1
|
Keresztes D, Kerestély M, Szarka L, Kovács BM, Schulc K, Veres DV, Csermely P. Cancer drug resistance as learning of signaling networks. Biomed Pharmacother 2025; 183:117880. [PMID: 39884030 DOI: 10.1016/j.biopha.2025.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Drug resistance is a major cause of tumor mortality. Signaling networks became useful tools for driving pharmacological interventions against cancer drug resistance. Signaling datasets now cover the entire human cell. Recently, network adaptation became understood as a learning process. We review rapidly increasing evidence showing that the development of cancer drug resistance can be described as learning of signaling networks. During drug adaptation, the network forgets drug-affected pathways by desensitization and relearns by strengthening alternative pathways. Thus, resistant cancer cells develop a drug resistance memory. We show that all key players of cellular learning (i.e., IDPs, protein translocation, microRNAs/lncRNAs, scaffolding proteins and epigenetic/chromatin memory) have important roles in the development of cancer drug resistance. Moreover, all of them are central components of the epithelial-mesenchymal transition leading to metastases and resistance. Phenotypic plasticity was recently listed as a hallmark of cancer. We review how network plasticity induces rare, pre-existent drug-resistant cells in the absence of drug treatment. Key network methods assessing the development of drug resistance and network pharmacological interventions against drug resistance are summarized. Finally, we highlight the class of cellular memory drugs affecting cellular learning and forgetting, and we summarize current challenges to prevent or break drug resistance using network models.
Collapse
Affiliation(s)
- Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Levente Szarka
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Ghasempour Dabaghi G, Rabiee Rad M, Amani-Beni R, Darouei B. The role of p130Cas/BCAR1 adaptor protein in the pathogenesis of cardiovascular diseases: A literature review. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100416. [PMID: 39036012 PMCID: PMC11259988 DOI: 10.1016/j.ahjo.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024]
Abstract
Breast cancer anti-estrogen resistance-1 (p130Cas/BCAR1) is an adaptor protein of the cas(Cas) family. This protein regulates multiple complex pathways in different organs including bones, pancreas, and immune and cardiovascular systems. Although previous research well demonstrated the role of p130Cas/BCAR1 in different diseases especially cancers, a precise review study on the various effects of p130Cas/BCAR1 on cardiovascular diseases is missing. In this study, we reviewed mechanisms of action for p130Cas/BCAR1 impact, on cardiac embryonic development defects, hypertrophy and remodeling, pulmonary artery hypertension (PAH), and atherosclerosis. Also, we suggest feature direction for research and potential therapeutic implications. This study showed that p130Cas/BCAR1 can affect cardiovascular diseases in various mechanisms including actin stress fiber formation, attachment to focal adhesion kinase (FAK) and angiotensin II (Ang II), generation of reactive oxygen species (ROS), and growth factor signaling through amplifying receptor tyrosine kinase (RTKs).
Collapse
Affiliation(s)
- Ghazal Ghasempour Dabaghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Rabiee Rad
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Bahar Darouei
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
3
|
Alladina JW, Giacona FL, Haring AM, Hibbert KA, Medoff BD, Schmidt EP, Thompson T, Maron BA, Alba GA. Circulating Biomarkers of Endothelial Dysfunction Associated With Ventilatory Ratio and Mortality in ARDS Resulting From SARS-CoV-2 Infection Treated With Antiinflammatory Therapies. CHEST CRITICAL CARE 2024; 2:100054. [PMID: 39035722 PMCID: PMC11259037 DOI: 10.1016/j.chstcc.2024.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND The association of plasma biomarkers and clinical outcomes in ARDS resulting from SARS-CoV-2 infection predate the evidence-based use of immunomodulators. RESEARCH QUESTION Which plasma biomarkers are associated with clinical outcomes in patients with ARDS resulting from SARS-CoV-2 infection treated routinely with immunomodulators? STUDY DESIGN AND METHODS We collected plasma from patients with ARDS resulting from SARS-CoV-2 infection within 24 h of admission to the ICU between December 2020 and March 2021 (N = 69). We associated 16 total biomarkers of inflammation (eg, IL-6), coagulation (eg, D-dimer), epithelial injury (eg, surfactant protein D), and endothelial injury (eg, angiopoietin-2) with the primary outcome of in-hospital mortality and secondary outcome of ventilatory ratio (at baseline and day 3). RESULTS Thirty patients (43.5%) died within 60 days. All patients received corticosteroids and 6% also received tocilizumab. Compared with survivors, nonsurvivors demonstrated a higher baseline modified Sequential Organ Failure Assessment score (median, 8.5 [interquartile range (IQR), 7-9] vs 7 [IQR, 5-8]); P = .004), lower Pao2 to Fio2 ratio (median, 153 [IQR, 118-182] vs 184 [IQR, 142-247]; P = .04), and higher ventilatory ratio (median, 2.0 [IQR, 1.9-2.3] vs 1.5 [IQR, 1.4-1.9]; P < .001). No difference was found in inflammatory, coagulation, or epithelial biomarkers between groups. Nonsurvivors showed higher median neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) levels (median, 8.4 ng/mL [IQR, 7.0-11.2 ng/mL] vs 6.9 ng/mL [IQR, 5.5-8.0 ng/mL]; P = .0025), von Willebrand factor domain A2 levels (8.7 ng/mL [IQR, 7.9-9.7 ng/mL] vs 6.5 ng/mL [IQR, 5.7-8.7 ng/mL]; P = .007), angiopoietin-2 levels (9.0 ng/mL [IQR, 7.9-14.1 ng/mL] vs 7.0 ng/mL [IQR, 5.6-10.6 ng/mL]; P = .01), and syndecan-1 levels (15.9 ng/mL [IQR, 14.5-17.5 ng/mL] vs 12.6 ng/mL [IQR, 10.5-16.1 ng/mL]; P = .01). Only NEDD9 level met the adjusted threshold for significance (P < .003). Plasma NEDD9 level was associated with 60-day mortality (adjusted OR, 9.7; 95% CI, 1.6-60.4; P = .015). Syndecan-1 level correlated with both baseline (ρ = 0.4; P = .001) and day 3 ventilatory ratio (ρ = 0.5; P < .001). INTERPRETATION Biomarkers of inflammation, coagulation, and epithelial injury were not associated with clinical outcomes in a small cohort of patients with ARDS uniformly treated with immunomodulators. However, endothelial biomarkers, including plasma NEDD9, were associated with 60-day mortality.
Collapse
Affiliation(s)
- Jehan W Alladina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Francesca L Giacona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Alexis M Haring
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Bradley A Maron
- Department of Medicine; University of Maryland School of Medicine, Baltimore, University of Maryland-Institute for Health Computing, Bethesda, MD
| | - George A Alba
- Division of Pulmonary and Critical Care Medicine, Bethesda, MD, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
4
|
Alba GA, Zhou IY, Mascia M, Magaletta M, Alladina JW, Giacona FL, Ginns LC, Caravan P, Maron BA, Montesi SB. Plasma NEDD9 is increased following SARS-CoV-2 infection and associates with indices of pulmonary vascular dysfunction. Pulm Circ 2024; 14:e12356. [PMID: 38500738 PMCID: PMC10946282 DOI: 10.1002/pul2.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Compared to healthy volunteers, participants with post-acute sequelae of SARS-CoV-2 infection (PASC) demonstrated increased plasma levels of the prothrombotic protein NEDD9, which associated inversely with indices of pulmonary vascular function. This suggests persistent pulmonary vascular dysfunction may play a role in the pathobiology of PASC.
