1
|
Krymchenko R, Coşar Kutluoğlu G, van Hout N, Manikowski D, Doberenz C, van Kuppevelt TH, Daamen WF. Elastogenesis in Focus: Navigating Elastic Fibers Synthesis for Advanced Dermal Biomaterial Formulation. Adv Healthc Mater 2024; 13:e2400484. [PMID: 38989717 DOI: 10.1002/adhm.202400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Elastin, a fibrous extracellular matrix (ECM) protein, is the main component of elastic fibers that are involved in tissues' elasticity and resilience, enabling them to undergo reversible extensibility and to endure repetitive mechanical stress. After wounding, it is challenging to regenerate elastic fibers and biomaterials developed thus far have struggled to induce its biosynthesis. This review provides a comprehensive summary of elastic fibers synthesis at the cellular level and its implications for biomaterial formulation, with a particular focus on dermal substitutes. The review delves into the intricate process of elastogenesis by cells and investigates potential triggers for elastogenesis encompassing elastin-related compounds, ECM components, and other molecules for their potential role in inducing elastin formation. Understanding of the elastogenic processes is essential for developing biomaterials that trigger not only the synthesis of the elastin protein, but also the formation of a functional and branched elastic fiber network.
Collapse
Affiliation(s)
- Roman Krymchenko
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Gizem Coşar Kutluoğlu
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
- MedSkin Solutions Dr. Suwelack AG, 48727, Billerbeck, Germany
| | - Noor van Hout
- Department of Dermatology, Radboud university medical center, Nijmegen, 6525 GA, The Netherlands
| | | | | | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
2
|
Li Y, Lock LL, Mills J, Ou BS, Morrow M, Stern D, Wang H, Anderson CF, Xu X, Ghose S, Li ZJ, Cui H. Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. NANO LETTERS 2020; 20:6957-6965. [PMID: 32852220 DOI: 10.1021/acs.nanolett.0c01297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The separation and purification of therapeutic proteins from their biological resources pose a great limitation for industrial manufacturing of biologics in an efficient and cost-effective manner. We report here a supramolecular polymeric system that can undergo multiple reversible processes for efficient capture, precipitation, and recovery of monoclonal antibodies (mAbs). These supramolecular polymers, namely immunofibers (IFs), are formed by coassembly of a mAb-binding peptide amphiphile with a rationally designed filler molecule of varying stoichiometric ratios. Under the optimized conditions, IFs can specifically capture mAbs with a precipitation yield greater than 99%, leading to an overall mAb recovery yield of 94%. We also demonstrated the feasibility of capturing and recovering two mAbs from clarified cell culture harvest. These results showcase the promising potential of peptide-based supramolecular polymers as reversible affinity precipitants for mAb purification.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Ben S Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Paik B, Calero-Rubio C, Lee JY, Jia X, Kiick KL, Roberts CJ. Characterizing aggregate growth and morphology of alanine-rich polypeptides as a function of sequence chemistry and solution temperature from scattering, spectroscopy, and microscopy. Biophys Chem 2020; 267:106481. [PMID: 33035751 DOI: 10.1016/j.bpc.2020.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
The aggregation behavior and stability of a series of alanine-rich peptides, which are included as components of peptide-polymer conjugates, were characterized using a combination of biophysical techniques. Light scattering techniques were used to monitor changes in peptide morphology and size distributions as a function of time and temperature. The results show large particles immediately upon dissolution in buffer. At room temperature, these particles relaxed to reach a mostly monomeric peptide state, while at higher temperatures, they grew to form aggregates. Circular dichroism spectroscopy (CD) was used to monitor temperature- and time-dependent conformational changes as a function of peptide sequence and incubation time. CD measurements reveal that all of the sequences are helical at low temperatures with transitions to non-helical conformation with increased temperature. Samples incubated at room temperature were able to recover their original helicity. At increased temperature, the shorter and longer peptide sequences showed notable changes in conformation, and were not able to recover their original helicity after 72 h. After incubation for up to one week, β-sheet conformations were observed in these two cases, while only α-helical conformation loss was observed for the peptide of intermediate molecular weight. Transmission electron microscopy measurements reveal the formation of fibrils after 72 h of incubation at 60 °C for all samples, in agreement with the scattering measurements. Additional quenching experiments show that peptide aggregation can be stalled when solutions are cooled to room temperature.
