1
|
Mou Y, Liao W, Li Y, Wan L, Liu J, Luo X, Shen H, Sun Q, Wang J, Tang J, Wang Z. Glycyrrhizin and the Related Preparations: An Inspiring Resource for the Treatment of Liver Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:315-354. [PMID: 38553799 DOI: 10.1142/s0192415x24500149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Liver diseases and their related complications endanger the health of millions of people worldwide. The prevention and treatment of liver diseases are still serious challenges both in China and globally. With the improvement of living standards, the prevalence of metabolic liver diseases, including non-alcoholic fatty liver disease and alcoholic liver disease, has increased at an alarming rate, resulting in more cases of end-stage liver disease. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently needed. Glycyrrhizin (GL), a triterpene glycoside from the roots of licorice plants, possesses a wide range of pharmacological and biological activities. Currently, GL preparations (GLPs) have certain advantages in the treatment of liver diseases, with good clinical effects and fewer adverse reactions, and have shown broad application prospects through multitargeting therapeutic mechanisms, including antisteatotic, anti-oxidative stress, anti-inflammatory, immunoregulatory, antifibrotic, anticancer, and drug interaction activities. This review summarizes the currently known biological activities of GLPs and their medical applications in the treatment of liver diseases, and highlights the potential of these preparations as promising therapeutic options and their alluring prospects for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Xialing Luo
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing 402760, P. R. China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| |
Collapse
|
2
|
Gao W, Zhao Y, Guo L, Wang Y, Gong H, Zhang B, Yan M. Comparative effectiveness of glycyrrhizic acid preparations aimed at improving liver function of patients with chronic hepatitis B: A network meta-analysis of 53 randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154883. [PMID: 37224775 DOI: 10.1016/j.phymed.2023.154883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND OBJECTIVES Entecavir (ETV) has disadvantages, such as poor improvement in liver function, during the treatment of Chronic hepatitis B (CHB). Thus ETV is often used in clinical therapy with glycyrrhizic acid (GA) preparations. However, due to the lack of reliable and direct clinical studies, it remains controversial whether glycyrrhizic acid preparations have the best efficacy in CHB. Therefore, we aimed to compare and rank the different GA preparations in the treatment of CHB using network meta-analysis (NMA). METHODS We systematically searched MEDLINE, EMBASE, Cochrane Library, Web of Science, China national knowledge internet (CNKI), Wanfang, VIP, and SinoMed databases as of August 4, 2022. Literature was screened according to predefined inclusion and exclusion criteria to extract meaningful information. A Bayesian approach was used for random effects model network meta-analysis, and Stata 17 software was used for data analysis. RESULTS From 1074 papers, we included 53 relevant randomized clinical trials (RCTs). For the primary outcome, we used the overall effective rate in assessing the effectiveness of treatment for CHB (31 RCTs including 3007 patients): CGI, CGT, DGC and MgIGI significantly reduced the incidence of overall response compared to controls (RRs range from 1.16 to 1.24); SUCRA results showed that MgIGI was the best (SUCRA 0.923). In terms of secondary outcomes, we assessed the effect of treatment for CHB according to the level of reduction in ALT and AST: for ALT (37 RCTs including 3752 patients), CGI, CGT, DGC, DGI and MgIGI significantly improved liver function index compared to controls (MD range from 14.65 to 20.41); SUCRA results showed that CGI was the best (SUCRA 0.87); for AST, GI, CGT, DGC, DGI and MgIGI significantly improved liver function index compared to the control group (MD range from 17.46 to 24.42); SUCRA results showed that MgIGI was the best (SUCRA 0.871). CONCLUSION In this study, we verified that the combination of GA and Entecavir is more effective than entecavir monotherapy in the treatment of hepatitis B. MgIGI and CGI showed clinically significant effects on liver function recovery compared with other GA preparations. MgIGI appeared to be the best choice among all GA preparations for the treatment of CHB. Our study provides some references for the treatment of CHB.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
3
|
Bravo M, Simón J, González-Recio I, Martinez-Cruz LA, Goikoetxea-Usandizaga N, Martínez-Chantar ML. Magnesium and Liver Metabolism Through the Lifespan. Adv Nutr 2023; 14:739-751. [PMID: 37207838 PMCID: PMC10334155 DOI: 10.1016/j.advnut.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Within the organism, the liver is the main organ responsible for metabolic homeostasis and xenobiotic transformation. To maintain an adequate liver weight-to-bodyweight ratio, this organ has an extraordinary regenerative capacity and is able to respond to an acute insult or partial hepatectomy. Maintenance of hepatic homeostasis is crucial for the proper functioning of the liver, and in this context, adequate nutrition with macro- and micronutrient intake is mandatory. Among all known macro-minerals, magnesium has a key role in energy metabolism and in metabolic and signaling pathways that maintain liver function and physiology throughout its life span. In the present review, the cation is reported as a potential key molecule during embryogenesis, liver regeneration, and aging. The exact role of the cation during liver formation and regeneration is not fully understood due to its unclear role in the activation and inhibition of those processes, and further research in a developmental context is needed. As individuals age, they may develop hypomagnesemia, a condition that aggravates the characteristic alterations. Additionally, risk of developing liver pathologies increases with age, and hypomagnesemia may be a contributing factor. Therefore, magnesium loss must be prevented by adequate intake of magnesium-rich foods such as seeds, nuts, spinach, or rice to prevent age-related hepatic alterations and contribute to the maintenance of hepatic homeostasis. Since magnesium-rich sources include a variety of foods, a varied and balanced diet can meet both macronutrient and micronutrient needs.