Collapse
Affiliation(s)
- George A. Alba
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris Y. Zhou
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
| | - Molly Mascia
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Michael Magaletta
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
| | - Jehan W. Alladina
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Francesca L. Giacona
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Leo C. Ginns
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Peter Caravan
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
| | - Bradley A. Maron
- Division of Cardiovascular MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sydney B. Montesi
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
5
|
Lau A, Le N, Nguyen C, Kandpal RP. Signals transduced by Eph receptors and ephrin ligands converge on MAP kinase and AKT pathways in human cancers. Cell Signal 2023; 104:110579. [PMID: 36572189 DOI: 10.1016/j.cellsig.2022.110579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Eph receptors, the largest known family of receptor tyrosine kinases, and ephrin ligands have been implicated in a variety of human cancers. The novel bidirectional signaling events initiated by binding of Eph receptors to their cognate ephrin ligands modulate many cellular processes such as proliferation, metastasis, angiogenesis, invasion, and apoptosis. The relationships between the abundance of a unique subset of Eph receptors and ephrin ligands with associated cellular processes indicate a key role of these molecules in tumorigenesis. The combinatorial expression of these molecules converges on MAP kinase and/or AKT/mTOR signaling pathways. The intracellular target proteins of the initial signal may, however, vary in some cancers. Furthermore, we have also described the commonality of up- and down-regulation of individual receptors and ligands in various cancers. The current state of research in Eph receptors illustrates MAP kinase and mTOR pathways as plausible targets for therapeutic interventions in various cancers.
Collapse
Affiliation(s)
- Andreas Lau
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Nghia Le
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Claudia Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Raj P Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America.
| |
Collapse
|
6
|
Michalak M, Golde V, Helm D, Kaltner H, Gebert J, Kopitz J. Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms23126414. [PMID: 35742860 PMCID: PMC9223697 DOI: 10.3390/ijms23126414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022] Open
Abstract
Galectin-4 (Gal4) has been suggested to function as a tumor suppressor in colorectal cancer (CRC). In order to systematically explore its function in CRC, we established a CRC cell line where Gal4 expression can be regulated via the doxycycline (dox)-inducible expression of a single copy wildtype LGALS4 transgene generated by recombinase-mediated cassette exchange (RMCE). Using this model and applying in-depth proteomic and phosphoproteomic analyses, we systematically screened for intracellular changes induced by Gal4 expression. Overall, 3083 cellular proteins and 2071 phosphosites were identified and quantified, of which 1603 could be matched and normalized to their protein expression levels. A bioinformatic analysis revealed that most of the regulated proteins and phosphosites can be localized in the nucleus and are categorized as nucleic acid-binding proteins. The top candidates whose expression was modulated by Gal4 are PURB, MAPKAPK3, BTF3 and BCAR1, while the prime candidates with altered phosphorylation included ZBTB7A, FOXK1, PURB and CK2beta. In order to validate the (phospho)proteomic data, we confirmed these candidates by a radiometric metabolic-labelling and immunoprecipitation strategy. All candidates exert functions in the transcriptional or translational control, indicating that Gal4 might be involved in these processes by affecting the expression or activity of these proteins.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Viola Golde
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
| | - Dominik Helm
- Proteomics Core Facility, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Herbert Kaltner
- Veterinary Faculty, Institute of Physiological Chemistry, Ludwig-Maximilians-University, 80539 München, Germany;
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence:
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Tan S, Wang P, Hu J, Wang X, Li H. NEDD9 Mediates the FAK/Src Signaling Pathway to Promote the Adhesion of Human Trabecular Meshwork Cells after Dexamethasone Treatment. Curr Eye Res 2022; 47:1156-1164. [PMID: 35577404 DOI: 10.1080/02713683.2022.2071945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The differential gene expression of neural precursor cell expressed developmentally downregulated 9 (NEDD9) in human trabecular meshwork (HTM) cells after dexamethasone (Dex) treatment was confirmed through gene expression profiling. However, the regulatory mechanism of NEDD9 expression in HTM cells remains unknown. In this study, we investigated NEDD9 expression in HTM cells and gained a better understanding of glucocorticoid-induced glaucoma (GIG) pathophysiology. METHODS The Gene Expression Omnibus database and GEO2R tool were used to identify differentially expressed genes in the GSE37474 and GSE124114 datasets, and NEDD9 gene expression was found to be upregulated. Human corneoscleral segments and HTM cells were treated with 100 nM Dex or an equal volume of ethanol (0.01%) for 7 days. NEDD9 expression in TM tissues was evaluated by immunohistochemistry, and NEED9 expression in HTM cells was confirmed by RT-qPCR and western blotting. HTM cell adhesive behaviors were assessed with a cell adhesion detection kit. NEDD9 expression was knocked down with short hairpin RNA in HTM cells, and FAK/Src signaling pathway activation was found to be regulated by NEDD9. RESULTS After 7 days of HTM cell Dex treatment, NEDD9 expression was upregulated to be approximately twice that of control. FAK, Src, phospho-FAK, and phospho-Src expression in Dex-treated HTM cells was markedly increased. Downregulation of NEDD9 expression reduced HTM cell adhesion to the surface of culture wells and simultaneously led to a reduction in FAK, Src, phospho-FAK and phospho-Src expression. CONCLUSIONS NEDD9 expression is upregulated in HTM cells after Dex treatment and promotes HTM cell adhesion. These findings underscore the contribution of NEDD9 overexpression to altered HTM cell adhesion during glucocorticoid therapy and may play a key role in GIG pathological progression. Considering the similarity between GIG and primary open-angle glaucoma (POAG), our findings suggest that targeting NEDD9 may be a new therapeutic strategy for POAG patients.
Collapse
Affiliation(s)
- Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Peng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Xiaochen Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
8
|
Alba GA, Samokhin AO, Wang R, Wertheim BM, Haley KJ, Padera RF, Vargas SO, Rosas IO, Hariri LP, Shih A, Thompson BT, Mitchell RN, Maron BA. Pulmonary endothelial NEDD9 and the prothrombotic pathophenotype of acute respiratory distress syndrome due to SARS-CoV-2 infection. Pulm Circ 2022; 12:e12071. [PMID: 35599981 PMCID: PMC9111030 DOI: 10.1002/pul2.12071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
The pathobiology of in situ pulmonary thrombosis in acute respiratory distress syndrome (ARDS) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is incompletely characterized. In human pulmonary artery endothelial cells (HPAECs), hypoxia increases neural precursor cell expressed, developmentally downregulated 9 (NEDD9) and induces expression of a prothrombotic NEDD9 peptide (N9P) on the extracellular plasma membrane surface. We hypothesized that the SARS-CoV-2-ARDS pathophenotype involves increased pulmonary endothelial N9P. Paraffin-embedded autopsy lung specimens were acquired from patients with SARS-CoV-2-ARDS (n = 13), ARDS from other causes (n = 10), and organ donor controls (n = 5). Immunofluorescence characterized the expression of N9P, fibrin, and transcription factor 12 (TCF12), a putative binding target of SARS-CoV-2 and known transcriptional regulator of NEDD9. We performed RNA-sequencing on normal HPAECs treated with normoxia or hypoxia (0.2% O2) for 24 h. Immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) profiled protein-protein interactions involving N9P relevant to thrombus stabilization. Hypoxia increased TCF12 messenger RNA significantly compared to normoxia in HPAECs in vitro (+1.19-fold, p = 0.001; false discovery rate = 0.005), and pulmonary endothelial TCF12 expression was increased threefold in SARS-CoV-2-ARDS versus donor control lungs (p < 0.001). Compared to donor controls, pulmonary endothelial N9P-fibrin colocalization was increased in situ in non-SARS-CoV-2-ARDS and SARS-CoV-2-ARDS decedents (3.7 ± 1.2 vs. 10.3 ± 3.2 and 21.8 ± 4.0 arb. units, p < 0.001). However, total pulmonary endothelial N9P was increased significantly only in SARS-CoV-2-ARDS versus donor controls (15 ± 4.2 vs. 6.3 ± 0.9 arb. units, p < 0.001). In HPAEC plasma membrane isolates, IP-LC-MS identified a novel protein-protein interaction between NEDD9 and the β3-subunit of the αvβ3-integrin, which regulates fibrin anchoring to endothelial cells. In conclusion, lethal SARS-CoV-2-ARDS is associated with increased pulmonary endothelial N9P expression and N9P-fibrin colocalization in situ. Further investigation is needed to determine the pathogenetic and potential therapeutic relevance of N9P to the thrombotic pathophenotype of SARS-CoV-2-ARDS.
