1
|
Lei L, Burton ZF. Chemical Evolution of Life on Earth. Genes (Basel) 2025; 16:220. [PMID: 40004549 PMCID: PMC11854950 DOI: 10.3390/genes16020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The origin of genes and genetics is the story of the coevolution of translation systems and the genetic code. Remarkably, the history of the origin of life on Earth was inscribed and preserved in the sequences of tRNAs. Methods: Sequence logos demonstrate the patterning of pre-life tRNA sequences. Results: The pre-life type I and type II tRNA sequences are known to the last nucleotide with only a few ambiguities. Type I and type II tRNAs evolved from ligation of three 31 nt minihelices of highly patterned and known sequence followed by closely related 9 nt internal deletion(s) within ligated acceptor stems. The D loop 17 nt core was a truncated UAGCC repeat. The anticodon and T 17 nt stem-loop-stems are homologous sequences with 5 nt stems and 7 nt U-turn loops that were selected in pre-life to resist ribozyme nucleases and to present a 3 nt anticodon with a single wobble position. The 7 nt T loop in tRNA was selected to interact with the D loop at the "elbow". The 5'-acceptor stem was based on a 7 nt truncated GCG repeat. The 3'-acceptor stem was based on a complementary 7 nt CGC repeat. In pre-life, ACCA-Gly was a primitive adapter molecule ligated to many RNAs, including tRNAs, to synthesize polyglycine. Conclusions: Analysis of sequence logos of tRNAs from an ancient Archaeon substantiates how the pre-life to life transition occurred on Earth. Polyglycine is posited to have aggregated complex molecular assemblies, including minihelices, tRNAs, cooperating molecules, and protocells, leading to the first life on Earth.
Collapse
Affiliation(s)
- Lei Lei
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA;
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Dogbey DM, Barth S. AAV Capsid Modification and Its Influence on Viral Protein Stoichiometry and Packaging Fitness: Current Understandings and Future Direction. Mol Biotechnol 2025:10.1007/s12033-025-01381-0. [PMID: 39881109 DOI: 10.1007/s12033-025-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
The field of gene therapy has witnessed significant advancements in the utilization of Adeno-associated virus (AAV) owing to its inherent biological advantages. Targeted AAV vectors are generated through genetic or chemical modification of the capsid for user-directed purposes. However, this process can result in imbalances in viral protein sequence homogeneity, stoichiometry, and functional transduction vector units, thereby introducing new challenges. This mini review focuses on the ongoing efforts to develop targeted vectors, which inadvertently present unsolicited obstacles for clinical application and provided perspectives on future directions.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa.
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa
| |
Collapse
|
3
|
Mou QH, Hu Z, Zhang J, Daroch M, Tang J. Comparative genomics of thermosynechococcaceae and thermostichaceae: insights into codon usage bias. Acta Biochim Pol 2025; 71:13825. [PMID: 39845100 PMCID: PMC11750575 DOI: 10.3389/abp.2024.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus Pseudocalidococcus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families. Overall, the nucleotide composition and CUB indices were found to differ between thermophiles and non-thermophiles. The thermophiles showed a higher G/C content in the codon base composition and tended to end with G/C compared to the non-thermophiles. Correlation analysis indicated significant associations between codon base composition and CUB indices. The results of the effective number of codons, parity-rule 2, neutral and correspondence analyses indicated that mutational pressure and natural selection primarily account for CUB in these cyanobacterial species, but the primary driving forces exhibit variation among genera. Moreover, the optimal codons identified based on relative synonymous codon usage values were found to differ among genera and even within genera. In addition, codon context pattern analysis revealed the specificity of the sequence context of start and stop codons among genera. Intriguingly, the clustering of codon context patterns appeared to be more related to thermotolerance than to phylogenomic relationships. In conclusion, this study facilitates the understanding of the characteristics and sources of variation of CUB and the evolution of the surveyed cyanobacterial clades with different thermotolerance and provides insights into their adaptation to different environments.
Collapse
Affiliation(s)
- Qiao-Hui Mou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Zhe Hu
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Videla L, Tejo M, Quiñinao C, Marquet PA, Rebolledo R. Persistence and neutrality in interacting replicator dynamics. J Math Biol 2025; 90:15. [PMID: 39753765 DOI: 10.1007/s00285-024-02174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/20/2024] [Accepted: 11/10/2024] [Indexed: 02/10/2025]
Abstract
We study the large-time behavior of an ensemble of entities obeying replicator-like stochastic dynamics with mean-field interactions as a model for a primordial ecology. We prove the propagation-of-chaos property and establish conditions for the strong persistence of the N-replicator system and the existence of invariant distributions for a class of associated McKean-Vlasov dynamics. In particular, our results show that, unlike typical models of neutral ecology, fitness equivalence does not need to be assumed but emerges as a condition for the persistence of the system. Further, neutrality is associated with a unique Dirichlet invariant probability measure. We illustrate our findings with some simple case studies, provide numerical results, and discuss our conclusions in the light of Neutral Theory in ecology.
Collapse
Affiliation(s)
- Leonardo Videla
- Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencia, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago, Chile
| | - Mauricio Tejo
- Instituto de Estadística, Universidad de Valparaíso, Valparaíso, Chile
| | - Cristóbal Quiñinao
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Marquet
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Modelamiento Matemático (CMM), Universidad de Chile-IRL 2807 CNRS Beauchef 851, Santiago, Chile.
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
- Instituto de Sistemas Complejos de Valparaíso, Subida Artillería 470, Valparaíso, Chile.
| | - Rolando Rebolledo
- Instituto de Ingeniería Matemática, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
5
|
Dragovich B, Fimmel E, Khrennikov A, Mišić NŽ. Modeling the origin, evolution, and functioning of the genetic code. Biosystems 2025; 247:105373. [PMID: 39642979 DOI: 10.1016/j.biosystems.2024.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Branko Dragovich
- Institute of Physics, University of Belgrade, Pregrevica 118, Belgrade, 11080, Serbia; Mathematical Institute of the Serbian Academy of Sciences and Arts, Kneza Mihaila 36, Belgrade, 11000, Serbia
| | - Elena Fimmel
- Institute of Mathematical Biology, Faculty for Computer Sciences, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, Mannheim, 68163, Germany
| | - Andrei Khrennikov
- International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Universitetsplatsen 1, Växjö, 35195, Sweden
| | - Nataša Ž Mišić
- Research and Development Institute Lola Ltd, Kneza Viseslava 70a, Belgrade, 11030, Serbia
| |
Collapse
|
6
|
Wehbi S, Wheeler A, Morel B, Manepalli N, Minh BQ, Lauretta DS, Masel J. Order of amino acid recruitment into the genetic code resolved by last universal common ancestor's protein domains. Proc Natl Acad Sci U S A 2024; 121:e2410311121. [PMID: 39665745 DOI: 10.1073/pnas.2410311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
The current "consensus" order in which amino acids were added to the genetic code is based on potentially biased criteria, such as the absence of sulfur-containing amino acids from the Urey-Miller experiment which lacked sulfur. More broadly, abiotic abundance might not reflect biotic abundance in the organisms in which the genetic code evolved. Here, we instead identify which protein domains date to the last universal common ancestor (LUCA) and then infer the order of recruitment from deviations of their ancestrally reconstructed amino acid frequencies from the still-ancient post-LUCA controls. We find that smaller amino acids were added to the code earlier, with no additional predictive power in the previous consensus order. Metal-binding (cysteine and histidine) and sulfur-containing (cysteine and methionine) amino acids were added to the genetic code much earlier than previously thought. Methionine and histidine were added to the code earlier than expected from their molecular weights and glutamine later. Early methionine availability is compatible with inferred early use of S-adenosylmethionine and early histidine with its purine-like structure and the demand for metal binding. Even more ancient protein sequences-those that had already diversified into multiple distinct copies prior to LUCA-have significantly higher frequencies of aromatic amino acids (tryptophan, tyrosine, phenylalanine, and histidine) and lower frequencies of valine and glutamic acid than single-copy LUCA sequences. If at least some of these sequences predate the current code, then their distinct enrichment patterns provide hints about earlier, alternative genetic codes.
