1
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2024:S1933-0219(24)00106-5. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
2
|
Liu Y, Xie Y, Han X, Li P, Zhou J, Hu X, Wang Q. Th9/IL-9 may participate in the pathogenesis of multiple myeloma. Int J Lab Hematol 2024; 46:322-328. [PMID: 38058269 DOI: 10.1111/ijlh.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION This research is aimed to evaluate the correlation between Th9-associated cytokine levels in MM patients, clinical features, and therapy. METHODS Peripheral blood samples were taken in 52 MM patients and 20 healthy volunteers matched by sex and age. The patients with MM were separated into two groups: the untreated group (27) and the remission group (25). An enzyme-linked immunosorbent assay (ELISA) was used to measure the IL-9 plasma levels. The levels of Th9-associated cytokines' mRNA expression (IL-9, PU.1, and IRF4) were measured in RT-qPCR. We also analyzed the correlations between the IL-9 plasma levels and the clinical parameters of newly diagnosed MM patients. RESULTS The IL-9 plasma levels and the Th9-associated cytokines (IL-9, PU.1, and IRF4) mRNA levels in newly diagnosed MM patients were significantly elevated than those in healthy volunteers and significantly decreased after achieving remission. Moreover, PU.1 and IRF4 had a positive correlation with the IL-9 mRNA expression. Then, we found that the upregulation of IL-9 plasma levels correlates with the severity of anemia and decreased albumin Levels. CONCLUSION The results demonstrate that Th9/IL-9 may be involved in the pathogenesis of MM and is correlated with worse patient conditions such as lower hemoglobin and serum albumin. More work is necessary to confirm whether they might serve as a useful therapeutic target and prognostic marker for MM.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yinghua Xie
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiyao Han
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Pei Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianan Zhou
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xinxin Hu
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qiuyun Wang
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Huang Y, Xu J, Xie C, Liao Y, Lin R, Zeng Y, Yu F. A Novel Gene Pair CSTF2/DPE2A Impacts Prognosis and Cell Cycle of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1639-1657. [PMID: 37791068 PMCID: PMC10544262 DOI: 10.2147/jhc.s413935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the commonest cancers at present, possesses elevated mortality. This study explored the predictive value of CSTF2/PDE2A for HCC prognosis. Methods In this study, clinical information and RNA sequencing expression profiles of HCC patients were acquired from common databases. Kaplan-Meier curve compound with time-dependent ROC curve, nomogram model, and univariate/multivariate Cox analysis were carried out to access the prediction capacity of CSTF2/PDE2A. The immune status, tumor microenvironment, drug sensitivity, biological function and pathway between HCC and adjacent non-tumorous tissue were analyzed and compared. Finally, RT-qPCR, Western blot, and apoptosis assays were performed to verify the effect on HCC cells of CSTF2/PDE2A. Results The optimal cut-off value of CSTF2, PDE2A and CSTF2/PDE2A was 6.95, 0.95 and 3.63, respectively. In TCGA and ICGC cohorts, the high group of CSTF2/PDE2A presented higher OS compared to low group. The area under the curve (AUC) for OS at 1-, 2-, and 3-years predicted by CSTF2/PDE2A were 0.731/0.695, 0.713/0.732 and 0.689/0.755, higher than the counterparts of the single gene CSTF2 and PDE2A. Multivariate Cox analysis revealed that CSTF2/PDE2A (HR = 1.860/3.236, 95% CI = 1.265-2.733/1.575-6.645) was an independent prognostic factor for HCC. The OS nomogram model created according to five independent factors including CSTF2/PDE2A showed excellent capacity for HCC prognosis. Furthermore, the immune status of the CSTF2/PDE2A high group was deleted, cell cycle-related genes and chemotherapy resistance were increased. Finally, cell experiments revealed distinct differences in the proliferation, apoptosis, protein and mRNA expression of HCC cells after si-CSTF2 transfection compared with the negative control. Conclusion Taken together, the gene pair CSTF2/PDE2A is able to forecast the prognosis of HCC and regulates cell cycle, which is promising as a novel prognostic predictor of HCC.
Collapse
Affiliation(s)
- Yangjin Huang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Chunming Xie
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yuejuan Liao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Chen J, Zhang Y, Zhang H, Zhang M, Dong H, Qin T, Gao S, Wang S. IL-24 is the key effector of Th9 cell-mediated tumor immunotherapy. iScience 2023; 26:107531. [PMID: 37680459 PMCID: PMC10480301 DOI: 10.1016/j.isci.2023.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Th9 cells are powerful effector T cells for cancer immunotherapy. However, the underlying antitumor mechanism of Th9 cells still needs to be further elucidated. Here, we show that Th9 cells express high levels of not only IL-9, but also IL-24. We found that knockout of Il24 gene in Th9 cells promotes Th9 cell proliferation in vitro, but decreases Th9 cell survival in vitro and in vivo. Interestingly, knockout of Il24 gene in Th9 cells decreases the tumor-specific cytotoxicity of Th9 cells in vitro. In addition, immunotherapy with Il24 knockout Th9 cells exhibit less tumor inhibition than regular Th9 cells in mouse tumor models. We found that inhibition of Foxo1 by a specific inhibitor downregulates IL-24 expression in Th9 cells and decreases Th9 cell antitumor efficacy in vivo. Our results identify IL-24 as a powerful antitumor effector of Th9 cells and provide a target in Th9 cell-mediated tumor therapy.