Collapse
Affiliation(s)
- George A. Alba
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Andriy O. Samokhin
- Division of Cardiovascular MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Rui‐Sheng Wang
- Division of Cardiovascular MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Bradley M. Wertheim
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Kathleen J. Haley
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Robert F. Padera
- Department of PathologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Sara O. Vargas
- Department of PathologyBoston Children's HospitalBostonMassachusettsUSA
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care MedicineBaylor College of MedicineHoustonTexasUSA
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of PathologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Angela Shih
- Department of PathologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Boyd Taylor Thompson
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Bradley A. Maron
- Division of Cardiovascular MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| |
Collapse
|
9
|
Kumbrink J, Li P, Pók-Udvari A, Klauschen F, Kirchner T, Jung A. p130Cas Is Correlated with EREG Expression and a Prognostic Factor Depending on Colorectal Cancer Stage and Localization Reducing FOLFIRI Efficacy. Int J Mol Sci 2021; 22:ijms222212364. [PMID: 34830244 PMCID: PMC8625396 DOI: 10.3390/ijms222212364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
p130 Crk-associated substrate (p130Cas) is associated with poor prognosis and treatment resistance in breast and lung cancers. To elucidate p130Cas functional and clinical role in colorectal cancer (CRC) progression/therapy resistance, we performed cell culture experiments and bioinformatic/statistical analyses of clinical data sets. p130Cas expression was associated with poor survival in the cancer genome atlas (TCGA) data set. Knockdown/reconstitution experiments showed that p130Cas drives migration but, unexpectedly, inhibits proliferation in CRC cells. TCGA data analyses identified the growth factor epiregulin (EREG) as inversely correlated with p130Cas. p130Cas knockdown and simultaneous EREG treatment further enhanced proliferation. RNA interference and EREG treatment experiments suggested that p130Cas/EREG limit each other’s expression/activity. Inverse p130Cas/EREG Spearman correlations were prominent in right-sided and earlier stage CRC. p130Cas was inducible by 5-fluorouracil (5-FU) and FOLFIRI (folinic acid, 5-FU, irinotecan), and p130Cas and EREG were upregulated in distant metastases (GSE121418). Positive p130Cas/EREG correlations were observed in metastases, preferentially in post-treatment samples (especially pulmonary metastases). p130Cas knockdown sensitized CRC cells to FOLFIRI independent of EREG treatment. RNA sequencing and gene ontology analyses revealed that p130Cas is involved in cytochrome P450 drug metabolism and epithelial-mesenchymal transition. p130Cas expression was associated with poor survival in right-sided, stage I/II, MSS (microsatellite stable), or BRAF-mutated CRC. In summary, p130Cas represents a prognostic factor and potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Jörg Kumbrink
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
- Correspondence:
| | - Pan Li
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
| | - Agnes Pók-Udvari
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
| | - Frederick Klauschen
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andreas Jung
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| |
Collapse
|
10
|
Hua S, Feng T, Yin L, Wang Q, Shao X. NEDD9 overexpression: Prognostic and guidance value in acute myeloid leukaemia. J Cell Mol Med 2021; 25:9331-9339. [PMID: 34432355 PMCID: PMC8500976 DOI: 10.1111/jcmm.16870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that neural precursor cell expressed developmentally downregulated protein (NEDD) plays crucial roles in tumorigenesis and may serve as potential biomarkers in cancer diagnosis and prognosis. However, few studies systematically investigated the expression of NEDD family members in acute myeloid leukaemia (AML). We systemically determined the expression of NEDD family members in AML and determined their clinical significance. We identified that NEDD9 expression was the only member among NEDD family which was significantly increased in AML. NEDD9 overexpression was more frequently classified as FAB‐M4/M5 (p = 0.008 and 0.013, respectively), hardly as FAB‐M2/M3. Moreover, NEDD9 overexpression was significantly associated with complex karyotype and TP53 mutation. The significant association between NEDD9 overexpression and survival was also observed in whole‐cohort AML and non‐M3 AML patients. Notably, AML patients with NEDD9 overexpression may benefit from hematopoietic stem cell transplantation (HSCT), whereas those cases without NEDD9 overexpression did not. Finally, a total of 822 mRNAs and 31 microRNAs were found to be differentially expressed between two groups. Among the microRNAs, miR‐381 was also identified as a microRNA that could direct target NEDD9. Taken together, our findings demonstrated that NEDD9 overexpression is associated with genetic abnormalities as well as prognosis and might act as a potential biomarker guiding the choice between HSCT and chemotherapy in patients with AML after achieving complete remission.
Collapse
Affiliation(s)
- Shenghao Hua
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Tao Feng
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Lei Yin
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Qi Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Jimi E, Honda H, Nakamura I. The unique function of p130Cas in regulating the bone metabolism. Pharmacol Ther 2021; 230:107965. [PMID: 34391790 DOI: 10.1016/j.pharmthera.2021.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/20/2021] [Indexed: 11/19/2022]
Abstract
p130 Crk-associated substrate (Cas) functions as an adapter protein and plays important roles in certain cell functions, such as cell proliferation, spreading, migration, and invasion. Furthermore, it has recently been reported to have a new function as a mechanosensor. Since bone is a tissue that is constantly under gravity, it is exposed to mechanical stress. Mechanical unloading, such as in a microgravity environment in space or during bed rest, leads to a decrease in bone mass because of the suppression of bone formation and the stimulation of bone resorption. Osteoclasts are multinucleated bone-resorbing giant cells that recognize bone and then form a ruffled border in the resorption lacuna. p130Cas is a molecule located downstream of c-Src that is important for the formation of a ruffled border in osteoclasts. Indeed, osteoclast-specific p130Cas-deficient mice exhibit osteopetrosis due to osteoclast dysfunction, similar to c-Src-deficient mice. Osteoblasts subjected to mechanical stress induce both the phosphorylation of p130Cas and osteoblast differentiation. In osteocytes, mechanical stress regulates bone mass by shuttling p130Cas between the cytoplasm and nucleus. Oral squamous cell carcinoma (OSCC) cells express p130Cas more strongly than epithelial cells in normal tissues. The knockdown of p130Cas in OSCC cells suppressed the cell growth, the expression of receptor activator of NF-κB ligand, which induces osteoclast formation, and bone invasion by OSCC. Taken together, these findings suggest that p130Cas might be a novel therapeutic target molecule in bone diseases, such as osteoporosis, rheumatoid arthritis, bone loss due to bed rest, and bone invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| |
Collapse
|
12
|
Waters AM, Khatib TO, Papke B, Goodwin CM, Hobbs GA, Diehl JN, Yang R, Edwards AC, Walsh KH, Sulahian R, McFarland JM, Kapner KS, Gilbert TSK, Stalnecker CA, Javaid S, Barkovskaya A, Grover KR, Hibshman PS, Blake DR, Schaefer A, Nowak KM, Klomp JE, Hayes TK, Kassner M, Tang N, Tanaseichuk O, Chen K, Zhou Y, Kalkat M, Herring LE, Graves LM, Penn LZ, Yin HH, Aguirre AJ, Hahn WC, Cox AD, Der CJ. Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Rep 2021; 35:109291. [PMID: 34192548 PMCID: PMC8340308 DOI: 10.1016/j.celrep.2021.109291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-β-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the βIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.