Collapse
Affiliation(s)
- Sawsan Wehbi
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Andrew Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Nandini Manepalli
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Bui Quang Minh
- School of Computing, Australian National University, Canberra, ACT, Australia
| | - Dante S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
7
|
Douglas J, Cui H, Perona JJ, Vargas‐Rodriguez O, Tyynismaa H, Carreño CA, Ling J, Ribas de Pouplana L, Yang X, Ibba M, Becker H, Fischer F, Sissler M, Carter CW, Wills PR. AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases. IUBMB Life 2024; 76:1091-1105. [PMID: 39247978 PMCID: PMC11580382 DOI: 10.1002/iub.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| | - Haissi Cui
- Department of ChemistryUniversity of TorontoCanada
| | - John J. Perona
- Department of ChemistryPortland State UniversityPortlandOregonUSA
| | - Oscar Vargas‐Rodriguez
- Department of Molecular Biology and BiophysicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Lluís Ribas de Pouplana
- Institute for Research in BiomedicineThe Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Xiang‐Lei Yang
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Michael Ibba
- Biological SciencesChapman UniversityOrangeCaliforniaUSA
| | - Hubert Becker
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Marie Sissler
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Charles W. Carter
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Peter R. Wills
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| |
Collapse
|
8
|
Tan X, Bao S, Lu X, Lu B, Shen W, Jiang C. Comprehensive Analysis of Codon Usage Bias in Human Papillomavirus Type 51. Pol J Microbiol 2024; 73:455-465. [PMID: 39465910 PMCID: PMC11639286 DOI: 10.33073/pjm-2024-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Human papillomavirus type 51 (HPV-51) is associated with various cancers, including cervical cancer. Examining the codon usage bias of the organism can offer valuable insights into its evolutionary patterns and its relationship with the host. This study comprehensively analyzed codon usage bias in HPV-51 by examining 64 complete genome sequences sourced from the NCBI GenBank database. Our analysis revealed no noteworthy preference for codon usage in HPV-51 overall. However, there was a noticeable bias towards A/T-ending codons, accompanied by GC3s below 32%. Dinucleotide frequency analysis revealed reduced frequencies for ApA, CpG, and TpC dinucleotides, while CpA and TpG dinucleotides were more frequent than others. Relative Synonymous Codon Usage analysis revealed 30 favored codons, primarily concluding with A/T nucleotides. Further analysis using Parity Rule 2, Effective Number of Codons plot, and neutrality plot indicated a balance between mutational pressure and natural selection, with natural selection being the primary force shaping codon usage bias. The Isoacceptor tRNA Pool analysis indicates that HPV-51 has a higher translation efficiency within the human cellular translational system. Moreover, the Codon Adaptation Index and Relative Codon Deoptimization Index analyses suggested a moderate adaptation of HPV-51 to human codon preferences. Our discoveries offer valuable perspectives on how HPV-51 evolves and uses genetic codes, contributing to a deeper comprehension of its endurance and disease-causing potential.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Siwen Bao
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaolei Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binbin Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaoyue Jiang
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
9
|
Wehbi S, Wheeler A, Morel B, Manepalli N, Minh BQ, Lauretta DS, Masel J. Order of amino acid recruitment into the genetic code resolved by Last Universal Common Ancestor's protein domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589375. [PMID: 38659899 PMCID: PMC11042313 DOI: 10.1101/2024.04.13.589375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The current "consensus" order in which amino acids were added to the genetic code is based on potentially biased criteria, such as absence of sulfur-containing amino acids from the Urey-Miller experiment which lacked sulfur. More broadly, abiotic abundance might not reflect biotic abundance in the organisms in which the genetic code evolved. Here, we instead identify which protein domains date to the last universal common ancestor (LUCA), then infer the order of recruitment from deviations of their ancestrally reconstructed amino acid frequencies from the still-ancient post-LUCA controls. We find that smaller amino acids were added to the code earlier, with no additional predictive power in the previous "consensus" order. Metal-binding (cysteine and histidine) and sulfur-containing (cysteine and methionine) amino acids were added to the genetic code much earlier than previously thought. Methionine and histidine were added to the code earlier than expected from their molecular weights, and glutamine later. Early methionine availability is compatible with inferred early use of S-adenosylmethionine, and early histidine with its purine-like structure and the demand for metal-binding. Even more ancient protein sequences - those that had already diversified into multiple distinct copies prior to LUCA - have significantly higher frequencies of aromatic amino acids (tryptophan, tyrosine, phenylalanine and histidine), and lower frequencies of valine and glutamic acid than single copy LUCA sequences. If at least some of these sequences predate the current code, then their distinct enrichment patterns provide hints about earlier, alternative genetic codes.
Collapse
Affiliation(s)
- Sawsan Wehbi
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA
| | - Andrew Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Nandini Manepalli
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bui Quang Minh
- School of Computing, Australian National University, Canberra, ACT, Australia
| | - Dante S. Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
10
|
Yurova Axelsson E, Khrennikov A. Universal dynamical function behind all genetic codes: P-adic attractor dynamical model. Biosystems 2024; 246:105353. [PMID: 39428052 DOI: 10.1016/j.biosystems.2024.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The genetic code is a map which gives the correspondence between codons in DNA and amino acids. In the attractor dynamical model (ADM), genetic codes can be described as the sets of the cyclic attractors of discrete dynamical systems - the iterations of functions acting in the ring of 2-adic integers Z2. This ring arises from representation of nucleotides by binary vectors and hence codons by triples of binary vectors. We construct a Universal Function B such that the dynamical functions for all known genetic codes can be obtained from B by simple transformations on the set of codon cycles - the "Addition" and "Division" operations. ADM can be employed for study of phylogenetic dynamics of genetic codes. One can speculate that the "common ancestor genetic code" was caused by B. We remark that this function has 24 cyclic attractors which distribution coincides with the distribution for the hypothetical pre-LUCA code. This coupling of the Universal Function with the pre-LUCA code assigns the genetic codes evolution perspective to ADM. All genetic codes are generated from B through the special chains of the "Addition" and "Division" operations. The challenging problem is to assign the biological meaning to these mathematical operations.