Collapse
Affiliation(s)
- Jintong Chen
- Department of Cancer Immunology, First Hospital of Jilin University, Changchun 130061, China
| | - Yunwei Zhang
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Hua Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Mingyue Zhang
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun 130021, China
| | - He Dong
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun 130021, China
| | - Tianxue Qin
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Sujun Gao
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Siqing Wang
- Department of Cancer Immunology, First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
5
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
6
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
7
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Vinokurova D, Apetoh L. The Emerging Role of IL-9 in the Anticancer Effects of Anti-PD-1 Therapy. Biomolecules 2023; 13:biom13040670. [PMID: 37189417 DOI: 10.3390/biom13040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
PD-1 blockade rescues failing anticancer immune responses, resulting in durable remissions in some cancer patients. Cytokines such as IFNγ and IL-2 contribute to the anti-tumor effect of PD-1 blockade. IL-9 was identified over the last decade as a cytokine demonstrating a potent ability to harness the anticancer functions of innate and adaptive immune cells in mice. Recent translational investigations suggest that the anticancer activity of IL-9 also extends to some human cancers. Increased T cell-derived IL-9 was proposed to predict the response to anti-PD-1 therapy. Preclinical investigations accordingly revealed that IL-9 could synergize with anti-PD-1 therapy in eliciting anticancer responses. Here, we review the findings suggesting an important contribution of IL-9 in the efficacy of anti-PD-1 therapy and discuss their clinical relevance. We will also discuss the role of host factors like the microbiota and TGFβ in the tumor microenvironment (TME) in the regulation of IL-9 secretion and anti-PD-1 treatment efficacy.
Collapse
Affiliation(s)
- Daria Vinokurova
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
10
|
Shi S, Ye L, Yu X, Jin K, Wu W. Focus on mast cells in the tumor microenvironment: Current knowledge and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188845. [PMID: 36476563 DOI: 10.1016/j.bbcan.2022.188845] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mast cells (MCs) are crucial cells participating in both innate and adaptive immune processes that play important roles in protecting human health and in the pathophysiology of various diseases, such as allergies, cardiovascular diseases, and autoimmune diseases. In the context of tumors, MCs are a non-negligible population of immune cells in the tumor microenvironment (TME). In most tumor types, MCs accumulate in both the tumor tissue and the surrounding tissue. MCs interact with multiple components of the TME, affecting TME remodeling and the tumor cell fate. However, controversy persists regarding whether MCs contribute to tumor progression or trigger an anti-tumor immune response. This review focuses on the context of the TME to explore the specific properties and functions of MCs and discusses the crosstalk that occurs between MCs and other components of the TME, which affect tumor angiogenesis and lymphangiogenesis, invasion and metastasis, and tumor immunity through different mechanisms. We also anticipate the potential role of MCs in cancer immunotherapy, which might expand upon the success achieved with existing cancer therapies.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Kalkusova K, Smite S, Darras E, Taborska P, Stakheev D, Vannucci L, Bartunkova J, Smrz D. Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors. Int J Mol Sci 2022; 23:ijms231911080. [PMID: 36232398 PMCID: PMC9569882 DOI: 10.3390/ijms231911080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors where the tumor-controlled immune microenvironment prevents the immune system from efficiently reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely orchestrated by immune cells through which tumors gain resistance against the immune system. Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in the immune microenvironment. Regaining control over these cells in the tumor microenvironment can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review, we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We will also discuss how this modulation could be used in novel immunotherapeutic modalities to weaken the solid tumor resistance to the immune system. This weakening could then help other immunotherapeutic modalities engage against these tumors more efficiently.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Sindija Smite
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Elea Darras
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Correspondence: ; Tel.: +420-224-435-968; Fax: +420-224-435-962
| |
Collapse
|
12
|
Fu Y, Pajulas A, Wang J, Zhou B, Cannon A, Cheung CCL, Zhang J, Zhou H, Fisher AJ, Omstead DT, Khan S, Han L, Renauld JC, Paczesny S, Gao H, Liu Y, Yang L, Tighe RM, Licona-Limón P, Flavell RA, Takatsuka S, Kitamura D, Sun J, Bilgicer B, Sears CR, Yang K, Kaplan MH. Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9. Nat Commun 2022; 13:3811. [PMID: 35778404 PMCID: PMC9249769 DOI: 10.1038/s41467-022-31596-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.
Collapse
Affiliation(s)
- Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cherry Cheuk Lam Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Huaxin Zhou
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amanda Jo Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sabrina Khan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lei Han
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Experimental Medicine Unit, Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lei Yang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shogo Takatsuka
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Catherine R Sears
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kai Yang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021; 9:vaccines9050454. [PMID: 34064410 PMCID: PMC8147771 DOI: 10.3390/vaccines9050454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy has become a standard treatment in many cancers and it is based on three main therapeutic axes: immune checkpoint blockade (ICB), vaccination and adoptive cell transfer (ACT). If originally these therapies mainly focused on exploiting CD8 T cells given their role in the direct elimination of tumor cells, increasing evidence highlights the crucial role CD4 T cells play in the antitumor immune response. Indeed, these cells can profoundly modulate the tumor microenvironment (TME) by secreting different types of cytokine or by directly eliminating cancer cells. In this review, we describe how different CD4 T cell subsets can contribute to tumor immune responses during immunotherapy and the novel high-throughput immune monitoring tools that are expected to facilitate the study of CD4 T cells, at antigen-specific and single cell level, thus accelerating bench-to-bed translational research in cancer.