Collapse
Affiliation(s)
- Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Luis Alfonso Martinez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain.
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain.
| |
Collapse
|
4
|
Zhou X, Li X, Yi K, Liang C, Geng S, Zhu J, Xie C, Zhong C. Magnesium isoglycyrrhizinate ameliorates lipopolysaccharide-induced liver injury by upregulating autophagy and inhibiting inflammation via IL-22 expression. Bioorg Chem 2022; 128:106034. [DOI: 10.1016/j.bioorg.2022.106034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
|
5
|
Dai W, Wang K, Zhen X, Huang Z, Liu L. Magnesium isoglycyrrhizinate attenuates acute alcohol-induced hepatic steatosis in a zebrafish model by regulating lipid metabolism and ER stress. Nutr Metab (Lond) 2022; 19:23. [PMID: 35331265 PMCID: PMC8944020 DOI: 10.1186/s12986-022-00655-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Alcoholism is a well-known risk factor for liver injury and is one of the major causes of hepatic steatosis worldwide. Although many drugs have been reported to have protective effects against acute alcohol-induced hepatotoxicity, there is limited available treatment for alcoholic liver disease (ALD), indicating an urgent need for effective therapeutic options. Herein, we first reported the protective effects of magnesium isoglycyrrhizinate (MgIG) on acute alcohol-induced hepatic steatosis and its related mechanisms in a zebrafish model. Methods Alcohol was administered directly to embryo medium at 5 days post-fertilization (dpf) for up to 32 h. MgIG was given to the larvae 2 h before the administration of alcohol and then cotreated with alcohol starting at 5 dpf. Oil red O staining was used to determine the incidence of steatosis, and pathological features of the liver were assessed by hematoxylin–eosin staining. Biological indexes, total cholesterol (TC) and triacylglycerol (TG) were detected in the livers of zebrafish larvae. Morphological changes in the livers of zebrafish larvae were observed using liver-specific EGFP transgenic zebrafish (Tg(lfabp10a:eGFP)). The expression levels of critical molecules related to endoplasmic reticulum (ER) stress and lipid metabolism were detected by qRT–PCR, whole-mount in situ hybridization and western blotting. Results Alcohol-treated larvae developed hepatomegaly and steatosis after 32 h of exposure. We found that MgIG improved hepatomegaly and reduced the incidence of steatosis in a dose-dependent manner by oil red O staining and diminished deposits of alcohol-induced fat droplets by histologic analysis. Moreover, MgIG significantly decreased the levels of TC and TG in the livers of zebrafish larvae. Furthermore, the expression levels of critical genes involved in ER stress (atf6, irela, bip, chop) and the key enzymes regulating lipid metabolism (acc1, fasn, hmgcs1 and hmgcra) were significantly higher in the alcohol-treated group than in the control group. However, in the MgIG plus alcohol-treated group, the expression of these genes was markedly decreased compared with that in the alcohol-treated group. Whole-mount in situ hybridization and western blotting also showed that MgIG had an effect on the expression levels of critical genes and proteins involved in lipid metabolism and ER stress. Our results revealed that MgIG could markedly regulate these genes and protect the liver from ER stress and lipid metabolism disorders. Conclusions Our study is the first to demonstrate that MgIG could protect the liver from acute alcohol stimulation by ameliorating the disorder of lipid metabolism and regulating ER stress in zebrafish larvae. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00655-7.
Collapse
Affiliation(s)
- Wencong Dai
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kunyuan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xinchun Zhen
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
6
|
Benić MS, Nežić L, Vujić-Aleksić V, Mititelu-Tartau L. Novel Therapies for the Treatment of Drug-Induced Liver Injury: A Systematic Review. Front Pharmacol 2022; 12:785790. [PMID: 35185538 PMCID: PMC8847672 DOI: 10.3389/fphar.2021.785790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Many drugs with different mechanisms of action and indications available on the market today are capable of inducing hepatotoxicity. Drug-induced liver injury (DILI) has been a treatment challenge nowadays as it was in the past. We searched Medline (via PubMed), CENTRAL, Science Citation Index Expanded, clinical trials registries and databases of DILI and hepatotoxicity up to 2021 for novel therapies for the management of adult patients with DILI based on the combination of three main search terms: 1) treatment, 2) novel, and 3) drug-induced liver injury. The mechanism of action of novel therapies, the potential of their benefit in clinical settings, and adverse drug reactions related to novel therapies were extracted. Cochrane Risk of bias tool and Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment approach was involved in the assessment of the certainty of the evidence for primary outcomes of included studies. One thousand three hundred seventy-two articles were identified. Twenty-eight articles were included in the final analysis. Eight randomized controlled trials (RCTs) were detected and for six the available data were sufficient for analysis. In abstract form only we found six studies which were also anaylzed. Investigated agents included: bicyclol, calmangafodipir, cytisin amidophospate, fomepizole, livina-polyherbal preparation, magnesium isoglycyrrhizinate (MgIG), picroliv, plasma exchange, radix Paeoniae Rubra, and S-adenosylmethionine. The primary outcomes of included trials mainly included laboratory markers improvement. Based on the moderate-certainty evidence, more patients treated with MgIG experienced alanine aminotransferase (ALT) normalization compared to placebo. Low-certainty evidence suggests that bicyclol treatment leads to a reduction of ALT levels compared to phosphatidylcholine. For the remaining eight interventions, the certainty of the evidence for primary outcomes was assessed as very low and we are very uncertain in any estimate of effect. More effort should be involved to investigate the novel treatment of DILI. Well-designed RCTs with appropriate sample sizes, comparable groups and precise, not only surrogate outcomes are urgently welcome.