Collapse
Affiliation(s)
- Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tala O Khatib
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - G Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A Cole Edwards
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Rita Sulahian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kevin S Kapner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sehrish Javaid
- Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anna Barkovskaya
- Institute for Cancer Research, Oslo University Hospital, Oslo 0379, Norway
| | - Kajal R Grover
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priya S Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Devon R Blake
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine M Nowak
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tikvah K Hayes
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle Kassner
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Nanyun Tang
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Olga Tanaseichuk
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kaisheng Chen
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Laura E Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Hongwei H Yin
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Zheng WB, Zou Y, He JJ, Elsheikha HM, Liu GH, Hu MH, Wang SL, Zhu XQ. Global profiling of lncRNAs-miRNAs-mRNAs reveals differential expression of coding genes and non-coding RNAs in the lung of beagle dogs at different stages of Toxocara canis infection. Int J Parasitol 2020; 51:49-61. [PMID: 32991917 DOI: 10.1016/j.ijpara.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
The roundworm Toxocara canis causes toxocariasis in dogs and larval migrans in humans. Better understanding of the lung response to T. canis infection could explain why T. canis must migrate to and undergoes part of its development inside the lung of the definitive host. In this study, we profiled the expression patterns of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in the lungs of Beagle dogs infected by T. canis, using high throughput RNA sequencing. At 24 h p.i., 1,012 lncRNAs, 393 mRNAs and 10 miRNAs were differentially expressed (DE). We also identified 883 DElncRNAs, 264 DEmRNAs and 20 DEmiRNAs at 96 h p.i., and 996 DElncRNAs, 342 DEmRNAs and eight DEmiRNAs at 36 days p.i., between infected and control dogs. Significant changes in the levels of expression of transcripts related to immune response and inflammation were associated with the antiparasitic response of the lung to T. canis. The remarkable increase in the expression of scgb1a1 at all time points after infection suggests the need for consistent moderation of the excessive inflammatory response. Also, upregulation of foxj1 at 24 h p.i., and downregulation of IL-1β and IL-21 at 96 h p.i., suggest an attenuation of the humoral immunity of infected dogs. These results indicate that T. canis pathogenesis in the lung is mediated through contributions from both pro-inflammatory and anti-inflammatory mechanisms. Competing endogenous RNA (ceRNA) network analysis revealed significant interactions between DElncRNAs, DEmiRNAs and DEmRNAs, and improved our understanding of the ceRNA regulatory mechanisms in the context of T. canis infection. These data provide comprehensive understanding of the regulatory networks that govern the lung response to T. canis infection and reveal new mechanistic insights into the interaction between the host and parasite during the course of T. canis infection in the canine.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Min-Hua Hu
- National Canine Laboratory Animal Resource Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, Guangdong Province 510240, China
| | - Shui-Lian Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, China.
| |
Collapse
|
14
|
Zhao S, Min P, Liu L, Zhang L, Zhang Y, Wang Y, Zhao X, Ma Y, Xie H, Zhu C, Jiang H, Du J, Gu L. NEDD9 Facilitates Hypoxia-Induced Gastric Cancer Cell Migration via MICAL1 Related Rac1 Activation. Front Pharmacol 2019; 10:291. [PMID: 31019460 PMCID: PMC6458266 DOI: 10.3389/fphar.2019.00291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Aims and Hypothesis: NEDD9 is highly expressed in gastric cancer and has a significant involvement in its pathogenesis. However, the mechanism behind hypoxia-promoted cancer cell migration and its regulation because of NEDD9 is still unknown. The aim of this study is to investigate the involvement of NEDD9 in gastric cancer cell migration under hypoxia and explore the underlying potential molecular mechanisms.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Lei Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Lin Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Zhao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hui Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Chenchen Zhu
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Haonan Jiang
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Gemperle J, Dibus M, Koudelková L, Rosel D, Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol Oncol 2018; 13:264-289. [PMID: 30422386 PMCID: PMC6360386 DOI: 10.1002/1878-0261.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Lenka Koudelková
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| |
Collapse
|
16
|
Yi SJ, Hwang SY, Oh MJ, Kim K, Jhun BH. Carboxy-terminal domain of Cas differentially modulates c-Jun expression, DNA synthesis, and membrane ruffling induced by insulin, EGF, and IGF-1. Anim Cells Syst (Seoul) 2018; 22:69-75. [PMID: 30460082 PMCID: PMC6138344 DOI: 10.1080/19768354.2018.1447013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 02/18/2018] [Indexed: 12/23/2022] Open
Abstract
p130 Crk-associated substrate (Cas) is an adaptor protein associating with many other signaling proteins and regulates a various biological processes including cell adhesion, migration, and growth factor stimulation. However, the exact functional role of Cas in growth factor signaling pathway was poorly understood. Here we investigated the role of Cas and its domains in the effects of insulin, EGF, and IGF-1 on c-Jun gene expression, DNA synthesis, cytoskeletal reorganization. We found that microinjection of anti-Cas antibody and C-terminal domain of Cas (Cas-CT) specifically inhibited EGF-induced, but not insulin- or IGF-1-induced, c-Jun expression. Cell cycle progression and cytoskeleton reorganization induced by insulin and EGF, but not by IGF-1, were inhibited by microinjected anti-Cas and Cas-CT. In contrast, microinjection of the substate domain (Cas-SD) of Cas did not have any inhibitory effects. These results revealed that the Cas-CT is differentially implicated in insulin and EGF-mediated, but not IGF-1-mediated, c-Jun expression, DNA synthesis and membrane ruffling.
Collapse
Affiliation(s)
- Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Yun Hwang
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Myung-Ju Oh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Byung H Jhun
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
17
|
Lei X, Muscat JE, Huang Z, Chen C, Xiu G, Chen J. Differential transcriptional changes in human alveolar epithelial A549 cells exposed to airborne PM 2.5 collected from Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33656-33666. [PMID: 30276685 DOI: 10.1007/s11356-018-3090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Fine particulate matters (PM2.5) are the core pollutants of haze episode, which pose a serious threat to the human health of developing countries. However, the mechanisms involved in PM2.5-induced hazard influence are not to fully elucidated. In the present study, human lung epithelial cells (A549) were exposed to various concentrations of PM2.5 samples collected from Shanghai, China. Illumina RNA-Seq method with transcriptome, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were further employed to identify the detrimental effects of PM2.5 on A549 cells in vitro. A total of 712 differentially expressed genes were obtained from global transcriptome profiling of A549 cells after PM2.5 exposure. In addition, GO function enrichment analysis revealed that major differentially expressed genes (DEGs) involved in the biological process of the immune system and the response to the stress. KEGG pathway analysis further proposes that infectious disease, cancers, cardiovascular disease, and immune disease pathway were the key human disease events that occur in A549 cells under PM2.5 stress. The data obtained here shed light on the related biological process and gene signaling pathways affected by PM2.5 exposure. This study aids our understanding of the complicated mechanisms related to PM2.5-induced health effects and is informative for the prevention and treatment of PM2.5-induced systemic diseases.
Collapse
Affiliation(s)
- Xiaoning Lei
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, PA, 17033, USA
| | - Joshua E Muscat
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, PA, 17033, USA
| | - Zhongsi Huang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Jiahui Chen
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| |
Collapse
|
18
|
Ibáñez M, Carbonell-Caballero J, Such E, García-Alonso L, Liquori A, López-Pavía M, Llop M, Alonso C, Barragán E, Gómez-Seguí I, Neef A, Hervás D, Montesinos P, Sanz G, Sanz MA, Dopazo J, Cervera J. The modular network structure of the mutational landscape of Acute Myeloid Leukemia. PLoS One 2018; 13:e0202926. [PMID: 30303964 PMCID: PMC6179200 DOI: 10.1371/journal.pone.0202926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is associated with the sequential accumulation of acquired genetic alterations. Although at diagnosis cytogenetic alterations are frequent in AML, roughly 50% of patients present an apparently normal karyotype (NK), leading to a highly heterogeneous prognosis. Due to this significant heterogeneity, it has been suggested that different molecular mechanisms may trigger the disease with diverse prognostic implications. We performed whole-exome sequencing (WES) of tumor-normal matched samples of de novo AML-NK patients lacking mutations in NPM1, CEBPA or FLT3-ITD to identify new gene mutations with potential prognostic and therapeutic relevance to patients with AML. Novel candidate-genes, together with others previously described, were targeted resequenced in an independent cohort of 100 de novo AML patients classified in the cytogenetic intermediate-risk (IR) category. A mean of 4.89 mutations per sample were detected in 73 genes, 35 of which were mutated in more than one patient. After a network enrichment analysis, we defined a single in silico model and established a set of seed-genes that may trigger leukemogenesis in patients with normal karyotype. The high heterogeneity of gene mutations observed in AML patients suggested that a specific alteration could not be as essential as the interaction of deregulated pathways.