Collapse
Affiliation(s)
- Bradford Paik
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Cesar Calero-Rubio
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Jee Young Lee
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Xinqiao Jia
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Kristi L Kiick
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America.
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States of America.
| |
Collapse
|
4
|
Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello J. Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2019; 2:100007. [PMID: 32159144 PMCID: PMC7061623 DOI: 10.1016/j.mtbio.2019.100007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The topic of self-assembled structures based on elastin-like recombinamers (ELRs, i.e., elastin-like polymers recombinantly bio-produced) has released a noticeable amount of references in the last few years. Most of them are intended for biomedical applications. In this review, a complete revision of the bibliography is carried out. Initially, the self-assembly (SA) concept is considered from a general point of view, and then ELRs are described and characterized based on their intrinsic disorder. A classification of the different self-assembled ELR-based structures is proposed based on their morphologies, paying special attention to their tentative modeling. The impact of the mechanism of SA on these biomaterials is analyzed. Finally, the implications of ELR SA in biological systems are considered.
Collapse
Affiliation(s)
| | | | - J.C. Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
5
|
Shmidov Y, Zhou M, Yosefi G, Bitton R, Matson JB. Hydrogels composed of hyaluronic acid and dendritic ELPs: hierarchical structure and physical properties. SOFT MATTER 2019; 15:917-925. [PMID: 30644510 DOI: 10.1039/c8sm02450b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogels that mimic the native extracellular matrix were prepared from hyaluronic acid (HA) and amine-terminated dendritic elastin-like peptides (denELPs) of generations 1, 2, and 3 (G1, 2, and 3) as crosslinking units. The physical properties of the hydrogels were investigated by rheology, scanning electron microscopy, swelling tests, small-angle X-ray scattering (SAXS), and model drug loading and release assays. Hydrogel properties depended on the generation number of the denELP, which contained structural segments based on the repeating GLPGL pentamer. Hydrogels with higher generation denELPs (G2 and 3) showed similar properties, but those prepared from G1 denELPs were rheologically weaker, had a larger mesh size, absorbed less model drug, and released the drug more quickly. Interestingly, most of the HA_denELP hydrogels studied here remained transparent upon gelation, but after lyophilization and addition of water retained opaque, "solid-like" regions for up to 4 d during rehydration. This rehydration process was carefully evaluated through time-course SAXS studies, and the phenomenon was attributed to the formation of pre-coacervates in the gel-forming step, which slowly swelled in water during rehydration. These findings provide important insights into the behavior of ELP-based hydrogels, in which physical crosslinking of the ELP domains can be controlled to tune mechanical properties, highlighting the potential of HA_denELP hydrogels as biomaterials.
Collapse
Affiliation(s)
- Yulia Shmidov
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | | | |
Collapse
|
6
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
7
|
Costa SA, Mozhdehi D, Dzuricky MJ, Isaacs FJ, Brustad EM, Chilkoti A. Active Targeting of Cancer Cells by Nanobody Decorated Polypeptide Micelle with Bio-orthogonally Conjugated Drug. NANO LETTERS 2019; 19:247-254. [PMID: 30540482 PMCID: PMC6465085 DOI: 10.1021/acs.nanolett.8b03837] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polypeptides are promising carriers for chemotherapeutics: they have minimal toxicity, can be recombinantly synthesized with precise control over molecular weight, and enhance drug pharmacokinetics as self-assembled nanoparticles. Polypeptide-based systems also provide the ability to achieve active targeting with genetically encoded targeting ligands. While passive targeting promotes accumulation of nanocarriers in solid tumors, active targeting provides an additional layer of tunable control and widens the therapeutic window. However, fusion of most targeting proteins to polypeptide carriers exposes the limitations of this approach: the residues that are used for drug attachment are also promiscuously distributed on protein surfaces. We present here a universal methodology to solve this problem by the site-specific attachment of extrinsic moieties to polypeptide drug delivery systems without cross-reactivity to fused targeting domains. We incorporate an unnatural amino acid, p-acetylphenylalanine, to provide a biorthogonal ketone for attachment of doxorubicin in the presence of reactive amino acids in a nanobody-targeted, elastin-like polypeptide nanoparticle. These nanoparticles exhibit significantly greater cytotoxicity than nontargeted controls in multiple cancer cell lines.
