1
|
Xu LK, Ma CY, Zhang FY, Wang W, Zhao M, Jin X, Yin JJ, Ma LB, Chen W, Xu JY, Ma KY, Liu ZQ. Embryonic Genome Activation (EGA) Occurred at 1-Cell Stage of Embryonic Development in the Mud Crab, Scylla paramamosain, Revealed by RNA-Seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1246-1259. [PMID: 39249630 DOI: 10.1007/s10126-024-10369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
As a prerequisite for the success of embryo development, embryonic genome activation (EGA) is an important biological event in which zygotic gene products in the embryo are activated to replace maternal-derived transcripts. Although EGA has been extensively studied in a large number of vertebrates and invertebrates, there is a lack of information regarding this event in crustacean crab. In this study, the timing of EGA was confirmed by examining a transcriptomic dataset of early embryonic development, including mature oocytes and embryos through six early developmental stages, and signaling pathways associated with EGA were identified in the mud crab, S. paramamosain. The comprehensive transcriptomic data identified a total of 53,915 transcripts from these sequencing samples. Notable transcriptomic change was evident at the 1-cell stage, indicated by a 36% transcript number shift and a reduction in transcript fragment length, compared to those present in the mature oocytes. Concurrently, a substantial increase in the expression of newly transcribed transcripts was observed, with gene counts reaching 3485 at the 1-cell stage, indicative of the onset of EGA. GO functional enrichment revealed key biological processes initiated at the 1-cell stage, such as protein complex formation, protein metabolism, and various biosynthetic processes. KEGG analysis identified several critical signaling pathways activated during EGA, including the "cell cycle," "spliceosome," "RNA degradation", and "RNA polymerase", pathways. Furthermore, transcription factor families, including zinc finger, T-box, Nrf1, and Tub were predominantly enriched at the 1-cell stage, suggesting their pivotal roles in regulating embryonic development through the targeting of specific DNA sequences during the EGA process. This groundbreaking study not only addresses a significant knowledge gap regarding the developmental biology of S. paramamosain, especially for the understanding of the mechanism underlying EGA, but also provides scientific data crucial for the research on the individual synchronization of seed breeding within S. paramamosain aquaculture. Additionally, it serves as a reference basis for the study of early embryonic development in other crustacean species.
Collapse
Affiliation(s)
- Li-Kun Xu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Pudong New Area, Shanghai, People's Republic of China
| | - Chun-Yan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Feng-Ying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Xin Jin
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Pudong New Area, Shanghai, People's Republic of China
| | - Jin-Ju Yin
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Pudong New Area, Shanghai, People's Republic of China
| | - Ling-Bo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Jia-Yuan Xu
- Ninghai Fishery Innovation Research Center, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo, Zhejiang, People's Republic of China
| | - Ke-Yi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China.
| | - Zhi-Qiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
2
|
Gillis A, Berry S. Global control of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195024. [PMID: 38552781 DOI: 10.1016/j.bbagrm.2024.195024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
RNA polymerase II (Pol II) is the multi-protein complex responsible for transcribing all protein-coding messenger RNA (mRNA). Most research on gene regulation is focused on the mechanisms controlling which genes are transcribed when, or on the mechanics of transcription. How global Pol II activity is determined receives comparatively less attention. Here, we follow the life of a Pol II molecule from 'assembly of the complex' to nuclear import, enzymatic activity, and degradation. We focus on how Pol II spends its time in the nucleus, and on the two-way relationship between Pol II abundance and activity in the context of homeostasis and global transcriptional changes.
Collapse
Affiliation(s)
- Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Chen K, Liu W, Zhu J, Kou X, Zhao Y, Wang H, Jiang C, Gao S, Kang L. Pivotal role for long noncoding RNAs in zygotic genome activation in mice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:958-969. [PMID: 38305985 DOI: 10.1007/s11427-023-2502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024]
Abstract
Vertebrate life begins with fertilization, and then the zygote genome is activated after transient silencing, a process termed zygotic genome activation (ZGA). Despite its fundamental role in totipotency and the initiation of life, the precise mechanism underlying ZGA initiation remains unclear. The existence of minor ZGA implies the possible critical role of noncoding RNAs in the initiation of ZGA. Here, we delineate the expression profile of long noncoding RNAs (lncRNAs) in early mouse embryonic development and elucidate their critical role in minor ZGA. Compared with protein-coding genes (PCGs), lncRNAs exhibit a stronger correlation with minor ZGA. Distinct H3K9me3 profiles can be observed between lncRNA genes and PCGs, and the enrichment of H3K9me3 before ZGA might explain the suspended expression of major ZGA-related PCGs despite possessing PolII pre-configuration. Furthermore, we identified the presence of PolII-enriched MuERV-L around the transcriptional start site of minor ZGA-related lncRNAs, and these repeats are responsible for the activation of minor ZGA-related lncRNAs and subsequent embryo development. Our study suggests that MuERV-L mediates minor ZGA lncRNA activation as a critical driver between epigenetic reprogramming triggered by fertilization and the embryo developmental program, thus providing clues for understanding the regulatory mechanism of totipotency and establishing bona fide totipotent stem cells.