Collapse
Affiliation(s)
- Mirjana Stanić Benić
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Vesna Vujić-Aleksić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- The Republic of Srpska Agency for Certification, Accreditation and Quality Improvement in Health Care, Banja Luka, Bosnia and Herzegovina
| | | |
Collapse
|
7
|
Zhou Y, Wu R, Wang X, Jiang Y, Xu W, Shao Y, Yue C, Shi W, Jin H, Ge T, Bao X, Lu C. Activation of UQCRC2-dependent mitophagy by tetramethylpyrazine inhibits MLKL-mediated hepatocyte necroptosis in alcoholic liver disease. Free Radic Biol Med 2022; 179:301-316. [PMID: 34774698 DOI: 10.1016/j.freeradbiomed.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Hepatocyte necroptosis is a core pathogenetic event during alcoholic liver disease. This study was aimed to explore the potential of tetramethylpyrazine (TMP), an active hepatoprotective ingredient extracted from Ligusticum Wallichii Franch, in limiting alcohol-triggered hepatocyte necroptosis and further specify the molecular mechanism. Results revealed that TMP reduced activation of receptor-interacting protein kinase 1 (RIPK1)/RIPK3 necrosome in ethanol-exposed hepatocytes and phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which thereby diminished necroptosis and leakage of damage-associated molecular patterns. Suppression on mitochondrial translocation of p-MLKL by TMP contributed to recovery of mitochondrial function in ethanol-damaged hepatocytes. TMP also disrupted necroptotic signal loop by interrupting mitochondrial reactive oxygen species (ROS)-dependent positive feedback between p-MLKL and RIPK1/RIPK3 necrosome. Further, TMP promoted clearance of impaired mitochondria in ethanol-incubated hepatocytes via restoring PINK1/parkin-mediated mitophagy. Ubiquinol-cytochrome c reductase core protein 2 (UQCRC2) was downregulated in ethanol-exposed hepatocytes, which was restored after TMP treatment. In vitro UQCRC2 knockdown lowered the capacities of TMP in reducing mitochondrial ROS accumulation, relieving mitochondria damage, and enhancing PINK1/parkin-mediated mitophagy in ethanol-exposed hepatocytes. Analogously, systematic UQCRC2 knockdown interrupted the actions of TMP to trigger autophagic signal, repress necroptotic signal, and protect against alcoholic liver injury, inflammation, and ROS overproduction. In conclusion, this work concluded that TMP rescued UQCRC2 expression in ethanol-challenged hepatocytes, which contributed to necroptosis inhibition by facilitating PINK1/parkin-mediated mitophagy. These findings uncovered a potential molecular pharmacological mechanism underlying the hepatoprotective action of TMP and suggested TMP as a promising therapeutic candidate for alcoholic liver disease.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Ruoman Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chunxiao Yue
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenqian Shi
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
8
|
Shao Y, Wang X, Zhou Y, Jiang Y, Wu R, Lu C. Pterostilbene attenuates RIPK3-dependent hepatocyte necroptosis in alcoholic liver disease via SIRT2-mediated NFATc4 deacetylation. Toxicology 2021; 461:152923. [PMID: 34474091 DOI: 10.1016/j.tox.2021.152923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Receptor-interacting protein kinase (RIPK) 3-dependent necroptosis plays a critical role in alcoholic liver disease. RIPK3 also facilitates steatosis, oxidative stress, and inflammation. Pterostilbene (PTS) has favorable hepatoprotective activities. The present study was aimed to reveal the therapeutic effects of PTS on ethanol-induced hepatocyte necroptosis and further illustrate possible molecular mechanisms. Human hepatocytes LO2 were incubated with 100 mM ethanol for 24 h to mimic alcoholic hepatocyte injury. Results showed that PTS at 20 μM reduced damage-associated molecular patterns (DAMPs) release, including IL-1α and high-mobility group box 1 (HMGB1), and blocked necroptotic signaling, evidenced by decreased RIPK1 and RIPK3 expression. Trypan blue staining visually showed that PTS reduced nonviable hepatocytes after ethanol exposure, which was counteracted by adenovirus-mediated ectopic overexpression of RIPK3 but not RIPK1. Besides, PTS inhibited ethanol-induced hepatocyte steatosis via restricting lipogenesis and enhancing lipolysis, decreased oxidative stress via rescuing mitochondrial membrane potential, reducing oxidative system, and enhancing antioxidant system, and relieved inflammation evidenced by decreased expression of proinflammatory factors. Notably, RIPK3 overexpression diminished these protective effects of PTS. Subsequent work indicated that PTS suppressed the expression and nuclear translocation of nuclear factor of activated T-cells 4 (NFATc4), an acetylated protein, in ethanol-exposed hepatocytes, while NFATc4 overexpression impaired the negative regulation of PTS on RIPK3 and DAMPs release. Further, PTS rescued sirtuin 2 (SIRT2) expression, and SIRT2 knockdown abrogated the inhibitory effects of PTS on nuclear translocation and acetylation status of NFATc4 in ethanol-incubated hepatocytes. In conclusion, PTS attenuated RIPK3-dependent hepatocyte necroptosis after ethanol exposure via SIRT2-mediated NFATc4 deacetylation.