Collapse
|
14
|
Abstract
CD4 T cell effector subsets not only profoundly affect cancer progression, but recent evidence also underscores their critical contribution to the anticancer efficacy of immune checkpoint inhibitors. In 2012, the two seminal studies suggested the superior antimelanoma activity of TH9 cells over other T cell subsets upon adoptive T cell transfer. While these findings provided great impetus to investigate further the unique functions of TH9 cells and explore their relevance in cancer immunotherapy, the following questions still remain outstanding: are TH9 cell anticancer functions restricted to melanoma? What are the factors favouring TH9 cell effector functions? What is the contribution of TH9 cells to cancer immunotherapy treatments? Can TH9 cells be identified in humans and, if so, what is their clinical relevance? By reviewing the studies addressing these questions, we will discuss how TH9 cells could be therapeutically harnessed for cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Isis Benoit-Lizon
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France; Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Chen J, Ding Y, Huang F, Lan R, Wang Z, Huang W, Chen R, Wu B, Fu L, Yang Y, Liu J, Hong J, Zhang W, Zhang L. Irradiated whole-cell vaccine suppresses hepatocellular carcinoma growth in mice via Th9 cells. Oncol Lett 2021; 21:409. [PMID: 33841570 PMCID: PMC8020379 DOI: 10.3892/ol.2021.12670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors with no available satisfactory treatment. The aim of the present study was to investigate the anti-tumor effect of an irradiated hepatocellular carcinoma (HCC) whole-cell vaccine and its underlying mechanisms. Hepa1-6 and H22 HCC cell lines were irradiated in preparation for whole-cell vaccine production. Subsequently, two HCC tumor-bearing mouse models were created by injecting these Hepa1-6 and H22 cells into the abdominal skin of C57BL/6 and ICR mice, respectively. The mice were immunized with the corresponding whole-cell vaccine the next day, and then once a week until the end of the experimental period. Tumor growth, blood T helper (Th)9 cells and plasma interleukin (IL)-9 levels were monitored during the immunization period. Th9 cells were also induced by in vitro co-culture of the whole-cell vaccine with lymphocytes from the spleen and lymph nodes of the corresponding mice. Alterations of gene expression in transcription factor (TF) were determined by reverse transcription-quantitative PCR, and Th9 cells were detected using flow cytometry. The whole-cell vaccine effectively suppressed HCC tumor growth, as indicated by slower tumor growth and a smaller tumor size in the immunized group compared with the control. The percentage of blood Th9 cells and the concentration of plasma IL-9 were significantly increased in the immunized group. The whole-cell vaccine also induced Th9 cell differentiation and upregulated the expression of TFs PU.1, interferon regulatory factor 4 and basic leucine zipper transcriptional factor ATF-like. These results suggest that the irradiated HCC whole-cell vaccine inhibited tumor growth by increasing Th9 cell numbers in HCC mice
Collapse
Affiliation(s)
- Junying Chen
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yuxiong Ding
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Fei Huang
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruilong Lan
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zeng Wang
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Weikang Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruiqing Chen
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Bing Wu
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lengxi Fu
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yunhua Yang
- Department of Otolaryngology, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian 350009, P.R. China
| | - Jun Liu
- Laboratory of Radiobiology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jinsheng Hong
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Weijian Zhang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lurong Zhang
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Laboratory of Radiobiology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
16
|
Zhang Z, Zhou Q, Ouyang J, Pu J, Hou J, Zhang J. Expression and clinical significance of interleukin-9 in renal tumors. Transl Androl Urol 2021; 9:2657-2664. [PMID: 33457237 PMCID: PMC7807335 DOI: 10.21037/tau-20-761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background To measure expression levels of interleukin-9 (IL-9) in renal tumors and to determine the clinical significance of those levels. Methods Using TCGA database analysis, we found that the expression of IL-9 in renal clear cell carcinoma was significantly down-regulated, and was significantly related to survival. We then verified this using experiments. We enrolled 66 patients who underwent surgical resection of renal tumors between January and December 2018 at the First Affiliated Hospital of Soochow University. Their tumor tissues were paired with adjacent normal tissues and IL-9 expression levels were measured using immunohistochemistry. We determined the correlation of IL-9 expression with clinicopathological features and progression-free survival (PFS). Results Expression of IL-9 in renal tumors was significantly lower than in adjacent normal tissues (P<0.0001). There was a significant negative correlation between IL-9 expression levels and R.E.N.A.L. scores (P=0.0277) as well as with differentiation (P=0.0041). However, no significant correlation was found between IL-9 levels and clinicopathological features, including gender (P=0.0716), age (P=0.2566), body mass index (BMI) (P=0.7941), tumor size (P=0.4193) or TNM staging (P=0.5402). PFS time in renal tumor patients with positive IL-9 expression was similar to that of patients with negative IL-9 expression. Conclusions IL-9 expression was higher in adjacent normal tissues than in renal tumors. Low expression of IL-9 was detected when R.E.N.A.L. score was high or cell differentiation was poor, suggesting that IL-9 may may play a protective role in renal tumor microenvironments.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhou
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinxian Pu
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianquan Hou
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianglei Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Fang H, Li R, Gu Y, Fei Y, Jin K, Chen Y, Cao Y, Liu X, Lv K, Wang J, Yu K, Lin C, Liu H, Li H, He H, Zhang W, Zhang H, Shen Z. Intratumoral interleukin-9 delineates a distinct immunogenic class of gastric cancer patients with better prognosis and adjuvant chemotherapeutic response. Oncoimmunology 2020; 9:1856468. [PMID: 33354409 PMCID: PMC7738302 DOI: 10.1080/2162402x.2020.1856468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interleukin-9 (IL-9) is a T cell cytokine that is associated with inflammation and allergy, but the expression level of IL-9 in gastric cancer and its clinical significance are less well established. Our study aims to uncover the critical role of IL-9 in the progression of gastric cancer. Here, a total of 453 patients with gastric cancer undergoing curative resection were enrolled for immunohistochemical analyses, and Kaplan-Meier analysis was conducted to compare overall survival of patients in different subgroups. We further investigated the correlation between IL-9 expression and functional status of intratumoral CD8+ T cells by means of Flow cytometry. Moreover, in vitro study was preformed to further explore the influence of IL-9 on anti-tumor immunity. Results indicated that gastric cancer patients with high IL-9 expression showed improved overall survival and gained more benefit from 5-fluorouracil-based adjuvant chemotherapy (ACT). High IL-9 expression was associated with increased numbers and elevated function of intratumoral CD8+ T cells. In vitro study revealed that recombinant human IL-9 (rhIL-9) exhibit anti-tumor activity via enhancing the function of intratumoral CD8+ T cells. Moreover, we found rhIL-9 could augment the efficacy of Pembrolizumab in gastric cancer. In summary, these results suggest that IL-9 expression could act as an independent predictor for overall survival and ACT response and enhancing IL-9 signaling might represent an important therapeutic strategy in gastric cancer.