Collapse
Affiliation(s)
- Ekaterina Yurova Axelsson
- International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Växjö, S-35195, Sweden
| | - Andrei Khrennikov
- International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Växjö, S-35195, Sweden.
| |
Collapse
|
11
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
12
|
Jain V, Cope AL. Examining the Effects of Temperature on the Evolution of Bacterial tRNA Pools. Genome Biol Evol 2024; 16:evae116. [PMID: 38805023 PMCID: PMC11166485 DOI: 10.1093/gbe/evae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
The genetic code consists of 61 codons coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNAs) that bind to specific codons during protein synthesis. All organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
Collapse
Affiliation(s)
- Vatsal Jain
- Biotechnology High School, Freehold, NJ, USA
| | - Alexander L Cope
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Axelsson EY, Khrennikov A. Generation of genetic codes with 2-adic codon algebra and adaptive dynamics. Biosystems 2024; 240:105230. [PMID: 38740125 DOI: 10.1016/j.biosystems.2024.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
This is a brief review on modeling genetic codes with the aid of 2-adic dynamical systems. In this model amino acids are encoded by the attractors of such dynamical systems. Each genetic code is coupled to the special class of 2-adic dynamics. We consider the discrete dynamical systems, These are the iterations of a function F:Z2→Z2, where Z2 is the ring of 2-adic numbers (2-adic tree). A genetic code is characterized by the set of attractors of a function belonging to the code generating functional class. The main mathematical problem is to reduce degeneration of dynamic representation and select the optimal generating function. Here optimality can be treated in many ways. One possibility is to consider the Lipschitz functions playing the crucial role in general theory of iterations. Then we minimize the Lip-constant. The main issue is to find the proper biological interpretation of code-functions. One can speculate that the evolution of the genetic codes can be described in information space of the nucleotide-strings endowed with ultrametric (treelike) geometry. A code-function is a fitness function; the solutions of the genetic code optimization problem are attractors of the code-function. We illustrate this approach by generation of the standard nuclear and (vertebrate) mitochondrial genetics codes.
Collapse
Affiliation(s)
- Ekaterina Yurova Axelsson
- International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive Science Linnaeus University, Växjö-Kalmar, Sweden
| | - Andrei Khrennikov
- International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive Science Linnaeus University, Växjö-Kalmar, Sweden.
| |
Collapse
|
14
|
Rozhoňová H, Martí-Gómez C, McCandlish DM, Payne JL. Robust genetic codes enhance protein evolvability. PLoS Biol 2024; 22:e3002594. [PMID: 38754362 PMCID: PMC11098591 DOI: 10.1371/journal.pbio.3002594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
The standard genetic code defines the rules of translation for nearly every life form on Earth. It also determines the amino acid changes accessible via single-nucleotide mutations, thus influencing protein evolvability-the ability of mutation to bring forth adaptive variation in protein function. One of the most striking features of the standard genetic code is its robustness to mutation, yet it remains an open question whether such robustness facilitates or frustrates protein evolvability. To answer this question, we use data from massively parallel sequence-to-function assays to construct and analyze 6 empirical adaptive landscapes under hundreds of thousands of rewired genetic codes, including those of codon compression schemes relevant to protein engineering and synthetic biology. We find that robust genetic codes tend to enhance protein evolvability by rendering smooth adaptive landscapes with few peaks, which are readily accessible from throughout sequence space. However, the standard genetic code is rarely exceptional in this regard, because many alternative codes render smoother landscapes than the standard code. By constructing low-dimensional visualizations of these landscapes, which each comprise more than 16 million mRNA sequences, we show that such alternative codes radically alter the topological features of the network of high-fitness genotypes. Whereas the genetic codes that optimize evolvability depend to some extent on the detailed relationship between amino acid sequence and protein function, we also uncover general design principles for engineering nonstandard genetic codes for enhanced and diminished evolvability, which may facilitate directed protein evolution experiments and the bio-containment of synthetic organisms, respectively.
Collapse
Affiliation(s)
- Hana Rozhoňová
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
15
|
Di Giulio M. Theories of the origin of the genetic code: Strong corroboration for the coevolution theory. Biosystems 2024; 239:105217. [PMID: 38663520 DOI: 10.1016/j.biosystems.2024.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
I analyzed all the theories and models of the origin of the genetic code, and over the years, I have considered the main suggestions that could explain this origin. The conclusion of this analysis is that the coevolution theory of the origin of the genetic code is the theory that best captures the majority of observations concerning the organization of the genetic code. In other words, the biosynthetic relationships between amino acids would have heavily influenced the origin of the organization of the genetic code, as supported by the coevolution theory. Instead, the presence in the genetic code of physicochemical properties of amino acids, which have also been linked to the physicochemical properties of anticodons or codons or bases by stereochemical and physicochemical theories, would simply be the result of natural selection. More explicitly, I maintain that these correlations between codons, anticodons or bases and amino acids are in fact the result not of a real correlation between amino acids and codons, for example, but are only the effect of the intervention of natural selection. Specifically, in the genetic code table we expect, for example, that the most similar codons - that is, those that differ by only one base - will have more similar physicochemical properties. Therefore, the 64 codons of the genetic code table ordered in a certain way would also represent an ordering of some of their physicochemical properties. Now, a study aimed at clarifying which physicochemical property of amino acids has influenced the allocation of amino acids in the genetic code has established that the partition energy of amino acids has played a role decisive in this. Indeed, under some conditions, the genetic code was found to be approximately 98% optimized on its columns. In this same work, it was shown that this was most likely the result of the action of natural selection. If natural selection had truly allocated the amino acids in the genetic code in such a way that similar amino acids also have similar codons - this, not through a mechanism of physicochemical interaction between, for example, codons and amino acids - then it might turn out that even different physicochemical properties of codons (or anticodons or bases) show some correlation with the physicochemical properties of amino acids, simply because the partition energy of amino acids is correlated with other physicochemical properties of amino acids. It is very likely that this would inevitably lead to a correlation between codons (or anticodons or bases) and amino acids. In other words, since the codons (anticodons or bases) are ordered in the genetic code, that is to say, some of their physicochemical properties should also be ordered by a similar order, and given that the amino acids would also appear to have been ordered in the genetic code by selection natural, then it should inevitably turn out that there is a correlation between, for example, the hydrophobicity of anticodons and that of amino acids. Instead, the intervention of natural selection in organizing the genetic code would appear to be highly compatible with the main mechanism of structuring the genetic code as supported by the coevolution theory. This would make the coevolution theory the only plausible explanation for the origin of the genetic code.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
16
|
Metzger BPH. Genetic code robustness and protein evolvability are correlated and protein-specific. PLoS Biol 2024; 22:e3002627. [PMID: 38758732 PMCID: PMC11101038 DOI: 10.1371/journal.pbio.3002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
The relationship between genetic code robustness and protein evolvability is unknown. A new study in PLOS Biology using in silico rewiring of genetic codes and functional protein data identified a positive correlation between code robustness and protein evolvability that is protein-specific.
Collapse
Affiliation(s)
- Brian P. H. Metzger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
17
|
Karagöl A, Karagöl T, Smorodina E, Zhang S. Structural bioinformatics studies of glutamate transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0289644. [PMID: 38598436 PMCID: PMC11006163 DOI: 10.1371/journal.pone.0289644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/22/2023] [Indexed: 04/12/2024] Open
Abstract
Glutamate transporters play key roles in nervous physiology by modulating excitatory neurotransmitter levels, when malfunctioning, involving in a wide range of neurological and physiological disorders. However, integral transmembrane proteins including the glutamate transporters remain notoriously difficult to study, due to their localization within the cell membrane. Here we present the structural bioinformatics studies of glutamate transporters and their water-soluble variants generated through QTY-code, a protein design strategy based on systematic amino acid substitutions. These include 2 structures determined by X-ray crystallography, cryo-EM, and 6 predicted by AlphaFold2, and their predicted water-soluble QTY variants. In the native structures of glutamate transporters, transmembrane helices contain hydrophobic amino acids such as leucine (L), isoleucine (I), and phenylalanine (F). To design water-soluble variants, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, namely glutamine (Q), threonine (T) and tyrosine (Y). The QTY variants exhibited water-solubility, with four having identical isoelectric focusing points (pI) and the other four having very similar pI. We present the superposed structures of the native glutamate transporters and their water-soluble QTY variants. The superposed structures displayed remarkable similarity with RMSD 0.528Å-2.456Å, despite significant protein transmembrane sequence differences (41.1%->53.8%). Additionally, we examined the differences of hydrophobicity patches between the native glutamate transporters and their QTY variants. Upon closer inspection, we discovered multiple natural variations of L->Q, I->T, F->Y and Q->L, T->I, Y->F in these transporters. Some of these natural variations were benign and the remaining were reported in specific neurological disorders. We further investigated the characteristics of hydrophobic to hydrophilic substitutions in glutamate transporters, utilizing variant analysis and evolutionary profiling. Our structural bioinformatics studies not only provided insight into the differences between the hydrophobic helices and hydrophilic helices in the glutamate transporters, but they are also expected to stimulate further study of other water-soluble transmembrane proteins.