Collapse
Affiliation(s)
- Yunyun Shao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ruoman Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
9
|
Chen X, Wang X, Yang L, Xu H, Wu Y, Wu J, Chen L, Xu C. Magnesium isoglycyrrhizinate prevents cadmium-induced activation of JNK and apoptotic hepatocyte death by reversing ROS-inactivated PP2A. J Pharm Pharmacol 2021; 73:1663-1674. [PMID: 34468764 DOI: 10.1093/jpp/rgab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Cadmium (Cd) induces reactive oxygen species (ROS)-mediated hepatocyte apoptosis and consequential liver disorders. This study aimed to investigate the effect of magnesium isoglycyrrhizinate (MgIG) on Cd-induced hepatotoxicity. METHODS L02 and AML-12 cells were used to study MgIG hepatoprotective effects. Cd-evoked apoptosis, ROS and protein phosphatase 2A (PP2A)/c-Jun N-terminal kinase (JNK) cascade disruption were analysed by cell viability assay, 6-diamidino-2-phenylindole (DAPI) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, ROS imaging and Western blotting. Pharmacological and genetic approaches were used to explore the mechanisms. KEY FINDINGS We show that MgIG attenuated Cd-evoked hepatocyte apoptosis by blocking JNK pathway. Pre-treatment with SP600125 or ectopic expression of dominant-negative c-Jun enhanced MgIG's anti-apoptotic effects. Further investigation found that MgIG rescued Cd-inactivated PP2A. Inhibition of PP2A activity by okadaic acid attenuated the MgIG's inhibition of the Cd-stimulated JNK pathway and apoptosis; in contrast, overexpression of PP2A strengthened the MgIG effects. In addition, MgIG blocked Cd-induced ROS generation. Eliminating ROS by N-acetyl-l-cysteine abrogated Cd-induced PP2A-JNK pathway disruption and concurrently reinforced MgIG-conferred protective effects, which could be further slightly strengthened by PP2A overexpression. CONCLUSIONS Our findings indicate that MgIG is a promising hepatoprotective agent for the prevention of Cd-induced hepatic injury by mitigating ROS-inactivated PP2A, thus preventing JNK activation and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiaoling Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Xiaoxue Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Liu Yang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Hongjiang Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Yiqun Wu
- Institute for Pharmacology & Toxicology, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, P. R. China
| | - Jialin Wu
- Institute for Pharmacology & Toxicology, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, P. R. China
| | - Long Chen
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Chong Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Institute for Pharmacology & Toxicology, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, P. R. China
| |
Collapse
|
10
|
Wu R, Wang X, Shao Y, Jiang Y, Zhou Y, Lu C. NFATc4 mediates ethanol-triggered hepatocyte senescence. Toxicol Lett 2021; 350:10-21. [PMID: 34192554 DOI: 10.1016/j.toxlet.2021.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocyte senescence is a core event that mediates the occurrence and development of alcoholic liver disease. Nuclear factor of activated T-cells 4 (NFATc4) is a key driver of nonalcoholic steatohepatitis. However, little was known about the implication of NFATc4 for alcoholic liver disease. This study was aimed to investigate the role of NFATc4 in hepatocyte senescence and further elucidate the underlying mechanism. METHODS Real-time PCR, Western blot, immunofluorescence staining, and enzyme-linked immunosorbent assay were performed to explore the role of NFATc4 in hepatocyte senescence. RESULTS NFATc4 was induced in ethanol-incubated hepatocytes. NFATc4 knockdown recovered cell viability and reduced the release of aspartate transaminase, alanine transaminase, and lactic dehydrogenase from ethanol-incubated hepatocytes. NFATc4 knockdown protected mice from alcoholic liver injury and inflammation. NFATc4 knockdown counteracted ethanol-induced hepatocyte senescence, evidenced by decreased senescence-associated β-galactosidase positivity and reduced p16, p21, HMGA1, and γH2AX, which was validated in in vivo studies. Peroxisome proliferator-activated receptor (PPAR)γ was inhibited by NFATc4 in ethanol-treated hepatocytes. PPARγ deficiency abrogated the inhibitory effects of NFATc4 knockdown on hepatocyte senescence, oxidative stress, and hepatic steatosis in mice with alcoholic liver disease. CONCLUSIONS This work discovered that ethanol enhanced NFATc4 expression, which further triggered hepatocyte senescence via repression of PPARγ.
Collapse
Affiliation(s)
- Ruoman Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
11
|
Lai Y, Tan Q, Xv S, Huang S, Wang Y, Li Y, Zeng T, Mo C, Chen Y, Huang S, Zhou C, Gao L, Lv Z. Ginsenoside Rb1 Alleviates Alcohol-Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation. Front Pharmacol 2021; 12:616409. [PMID: 33716743 PMCID: PMC7952325 DOI: 10.3389/fphar.2021.616409] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) has become a heavy burden on health worldwide. Ginsenoside Rb1 (GRb1), extracted from Panax quinquefolium L., has protective effects on many diseases, but the effect and mechanisms of GRb1 on ALD remain unknown. This study aimed to investigate the protective effects of GRb1 on ALD and to discover the potential mechanisms. Zebrafish larvae were exposed to 350 mM ethanol for 32 h to establish a model of acute alcoholic liver injury, and the larvae were then treated with 6.25, 12.5, or 25 μM GRb1 for 48 h. The human hepatocyte cell line was stimulated by 100 mM ethanol and meanwhile incubated with 6.25, 12.5, and 25 μM GRb1 for 24 h. The lipid changes were detected by Oil Red O staining, Nile Red staining, and triglyceride determination. The antioxidant capacity was assessed by fluorescent probes in vivo, and the expression levels of inflammatory cytokines were detected by immunohistochemistry, immunofluorescence, and quantitative real-time PCR. The results showed that GRb1 alleviated lipid deposition in hepatocytes at an optimal concentration of 12.5 μM in vivo. GRb1 reversed the reactive oxygen species accumulation caused by alcohol consumption and partially restored the level of glutathione. Furthermore, GRb1 ameliorated liver inflammation by inhibiting neutrophil infiltration in the liver parenchyma and downregulating the expression of nuclear factor-kappa B pathway-associated proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1β. This study revealed that GRb1 has a protective effect on alcohol-induced liver injury due to its resistance to lipid deposition as well as antioxidant and anti-inflammatory actions. These findings suggest that GRb1 may be a promising candidate against ALD.