Collapse
Affiliation(s)
- H Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - R Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Gu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuchao Fei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kunpeng Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Gastric Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Kuan Yu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Li T, Wu B, Yang T, Zhang L, Jin K. The outstanding antitumor capacity of CD4 + T helper lymphocytes. Biochim Biophys Acta Rev Cancer 2020; 1874:188439. [PMID: 32980465 DOI: 10.1016/j.bbcan.2020.188439] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Over the past decades, tumor-resident immune cells have been extensively studied to dissect their biological functions and clinical roles. Tumor-infiltrating CD8+ T cells, because of their cytotoxic and killing ability, have been under the spotlight for a long time, whereas CD4+ T cells are considered just a supporting actor in the field of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the ability of CD4+ T cells in eradicating solid tumors, and their functions in mediating antitumor immunity have been investigated in various orientations. In this review, we highlight the pivotal role of CD4+ T cells in eliciting vigorous antitumor immune responses, summarize key signaling axes and molecular networks behind these antitumor functions, and also propose possible targets and promising strategies which might translate into more efficient immunotherapies against human cancers.
Collapse
Affiliation(s)
- Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Wu
- School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol 2020; 21:37-48. [PMID: 32788707 DOI: 10.1038/s41577-020-0396-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.
Collapse
|
20
|
Host dysbiosis negatively impacts IL-9-producing T-cell differentiation and antitumour immunity. Br J Cancer 2020; 123:534-541. [PMID: 32499569 PMCID: PMC7434765 DOI: 10.1038/s41416-020-0915-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Host-microbiota interactions shape T-cell differentiation and promote tumour immunity. Although IL-9-producing T cells have been described as potent antitumour effectors, their role in microbiota-mediated tumour control remains unclear. METHODS We analysed the impact of the intestinal microbiota on the differentiation of colonic lamina propria IL-9-producing T cells in germ-free and dysbiotic mice. Systemic effects of the intestinal microbiota on IL-9-producing T cells and the antitumour role of IL-9 were analysed in a model of melanoma-challenged dysbiotic mice. RESULTS We show that germ-free mice have lower frequency of colonic lamina propria IL-9-producing T cells when compared with conventional mice, and that intestinal microbiota reconstitution restores cell frequencies. Long-term antibiotic treatment promotes host dysbiosis, diminishes intestinal IL-4 and TGF-β gene expression, decreases the frequency of colonic lamina propria IL-9-producing T cells, increases the susceptibility to tumour development and reduces the frequency of IL-9-producing T cells in the tumour microenvironment. Faecal transplant restores intestinal microbiota diversity, and the frequency of IL-9-producing T cells in the lungs of dysbiotic animals, restraining tumour burden. Finally, recombinant IL-9 injection enhances tumour control in dysbiotic mice. CONCLUSIONS Host-microbiota interactions are required for adequate differentiation and antitumour function of IL-9-producing T cells.
Collapse
|
21
|
Chen T, Guo J, Cai Z, Li B, Sun L, Shen Y, Wang S, Wang Z, Wang Z, Wang Y, Zhou H, Cai Z, Ye Z. Th9 Cell Differentiation and Its Dual Effects in Tumor Development. Front Immunol 2020; 11:1026. [PMID: 32508847 PMCID: PMC7251969 DOI: 10.3389/fimmu.2020.01026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
With the improved understanding of the molecular pathogenesis and characteristics of cancers, the critical role of the immune system in preventing tumor development has been widely accepted. The understanding of the relationship between the immune system and cancer progression is constantly evolving, from the cancer immunosurveillance hypothesis to immunoediting theory and the delicate balance in the tumor microenvironment. Currently, immunotherapy is regarded as a promising strategy against cancers. Although adoptive cell therapy (ACT) has shown some exciting results regarding the rejection of tumors, the effect is not always satisfactory. Cellular therapy with CD4+ T cells remains to be further explored since the current ACT is mainly focused on CD8+ cytotoxic T lymphocytes (CTLs). Recently, Th9 cells, a subgroup of CD4+ T helper cells characterized by the secretion of IL-9 and IL-10, have been reported to be effective in the elimination of solid tumors and to exhibit superior antitumor properties to Th1 and Th17 cells. In this review, we summarize the most recent advances in the understanding of Th9 cell differentiation and the dual role, both anti-tumor and pro-tumor effects, of Th9 cells in tumor progression.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhai Cai
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Wan J, Wu Y, Ji X, Huang L, Cai W, Su Z, Wang S, Xu H. IL-9 and IL-9-producing cells in tumor immunity. Cell Commun Signal 2020; 18:50. [PMID: 32228589 PMCID: PMC7104514 DOI: 10.1186/s12964-020-00538-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract Interleukin (IL)-9 belongs to the IL-2Rγc chain family and is a multifunctional cytokine that can regulate the function of many kinds of cells. It was originally identified as a growth factor of T cells and mast cells. In previous studies, IL-9 was mainly involved in the development of allergic diseases, autoimmune diseases and parasite infections. Recently, IL-9, as a double-edged sword in the development of cancers, has attracted extensive attention. Since T-helper 9 (Th9) cell-derived IL-9 was verified to play a powerful antitumor role in solid tumors, an increasing number of researchers have started to pay attention to the role of IL-9-skewed CD8+ T (Tc9) cells, mast cells and Vδ2 T cell-derived IL-9 in tumor immunity. Here, we review recent studies on IL-9 and several kinds of IL-9-producing cells in tumor immunity to provide useful insight into tumorigenesis and treatment. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,China International Genomics Research Center (IGRC), Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Abstract
Interleukin (IL)-9 is a pleiotropic cytokine, which can function as a positive or negative regulator of immune responses on multiple types of cells. The role of IL-9 was originally known in allergic disease and parasite infections. Interestingly, recent studies demonstrate its presence in the tumor tissues of mice and humans, and the association between IL-9 and tumor progression has been revisited following the discovery of T helper (Th) 9 cells. Tumor-specific Th9 cells are considered to be the main subset of CD4+ T cells that produce high level of IL-9 and exhibit an IL-9-dependent robust anti-cancer function in solid tumors. IL-9 exerts an unprecedented anti-tumor immunity not only by inducing innate and adaptive immune responses but also directly promoting apoptosis of tumor cells. The objective of this review is to summarize the latest advances regarding the anti-tumor mechanisms of IL-9 and Th9 cells.