Collapse
Affiliation(s)
- Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
18
|
Karagöl T, Karagöl A, Zhang S. Structural bioinformatics studies of serotonin, dopamine and norepinephrine transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0300340. [PMID: 38517879 PMCID: PMC10959339 DOI: 10.1371/journal.pone.0300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Monoamine transporters including transporters for serotonin, dopamine, and norepinephrine play key roles in monoaminergic synaptic signaling, involving in the molecular etiology of a wide range of neurological and physiological disorders. Despite being crucial drug targets, the study of transmembrane proteins remains challenging due to their localization within the cell membrane. To address this, we present the structural bioinformatics studies of 7 monoamine transporters and their water-soluble variants designed using the QTY code, by systematically replacing the hydrophobic amino acids leucine (L), valine (V), isoleucine (I) and phenylalanine (F) with hydrophilic amino acids (glutamine (Q), threonine (T) and tyrosine (Y). The resulting QTY variants, despite significant protein transmembrane sequence differences (44.27%-51.85%), showed similar isoelectric points (pI) and molecular weights. While their hydrophobic surfaces significantly reduced, this change resulted in a minimal structural alteration. Quantitatively, Alphafold2 predicted QTY variant structures displayed remarkable similarity with RMSD 0.492Å-1.619Å. Accompanied by the structural similarities of substituted amino acids in the context of 1.5Å electron density maps, our study revealed multiple QTY and reverse QTY variations in genomic databases. We further analyzed their phenotypical and topological characteristics. By extending evolutionary game theory to the molecular foundations of biology, we provided insights into the evolutionary dynamics of chemically distinct alpha-helices, their usage in different chemotherapeutic applications, and open possibilities of diagnostic medicine. Our study rationalizes that QTY variants of monoamine transporters may not only become distinct tools for medical, structural, and evolutionary research, but these transporters may also emerge as contemporary therapeutic targets, providing a new approach to treatment for several conditions.
Collapse
Affiliation(s)
- Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
19
|
Cummings RD. A periodic table of monosaccharides. Glycobiology 2024; 34:cwad088. [PMID: 37935401 PMCID: PMC11491510 DOI: 10.1093/glycob/cwad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
It is important to recognize the great diversity of monosaccharides commonly encountered in animals, plants, and microbes, as well as to organize them in a visually interesting style that also emphasizes their similarities and relatedness. This article discusses the nature of building blocks, monosaccharides, and monosaccharide derivatives-terms commonly used in discussing "glycomolecules" found in nature. To aid in awareness of monosaccharide diversity, here is presented a Periodic Table of Monosaccharides. The rationale is given for construction of the Table and the selection of 103 monosaccharides, which is largely based on those presented in the KEGG and SNFG websites of monosaccharides, and includes room to enlarge as new discoveries are made. The Table should have educational value and is intended to capture the attention and foster imagination of those not very familiar with glycosciences, and encourage researchers to delve deeper into this fascinating area.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087-3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
20
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
21
|
Grefenstette N, Chou L, Colón-Santos S, Fisher TM, Mierzejewski V, Nural C, Sinhadc P, Vidaurri M, Vincent L, Weng MM. Chapter 9: Life as We Don't Know It. ASTROBIOLOGY 2024; 24:S186-S201. [PMID: 38498819 DOI: 10.1089/ast.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System. Exotic life-forms could exist on Mars or Venus, or icy moons like Europa and Enceladus, or even as a shadow biosphere on Earth. New perspectives on agnostic biosignature detection have also begun to emerge, allowing for a broader and more inclusive approach to seeking exotic life with unknown chemistry that is distinct from life as we know it on Earth.
Collapse
Affiliation(s)
- Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | | | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | | | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Monica Vidaurri
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Howard University, DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | | |
Collapse
|
22
|
Rotterová J, Pánek T, Salomaki ED, Kotyk M, Táborský P, Kolísko M, Čepička I. Single cell transcriptomics reveals UAR codon reassignment in Palmarella salina (Metopida, Armophorea) and confirms Armophorida belongs to APM clade. Mol Phylogenet Evol 2024; 191:107991. [PMID: 38092322 DOI: 10.1016/j.ympev.2023.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Anaerobes have emerged in several major lineages of ciliates, but the number of independent transitions to anaerobiosis among ciliates is unknown. The APM clade (Armophorea, Muranotrichea, Parablepharismea) represents the largest clade of obligate anaerobes among ciliates and contains free-living marine and freshwater representatives as well as gut endobionts of animals. The evolution of APM group has only recently started getting attention, and our knowledge on its phylogeny and genetics is still limited to a fraction of taxa. While ciliates portray a wide array of alternatives to the standard genetic code across numerous classes, the APM ciliates were considered to be the largest group using exclusively standard nuclear genetic code. In this study, we present a pan-ciliate phylogenomic analysis with emphasis on the APM clade, bringing the first phylogenomic analysis of the family Tropidoatractidae (Armophorea) and confirming the position of Armophorida within Armophorea. We include five newly sequenced single cell transcriptomes from marine, freshwater, and endobiotic APM ciliates - Palmarella salina, Anteclevelandella constricta, Nyctotherus sp., Caenomorpha medusula, and Thigmothrix strigosa. We report the first discovery of an alternative nuclear genetic code among APM ciliates, used by Palmarella salina (Tropidoatractidae, Armophorea), but not by its close relative, Tropidoatractus sp., and provide a comparative analysis of stop codon identity and frequency indicating the precedency to the UAG codon loss/reassignment over the UAA codon reassignment in the specific ancestor of Palmarella. Comparative genomic and proteomic studies of this group may help explain the constraints that underlie UAR stop-to-sense reassignment, the most frequent type of alternative nuclear genetic code, not only in ciliates, but eukaryotes in general.
Collapse
Affiliation(s)
- Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic; Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, PR, USA.