Collapse
Affiliation(s)
- Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qinxiang Tan
- Renal Division, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Shu Xv
- Oncology Department of Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Yang YZ, Liu ZH, Wang SC, Zhang XQ, Xu HJ, Yang L, Kong LD. Magnesium isoglycyrrhizinate alleviates fructose-induced liver oxidative stress and inflammatory injury through suppressing NOXs. Eur J Pharmacol 2020; 883:173314. [PMID: 32619679 DOI: 10.1016/j.ejphar.2020.173314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022]
Abstract
Excessive fructose intake is a risk factor for liver oxidative stress injury. Magnesium isoglycyrrhizinate as a hepatoprotective agent is used to treat liver diseases in clinic. However, its antioxidant effects and the underlying potential mechanisms are still not clearly understood. In this study, magnesium isoglycyrrhizinate was found to alleviate liver oxidative stress and inflammatory injury in fructose-fed rats. Magnesium isoglycyrrhizinate suppressed hepatic reactive oxygen species overproduction (0.97 ± 0.04 a.u. versus 1.34 ± 0.07 a.u.) in fructose-fed rats by down-regulating mRNA and protein levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1, NOX2 and NOX4, resulting in reduction of interleukin-1β (IL-1β) levels (1.13 ± 0.09 a.u. versus 1.97 ± 0.12 a.u.). Similarly, magnesium isoglycyrrhizinate reduced reactive oxygen species overproduction (1.07 ± 0.02 a.u. versus 1.35 ± 0.06 a.u.) and IL-1β levels (1.14 ± 0.09 a.u. versus 1.66 ± 0.07 a.u.) in fructose-exposed HepG2 cells. Furthermore, data from treatment of reactive oxygen species inhibitor N-acetyl-L-cysteine or NOXs inhibitor diphenyleneiodonium in fructose-exposed HepG2 cells showed that fructose enhanced NOX1, NOX2 and NOX4 expression to increase reactive oxygen species generation, causing oxidative stress and inflammation, more importantly, these disturbances were significantly attenuated by magnesium isoglycyrrhizinate. The molecular mechanisms underpinning these effects suggest that magnesium isoglycyrrhizinate may inhibit NOX1, NOX2 and NOX4 expression to reduce reactive oxygen species generation, subsequently prevent liver oxidative stress injury under high fructose condition. Thus, the blockade of NOX1, NOX2 and NOX4 expression by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury in clinic.
Collapse
Affiliation(s)
- Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhi-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Shan-Chun Wang
- Jiangsu Key Laboratory of Targeted Antiviral Research, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, 210023, PR China
| | - Xi-Quan Zhang
- Jiangsu Key Laboratory of Targeted Antiviral Research, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, 210023, PR China
| | - Hong-Jiang Xu
- Jiangsu Key Laboratory of Targeted Antiviral Research, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, 210023, PR China
| | - Ling Yang
- Jiangsu Key Laboratory of Targeted Antiviral Research, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, 210023, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
13
|
Li TS, Chen L, Wang SC, Yang YZ, Xu HJ, Gu HM, Zhao XJ, Dong P, Pan Y, Shang ZQ, Zhang XQ, Kong LD. Magnesium isoglycyrrhizinate ameliorates fructose-induced podocyte apoptosis through downregulation of miR-193a to increase WT1. Biochem Pharmacol 2019; 166:139-152. [DOI: 10.1016/j.bcp.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
|
14
|
Chen X, Bian M, Jin H, Lian N, Shao J, Zhang F, Zheng S. Dihydroartemisinin attenuates alcoholic fatty liver through regulation of lipin-1 signaling. IUBMB Life 2019; 71:1740-1750. [PMID: 31265202 DOI: 10.1002/iub.2113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD) is generated from excessive alcohol consumption, characterized by hepatic steatosis. Mechanistically, excessive hepatic lipid accumulation was attributed to the aberrant lipin-1 signaling during the development of alcoholic steatosis in rodent species and human. Dihydroartemisinin (DHA) has been recently identified to relieve hepatocytes necrosis and prevent from hepatic steatosis in alcohol-induced liver diseases; however, the role of DHA in ALD has not been elucidated completely. Therefore, this study was aimed to further identify the potential mechanisms of pharmacological effects of DHA on ALD. Results demonstrated that DHA regulated the expression and nucleocytoplasmic shuttling of lipin-1 in mice with chronic ethanol exposure. Results confirmed that the disruption of lipin-1 signaling abolished the suppression of DHA on alcohol-induced hepatic steatosis. Interestingly, DHA also significantly improved liver injury, and inflammation mediated by lipin-1 signaling in chronic alcohol-fed mice. in vivo experiments further consolidated the concept that DHA protected against hepatocyte lipoapoptosis dependent on the regulation of nucleocytoplasmic shuttling of lipin-1 signaling, resulting in attenuated ratio of Lpin1 β/α. Obvious increases in cell apoptosis were observed in alcohol-treated lipin1β-overexpressed mice. Although DHA attenuated cell apoptosis, overexpression of lipin-1β neutralized DHA action. DHA ameliorated activation of endoplasmic reticulum stress through inhibiting activation of JNK and CHOP, which was abrogated by overexpression of lipin-1β. In summary, DHA significantly improved liver injury, steatosis and hepatocyte lipoapoptosis in chronic alcohol-fed mice via regulation of lipin-1 signaling.