Collapse
Affiliation(s)
- Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| |
Collapse
|
24
|
Killer Immunoglobulin-Like Receptor 2DL4 (CD158d) Regulates Human Mast Cells both Positively and Negatively: Possible Roles in Pregnancy and Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21030954. [PMID: 32023940 PMCID: PMC7037260 DOI: 10.3390/ijms21030954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK cell-specific protein. Mast cells are involved in allergic reactions via their KIT-mediated and FcɛRI-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood of healthy volunteers (PB-mast), in the human mast cell line LAD2, and in human tissue mast cells. Agonistic antibodies against KIR2DL4 negatively regulate the KIT-mediated and FcɛRI-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion of leukemia inhibitory factor and serine proteases from human mast cells, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.
Collapse
|
25
|
IL-9 and Th9 Cells in Tumor Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:35-46. [DOI: 10.1007/978-3-030-38315-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Wang J, Sun M, Zhao H, Huang Y, Li D, Mao D, Zhang Z, Zhu X, Dong X, Zhao X. IL-9 Exerts Antitumor Effects in Colon Cancer and Transforms the Tumor Microenvironment In Vivo. Technol Cancer Res Treat 2019; 18:1533033819857737. [PMID: 31242804 PMCID: PMC6598323 DOI: 10.1177/1533033819857737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As a newly discovered cytokine, interleukin 9 was initially considered a T-lymphocyte growth factor. Interleukin 9 affects target cells by binding to a member of the γc-family of receptors and is involved in inflammation, autoimmune diseases, and other ailments. In recent years, mounting evidence reveals that interleukin 9 exerts antitumor effects, which has attracted considerable attention. Many previous studies were performed in vivo by establishing a mouse model of melanoma. Here, interleukin 9 protein and messenger RNA expression levels were both low in colon carcinoma tissue specimens, as assessed by immunohistochemistry and quantitative real-time polymerase chain reaction. In addition, interleukin 9 expression in these samples was correlated with TNM staging, Dukes staging, lymph node metastasis, and good prognosis, but not with gender, age, tumor size, tumor differentiation, and hepatic metastasis. In vivo, by establishing a mouse subcutaneous allograft model, we found that interleukin 9 overexpression inhibited tumor growth and resulted in longer survival time. Then, antitumor immune responses were increased by interleukin 9 as demonstrated by flow cytometry. Furthermore, interleukin 9 was shown to exert antitumor effects by regulating T-cell function and killing tumor cells in the tumor microenvironment. Overall, this study revealed that interleukin 9 exerts robust antitumor effects in colon cancer and transforms the tumor microenvironment in vivo.
Collapse
Affiliation(s)
- Jin Wang
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,2 Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.,3 Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,4 Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingbing Sun
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhao
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Huang
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongbao Li
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Deli Mao
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Zhang
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinguo Zhu
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqiang Dong
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,2 Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.,3 Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,4 Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Saadalla A, Lima MM, Tsai F, Osman A, Singh MP, Linden DR, Dennis KL, Haeryfar SMM, Gurish MF, Gounari F, Khazaie K. Cell Intrinsic Deregulated ß-Catenin Signaling Promotes Expansion of Bone Marrow Derived Connective Tissue Type Mast Cells, Systemic Inflammation, and Colon Cancer. Front Immunol 2019; 10:2777. [PMID: 31849960 PMCID: PMC6902090 DOI: 10.3389/fimmu.2019.02777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
Mast cells constitutively express ß-catenin and expand in solid tumors such as colon and skin cancer. However, the role of ß-catenin signaling in mast cells and the cause or effect of mast cell expansion and tumor growth has yet to be established. In earlier studies we used mast cell depletion and protease staining approaches, to provide evidence for a causative role of mast cells in small bowel polyposis, and related specific phenotypes and distributions of tumor infiltrating mast cells to stages of tumor growth. Here we report that, stabilization of ß-catenin expands mast cells to promote high incidence of colon polyposis and infrequent small bowel polyps and skin cancer. Expression of a dominant acting ß-catenin in mast cells (5CreCAT) stimulated maturation and expression of granule stored proteases. Both mucosal and connective tissue type mast cells accumulated in colonic small bowel polyps independent of gender, and mice developed chronic systemic inflammation with splenomegaly. Reconstitution of polyposis-prone mice with bone marrow from 5CreCAT mice resulted in focal expansion of connective tissue like mast cells, which are normally rare in benign polyps and characteristically expand during adenoma-to-carcinoma transition. Our findings highlight a hitherto unknown contribution of ß-catenin signaling in mast cells to their maturation and to increased risk of colon cancer.
Collapse
Affiliation(s)
| | | | - Funien Tsai
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Abu Osman
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - David R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Kristen L. Dennis
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Michael F. Gurish
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Fotini Gounari
- Section of Rheumatology, Department of Medicine, Knapp Center for Lupus Research, University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
28
|
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci 2019; 20:E4397. [PMID: 31500217 PMCID: PMC6769913 DOI: 10.3390/ijms20184397] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological roles of mast cells are still not fully understood, over 140 years since their description by Paul Ehrlich in 1878. Initial studies have attempted to identify distinct "subpopulations" of mast cells based on a relatively small number of biochemical characteristics. More recently, "subtypes" of mast cells have been described based on the analysis of transcriptomes of anatomically distinct mouse mast cell populations. Although mast cells can potently alter homeostasis, in certain circumstances, these cells can also contribute to the restoration of homeostasis. Both solid and hematologic tumors are associated with the accumulation of peritumoral and/or intratumoral mast cells, suggesting that these cells can help to promote and/or limit tumorigenesis. We suggest that at least two major subsets of mast cells, MC1 (meaning anti-tumorigenic) and MC2 (meaning pro-tumorigenic), and/or different mast cell mediators derived from otherwise similar cells, could play distinct or even opposite roles in tumorigenesis. Mast cells are also strategically located in the human myocardium, in atherosclerotic plaques, in close proximity to nerves and in the aortic valve. Recent studies have revealed evidence that cardiac mast cells can participate both in physiological and pathological processes in the heart. It seems likely that different subsets of mast cells, like those of cardiac macrophages, can exert distinct, even opposite, effects in different pathophysiological processes in the heart. In this chapter, we have commented on possible future needs of the ongoing efforts to identify the diverse functions of mast cells in health and disease.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80138 Naples, Italy.