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, Rhode Island, USA
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic.
| |
Collapse
|
23
|
Douglas J, Bouckaert R, Carter CW, Wills P. Enzymic recognition of amino acids drove the evolution of primordial genetic codes. Nucleic Acids Res 2024; 52:558-571. [PMID: 38048305 PMCID: PMC10810186 DOI: 10.1093/nar/gkad1160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
How genetic information gained its exquisite control over chemical processes needed to build living cells remains an enigma. Today, the aminoacyl-tRNA synthetases (AARS) execute the genetic codes in all living systems. But how did the AARS that emerged over three billion years ago as low-specificity, protozymic forms then spawn the full range of highly-specific enzymes that distinguish between 22 diverse amino acids? A phylogenetic reconstruction of extant AARS genes, enhanced by analysing modular acquisitions, reveals six AARS with distinct bacterial, archaeal, eukaryotic, or organellar clades, resulting in a total of 36 families of AARS catalytic domains. Small structural modules that differentiate one AARS family from another played pivotal roles in discriminating between amino acid side chains, thereby expanding the genetic code and refining its precision. The resulting model shows a tendency for less elaborate enzymes, with simpler catalytic domains, to activate amino acids that were not synthesised until later in the evolution of the code. The most probable evolutionary route for an emergent amino acid type to establish a place in the code was by recruiting older, less specific AARS, rather than adapting contemporary lineages. This process, retrofunctionalisation, differs from previously described mechanisms through which amino acids would enter the code.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, The University of Auckland, New Zealand
| | - Remco Bouckaert
- Centre for Computational Evolution, The University of Auckland, New Zealand
- School of Computer Science, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Peter R Wills
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, The University of Auckland, New Zealand
| |
Collapse
|
24
|
Schoenmakers LLJ, Reydon TAC, Kirschning A. Evolution at the Origins of Life? Life (Basel) 2024; 14:175. [PMID: 38398684 PMCID: PMC10890241 DOI: 10.3390/life14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research.
Collapse
Affiliation(s)
- Ludo L. J. Schoenmakers
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI), 3400 Klosterneuburg, Austria
| | - Thomas A. C. Reydon
- Institute of Philosophy, Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, 30159 Hannover, Germany;
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| |
Collapse
|
25
|
Rosandić M, Paar V. The Supersymmetry Genetic Code Table and Quadruplet Symmetries of DNA Molecules Are Unchangeable and Synchronized with Codon-Free Energy Mapping during Evolution. Genes (Basel) 2023; 14:2200. [PMID: 38137022 PMCID: PMC10743133 DOI: 10.3390/genes14122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Supersymmetry Genetic code (SSyGC) table is based on five physicochemical symmetries: (1) double mirror symmetry on the principle of the horizontal and vertical mirror symmetry axis between all bases (purines [A, G) and pyrimidines (U, C)] and (2) of bases in the form of codons; (3) direct-complement like codon/anticodon symmetry in the sixteen alternating boxes of the genetic code columns; (4) A + T-rich and C + G-rich alternate codons in the same row between both columns of the genetic code; (5) the same position between divided and undivided codon boxes in relation to horizontal mirror symmetry axis. The SSyGC table has a unique physicochemical purine-pyrimidine symmetry net which is as the core symmetry common for all, with more than thirty different nuclear and mitochondrial genetic codes. This net is present in the SSyGC table of all RNA and DNA living species. None of these symmetries are present in the Standard Genetic Code (SGC) table which is constructed on the alphabetic horizontal and vertical U-C-A-G order of bases. Here, we show that the free energy value of each codon incorporated as fundamentally mapping the "energy code" in the SSyGC table is compatible with mirror symmetry. On the other hand, in the SGC table, the same free energy values of codons are dispersed and a mirror symmetry between them is not recognizable. At the same time, the mirror symmetry of the SSyGC table and the DNA quadruplets together with our classification of codons/trinucleotides are perfectly imbedded in the mirror symmetry energy mapping of codons/trinucleotides and point out in favor of maintaining the integrity of the genetic code and DNA genome. We also argue that physicochemical symmetries of the SSyGC table in the manner of the purine-pyrimidine symmetry net, the quadruplet symmetry of DNA molecule, and the free energy of codons have remined unchanged during all of evolution. The unchangeable and universal symmetry properties of the genetic code, DNA molecules, and the energy code are decreasing disorder between codons/trinucleotides and shed a new light on evolution. Diversity in all living species on Earth is broad, but the symmetries of the Supersymmetry Genetic Code as the code of life and the DNA quadruplets related to the "energy code" are unique, unchangeable, and have the power of natural laws.
Collapse
Affiliation(s)
- Marija Rosandić
- Department of Internal Medicine, University Hospital Centre Zagreb (Ret.), 10000 Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia;
| | - Vladimir Paar
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia;
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
26
|
Lei L, Burton ZF. The 3 31 Nucleotide Minihelix tRNA Evolution Theorem and the Origin of Life. Life (Basel) 2023; 13:2224. [PMID: 38004364 PMCID: PMC10672568 DOI: 10.3390/life13112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved. Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified. In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA formed the core for the evolution of living systems on Earth.
Collapse
Affiliation(s)
- Lei Lei
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA;
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Fimmel E, Strüngmann L. The spiderweb of error-detecting codes in the genetic information. Biosystems 2023; 233:105009. [PMID: 37640191 DOI: 10.1016/j.biosystems.2023.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Nature possesses inherent mechanisms for error detection and correction during the translation of genetic information, as demonstrated by the discovery of a self-complementary circular C3-code called X0 in various organisms such as bacteria, eukaryotes, plasmids, and viruses (Arquès and Michel, 1996; Michel, 2015, 2017). Since then, extensive research has focused on circular codes, which are believed to be remnants of ancient comma-free codes. These codes can be regarded as an additional genetic code specifically optimized for detecting and preserving the proper reading frame in protein-coding sequences. A study by Fimmel et al. in 2014 identified that a total of 216 maximal self-complementary C3-codes can be grouped into 27 equivalence classes with eight codes in each class. In this work, we study how the 27 equivalence classes are related to each other. While the codes in each equivalence class obtained by Fimmel et al. in 2014 are permutations of each other, i.e. one code can be obtained from the other by applying a permutation of the bases, it has not been clear how the equvalence classes are connected. We show that there is an ordering of the equivalence classes such that one gets from one class to the next one by substituting only one pair of codon/anticodon in the corresponding codes, i.e. the corresponding codes have a maximal intersection of 18 codons. To perform this analysis, we define two graphs, G216 and G27, whose vertices are, respectively, all 216 maximal self-complementary C3-codes and 27 equivalence classes. Several properties of the graphs are obtained. Most surprisingly, it turns out that G27 contains Hamiltonian paths of length 27. This fact ultimately leads to a representation of the set of all 216 maximal self-complementary C3-codes as a kind of spider web. Finally, we define dinucleotide cuts of such codes by projecting each codon to its first two bases and show that the paths of lengths 27 in G216 can even be chosen so that all the codes contain a special subset of dinucleotides defined by Rumer's roots. These observations raise a lot of new questions about the biological function of such structures.