Collapse
Affiliation(s)
- Mariam Ibáñez
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - José Carbonell-Caballero
- ProCURE, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Esperanza Such
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Luz García-Alonso
- European Molecular Biology Laboratory—European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Alessandro Liquori
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - María López-Pavía
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Marta Llop
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Department of Medical Pathology, Hospital Universitario La Fe, Valencia, Spain
| | - Carmen Alonso
- Hematology Service, Hospital Arnau de Villanoba, Valencia, Spain
| | - Eva Barragán
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Department of Medical Pathology, Hospital Universitario La Fe, Valencia, Spain
| | - Inés Gómez-Seguí
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Alexander Neef
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Pau Montesinos
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Guillermo Sanz
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Miguel Angel Sanz
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Joaquín Dopazo
- Functional Genomics Node, Spanish National Institute of Bioinformatics at CIPF, Valencia, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla, Spain
- * E-mail: (JC); (JD)
| | - José Cervera
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- * E-mail: (JC); (JD)
| |
Collapse
|
19
|
Haworth S, Shungin D, van der Tas JT, Vucic S, Medina-Gomez C, Yakimov V, Feenstra B, Shaffer JR, Lee MK, Standl M, Thiering E, Wang C, Bønnelykke K, Waage J, Jessen LE, Nørrisgaard PE, Joro R, Seppälä I, Raitakari O, Dudding T, Grgic O, Ongkosuwito E, Vierola A, Eloranta AM, West NX, Thomas SJ, McNeil DW, Levy SM, Slayton R, Nohr EA, Lehtimäki T, Lakka T, Bisgaard H, Pennell C, Kühnisch J, Marazita ML, Melbye M, Geller F, Rivadeneira F, Wolvius EB, Franks PW, Johansson I, Timpson NJ. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum Mol Genet 2018; 27:3113-3127. [PMID: 29931343 PMCID: PMC6097157 DOI: 10.1093/hmg/ddy237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.
Collapse
Affiliation(s)
- Simon Haworth
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Dmitry Shungin
- Department of Odontology, Umeå University, Umeå 901 87, Sweden
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Justin T van der Tas
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Strahinja Vucic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Carolina Medina-Gomez
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Victor Yakimov
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Division of Metabolic and Nutritional Medicine, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich 80337, Germany
| | - Carol Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Leon Eyrich Jessen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Pia Elisabeth Nørrisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Raimo Joro
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Tom Dudding
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Olja Grgic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
- The Generation R Study Group
| | | | - Anu Vierola
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Nicola X West
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Steven J Thomas
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Daniel W McNeil
- Department of Psychology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WA 26506-6286, USA
| | - Steven M Levy
- Department of Preventive and Community Dentistry, College of Dentistry, University of Iowa, Cedar Rapids, IA 52242-1010, USA
| | - Rebecca Slayton
- Department of Pediatric Dentistry (Retired), School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Craig Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Jan Kühnisch
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Fernando Rivadeneira
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö 202 13, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 901 85, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
20
|
Gabbasov R, Xiao F, Howe CG, Bickel LE, O'Brien SW, Benrubi D, Do TV, Zhou Y, Nicolas E, Cai KQ, Litwin S, Seo S, Golemis EA, Connolly DC. NEDD9 promotes oncogenic signaling, a stem/mesenchymal gene signature, and aggressive ovarian cancer growth in mice. Oncogene 2018; 37:4854-4870. [PMID: 29773902 PMCID: PMC6119087 DOI: 10.1038/s41388-018-0296-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Neural precursor cell expressed, developmentally downregulated 9 (NEDD9) supports oncogenic signaling in a number of solid and hematologic tumors. Little is known about the role of NEDD9 in ovarian carcinoma (OC), but available data suggest elevated mRNA and protein expression in advanced stage high-grade cancers. We used a transgenic MISIIR-TAg mouse OC model combined with genetic ablation of Nedd9 to investigate its action in the development and progression of OC. A Nedd9-/- genotype delayed tumor growth rate, reduced incidence of ascites, and reduced expression and activation of signaling proteins including SRC, STAT3, E-cadherin, and AURKA. Cell lines established from MISIIR-TAg;Nedd9-/- and MISIIR-TAg;Nedd9+/+ mice exhibited altered migration and invasion. Growth of these cells in a syngeneic allograft model indicated that systemic Nedd9 loss in the microenvironment had little impact on tumor allograft growth, but in a Nedd9 wild-type background Nedd9-/- allografts exhibited significantly reduced growth, dissemination, and oncogenic signaling compared to Nedd9+/+ allografts. Gene expression analysis revealed that Nedd9+/+ tumors exhibited more mesenchymal "stem-like" transcriptional program, including increased expression of Aldh1a1 and Aldh1a2. Conversely, loss of Nedd9 resulted in increased expression of differentiation genes, including fallopian tube markers Foxj1, Ovgp1, and Pax8. Collectively, these data suggest that tumor cell-intrinsic Nedd9 expression promotes OC development and progression by broad induction of oncogenic protein signaling and stem/mesenchymal gene expression.
Collapse
Affiliation(s)
- Rashid Gabbasov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia
| | - Fang Xiao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Caitlin G Howe
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Laura E Bickel
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shane W O'Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Benrubi
- Division of Gynecologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Thuy-Vy Do
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Samuel Litwin
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sachiko Seo
- Department of Hematology & Oncology, National Cancer Research Center East, Kashiwa, Japan
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Abstract
Although tumours initiate from oncogenic changes in a cancer cell, subsequent tumour progression and therapeutic response depend on interactions between the cancer cells and the tumour microenvironment (TME). The primary monocilium, or cilium, provides a spatially localized platform for signalling by Hedgehog, Notch, WNT and some receptor tyrosine kinase pathways and mechanosensation. Changes in ciliation of cancer cells and/or cells of the TME during tumour development enforce asymmetric intercellular signalling in the TME. Growing evidence indicates that some oncogenic signalling pathways as well as some targeted anticancer therapies induce ciliation, while others repress it. The links between the genomic profile of cancer cells, drug treatment and ciliary signalling in the TME likely affect tumour growth and therapeutic response.
Collapse
Affiliation(s)
- Hanqing Liu
- School of Pharmacy, Jiangsu University, Jiangsu, China
| | - Anna A Kiseleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kazan Federal University, Kazan, Russia
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Burgett ME, Lathia JD, Roth P, Nowacki AS, Galileo DS, Pugacheva E, Huang P, Vasanji A, Li M, Byzova T, Mikkelsen T, Bao S, Rich JN, Weller M, Gladson CL. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells. Oncotarget 2018; 7:43852-43867. [PMID: 27270311 PMCID: PMC5190064 DOI: 10.18632/oncotarget.9700] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting.
Collapse
Affiliation(s)
- Monica E Burgett
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Roth
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware and Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Elena Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, VA, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Meizhang Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana Byzova
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Weller
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | | |
Collapse
|
23
|
Abstract
Pancreatic cancers arise through a series of genetic events both inherited and acquired. Inherited genetic changes, both high penetrance and low penetrance, are an important component of pancreatic cancer risk, and may be used to characterize populations who will benefit from early detection. Furthermore, pancreatic cancer patients with inherited mutations may be particularly sensitive to certain targeted agents, providing an opportunity to personalized treatment. Family history of pancreatic cancer is one of the strongest risk factors for the disease, and is associated with an increased risk of caners at other sites, including but not limited to breast, ovarian and colorectal cancer. The goal of this chapter is to discuss the importance of family history of pancreatic cancer, and the known genes that account for a portion of the familial clustering of pancreatic cancer.
