loaded nanodroplets (NDs) can be converted into gas bubbles through ultrasound (US) stimulation, termed acoustic droplet vaporization (ADV), which provides a potential strategy to simultaneously induce vascular disruption and release drugs for combined physical anti-vascular therapy and chemotherapy. Doxorubicin-loaded NDs (DOX-NDs) with a mean size of 214nm containing 2.48mg DOX/mL were used in this study. High-speed images displayed bubble formation and cell debris, demonstrating the reduction in cell viability after ADV. Intravital imaging provided direct visualization of disrupted tumor vessels (vessel size <30μm), the extravasation distance was 12μm in the DOX-NDs group and increased over 100μm in the DOX-NDs+US group. Solid tumor perfusion on US imaging was significantly reduced to 23% after DOX-NDs vaporization, but gradually recovered to 41%, especially at the tumor periphery after 24h. Histological images of the DOX-NDs+US group revealed tissue necrosis, a large amount of drug extravasation, vascular disruption, and immune cell infiltration at the tumor center. Tumor sizes decreased 22%, 36%, and 68% for NDs+US, DOX-NDs, and DOX-NDs+US, respectively, to prolong the survival of tumor-bearing mice. Therefore, this study demonstrates that the combination of physical anti-vascular therapy and chemotherapy with DOX-NDs vaporization promotes uniform treatment to improve therapeutic efficacy. STATEMENT OF SIGNIFICANCE Tumor vasculature plays an important role for tumor cell proliferation by transporting oxygen and nutrients. Previous studies combined anti-vascular therapy and drug release to inhibit tumor growth by ultrasound-stimulated microbubble destruction or acoustic droplet vaporization. Although the efficacy of combined therapy has been demonstrated; the relative spatial distribution of vascular disruption, drug delivery, and accompanied immune responses within solid tumors was not discussed clearly. Herein, our study used drug-loaded nanodroplets to combined physical anti-vascular and chemical therapy. The in vitro cytotoxicity, intravital imaging, and histological assessment were used to evaluate the temporal and spatial cooperation between physical and chemical effect. These results revealed some evidences for complementary action to explain the high efficacy of tumor inhibition by combined therapy.
Collapse
|
43
|
Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, Fay WP, Siebenlist U, Chandrasekar B. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 2017; 292:2345-2358. [PMID: 28053087 DOI: 10.1074/jbc.m116.764522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- John M Erikson
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anthony J Valente
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Srinivas Mummidi
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hemanth Kumar Kandikattu
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Vincent G DeMarco
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Shawn B Bender
- the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and.,Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - William P Fay
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Ulrich Siebenlist
- Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Bysani Chandrasekar
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211, .,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and
| |
Collapse
|
44
|
Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals. Clin Sci (Lond) 2016; 130:2105-2120. [PMID: 27609823 DOI: 10.1042/cs20160085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (P<0.05). Both UTMD and delayed BMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both P<0.05). Histopathology demonstrated that UTMD combined with delayed BMC transplantation increased capillary density, myocardial cell proliferation and c-kit+ cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit+ cells.
Collapse
|
45
|
Affiliation(s)
- Ying Zhang
- Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinyan Li
- Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|