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| |
Collapse
|
29
|
Abstract
The newly discovered Th9 cells are the distinct subset of CD4+ T helper (Th) cells, which are involved in various pathophysiological conditions of an immune response. In addition to its role in allergic inflammation and elimination of extracellular pathogens, Th9 cells were found to play a key role in inducing anti-tumor immune response. Precisely, the anti-tumor functions of Th9 cells were found to be superior as compared to Th1 and other Th subsets. Th9 cells eliminate tumors via activating innate and adaptive immune cells, and in particular, generating a profound effector cytotoxic T lymphocyte (CTL) response against neo antigens. In addition, it was proposed that Th9 cells were found to induce effector functions of innate cells like dendritic cells, mast cells and NK cells, which further promote a robust anti-tumor immune response. In this review, we highlight the recent advances in differentiation and functions of Th9 cells in anti-tumor immunity.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Department of Microbiology, AMITY University Rajasthan , Jaipur , India
| | - Amit Awasthi
- Translational Health Science & Technology Institute , Faridabad , India
| |
Collapse
|
30
|
The dichotomous function of interleukin-9 in cancer diseases. J Mol Med (Berl) 2019; 97:1377-1383. [PMID: 31396657 DOI: 10.1007/s00109-019-01826-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
The pleiotropic function of the cytokine IL-9 is so far described in many inflammation processes and autoimmune diseases. But its role in cancer immunology is rather diverse as it can have a pro-tumorigenic function as well as anti-tumorigenic characteristics. In various disease models of cancer, this cytokine is involved in different signaling pathways triggering the expression of proteins involved in cell growth, migration, and transformation or repressing cells from the adaptive immune system to reject tumor growth. Additionally, there are even therapeutic approaches for IL-9 in cancer development. This review will give an overview of the various roles of IL-9 in different immune organs and cells and provide an insight in the current state of research in the IL-9-dependent cancer area.
Collapse
|
31
|
Yazdani R, Shapoori S, Rezaeepoor M, Sanaei R, Ganjalikhani-Hakemi M, Azizi G, Rae W, Aghamohammadi A, Rezaei N. Features and roles of T helper 9 cells and interleukin 9 in immunological diseases. Allergol Immunopathol (Madr) 2019; 47:90-104. [PMID: 29703631 DOI: 10.1016/j.aller.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
Abstract
T helper 9 (TH9) cells are considered as newly classified helper T cells that have an important role in the regulation of immune responses. Since these cells preferentially produce IL-9, these cells are termed TH9 cells. Recently, the role of TH9 and its signature cytokine (IL-9) has been investigated in a wide range of diseases, including autoimmunity, allergy, infections, cancer and immunodeficiency. Herein, we review the most recent data concerning TH9 cells and IL-9 as well as their roles in disease. These insights suggest that TH9 cells are a future target for therapeutic intervention.
Collapse
|
32
|
Mast cells as protectors of health. J Allergy Clin Immunol 2018; 144:S4-S18. [PMID: 30468774 DOI: 10.1016/j.jaci.2018.10.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.
Collapse
|
33
|
Chraa D, Naim A, Olive D, Badou A. T lymphocyte subsets in cancer immunity: Friends or foes. J Leukoc Biol 2018; 105:243-255. [DOI: 10.1002/jlb.mr0318-097r] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dounia Chraa
- Cellular and Molecular Pathology LaboratoryFaculty of Medicine and Pharmacy of CasablancaHassan II University Casablanca Morocco
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258Institut Paoli‐CalmettesAix‐Marseille University, UM 105 Marseille France
| | - Asmaa Naim
- Cellular and Molecular Pathology LaboratoryFaculty of Medicine and Pharmacy of CasablancaHassan II University Casablanca Morocco
- University Mohammed VI for Health ScienceCheick Khalifa Hospital Casablanca Morocco
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258Institut Paoli‐CalmettesAix‐Marseille University, UM 105 Marseille France
| | - Abdallah Badou
- Cellular and Molecular Pathology LaboratoryFaculty of Medicine and Pharmacy of CasablancaHassan II University Casablanca Morocco
| |
Collapse
|
34
|
Chalmin F, Humblin E, Ghiringhelli F, Végran F. Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:1-61. [PMID: 30262030 DOI: 10.1016/bs.ircmb.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the basis of cellular differentiation is a fundamental issue in developmental biology but also for the comprehension of pathological processes. In fact, the palette of developmental decisions for naive CD4 T cells is a critical aspect of the development of appropriate immune responses which could control infectious processes or cancer growth. However, the current accumulation of data on CD4 T cells biology reveals a complex world with different helper populations. Naive CD4 T cells can differentiate into different subtypes in response to cytokine stimulation. This stimulation involves a complex transcriptional network implicating the activation of Signal Transducer and Activator of Transcription but also master regulator transcription factors allowing the functions of each helper T lymphocyte subtype. In this review, we will present an overview of the transcriptional regulation which controls process of helper T cells differentiation. We will focus on the role of initiator transcriptional factors and on master regulators but also on other nonspecific transcriptional factors which refine the T helper polarization to stabilize or modulate the differentiation program.