Collapse
Affiliation(s)
- Xingran Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Naqi Lian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
16
|
Cao Y, Shi H, Sun Z, Wu J, Xia Y, Wang Y, Wu Y, Li X, Chen W, Wang A, Lu Y. Protective Effects of Magnesium Glycyrrhizinate on Methotrexate-Induced Hepatotoxicity and Intestinal Toxicity May Be by Reducing COX-2. Front Pharmacol 2019; 10:119. [PMID: 30971913 PMCID: PMC6444054 DOI: 10.3389/fphar.2019.00119] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Magnesium isoglycyrrhizinate (MgIG), which has been widely employed to treat chronic hepatitis, is synthesized from 18-β glycyrrhizic acid, a main component of traditional Chinese medicine Glycyrrhiza uralensis Fisch. Although the protective effects of MgIG on methotrexate (MTX)-induced liver toxicity have been well-documented, the underlying mechanism remains elusive. MTX was initially used to treat pediatric acute leukemia, and has been widely applied to psoriasis therapy. However, its clinical applications are limited due to hepatotoxicity and intestinal toxicity. Herein, prophylactic administration of MgIG (9 and 18 mg/kg/day) significantly reduced the levels of aspartate aminotransferase and alanine aminotransferase in the serum of rats receiving intravenous injection of MTX (20 mg/kg body weight). MgIG also attenuated MTX-induced hepatic fibrosis. Moreover, it better protected against MTX-induced hepatocyte apoptosis and decreased the serum level of malondialdehyde than reduced glutathione (80 mg/kg/day) did. Interestingly, MTX-induced cyclooxygenase-2 (COX-2) expression, intestinal permeability and inflammation were attenuated after MgIG administration. In addition, MgIG (9 and 18 mg/kg) reduced MTX-induced colocalization of zonula occludens-1 (ZO-1) and connexin 43 (Cx43) in intestinal villi. In conclusion, MgIG exerted beneficial effects on MTX-induced hepatotoxicity and intestinal damage, as a potentially eligible drug for alleviating the hepatic and intestinal side effects of MTX during chemotherapy.
Collapse
Affiliation(s)
- Yuzhu Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hang Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Sun
- Department of The First College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiawei Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawen Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoman Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Zhou Y, Jin H, Wu Y, Chen L, Bao X, Lu C. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism. Toxicol In Vitro 2019; 57:226-232. [PMID: 30853489 DOI: 10.1016/j.tiv.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Alcoholic liver disease (ALD), featured by excessive hepatocyte death and inflammation, is a prevalent disease that causes heavy health burdens worldwide. Hepatocyte necroptosis is a central event that promotes inflammation in ALD. At molecular levels, inhibition of nuclear factor (erythroid - derived 2) - like 2 (NRF2) was an important trigger for cell necroptosis. The protective effects of gallic acid (GA) on liver diseases caused by multiple factors have been elucidated, however, the role of GA in ALD remained unclear. Therefore, this study was aimed to investigate the anti-ALD effects of GA and further reveal the molecular mechanisms. Results showed that GA could effectively recover cell viability and reduce the release of aspartate transaminase, alanine transaminase, and lactic dehydrogenase by ethanol-stimulated hepatocytes. More importantly, GA limited hepatocyte necroptosis under ethanol stimulation, which was characterized by reduced expression of distinct necroptotic signals receptor-interacting protein 1 (RIP1) and RIP3 and release of high mobility group box protein 1. Mechanistically, GA could induce NRF2 expression in ethanol-incubated hepatocytes, which was a molecular basis for GA to suppress ethanol-induced hepatocyte necroptosis. In conclusion, this study demonstrated that GA improved ethanol-induced hepatocyte necroptosis in vitro. Further, NRF2 activation might be requisite for GA to exert its protective effects.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Yu Wu
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China
| | - Liang Chen
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
18
|
Xie C, Li X, Zhu J, Wu J, Geng S, Zhong C. Magnesium isoglycyrrhizinate suppresses LPS-induced inflammation and oxidative stress through inhibiting NF-κB and MAPK pathways in RAW264.7 cells. Bioorg Med Chem 2018; 27:516-524. [PMID: 30617018 DOI: 10.1016/j.bmc.2018.12.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianyun Zhu
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
19
|
Lin R, Liu Y, Piao M, Song Y. Magnesium isoglycyrrhizinate positively affects concanavalin A-induced liver damage by regulating macrophage polarization. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1508424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, People’s Republic of China
| | - Yun Liu
- Tianjin Bonagene Bio-Technology Co. Ltd., Tianjin, People’s Republic of China
- Academician Workstation of Hunan Baodong Farming Co. Ltd., Hunan, People’s Republic of China
| | - Meiyu Piao
- Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, People’s Republic of China
| | - Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
20
|