Collapse
Affiliation(s)
- Fei Chen
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institution, Baltimore, MD, USA
| | - Alison P Klein
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Pathology, Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institution, Baltimore, MD, USA.
| |
Collapse
|
24
|
Wang J, Wang S, Luan Y, Zhang W, Sun C, Cheng G, Li K, Xin Q, Lin Z, Qi T, Kong F. Overexpression of NEDD9 in renal cell carcinoma is associated with tumor migration and invasion. Oncol Lett 2017; 14:8021-8027. [PMID: 29344245 PMCID: PMC5755160 DOI: 10.3892/ol.2017.7231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Scaffold protein neural precursor cell expressed, developmentally downregulated 9 (NEDD9) is a member of the Crk-associated substrate protein family and is known to be a biomarker in multiple cancer types. It serves a critical function in regulating cell proliferation, migration, invasion and survival. The objective of this study was to evaluate the potential effects of NEDD9 in renal cell carcinoma (RCC). The expression of NEDD9 was analyzed by immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. NEDD9 protein and mRNA levels were significantly upregulated in RCC tissues compared with normal tissues (P<0.001). Furthermore, the NEDD9 immunostaining level was significantly associated with primary tumor stage and tumor, node, metastasis stage (P<0.05). High NEDD9 expression resulted in significantly lower survival rates for patients compared with normal NEDD9 expression (P<0.01). In addition, wound healing and transwell assays indicated that NEDD9 depletion by small interfering RNA significantly attenuated the migration and invasion of RCC cells (P<0.001). The present data suggested that NEDD9 may be a novel target for prevention and treatment of RCC metastasis and recurrence.
Collapse
Affiliation(s)
- Jue Wang
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Key Laboratory for Kidney Regeneration of Shandong Province, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Si Wang
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yun Luan
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Key Laboratory for Kidney Regeneration of Shandong Province, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wenhua Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chao Sun
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guanghui Cheng
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Kailin Li
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qian Xin
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhaomin Lin
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Tonggang Qi
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Key Laboratory for Kidney Regeneration of Shandong Province, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
25
|
NEDD9, an independent good prognostic factor in intermediate-risk acute myeloid leukemia patients. Oncotarget 2017; 8:76003-76014. [PMID: 29100287 PMCID: PMC5652681 DOI: 10.18632/oncotarget.18537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/02/2017] [Indexed: 01/08/2023] Open
Abstract
Intermediate-risk acute myeloid leukemia (IR-AML) is the largest subgroup of AML patients and is highly heterogeneous. Whereas adverse and favourable risk patients have well-established treatment protocols, IR-AML patients have not. It is, therefore, crucial to find novel factors that stratify this subgroup to implement risk-adapted strategies. The CAS (Crk-associated substrate) adaptor protein family regulates cell proliferation, survival, migration and adhesion. Despite its association with metastatic dissemination and prognosis of different solid tumors, the role of these proteins in hematological malignancies has been scarcely evaluated. Nevertheless, previous work has established an important role for the CAS family members NEDD9 or BCAR1 in the migratory and dissemination capacities of myeloid cells. On this basis, we hypothesized that NEDD9 or BCAR1 expression levels could associate with survival in IR-AML patients and become new prognostic markers. To that purpose, we assessed BCAR1 and NEDD9 gene expression in a cohort of 73 adult AML patients validating the results in an independent cohort (n = 206). We have identified NEDD9, but not BCAR1, as a new a marker for longer overall and disease-free survival, and for lower cumulative incidence of relapse. In summary, NEDD9 gene expression is an independent prognostic factor for favourable prognosis in IR-AML patients.
Collapse
|
26
|
Vanoni MA. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics. Arch Biochem Biophys 2017; 632:118-141. [PMID: 28602956 DOI: 10.1016/j.abb.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of multidomain proteins conserved from insects to humans, which are increasingly attracting attention for their participation in the control of actin cytoskeleton dynamics, and, therefore, in the several related key processes in health and disease. MICAL is unique among actin binding proteins because it catalyzes a NADPH-dependent F-actin depolymerizing reaction. This unprecedented reaction is associated with its N-terminal FAD-containing domain that is structurally related to p-hydroxybenzoate hydroxylase, the prototype of aromatic monooxygenases, but catalyzes a strong NADPH oxidase activity in the free state. This review will focus on the known structural and functional properties of MICAL forms in order to provide an overview of the arguments supporting the current hypotheses on the possible mechanism of action of MICAL in the free and F-actin bound state, on the modulating effect of the CH, LIM, and C-terminal domains that follow the catalytic flavoprotein domain on the MICAL activities, as well as that of small molecules and proteins interacting with MICAL.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
27
|
p130Cas scaffold protein regulates ErbB2 stability by altering breast cancer cell sensitivity to autophagy. Oncotarget 2016; 7:4442-53. [PMID: 26716506 PMCID: PMC4826217 DOI: 10.18632/oncotarget.6710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Overexpression of the ErbB2/HER2 receptor tyrosine kinase occurs in up to 20% of human breast cancers and correlates with aggressive disease. Several efficacious targeted therapies, including antibodies and kinase inhibitors, have been developed but the occurring of resistance to these agents is often observed. New therapeutic agents targeting the endocytic recycling and intracellular trafficking of membrane in tumor cells overexpressing ErbB2 are actually in clinical development. Nevertheless the mechanisms underlying ErbB2 downregulation are still obscure. We have previously demonstrated that the overexpression of the p130Cas adaptor protein in ErbB2 positive breast cancer, promotes tumor aggressiveness and progression. Here we demonstrate that lowering p130Cas expression in breast cancer cells is sufficient to induce ErbB2 degradation by autophagy. Conversely, p130Cas overexpression protects ErbB2 from degradation by autophagy. Furthermore, this autophagy-dependent preferential degradation of ErbB2 in absence of p130Cas is due to an increased ErbB2 ubiquitination. Indeed, the overexpression of p130Cas impairs ErbB2 ubiquitination by inhibiting the binding of Cbl and CHIP E3 ligases to ErbB2. Finally, our results indicate that p130Cas-dependent ErbB2 protection from degradation by autophagy may alter the sensitivity to the humanized monoclonal antibody trastuzumab. Consistently, in human ErbB2 positive breast cancers that develop resistance to trastuzumab, p130Cas expression is significantly increased suggesting that elevated levels of p130Cas can be involved in trastuzumab resistance.
Collapse
|
28
|
Li A, Zhang W, Xia H, Miao Y, Zhou H, Zhang X, Dong Q, Li Q, Qiu X, Wang E. Overexpression of CASS4 promotes invasion in non-small cell lung cancer by activating the AKT signaling pathway and inhibiting E-cadherin expression. Tumour Biol 2016; 37:15157-15164. [PMID: 27677288 DOI: 10.1007/s13277-016-5411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
The role of Crk-associated substrate (CAS) family members in regulating invasion and metastasis has been described in several cancers. As the fourth member of the CAS family, CASS4 is also related with positive lymph node metastasis and poor prognosis in lung cancer. However, the underlying mechanisms and downstream effectors of CASS4 in the development and progression of non-small cell lung cancer (NSCLC) remain unclear. In this study, CASS4 overexpression inhibited E-cadherin expression and enhanced invasion in NSCLC cell line transfected with CASS4 plasmid, while CASS4 depletion upregulated E-cadherin expression and inhibited invasion in NSCLC cell line transfected with CASS4 siRNA. The effect of CASS4 overexpression in facilitating invasion of NSCLC cells was reversed by restoring E-cadherin expression, which indicates that CASS4 may promote invasion by inhibiting E-cadherin expression. Subsequent immunohistochemistry results confirmed that CASS4 overexpression correlated with loss of E-cadherin expression. We next investigated the phosphorylation levels of focal adhesion kinase (FAK), p38, extracellular signal-related kinase (ERK), and AKT after CASS4 plasmid or CASS4 siRNA transfection. CASS4 facilitated AKT (Ser473) phosphorylation. Treatment with an AKT phosphorylation inhibitor reversed the increased invasive capacity and downregulation of E-cadherin protein induced by CASS4 overexpression. Taken together, the present results indicate that CASS4 may promote NSCLC invasion by activating the AKT signaling pathway, thereby inhibiting E-cadherin expression.