Collapse
Affiliation(s)
- Fanny Chalmin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - Etienne Humblin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Végran
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
35
|
Abdul-Wahid A, Cydzik M, Fischer NW, Prodeus A, Shively JE, Martel A, Alminawi S, Ghorab Z, Berinstein NL, Gariépy J. Serum-derived carcinoembryonic antigen (CEA) activates fibroblasts to induce a local re-modeling of the extracellular matrix that favors the engraftment of CEA-expressing tumor cells. Int J Cancer 2018; 143:1963-1977. [PMID: 29756328 DOI: 10.1002/ijc.31586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Elevated levels of the carcinoembryonic antigen (CEA; CEACAM5) in the serum of colorectal cancer (CRC) patients represent a clinical biomarker that correlates with disease recurrence. However, a mechanistic role for soluble CEA (sCEA) in tumor progression and metastasis remains to be established. In our study, we report that sCEA acts as a paracrine factor, activating human fibroblasts by signaling through both the STAT3 and AKT1-mTORC1 pathways, promoting their transition to a cancer-associated fibroblast (CaF) phenotype. sCEA-activated fibroblasts express and secrete higher levels of fibronectin, including cellular EDA+ -fibronectin (Fn-EDA) that selectively promote the implantation and adherence of CEA-expressing cancer cells. Immunohistochemical analyses of liver tissues derived from CRC patients with elevated levels of sCEA reveal that the expression of cellular Fn-EDA co-registers with CEA-expressing liver metastases. Taken together, these findings indicate a direct role for sCEA as a human fibroblast activation factor, in priming target tissues for the engraftment of CEA-expressing cancer cells, through the differentiation of tissue-resident fibroblasts, resulting in a local change in composition of the extracellular matrix.
Collapse
Affiliation(s)
- Aws Abdul-Wahid
- Departments of Medical Biophysics and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marzena Cydzik
- Departments of Medical Biophysics and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nicholas W Fischer
- Departments of Medical Biophysics and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Aaron Prodeus
- Departments of Medical Biophysics and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - John E Shively
- Department of Immunology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Anne Martel
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Samira Alminawi
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, CANADA
| | - Zeina Ghorab
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, CANADA
| | | | - Jean Gariépy
- Departments of Medical Biophysics and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
36
|
王 进, 董 晓, 朱 新, 赵 华, 毛 德, 赵 鑫. [Expression of interleukin-9 in colon cancer tissues and its clinical significance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:943-948. [PMID: 30187869 PMCID: PMC6744043 DOI: 10.3969/j.issn.1673-4254.2018.08.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the expression of interleukin-9 (IL-9) in colon cancer tissues and its clinical significance. METHODS Immunohistochenmistry and qRT-PCR were used to detect the expressions of IL-9 protein and mRNA in 92 colon cancer tissues and paired adjacent normal tissues. The correlation of IL-9 expressions with the clinicopathological features and prognosis of the patients was analyzed. RESULTS IL-9 protein and mRNA expressions were significantly higher in adjacent normal tissues than in the colon cancer tissues (P < 0.001). In colon cancer patients, IL-9 expression was significantly correlated with TNM stage (P=0.013), Ducks stage (P=0.025) and lymph node metastasis (P=0.004) but not with gender, age, tumor size, differentiation or hepatic metastasis (P > 0.05). The survival time of colon cancer patients with positive IL-9 expression was significantly longer than that of patients negative for IL-9 expression (P=0.015). CONCLUSIONS IL-9 expression is lowered in colon cancer tissues compoved with in the adjacent normal tissues. IL-9 expression is negatively correlated with TNM staging, Ducks staging and lymph node metastasis but positively with good prognosis, suggesting its important role in the tumor microenvironment of colon cancer.
Collapse
Affiliation(s)
- 进 王
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 晓强 董
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 新国 朱
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 华 赵
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 德利 毛
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 鑫 赵
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
37
|
Yao X, Zhao J, Kong Q, Xie X, Wang J, Sun B, Xu L, Mu L, Li H. Exogenous IL-9 Ameliorates Experimental Autoimmune Myasthenia Gravis Symptoms in Rats. Immunol Invest 2018; 47:712-724. [PMID: 29944018 DOI: 10.1080/08820139.2018.1487976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine involved in protective immunity or immunopathology depending on the microenvironment and specific disease settings. Our early study determined that IL-9 and Th9 cells participate in and promote the progression of experimental autoimmune myasthenia gravis (EAMG). The data from this study showed that exogenous recombinant rat IL-9 (rrIL-9) acted as an IL-9 receptor antagonist, reduced the incidence of EAMG in rats, alleviated the severity of the disease, and reduced the anti-acetylcholine receptor (AChR) IgG antibody levels by altering the Th-subset distribution. These data suggest that administration of rrIL-9 may provide a novel therapeutic strategy against MG or related autoimmune diseases. Abbreviations: 2-Mercaptoethanol (2-ME); antibodies (Abs); ?-bungarotoxin (?-BTX); acetylcholine receptor (AChR); airway hyper-reactivity (AHR); allophycocyanin-conjugated (APC); antigen presenting cells (APCs); complete Freund's adjuvant (CFA); Cyanine dye 3 (Cy3); dendritic cells (DCs); experimental autoimmune encephalomyelitis (EAE); experimental autoimmune myasthenia gravis (EAMG); flow cytometry (FACS); fetal bovine serum (FBS); fetal calf serum (FCS); Fluorescein isothiocyanate (FITC); gamma chain (?c); intraperitoneally (i.p.); Incomplete Freund's adjuvant (IFA); interferon (IFN); immunoglobulin (Ig); Interleukin (IL); Janus kinase (JAK); myasthenia gravis (MG); Mononuclear cells (MNC); neuromuscular junctions (NMJ); optical density (OD); ovalbumin (OVA); phosphate-buffered saline (PBS); phycoerythrin (PE); Peridinin chlorophyll protein complex (Percp); Rat AChR ? subunit (R-AChR97-116); Recombinant Rat (rr); room temperature (RT); signal transducer and activator of transcription (STAT); T helper cells (Th).