Tee JK, Peng F, Tan YL, Yu B, Ho HK. Magnesium Isoglycyrrhizinate Ameliorates Fibrosis and Disrupts TGF-β-Mediated SMAD Pathway in Activated Hepatic Stellate Cell Line LX2. Front Pharmacol 2018; 9:1018. [PMID: 30319402 PMCID: PMC6167412 DOI: 10.3389/fphar.2018.01018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Liver fibrosis is a histological change often attributed to the activation of hepatic stellate cells (HSCs) and the excessive formation of scar tissues in the liver. Advanced stages of the disease frequently lead to cirrhosis. Magnesium isoglycyrrhizinate (MgIG) has been accepted as a hepatoprotective drug with the potential of alleviating inflammatory conditions and thus promote liver recovery from viral- or drug-induced injury. While MgIG has been empirically integrated into the clinics to treat some liver diseases, its anti-fibrotic effect and the associated mechanisms remain poorly characterized. Herein, we demonstrated that 1 mg/ml MgIG attenuated the production of αSMA and collagen-1 in activated HSCs using TGF-β1-induced human HSCs LX2 as the fibrotic cell model. We found that MgIG exerts an inhibitory effect on the TGF-β-SMAD signaling pathway by arresting the binding of downstream transcription factors SMAD2/3 and SMAD4. Furthermore, MgIG was shown to suppress proliferation and induce senescence of activated LX2 cells. Protein expression of p27 and enzymatic activity of senescence-associated β-galactosidase were elevated upon exposure to MgIG. In addition, we observed that exposure of activated LX2 cells to MgIG reduces TGF-β-induced apoptosis. Interestingly, a lower toxicity profile was observed when human fetal hepatocytes LO2 were exposed to the same concentration and duration of the drug, suggesting the specificity of MgIG effect toward activated HSCs. Overall, hepatoprotective concentrations of MgIG is shown to exert a direct effect on liver fibrosis through inhibiting TGF-β-signaling, in which SMAD2/3 pathway could be one of the mechanisms responsible for the fibrotic response, thereby restoring the surviving cells toward a more quiescent phenotype. This provides critical mechanistic insights to support an otherwise empirical therapy.
Collapse
Affiliation(s)
- Jie Kai Tee
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Fei Peng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yeong Lan Tan
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Bo Yu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Han Kiat Ho
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
The inhibition of Hippo/Yap signaling pathway is required for magnesium isoglycyrrhizinate to ameliorate hepatic stellate cell inflammation and activation. Biomed Pharmacother 2018; 106:83-91. [PMID: 29957470 DOI: 10.1016/j.biopha.2018.06.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a reversible pathological process accompanied by abnormal inflammation, and its end-stage cirrhosis is responsible for high morbidity and mortality worldwide. This study was to investigate the effect of Magnesium isoglycyrrhizinate (MgIG) on liver fibrosis and inflammation, and to further clarify molecular mechanism. We found that MgIG treatment significantly alleviated carbon tetrachloride (CCl4)-induced liver fibrosis and HSC activation by regulating TGF-β signaling and MMP/TIMP systems. In addition, MgIG treatment significantly inhibited the inflammatory response of liver fibrosis in mice characterized by reduced pro-inflammatory factors expression and increased anti-inflammatory factors expression. Interestingly, experiments in vitro also showed that MgIG treatment significantly reduced the expression of hepatic stellate cell (HSC) activation markers. Besides, MgIG treatment not only inhibited the expression of pro-inflammatory factors, but also promoted the production of anti-inflammatory factors in activated HSCs. Importantly, treatment with MgIG inhibited Hippo/Yap signaling pathway, which was a potential mechanism for MgIG-induced anti-inflammatory effects. The overexpression of Hippo/Yap signaling effector YAP completely impaired MgIG-induced anti-inflammatory and anti-fibrotic effects. Taken together, these results provide novel implications to reveal the molecular mechanism of the anti-inflammatory properties induced by MgIG, by which points to the possibility of using MgIG to treat liver fibrosis.
Collapse
|
22
|
Sui M, Jiang X, Chen J, Yang H, Zhu Y. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Biomed Pharmacother 2018; 106:125-133. [PMID: 29957462 DOI: 10.1016/j.biopha.2018.06.060] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is recently reported as a new mode of regulated cell death. It is triggered by disturbed redox homeostasis, overloaded iron and increased lipid peroxidation. Howerver, the role of ferroptosis in hepatic fibrosis remains obscure. In the current study, we attempted to investigate the effect of Magnesium isoglycyrrhizinate (MgIG) on ferroptosis in liver fibrosis, and to further clarify the possible mechanisms. Our data showed that MgIG treatment markedly attenuated liver injury and reduced fibrotic scar formation in the rat model of liver fibrosis. Moreover, experiments in vitro also confirmed that MgIG treatment significantly decreased expression of hepatic stellate cell (HSC) activation markers. Interestingly, HSCs treated by MgIG presented morphological features of ferroptosis. Furthermore, MgIG treatment remarkably induced HSC ferroptosis by promoting the accumulation of iron and lipid peroxides, whereas inhibition of ferroptosis by specific inhibitor ferrostatin-1 (Fer-1) completely abolished MgIG-induced anti-fibrosis effect. More importantly, our results determined that heme oxygenase-1 (HO-1) was in the upstream position of MgIG-induced HSC ferroptosis. Conversely, HO-1 knockdown by siRNA evidently blocked MgIG-induced HSC ferroptosis and in turn exacerbated liver fibrosis. Overall, our research revealed that HO-1 mediated HSC ferroptosis was necessary for MgIG to ameliorate CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Miao Sui
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China
| | - Xiaofei Jiang
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Jun Chen
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China.