Collapse
Affiliation(s)
- Elena Fimmel
- Institute of Mathematical Biology, Faculty for Computer Sciences, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
| | - Lutz Strüngmann
- Institute of Mathematical Biology, Faculty for Computer Sciences, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
| |
Collapse
|
28
|
Yarus M. The Genetic Code Assembles via Division and Fusion, Basic Cellular Events. Life (Basel) 2023; 13:2069. [PMID: 37895450 PMCID: PMC10608286 DOI: 10.3390/life13102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Standard Genetic Code (SGC) evolution is quantitatively modeled in up to 2000 independent coding 'environments'. Environments host multiple codes that may fuse or divide, with division yielding identical descendants. Code division may be selected-sophisticated gene products could be required for an orderly separation that preserves the coding. Several unforeseen results emerge: more rapid evolution requires unselective code division rather than its selective form. Combining selective and unselective code division, with/without code fusion, with/without independent environmental coding tables, and with/without wobble defines 25 = 32 possible pathways for SGC evolution. These 32 possible histories are compared, specifically, for evolutionary speed and code accuracy. Pathways differ greatly, for example, by ≈300-fold in time to evolve SGC-like codes. Eight of thirty-two pathways employing code division evolve quickly. Four of these eight that combine fusion and division also unite speed and accuracy. The two most precise, swiftest paths; thus the most likely routes to the SGC are similar, differing only in fusion with independent environmental codes. Code division instead of fusion with unrelated codes implies that exterior codes can be dispensable. Instead, a single ancestral code that divides and fuses can initiate fully encoded peptide biosynthesis. Division and fusion create a 'crescendo of competent coding', facilitating the search for the SGC and also assisting the advent of otherwise uniformly disfavored wobble coding. Code fusion can unite multiple codon assignment mechanisms. However, via code division and fusion, an SGC can emerge from a single primary origin via familiar cellular events.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
29
|
Jain V, Cope AL. Determining the effects of temperature on the evolution of bacterial tRNA pools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559538. [PMID: 37873246 PMCID: PMC10592612 DOI: 10.1101/2023.09.26.559538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The genetic code consists of 61 codon coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNA) that bind to specific codons during protein synthesis. Most organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
Collapse
Affiliation(s)
- Vatsal Jain
- Biotechnology High School, Freehold, New Jersey
| | - Alexander L. Cope
- Department of Genetics, Rutgers University, Piscataway, New Jersey
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
30
|
McGowan J, Kilias ES, Alacid E, Lipscombe J, Jenkins BH, Gharbi K, Kaithakottil GG, Macaulay IC, McTaggart S, Warring SD, Richards TA, Hall N, Swarbreck D. Identification of a non-canonical ciliate nuclear genetic code where UAA and UAG code for different amino acids. PLoS Genet 2023; 19:e1010913. [PMID: 37796765 PMCID: PMC10553269 DOI: 10.1371/journal.pgen.1010913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.
Collapse
Affiliation(s)
- Jamie McGowan
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Elisabet Alacid
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James Lipscombe
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Seanna McTaggart
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Sally D. Warring
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
31
|
Harrison SA, Webb WL, Rammu H, Lane N. Prebiotic Synthesis of Aspartate Using Life's Metabolism as a Guide. Life (Basel) 2023; 13:life13051177. [PMID: 37240822 DOI: 10.3390/life13051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A protometabolic approach to the origins of life assumes that the conserved biochemistry of metabolism has direct continuity with prebiotic chemistry. One of the most important amino acids in modern biology is aspartic acid, serving as a nodal metabolite for the synthesis of many other essential biomolecules. Aspartate's prebiotic synthesis is complicated by the instability of its precursor, oxaloacetate. In this paper, we show that the use of the biologically relevant cofactor pyridoxamine, supported by metal ion catalysis, is sufficiently fast to offset oxaloacetate's degradation. Cu2+-catalysed transamination of oxaloacetate by pyridoxamine achieves around a 5% yield within 1 h, and can operate across a broad range of pH, temperature, and pressure. In addition, the synthesis of the downstream product β-alanine may also take place in the same reaction system at very low yields, directly mimicking an archaeal synthesis route. Amino group transfer supported by pyridoxal is shown to take place from aspartate to alanine, but the reverse reaction (alanine to aspartate) shows a poor yield. Overall, our results show that the nodal metabolite aspartate and related amino acids can indeed be synthesised via protometabolic pathways that foreshadow modern metabolism in the presence of the simple cofactor pyridoxamine and metal ions.
Collapse
Affiliation(s)
- Stuart A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - William L Webb
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Hanadi Rammu
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
32
|
Zagrovic B, Adlhart M, Kapral TH. Coding From Binding? Molecular Interactions at the Heart of Translation. Annu Rev Biophys 2023; 52:69-89. [PMID: 36626765 DOI: 10.1146/annurev-biophys-090622-102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mechanism and the evolution of DNA replication and transcription, the key elements of the central dogma of biology, are fundamentally well explained by the physicochemical complementarity between strands of nucleic acids. However, the determinants that have shaped the third part of the dogma-the process of biological translation and the universal genetic code-remain unclear. We review and seek parallels between different proposals that view the evolution of translation through the prism of weak, noncovalent interactions between biological macromolecules. In particular, we focus on a recent proposal that there exists a hitherto unrecognized complementarity at the heart of biology, that between messenger RNA coding regions and the proteins that they encode, especially if the two are unstructured. Reflecting the idea that the genetic code evolved from intrinsic binding propensities between nucleotides and amino acids, this proposal promises to forge a link between the distant past and the present of biological systems.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Thomas H Kapral
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Halpern A, Bartsch LR, Ibrahim K, Harrison SA, Ahn M, Christodoulou J, Lane N. Biophysical Interactions Underpin the Emergence of Information in the Genetic Code. Life (Basel) 2023; 13:1129. [PMID: 37240774 PMCID: PMC10221087 DOI: 10.3390/life13051129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The genetic code conceals a 'code within the codons', which hints at biophysical interactions between amino acids and their cognate nucleotides. Yet, research over decades has failed to corroborate systematic biophysical interactions across the code. Using molecular dynamics simulations and NMR, we have analysed interactions between the 20 standard proteinogenic amino acids and 4 RNA mononucleotides in 3 charge states. Our simulations show that 50% of amino acids bind best with their anticodonic middle base in the -1 charge state common to the backbone of RNA, while 95% of amino acids interact most strongly with at least 1 of their codonic or anticodonic bases. Preference for the cognate anticodonic middle base was greater than 99% of randomised assignments. We verify a selection of our results using NMR, and highlight challenges with both techniques for interrogating large numbers of weak interactions. Finally, we extend our simulations to a range of amino acids and dinucleotides, and corroborate similar preferences for cognate nucleotides. Despite some discrepancies between the predicted patterns and those observed in biology, the existence of weak stereochemical interactions means that random RNA sequences could template non-random peptides. This offers a compelling explanation for the emergence of genetic information in biology.
Collapse
Affiliation(s)
- Aaron Halpern
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lilly R. Bartsch
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Kaan Ibrahim
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Stuart A. Harrison
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Minkoo Ahn
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6BT, UK
| | - John Christodoulou
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6BT, UK
| | - Nick Lane
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
34
|
Omachi Y, Saito N, Furusawa C. Rare-event sampling analysis uncovers the fitness landscape of the genetic code. PLoS Comput Biol 2023; 19:e1011034. [PMID: 37068098 PMCID: PMC10138212 DOI: 10.1371/journal.pcbi.1011034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/27/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
The genetic code refers to a rule that maps 64 codons to 20 amino acids. Nearly all organisms, with few exceptions, share the same genetic code, the standard genetic code (SGC). While it remains unclear why this universal code has arisen and been maintained during evolution, it may have been preserved under selection pressure. Theoretical studies comparing the SGC and numerically created hypothetical random genetic codes have suggested that the SGC has been subject to strong selection pressure for being robust against translation errors. However, these prior studies have searched for random genetic codes in only a small subspace of the possible code space due to limitations in computation time. Thus, how the genetic code has evolved, and the characteristics of the genetic code fitness landscape, remain unclear. By applying multicanonical Monte Carlo, an efficient rare-event sampling method, we efficiently sampled random codes from a much broader random ensemble of genetic codes than in previous studies, estimating that only one out of every 1020 random codes is more robust than the SGC. This estimate is significantly smaller than the previous estimate, one in a million. We also characterized the fitness landscape of the genetic code that has four major fitness peaks, one of which includes the SGC. Furthermore, genetic algorithm analysis revealed that evolution under such a multi-peaked fitness landscape could be strongly biased toward a narrow peak, in an evolutionary path-dependent manner.