Collapse
Affiliation(s)
- Simone A. Costa
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Davoud Mozhdehi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael J. Dzuricky
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Farren J. Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Eric M. Brustad
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
Götz T, Schädel N, Petri N, Kirchhof M, Bilitewski U, Tovar GEM, Laschat S, Southan A. Triazole-based cross-linkers in radical polymerization processes: tuning mechanical properties of poly(acrylamide) and poly( N,N-dimethylacrylamide) hydrogels. RSC Adv 2018; 8:34743-34753. [PMID: 35548633 PMCID: PMC9086908 DOI: 10.1039/c8ra07145d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 11/21/2022] Open
Abstract
Triazole-based cross-linkers with different spacer lengths and different functional end groups (acrylamides, methacrylamides, maleimides and vinylsulfonamides) were synthesized, investigated for cytotoxic and antibacterial activity, and incorporated into poly(acrylamide) (PAAm) and poly(N,N-dimethylacrylamide) (PDMAAm) hydrogels by free-radical polymerization. Hydrogels prepared with different cross-linkers and cross-linker contents between 0.2% and 1.0% were compared by gel yields, equilibrium degrees of swelling (S) and storage moduli (G'). Generally with increasing cross-linker content, G' values of the hydrogels increased, while S values decreased. The different polymerizable cross-linker end groups resulted in a decrease of G' in the following order for cross-linkers with C4 spacers: acrylamide > maleimide > methacrylamide > vinylsulfonamide. Longer cross-linker alkyl spacer lengths caused an increase in G' and a decrease in S. Independent of the cross-linker used, a universal correlation between G' and equilibrium polymer volume fraction ϕ was found. For PAAm hydrogels, G' ranged between 4 kPa and 23 kPa and ϕ between 0.07 and 0.14. For PDMAAm hydrogels, G' ranged between 0.1 kPa and 4.9 kPa and ϕ between 0.02 and 0.06. The collected data were used to establish an empirical model to predict G' depending on ϕ. G' of PAAm and PDMAAm hydrogels is given by G' = 4034 kPa ϕ 2.66 and G' = 4297 kPa ϕ 2.46, respectively.
Collapse
Affiliation(s)
- Tobias Götz
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
| | - Nicole Schädel
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Nadja Petri
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Manuel Kirchhof
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Ursula Bilitewski
- AG Compound Profiling and Screening, Helmholtz Centre for Infection Research (HZI) Inhoffenstr. 7 38124 Braunschweig Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Sabine Laschat
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
| |
Collapse
|
9
|
Bahniuk MS, Alshememry AK, Elgersma SV, Unsworth LD. Self-assembly/disassembly hysteresis of nanoparticles composed of marginally soluble, short elastin-like polypeptides. J Nanobiotechnology 2018; 16:15. [PMID: 29454362 PMCID: PMC5816514 DOI: 10.1186/s12951-018-0342-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Elastin-like polypeptides (ELPs) are a fascinating biomaterial that has undergone copious development for a variety of therapeutic applications including as a nanoscale drug delivery vehicle. A comprehensive understanding of ELP self-assembly is lacking and this knowledge gap impedes the advancement of ELP-based biomaterials into the clinical realm. The systematic examination of leucine-containing ELPs endeavors to expand existing knowledge about fundamental assembly-disassembly behaviours. RESULTS It was observed that these marginally soluble, short ELPs tend to behave consistently with previous observations related to assembly-related ELP phase transitions but deviated in their disassembly. It was found that chain length, concentration and overall sequence hydrophobicity may influence the irreversible formation of sub-micron particles as well as the formation of multi-micron scale, colloidally unstable aggregates. Amino acid composition affected surface charge and packing density of the particles. Particle stability upon dilution was found to vary depending upon chain length and hydrophobicity, with particles composed of longer and/or more hydrophobic ELPs being more resistant to disassembly upon isothermal dilution. CONCLUSIONS Taken together, these results suggest marginally soluble ELPs may self-assemble but not disassemble as expected and that parameters including particle size, zeta potential and dilution resistance would benefit from widespread systematic evaluations. This information has the potential to reveal novel preparation methods capable of expanding the utility of all existing ELP-based biomaterials.