Collapse
Affiliation(s)
- Ailin Li
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiwei Zhang
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huifang Xia
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Haijing Zhou
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Ezrin Is Associated with Disease Progression in Ovarian Carcinoma. PLoS One 2016; 11:e0162502. [PMID: 27622508 PMCID: PMC5021292 DOI: 10.1371/journal.pone.0162502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/23/2016] [Indexed: 12/24/2022] Open
Abstract
Objective Ezrin and p130Cas are structural proteins with an important role in signaling pathways and have been shown to promote cancer dissemination. We previously reported on overexpression of both ezrin and p130Cas in breast carcinoma effusions compared to primary carcinomas. Since ovarian and breast carcinomas share the ability to disseminate by forming malignant effusions, we sought to study the role of these molecules in ovarian carcinoma (OC). Methods OC cell lines were cultured in two different 3-dimensional conditions, on alginate scaffolds and as spheroids, which served as models for solid tumor and malignant effusions, respectively. shRNA was used to reduce protein expression in the cells. The malignant potential was evaluated by chemo-invasion assay, branching capacity on Matrigel and rate of proliferation. Subsequently, clinical specimens of high-grade serous carcinoma effusions, ovarian tumors and solid metastases were analyzed for ezrin and p130Cas expression. Results Higher ezrin expression was found in cells composing the spheroids compared to their counterparts cultured on alginate scaffold and in clinical samples of malignant effusions compared to solid tumors. In addition, reduced Ezrin expression impaired the invasion ability and the branching capacity of OC cells to a greater extent than reduced p130Cas expression. However, ezrin and p130Cas expression in effusions was unrelated to clinical outcome. Conclusions The 3-dimensional cell cultures were found to mimic the different tumor sites and be applicable as a model. The in vitro results concur with the clinical specimen analysis, suggesting that in OC, the role of ezrin in disease progression is more pronounced than that of p130Cas.
Collapse
|
30
|
Palanisamy AP, Suryakumar G, Panneerselvam K, Willey CD, Kuppuswamy D. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium. J Cell Biochem 2016; 116:2793-803. [PMID: 25976166 DOI: 10.1002/jcb.25224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium.
Collapse
Affiliation(s)
- Arun P Palanisamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Geetha Suryakumar
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Kavin Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Christopher D Willey
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| |
Collapse
|
31
|
A truncated phosphorylated p130Cas substrate domain is sufficient to drive breast cancer growth and metastasis formation in vivo. Tumour Biol 2016; 37:10665-73. [PMID: 26867768 DOI: 10.1007/s13277-016-4902-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated p130Cas (Crk-associated substrate) levels are found in aggressive breast tumors and are associated with poor prognosis and resistance to standard therapeutics in patients. p130Cas signals majorly through its phosphorylated substrate domain (SD) that contains 15 tyrosine motifs (YxxP) which recruit effector molecules. Tyrosine phosphorylation of p130Cas is important for mediating migration, invasion, tumor promotion, and metastasis. We previously developed a Src*/SD fusion molecule approach, where the SD is constitutively phosphorylated. In a polyoma middle T-antigen (PyMT)/Src*/SD double-transgenic mouse model, Src*/SD accelerates PyMT-induced tumor growth and promotes a more aggressive phenotype. To test whether Src*/SD also drives metastasis and which of the YxxP motifs are involved in this process, full-length and truncated SD molecules fused to Src* were expressed in breast cancer cells. The functionality of the Src*/SD fragments was analyzed in vitro, and the active proteins were tested in vivo in an orthotopic mouse model. Breast cancer cells expressing the full-length SD and the functional smaller SD fragment (spanning SD motifs 6-10) were injected into the mammary fat pads of mice. The tumor progression was monitored by bioluminescence imaging and caliper measurements. Compared with control animals, the complete SD promoted primary tumor growth and an earlier onset of metastases. Importantly, both the complete and truncated SD significantly increased the occurrence of metastases to multiple organs. These studies provide strong evidence that the phosphorylated p130Cas SD motifs 6-10 (Y236, Y249, Y267, Y287, and Y306) are important for driving mammary carcinoma progression.
Collapse
|
32
|
Knutson DC, Mitzey AM, Talton LE, Clagett-Dame M. Mice null for NEDD9 (HEF1α) display extensive hippocampal dendritic spine loss and cognitive impairment. Brain Res 2015; 1632:141-55. [PMID: 26683084 DOI: 10.1016/j.brainres.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023]
Abstract
NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) is a member of the CAS (Crk-associated substrate) family of scaffolding proteins that regulate cell adhesion and migration. A Nedd9 knock-out/lacZ knock-in mouse (Nedd9(-/)(-)) was developed in order to study Nedd9 expression and function in the nervous system. Herein we show that NEDD9 is expressed in the adult brain and is prominently expressed in the hippocampus. Behavioral testing uncovered functional deficits in Nedd9(-)(/)(-) mice. In the Morris water maze test, Nedd9(-)(/)(-) mice showed deficits in both the ability to learn the task as well as in their ability to recall the platform location. There was no change in the gross morphology of the hippocampus, and stereological analysis of BrdU-labeled newly formed hippocampal cells suggested that this defect is not secondary to altered neurogenesis. However, analysis of the hippocampus revealed extensive loss of dendritic spine density in both the dentate gyrus (DG) and CA1 regions. Spine loss occurred equally across all branch orders and regions of the dendrite. Analysis of spine density in Nedd9(-)(/)(-) mice at 1.5, 6 and 10 months revealed an age-dependent spine loss. This work shows that NEDD9 is required for the maintenance of dendritic spines in the hippocampus, and suggests it could play a role in learning and memory.
Collapse
Affiliation(s)
- D C Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - A M Mitzey
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - L E Talton
- Behavioral Testing Core Facility, University of California, Los Angeles, CA 90095, USA
| | - M Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
33
|
Karabulut M, Alis H, Afsar CU, Karabulut S, Kocatas A, Oguz H, Aykan NF. Serum neural precursor cell-expressed, developmentally down regulated 9 (NEDD9) level may have a prognostic role in patients with gastric cancer. Biomed Pharmacother 2015. [PMID: 26211595 DOI: 10.1016/j.biopha.2015.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neural precursor cell-expressed, developmentally down regulated 9 (NEDD9), a member of Crk-associated substrate (CAS) family, is highly expressed in multiple cancer types and involved in cancer cell adhesion, migration and invasion. The prognostic value of NEDD9 has been evaluated before and its expression is a predictor of poor prognosis in cancer patients. The objective of this study was to determine the clinical significance of the serum levels of NEDD9 in gastric cancer (GC) patients. PATIENTS AND METHODS A total of 68 patients with a pathologically confirmed diagnosis of GC were enrolled into this study. Serum NEDD9 concentrations were determined by the solid-phase sandwich (ELISA) method. Twenty-eight healthy age- and sex-matched controls were included into the analysis. RESULTS The median age at diagnosis was 60years, range 21 to 84years. Forty-nine (72%) patients were male and cardia was the most common tumor localization (n=37, 77%) in GC patients. The most frequent histologic subtype was adenocarcinoma (n=45, 66%). Liver was the most common metastatic site in 32 patients with metastasis (n=14, 44%). Sixty-one percent of 23 metastatic patients who received palliative chemotherapy (CTx) were CTx-responsive. The median follow-up time was 8months (range 1 to 23months). At the end of the observation period, 17 patients (25%) experienced disease progression and 28 of the remaining patients (41%) died. Median progression-free survival (PFS) and overall survival (OS) of the whole group were 4.0±0.7months [95% confidence interval (CI)=3-5months] and 14.6±1.2months (95% CI=12-17months), respectively. One-year and 2-year OS rates were 54.4% (95% CI=41.3-67.5) and 51.2% (95% CI=37.3-65.1), respectively. The median serum NEDD9 levels of GC patients were significantly higher than controls (1339.51 vs. 1187.91pg/mL, P=0.02). There was no significant difference according to known disease-related clinicopathological or laboratory parameters (P>0.05). Serum NEDD9 levels had a significant impact on PFS (P=0.04). On the other hand, serum NEDD9 levels showed no significantly adverse effect on OS (P=0.50). CONCLUSION Serum NEDD9 level may be a diagnostic marker for GC patients. Moreover, our study results showed that it was elevated in GC patients and had an unfavorable prognostic effect. However, it has no predictive role on CTx response.