Collapse
Affiliation(s)
- Yuji Omachi
- Graduate School of Sciences, The University of Tokyo, Hongo, Tokyo, Japan
| | - Nen Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Universal Biology Institute, The University of Tokyo, Hongo, Tokyo, Japan
| | - Chikara Furusawa
- Graduate School of Sciences, The University of Tokyo, Hongo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Hongo, Tokyo, Japan
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
| |
Collapse
|
35
|
Fontecilla-Camps JC. Reflections on the Origin and Early Evolution of the Genetic Code. Chembiochem 2023; 24:e202300048. [PMID: 37052530 DOI: 10.1002/cbic.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Indexed: 04/14/2023]
Abstract
Examination of the genetic code (GeCo) reveals that amino acids coded by (A/U) codons display a large functional spectrum and bind RNA whereas, except for Arg, those coded by (G/C) codons do not. From a stereochemical viewpoint, the clear preference for (A/U)-rich codons to be located at the GeCo half blocks suggests they were specifically determined. Conversely, the overall lower affinity of cognate amino acids for their (G/C)-rich anticodons points to their late arrival to the GeCo. It is proposed that i) initially the code was composed of the eight (A/U) codons; ii) these codons were duplicated when G/C nucleotides were added to their wobble positions, and three new codons with G/C in their first position were incorporated; and iii) a combination of A/U and G/C nucleotides progressively generated the remaining codons.
Collapse
|
36
|
Gullotta G, Korte A, Marquardt S. Functional variation in the non-coding genome: molecular implications for food security. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2338-2351. [PMID: 36316269 DOI: 10.1093/jxb/erac395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 06/06/2023]
Abstract
The growing world population, in combination with the anticipated effects of climate change, is pressuring food security. Plants display an impressive arsenal of cellular mechanisms conferring resilience to adverse environmental conditions, and humans rely on these mechanisms for stable food production. The elucidation of the molecular basis of the mechanisms used by plants to achieve resilience promises knowledge-based approaches to enhance food security. DNA sequence polymorphisms can reveal genomic regions that are linked to beneficial traits of plants. However, our ability to interpret how a given DNA sequence polymorphism confers a fitness advantage at the molecular level often remains poor. A key factor is that these polymorphisms largely localize to the enigmatic non-coding genome. Here, we review the functional impact of sequence variations in the non-coding genome on plant biology in the context of crop breeding and agricultural traits. We focus on examples of non-coding with particularly convincing functional support. Our survey combines findings that are consistent with the view that the non-coding genome contributes to cellular mechanisms assisting many plant traits. Understanding how DNA sequence polymorphisms in the non-coding genome shape plant traits at the molecular level offers a largely unexplored reservoir of solutions to address future challenges in plant growth and resilience.
Collapse
Affiliation(s)
- Giorgio Gullotta
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord 32, 97074 Würzburg, Germany
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| |
Collapse
|
37
|
Cozma E, Rao M, Dusick M, Genereaux J, Rodriguez-Mias RA, Villén J, Brandl CJ, Berg MD. Anticodon sequence determines the impact of mistranslating tRNA Ala variants. RNA Biol 2023; 20:791-804. [PMID: 37776539 PMCID: PMC10543346 DOI: 10.1080/15476286.2023.2257471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
Transfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNAAla and the anticodon plays no role in charging, tRNAAla variants with anticodon mutations have the potential to mis-incorporate alanine. Here, we characterize the impact of the 60 non-alanine tRNAAla anticodon variants on the growth of Saccharomyces cerevisiae. Overall, 36 tRNAAla anticodon variants decreased growth in single- or multi-copy. Mass spectrometry analysis of the cellular proteome revealed that 52 of 57 anticodon variants, not decoding alanine or stop codons, induced mistranslation when on single-copy plasmids. Variants with G/C-rich anticodons resulted in larger growth deficits than A/U-rich variants. In most instances, synonymous anticodon variants impact growth differently, with anticodons containing U at base 34 being the least impactful. For anticodons generating the same amino acid substitution, reduced growth generally correlated with the abundance of detected mistranslation events. Differences in decoding specificity, even between synonymous anticodons, resulted in each tRNAAla variant mistranslating unique sets of peptides and proteins. We suggest that these differences in decoding specificity are also important in determining the impact of tRNAAla anticodon variants.
Collapse
Affiliation(s)
- Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Megha Rao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Madison Dusick
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Kachale A, Pavlíková Z, Nenarokova A, Roithová A, Durante IM, Miletínová P, Záhonová K, Nenarokov S, Votýpka J, Horáková E, Ross RL, Yurchenko V, Beznosková P, Paris Z, Valášek LS, Lukeš J. Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 2023; 613:751-758. [PMID: 36631608 DOI: 10.1038/s41586-022-05584-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023]
Abstract
Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.
Collapse
Affiliation(s)
- Ambar Kachale
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Zuzana Pavlíková
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Adriana Roithová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ignacio M Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petra Miletínová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Serafim Nenarokov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | | | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petra Beznosková
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. .,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.
| | | | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. .,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
39
|
Pan M, Li B. T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies. eLife 2022; 11:e81952. [PMID: 36350695 PMCID: PMC9683788 DOI: 10.7554/elife.81952] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
T cells are potent at eliminating pathogens and playing a crucial role in the adaptive immune response. T cell receptor (TCR) convergence describes T cells that share identical TCRs with the same amino acid sequences but have different DNA sequences due to codon degeneracy. We conducted a systematic investigation of TCR convergence using single-cell immune profiling and bulk TCRβ-sequence (TCR-seq) data obtained from both mouse and human samples and uncovered a strong link between antigen-specificity and convergence. This association was stronger than T cell expansion, a putative indicator of antigen-specific T cells. By using flow-sorted tetramer+ single T cell data, we discovered that convergent T cells were enriched for a neoantigen-specific CD8+ effector phenotype in the tumor microenvironment. Moreover, TCR convergence demonstrated better prediction accuracy for immunotherapy response than the existing TCR repertoire indexes. In conclusion, convergent T cells are likely to be antigen-specific and might be a novel prognostic biomarker for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Mingyao Pan
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Bo Li
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
40
|
Zürcher JF, Robertson WE, Kappes T, Petris G, Elliott TS, Salmond GPC, Chin JW. Refactored genetic codes enable bidirectional genetic isolation. Science 2022; 378:516-523. [PMID: 36264827 PMCID: PMC7614150 DOI: 10.1126/science.add8943] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The near-universal genetic code defines the correspondence between codons in genes and amino acids in proteins. We refactored the structure of the genetic code in Escherichia coli and created orthogonal genetic codes that restrict the escape of synthetic genetic information into natural life. We developed orthogonal and mutually orthogonal horizontal gene transfer systems, which permit the transfer of genetic information between organisms that use the same genetic code but restrict the transfer of genetic information between organisms that use different genetic codes. Moreover, we showed that locking refactored codes into synthetic organisms completely blocks invasion by mobile genetic elements, including viruses, which carry their own translation factors and successfully invade organisms with canonical and compressed genetic codes.
Collapse
Affiliation(s)
- Jérôme F. Zürcher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Tomás Kappes
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S. Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
41
|
Harrison SA, Palmeira RN, Halpern A, Lane N. A biophysical basis for the emergence of the genetic code in protocells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148597. [PMID: 35868450 DOI: 10.1016/j.bbabio.2022.148597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The origin of the genetic code is an abiding mystery in biology. Hints of a 'code within the codons' suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells.