| | - Haiyan Yang
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China
| | - Yan Zhu
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China
| |
Collapse
|
23
|
Dihydroartemisinin inhibits ER stress-mediated mitochondrial pathway to attenuate hepatocyte lipoapoptosis via blocking the activation of the PI3K/Akt pathway. Biomed Pharmacother 2018; 97:975-984. [DOI: 10.1016/j.biopha.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
|
24
|
Isoglycyrrhizinate Magnesium Enhances Hepatoprotective Effect of FK506 on Ischemia-Reperfusion Injury Through HMGB1 Inhibition in a Rat Model of Liver Transplantation. Transplantation 2017; 101:2862-2872. [PMID: 28885495 DOI: 10.1097/tp.0000000000001941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury after liver transplantation (LT) impairs graft function and affects prognosis of recipients. Isoglycyrrhizinate magnesium (Iso) is a hepatoprotective drug usually used after liver injury. In this study, we intended to explore whether Iso alone have protective effect after ischemia-reperfusion injury in a rat model of liver transplantation. We also aimed to study whether Iso could enhance the hepatoprotective effect of FK506 (tacrolimus) and underlying mechanism. METHODS Rats after LT were treated with different concentration of FK506 with or without, Iso or lower-dose FK506 plus Iso. Alanine transaminase, aspartate transaminase, and albumin level were measured after 48 hours, 72 hours, and 7 days. A cell ischemic/reperfusion model was established to further study the mechanism of hepatoprotective effect of FK506 and Iso. RESULTS Iso treatment alone had no effect on liver grafts after LT, but lower-dose FK506 + Iso was better for maintenance of liver function than lower-dose FK506 alone at 48 hours, 72 hours, and 7 days after LT. In terms of mechanism, FK506 induced autophagy which resulted in significantly reduced apoptosis and maintained proliferative potential. However, autophagy induced by FK506 also lead to high-mobility group box (HMGB) 1 release from nuclei, resulting in hepatocyte injury through triggering of p38 phosphorylation and chemokine release. Iso effectively inhibited the release of HMGB1 and downstream inflammatory cytokines. CONCLUSIONS Iso could inhibit release of HMGB1 by FK506 and enhance the hepatoprotective effect of FK506 in rat LT. Combining Iso with FK506 would be promising for the patients after LT.
Collapse
|
25
|
Bian M, Chen X, Zhang C, Jin H, Wang F, Shao J, Chen A, Zhang F, Zheng S. Magnesium isoglycyrrhizinate promotes the activated hepatic stellate cells apoptosis via endoplasmic reticulum stress and ameliorates fibrogenesis in vitro and in vivo. Biofactors 2017; 43:836-846. [PMID: 29048780 DOI: 10.1002/biof.1390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
Varied pathogenetic elements have been touched upon the liver fibrosis, including inflammatory, stress, apoptosis and unfolded proteins aggregation. Magnesium Isoglycyrrhizinate (MgIG) has been accepted to be a neuroprotective effect, hepatoprotective and anti-inflammatory molecule. In our vitro researches, MgIG was considered to activate hepatic stellate cells (HSCs) apoptosis by promoting endoplasmic reticulum stress (ERS) detrimental response to a certain extent. Consequently, MgIG showed its potential therapeutic capacity in fibrogenesis and counteracted the pathogenetic aspects, which were involved in integrating current treatments correcting liver fibrosis. In addition, we further verificated the behavior and pathogenic mechanisms in the CCl4 -induced liver fibrosis in male mice. What surprised us was that with the treatment of MgIG caused the activation of ERS and resisted the activated HSCs in the protective effects on liver damage. We found MgIG significantly promoted the apoptosis of activated HSCs and protected the CCl4 -induced liver fibrosis. Main molecules came down to the unfolded protein response signaling pathway. Furthermore, MgIG inhibited the levels of the downstream inflammatory cytokines, which were triggered by CCl4 -induced liver fibrosis. Here, we reported that MgIG improved behavioral impairments induced by intraperitoneal injection of CCl4 and decreased the expression of proinflammatory factor, which indicated the preserving effects on liver fibrosis. © 2017 BioFactors, 43(6):836-846, 2017.
Collapse
Affiliation(s)
- Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingran Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenxi Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feixia Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Amelioration of Ethanol-Induced Hepatitis by Magnesium Isoglycyrrhizinate through Inhibition of Neutrophil Cell Infiltration and Oxidative Damage. Mediators Inflamm 2017; 2017:3526903. [PMID: 28951632 PMCID: PMC5603137 DOI: 10.1155/2017/3526903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of liver-related morbidity and mortality worldwide. There is no effective treatment to prevent the disease progression. Magnesium isoglycyrrhizinate (MgIG) showed potent anti-inflammatory, antioxidant, and hepatoprotective activities and was used for treating liver diseases in Asia. In this study, we examined whether MgIG could protect mice against alcohol-induced liver injury. The newly developed chronic plus binge ethanol feeding model was used to study the role of MgIG in ALD. Serum liver enzyme levels, H&E staining, immunohistochemical staining, flow cytometric analysis, and real-time PCR were used to evaluate the liver injury and inflammation. We showed that MgIG markedly ameliorated chronic plus binge ethanol feeding liver injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and reduced neutrophil infiltration. The reason may be attributed to the reduced expression of proinflammatory cytokines and chemokines with the treatment of MgIG. The hepatoprotective effect of MgIG was associated with suppression of neutrophil ROS production as well as hepatocellular oxidative stress. MgIG may play a critical role in protecting against chronic plus binge ethanol feeding-induced liver injury by regulating neutrophil activity and hepatic oxidative stress.
Collapse
|