Collapse
Affiliation(s)
- Xiuhua Yao
- a Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases , Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital , Tianjin , China.,b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Jiarui Zhao
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Qingfei Kong
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Xiaoli Xie
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China.,c Laboratory of Molecular Genetics of Aging and Tumor, Medical School , Kunming University of Science and Technology , Kunming , Yunnan , China
| | - Jinghua Wang
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Bo Sun
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Lixia Xu
- a Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases , Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital , Tianjin , China
| | - Lili Mu
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Hulun Li
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| |
Collapse
|
38
|
Jacquin E, Apetoh L. Cell-Intrinsic Roles for Autophagy in Modulating CD4 T Cell Functions. Front Immunol 2018; 9:1023. [PMID: 29867990 PMCID: PMC5954027 DOI: 10.3389/fimmu.2018.01023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
The catabolic process of autophagy plays important functions in inflammatory and immune responses by modulating innate immunity and adaptive immunity. Over the last decade, a cell-intrinsic role for autophagy in modulating CD4 T cell functions and differentiation was revealed. After the initial observation of autophagosomes in effector CD4 T cells, further work has shown that not only autophagy levels are modulated in CD4 T cells in response to environmental signals but also that autophagy critically affects the biology of these cells. Mouse models of autophagy deletion in CD4 T cells have indeed shown that autophagy is essential for CD4 T cell survival and homeostasis in peripheral lymphoid organs. Furthermore, autophagy is required for CD4 T cell proliferation and cytokine production in response to T cell receptor activation. Recent developments have uncovered that autophagy controls CD4 T cell differentiation and functions. While autophagy is required for the maintenance of immunosuppressive functions of regulatory T cells, it restrains the differentiation of TH9 effector cells, thus limiting their antitumor and pro-inflammatory properties. We will here discuss these findings that collectively suggest that therapeutic strategies targeting autophagy could be exploited for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Elise Jacquin
- INSERM, U1231, Dijon, France.,Université de Bourgogne Franche-Comté, Dijon, France
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France.,Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
39
|
Do Thi VA, Park SM, Lee H, Kim YS. Ectopically Expressed Membrane-bound Form of IL-9 Exerts Immune-stimulatory Effect on CT26 Colon Carcinoma Cells. Immune Netw 2018; 18:e12. [PMID: 29503742 PMCID: PMC5833119 DOI: 10.4110/in.2018.18.e12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
IL-9 is a known T cell growth factor with pleiotropic immunological functions, especially in parasite infection and colitis. However, its role in tumor growth is controversial. In this study, we generated tumor clones expressing the membrane-bound form of IL-9 (MB-IL-9) and investigated their influences on immune system. MB-IL-9 tumor clones showed reduced tumorigenicity but shortened survival accompanied with severe body weight loss in mice. MB-IL-9 expression on tumor cells had no effect on cell proliferation or major histocompatibility complex class I expression in vitro. MB-IL-9 tumor clones were effective in amplifying CD4+ and CD8+ T cells and increasing cytotoxic activity against CT26 cells in vivo. We also observed a prominent reduction in body weights and survival period of mice injected intraperitoneally with MB-IL-9 clones compared with control groups. Ratios of IL-17 to interferon (IFN)-γ in serum level and tumor mass were higher in mice implanted with MB-IL-9 tumor clones than those observed in mice implanted with control cells. These results indicate that the ectopic expression of the MB-IL-9 on tumor cells exerts an immune-stimulatory effect with toxicity. To exploit its benefits as a tumor vaccine, a strategy to control the toxicity of MB-IL-9 tumor clones should be developed.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea.,Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
40
|
Li J, Chen S, Xiao X, Zhao Y, Ding W, Li XC. IL-9 and Th9 cells in health and diseases-From tolerance to immunopathology. Cytokine Growth Factor Rev 2017; 37:47-55. [PMID: 28739029 DOI: 10.1016/j.cytogfr.2017.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
CD4+ T cells have the capacity to differentiate into various T helper (Th) cell subsets after activation, and by acquiring distinct cytokine profiles and effector functions, they regulate the nature as well as the outcomes of immune responses. Th9 cells are a relatively new member in the Th cell family. The signature cytokine for Th9 cells is IL-9, a cytokine in the IL-2Rγc-chain family. Over the past few years, there has been an explosion of knowledge on the roles of Th9 cells in immunity and immunopathology, but the exact mechanisms in the control of Th9 cells remain poorly defined. This apparent paradox presents both challenges and opportunities. Here we review recent advances in our understanding of the fundamental biology of IL-9 and Th9 cells, highlighting the challenges and unanswered questions in the field. We also discuss potential opportunities in targeting Th9 cells for therapeutic purposes in the clinic.
Collapse
Affiliation(s)
- Junhui Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital and Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States; Center for Organ Transplantation, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuqiu Chen
- Immunobiology and Transplant Science Center, Houston Methodist Hospital and Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States
| | - Xiang Xiao
- Immunobiology and Transplant Science Center, Houston Methodist Hospital and Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States
| | - Yong Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Ding
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital and Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States.
| |
Collapse
|
41
|
Rivera Vargas T, Humblin E, Végran F, Ghiringhelli F, Apetoh L. T H9 cells in anti-tumor immunity. Semin Immunopathol 2016; 39:39-46. [PMID: 27832300 PMCID: PMC5222918 DOI: 10.1007/s00281-016-0599-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
Abstract
IL-9 was initially identified as a T cell growth factor with a potential oncogenic activity. Accordingly, IL-9 drives tumor growth in most hematological cancers. However, the links between IL-9 and cancer progression have been recently revisited following the discovery of TH9 cells. TH9 cells, which have been characterized in 2008 as a proinflammatory CD4 T cell subset that promotes protection against parasites and drives tissue inflammation in colitis, actually harbor potent IL-9-dependent anti-cancer properties in solid tumors and especially melanoma. While the molecular mechanisms underlying these observations are still being investigated, TH9 cells were demonstrated to activate both innate and adaptive immune responses, thereby favoring anti-cancer immunity and tumor elimination. Human TH9 cells have also been identified in cancer tissues, but their functions remain elusive. The present review aims to discuss the anti-cancer potential of TH9 cells and their possible clinical relevance for cancer immunotherapy.
Collapse
Affiliation(s)
- Thaiz Rivera Vargas
- INSERM, U866,, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Etienne Humblin
- INSERM, U866,, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Frédérique Végran
- INSERM, U866,, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - François Ghiringhelli
- INSERM, U866,, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Lionel Apetoh
- INSERM, U866,, Dijon, France. .,Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France. .,Centre Georges François Leclerc, Dijon, France.
| |
Collapse
|