Collapse
Affiliation(s)
- Stuart A Harrison
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Raquel Nunes Palmeira
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Aaron Halpern
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
42
|
Borah C, Ali T. Genetic code noise immunity features: Degeneracy and frameshift correction. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
44
|
Property based analysis: Optimality of RNY comma-free code versus circular code (X) after frameshift errors. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Marciano DC, Wang C, Hsu TK, Bourquard T, Atri B, Nehring RB, Abel NS, Bowling EA, Chen TJ, Lurie PD, Katsonis P, Rosenberg SM, Herman C, Lichtarge O. Evolutionary action of mutations reveals antimicrobial resistance genes in Escherichia coli. Nat Commun 2022; 13:3189. [PMID: 35680894 PMCID: PMC9184624 DOI: 10.1038/s41467-022-30889-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Since antibiotic development lags, we search for potential drug targets through directed evolution experiments. A challenge is that many resistance genes hide in a noisy mutational background as mutator clones emerge in the adaptive population. Here, to overcome this noise, we quantify the impact of mutations through evolutionary action (EA). After sequencing ciprofloxacin or colistin resistance strains grown under different mutational regimes, we find that an elevated sum of the evolutionary action of mutations in a gene identifies known resistance drivers. This EA integration approach also suggests new antibiotic resistance genes which are then shown to provide a fitness advantage in competition experiments. Moreover, EA integration analysis of clinical and environmental isolates of antibiotic resistant of E. coli identifies gene drivers of resistance where a standard approach fails. Together these results inform the genetic basis of de novo colistin resistance and support the robust discovery of phenotype-driving genes via the evolutionary action of genetic perturbations in fitness landscapes.
Collapse
Affiliation(s)
- David C Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teng-Kuei Hsu
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benu Atri
- Structural and Computational Biology & Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Clara Analytics Inc., 451 El Camino Real #201, Santa Clara, CA, 95050, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth A Bowling
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Taylor J Chen
- Integrative Molecular & Biomedical Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pamela D Lurie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular & Biomedical Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Structural and Computational Biology & Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Christinaki AC, Kanellopoulos SG, Kortsinoglou AM, Andrikopoulos MΑ, Theelen B, Boekhout T, Kouvelis VN. Mitogenomics and mitochondrial gene phylogeny decipher the evolution of Saccharomycotina yeasts. Genome Biol Evol 2022; 14:6586520. [PMID: 35576568 PMCID: PMC9154068 DOI: 10.1093/gbe/evac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Saccharomycotina yeasts belong to diverse clades within the kingdom of fungi and are important to human everyday life. This work investigates the evolutionary relationships among these yeasts from a mitochondrial (mt) genomic perspective. A comparative study of 155 yeast mt genomes representing all major phylogenetic lineages of Saccharomycotina was performed, including genome size and content variability, intron and intergenic regions’ diversity, genetic code alterations, and syntenic variation. Findings from this study suggest that mt genome size diversity is the result of a ceaseless random process, mainly based on genetic recombination and intron mobility. Gene order analysis revealed conserved syntenic units and many occurring rearrangements, which can be correlated with major evolutionary events as shown by the phylogenetic analysis of the concatenated mt protein matrix. For the first time, molecular dating indicated a slower mt genome divergence rate in the early stages of yeast evolution, in contrast with a faster rate in the late evolutionary stages, compared to their nuclear time divergence. Genetic code reassignments of mt genomes are a perpetual process happening in many different parallel evolutionary steps throughout the evolution of Saccharomycotina. Overall, this work shows that phylogenetic studies based on the mt genome of yeasts highlight major evolutionary events.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Spyros G Kanellopoulos
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Alexandra M Kortsinoglou
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Marios Α Andrikopoulos
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,University of Amsterdam, Institute of Biodiversity and Ecosystem Dynamics (IBED), Amsterdam, The Netherlands
| | - Vassili N Kouvelis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| |
Collapse
|
47
|
Standard Genetic Code vs. Supersymmetry Genetic Code – Alphabetical table vs. physicochemical table. Biosystems 2022; 218:104695. [DOI: 10.1016/j.biosystems.2022.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
|
48
|
Kondratyeva LG, Dyachkova MS, Galchenko AV. The Origin of Genetic Code and Translation in the Framework of Current Concepts on the Origin of Life. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:150-169. [PMID: 35508902 DOI: 10.1134/s0006297922020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The origin of genetic code and translation system is probably the central and most difficult problem in the investigations on the origin of life and one of the most complex problems in the evolutionary biology in general. There are multiple hypotheses on the emergence and development of existing genetic systems that propose the mechanisms for the origin and early evolution of genetic code, as well as for the emergence of replication and translation. Here, we discuss the most well-known of these hypotheses, although none of them provides a description of the early evolution of genetic systems without gaps and assumptions. The RNA world hypothesis is a currently prevailing scientific idea on the early evolution of biological and pre-biological structures, the main advantage of which is the assumption that RNAs as the first living systems were self-sufficient, i.e., capable of functioning as both catalysts and templates. However, this hypothesis has also significant limitations. In particular, no ribozymes with processive polymerase activity have been yet discovered or synthesized. Taking into account the mutual need of proteins and nucleic acids in each other in the current world, many authors propose the early evolution scenarios based on the co-evolution of these two classes of organic molecules. They postulate that the emergence of translation was necessary for the replication of nucleic acids, in contrast to the RNA world hypothesis, according to which the emergence of translation was preceded by the era of self-replicating RNAs. Although such scenarios are less parsimonious from the evolutionary point of view, since they require simultaneous emergence and evolution of two classes of organic molecules, as well as the emergence of synchronized replication and translation, their major advantage is that they explain the development of processive and much more accurate protein-dependent replication.
Collapse
Affiliation(s)
- Liya G Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | - Alexey V Galchenko
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| |
Collapse
|
49
|
Carter CW, Popinga A, Bouckaert R, Wills PR. Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling. Int J Mol Sci 2022; 23:ijms23031520. [PMID: 35163448 PMCID: PMC8835825 DOI: 10.3390/ijms23031520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The role of aminoacyl-tRNA synthetases (aaRS) in the emergence and evolution of genetic coding poses challenging questions concerning their provenance. We seek evidence about their ancestry from curated structure-based multiple sequence alignments of a structurally invariant “scaffold” shared by all 10 canonical Class I aaRS. Three uncorrelated phylogenetic metrics—mutation frequency, its uniformity, and row-by-row cladistic congruence—imply that the Class I scaffold is a mosaic assembled from successive genetic sources. Metrics for different modules vary in accordance with their presumed functionality. Sequences derived from the ATP– and amino acid– binding sites exhibit specific two-way coupling to those derived from Connecting Peptide 1, a third module whose metrics suggest later acquisition. The data help validate: (i) experimental fragmentations of the canonical Class I structure into three partitions that retain catalytic activities in proportion to their length; and (ii) evidence that the ancestral Class I aaRS gene also encoded a Class II ancestor in frame on the opposite strand. A 46-residue Class I “protozyme” roots the Class I tree prior to the adaptive radiation of the Rossmann dinucleotide binding fold that refined substrate discrimination. Such rooting implies near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved after the genetic code had been implemented in an RNA world. Further, pinpointing discontinuous enhancements of aaRS fidelity establishes a timeline for the growth of coding from a binary amino acid alphabet.
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
- Correspondence: ; Tel.: +1-919-966-3263
| | - Alex Popinga
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Remco Bouckaert
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand;
| |
Collapse
|
50
|
Caldararo F, Di Giulio M. The genetic code is very close to a global optimum in a model of its origin taking into account both the partition energy of amino acids and their biosynthetic relationships. Biosystems 2022; 214:104613. [DOI: 10.1016/j.biosystems.2022.104613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 01/23/2023]
|