Collapse
Affiliation(s)
- Mehmet Karabulut
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Halil Alis
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Cigdem Usul Afsar
- Department of Medical Oncology, Istanbul Training and Research Hospital, Istanbul, Turkey.
| | - Senem Karabulut
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Ali Kocatas
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Hilal Oguz
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Nuri Faruk Aykan
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
34
|
Deneka A, Korobeynikov V, Golemis EA. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015; 570:25-35. [PMID: 26119091 DOI: 10.1016/j.gene.2015.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/15/2023]
Abstract
The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group.
Collapse
Affiliation(s)
- Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Kazan Federal University, 420000, Kazan, Russian Federation
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Novosibirsk State University, Medical Department, 630090, Novosibirsk, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States.
| |
Collapse
|
35
|
Shagisultanova E, Gaponova AV, Gabbasov R, Nicolas E, Golemis EA. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases. Gene 2015; 567:1-11. [PMID: 25967390 DOI: 10.1016/j.gene.2015.04.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Cancer progression requires a significant reprogramming of cellular signaling to support the essential tumor-specific processes that include hyperproliferation, invasion (for solid tumors) and survival of metastatic colonies. NEDD9 (also known as CasL and HEF1) encodes a multi-domain scaffolding protein that assembles signaling complexes regulating multiple cellular processes relevant to cancer. These include responsiveness to signals emanating from the T and B cell receptors, integrins, chemokine receptors, and receptor tyrosine kinases, as well as cytoplasmic oncogenes such as BCR-ABL and FAK- and SRC-family kinases. Downstream, NEDD9 regulation of partners including CRKL, WAVE, PI3K/AKT, ERK, E-cadherin, Aurora-A (AURKA), HDAC6, and others allow NEDD9 to influence functions as pleiotropic as migration, invasion, survival, ciliary resorption, and mitosis. In this review, we summarize a growing body of preclinical and clinical data that indicate that while NEDD9 is itself non-oncogenic, changes in expression of NEDD9 (most commonly elevation of expression) are common features of tumors, and directly impact tumor aggressiveness, metastasis, and response to at least some targeted agents inhibiting NEDD9-interacting proteins. These data strongly support the relevance of further development of NEDD9 as a biomarker for therapeutic resistance. Finally, we briefly discuss emerging evidence supporting involvement of NEDD9 in additional pathological conditions, including stroke and polycystic kidney disease.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anna V Gaponova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rashid Gabbasov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Genetics, Kazan Federal University (Volga Region), Kazan, Tatarstan, Russia
| | - Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
36
|
Kumbrink J, Soni S, Laumbacher B, Loesch B, Kirsch KH. Identification of Novel Crk-associated Substrate (p130Cas) Variants with Functionally Distinct Focal Adhesion Kinase Binding Activities. J Biol Chem 2015; 290:12247-55. [PMID: 25805500 DOI: 10.1074/jbc.m115.649947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 01/08/2023] Open
Abstract
Elevated levels of p130(Cas) (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130(Cas) protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130(Cas)-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130(Cas) exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130(Cas) on cell biology and therefore will be the target of future studies.
Collapse
Affiliation(s)
- Joerg Kumbrink
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Shefali Soni
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Barbara Laumbacher
- the Immunotherapy Research Center, Pettenkoferstrasse 8, 80336 Munich, Germany, and
| | - Barbara Loesch
- Immunis e.V., Pettenkoferstrasse 8, 80336 Munich, Germany
| | - Kathrin H Kirsch
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
37
|
Camacho Leal MDP, Sciortino M, Tornillo G, Colombo S, Defilippi P, Cabodi S. p130Cas/BCAR1 scaffold protein in tissue homeostasis and pathogenesis. Gene 2015; 562:1-7. [PMID: 25727852 DOI: 10.1016/j.gene.2015.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/01/2015] [Indexed: 12/11/2022]
Abstract
BCAR1 (also known as p130Cas/BCAR1) is an adaptor protein that belongs to the CAS family of scaffold proteins. In the past years, increasing evidence has demonstrated the ability of p130Cas/BCAR1 to activate signaling originating from mechanical stimuli, cell-extracellular matrix (ECM) adhesion and growth factor stimulation cascades during normal development and disease in various biological models. In this review we will specifically discuss the more recent data on the contribution of p130Cas/BCAR1 in the regulation of tissue homeostasis and its potential implications in pathological conditions.
Collapse
Affiliation(s)
| | - Marianna Sciortino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Shana Colombo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
38
|
Shagisultanova E, Dunbrack RL, Golemis EA. Issues in interpreting the in vivo activity of Aurora-A. Expert Opin Ther Targets 2014; 19:187-200. [PMID: 25384454 DOI: 10.1517/14728222.2014.981154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Based on its role as a mitotic regulatory kinase, overexpressed and associated with aneuploidy in cancer, small-molecule inhibitors have been developed for Aurora-A (AURKA) kinase. In preclinical and clinical assessments, these agents have shown efficacy in inducing stable disease or therapeutic response. In optimizing the use of Aurora-A inhibitors, it is critical to have robust capacity to measure the kinase activity of Aurora-A in tumors. AREAS COVERED We provide an overview of molecular mechanisms of mitotic and non-mitotic activation of Aurora-A kinase, and interaction of Aurora-A with its regulatory partners. Typically, Aurora-A activity is measured by use of phospho-antibodies targeting an autophosphorylated T288 epitope. However, recent studies have identified alternative means of Aurora-A activation control, including allosteric regulation by partners, phosphorylation on alternative activating residues (S51, S98), dephosphorylation on inhibitory sites (S342) and T288 phosphorylation by alternative kinases such as Pak enzymes. Additional work has shown that the relative abundance of Aurora-A partners can affect the activity of Aurora-A inhibitors, and that Aurora-A activation also occurs in interphase cells. EXPERT OPINION Taken together, this work suggests the need for comprehensive analysis of Aurora-A activity and expression of Aurora-A partners in order to stratify patients for likely therapeutic response.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Fox Chase Cancer Center, Department of Medical Oncology , Philadelphia, PA 19111 , USA
| | | | | |
Collapse
|
39
|
Beck TN, Chikwem AJ, Solanki NR, Golemis EA. Bioinformatic approaches to augment study of epithelial-to-mesenchymal transition in lung cancer. Physiol Genomics 2014; 46:699-724. [PMID: 25096367 PMCID: PMC4187119 DOI: 10.1152/physiolgenomics.00062.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022] Open
Abstract
Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-β (TGFB1), NEDD9/HEF1, β-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals.
Collapse
Affiliation(s)
- Tim N Beck
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Adaeze J Chikwem
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nehal R Solanki
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
40
|
Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer's disease. Oncoscience 2014; 1:486-503. [PMID: 25594051 PMCID: PMC4278314 DOI: 10.18632/oncoscience.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
No treatment strategies effectively limit the progression of Alzheimer's disease (AD), a common and debilitating neurodegenerative disorder. The absence of viable treatment options reflects the fact that the pathophysiology and genotypic causes of the disease are not well understood. The advent of genome-wide association studies (GWAS) has made it possible to broadly investigate genotypic alterations driving phenotypic occurrences. Recent studies have associated single nucleotide polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating oncogenesis and metastasis, and all three are known to be active in the brain during development and in cancer. However, to date, the majority of studies of these proteins have emphasized their roles in the directly cancer relevant processes of migration and survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in additional processes, including hypoxia, vascular changes, inflammation, microtubule stabilization and calcium signaling, as potentially relevant to the pathogenesis of LOAD. Reciprocally, these functions can better inform our understanding of the action of NEDD9, CASS4 and PTK2B in cancer.
Collapse
|