Collapse
Affiliation(s)
- Markian S. Bahniuk
- Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2 Canada
| | - Abdullah K. Alshememry
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-35B Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H1 Canada
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Scott V. Elgersma
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor-Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, AB T6G 1H9 Canada
| | - Larry D. Unsworth
- Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2 Canada
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor-Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, AB T6G 1H9 Canada
| |
Collapse
|
10
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
11
|
Zhou M, Shmidov Y, Matson JB, Bitton R. Multi-scale characterization of thermoresponsive dendritic elastin-like peptides. Colloids Surf B Biointerfaces 2017; 153:141-151. [PMID: 28236790 DOI: 10.1016/j.colsurfb.2017.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/18/2017] [Accepted: 02/12/2017] [Indexed: 12/01/2022]
Abstract
Elastin like peptides (ELPs)-polypeptides based on the protein elastin-are used widely as thermoresponsive components in biomaterials due to the presence of a sharp soluble-to-insoluble phase change at a characteristic transition temperature (Tt). While linear ELPs have been thoroughly studied, few investigations into branched ELPs have been carried out. Using lysine amino acids as branching and terminal units with 1-3 pentameric repeats between each branch, ELP dendrimers were prepared by solid-phase peptide synthesis with molecular weights as high as 14kDa. A conformation change from random coil to β-turn upon heating through the Tt, typical of ELPs, was observed by circular dichroism spectroscopy for all peptides. The high molecular weights of these peptides enabled the use of characterization techniques typically reserved for polymers. Variable-temperature small-angle X-ray scattering measurements in dilute solution revealed an increase in size and fractal dimension upon heating, even well below the Tt. These results were corroborated by cryogenic transmission electron microscopy, which confirmed the presence of aggregates below the Tt, and micro differential scanning calorimetry, which showed a broad endothermic peak below the Tt. These results collectively indicate the presence of a pre-coacervation step in the phase transition of ELP dendrimers.
Collapse
Affiliation(s)
- Mingjun Zhou
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
12
|
Abstract
Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs), are short synthetic peptides that mimic the triple helical conformation of native collagens. Traditionally, CLPs have been widely used in deciphering the chemical basis for collagen triple helix stabilization, mimicking collagen fibril formation and fabricating other higher-order supramolecular self-assemblies. While CLPs have been used extensively for elucidation of the assembly of native collagens, less work has been reported on the use of CLP-polymer and CLP-peptide conjugates in the production of responsive assemblies. CLP triple helices have been used as physical cross-links in CLP-polymer hydrogels with predesigned thermoresponsiveness. The more recently reported ability of CLP to target native collagens via triple helix hybridization has further inspired the production of CLP-polymer and CLP-peptide bioconjugates and the employment of these conjugates in generating well-defined nanostructures for targeting collagen substrates. This review summarizes the current progress and potential of using CLPs in biomedical arenas and is intended to serve as a general guide for designing CLP-containing biomaterials.
Collapse
Affiliation(s)
| | - Kristi L Kiick
- Delaware Biotechnology Institute , Newark, Delaware 19711, United States
| |
Collapse
|