Collapse
Affiliation(s)
- Kang Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenju Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiang Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Xiaochen Kou
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Yanhong Zhao
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Lan Kang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Ducreux B, Patrat C, Trasler J, Fauque P. Transcriptomic integrity of human oocytes used in ARTs: technical and intrinsic factor effects. Hum Reprod Update 2024; 30:26-47. [PMID: 37697674 DOI: 10.1093/humupd/dmad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Millions of children have been born throughout the world thanks to ARTs, the harmlessness of which has not yet been fully demonstrated. For years, efforts to evaluate the specific effects of ART have focused on the embryo; however, it is the oocyte quality that mainly dictates first and foremost the developmental potential of the future embryo. Ovarian stimulation, cryopreservation, and IVM are sometimes necessary steps to obtain a mature oocyte, but they could alter the appropriate expression of the oocyte genome. Additionally, it is likely that female infertility, environmental factors, and lifestyle have a significant influence on oocyte transcriptomic quality, which may interfere with the outcome of an ART attempt. OBJECTIVE AND RATIONALE The objective of this review is to identify transcriptomic changes in the human oocyte caused by interventions specific to ART but also intrinsic factors such as age, reproductive health issues, and lifestyle. We also provide recommendations for future good practices to be conducted when attempting ART. SEARCH METHODS An in-depth literature search was performed on PubMed to identify studies assessing the human oocyte transcriptome following ART interventions, or in the context of maternal aging, suboptimal lifestyle, or reproductive health issues. OUTCOMES ART success is susceptible to external factors, maternal aging, lifestyle factors (smoking, BMI), and infertility due to endometriosis or polycystic ovary syndrome. Indeed, all of these are likely to increase oxidative stress and alter mitochondrial processes in the foreground. Concerning ART techniques themselves, there is evidence that different ovarian stimulation regimens shape the oocyte transcriptome. The perturbation of processes related to the mitochondrion, oxidative phosphorylation, and metabolism is observed with IVM. Cryopreservation might dysregulate genes belonging to transcriptional regulation, ubiquitination, cell cycle, and oocyte growth pathways. For other ART laboratory factors such as temperature, oxygen tension, air pollution, and light, the evidence remains scarce. Focusing on genes involved in chromatin-based processes such as DNA methylation, heterochromatin modulation, histone modification, and chromatin remodeling complexes, but also genomic imprinting, we observed systematic dysregulation of such genes either after ART intervention or lifestyle exposure, as well as due to internal factors such as maternal aging and reproductive diseases. Alteration in the expression of such epigenetic regulators may be a common mechanism linked to adverse oocyte environments, explaining global transcriptomic modifications. WIDER IMPLICATIONS Many IVF factors and additional external factors have the potential to impair oocyte transcriptomic integrity, which might not be innocuous for the developing embryo. Fortunately, it is likely that such dysregulations can be minimized by adapting ART protocols or reducing adverse exposure.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - Catherine Patrat
- Université de Paris Cité, Faculty of Medicine, Inserm 1016, Paris, France
- Department of Reproductive Biology-CECOS, aphp.centre-Université Paris Cité, Paris, France
| | - Jacquetta Trasler
- Department of Pediatrics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patricia Fauque
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
5
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
6
|
Nakatani T, Torres-Padilla ME. Regulation of mammalian totipotency: a molecular perspective from in vivo and in vitro studies. Curr Opin Genet Dev 2023; 81:102083. [PMID: 37421903 DOI: 10.1016/j.gde.2023.102083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 07/10/2023]
Abstract
In mammals, cells acquire totipotency at fertilization. Embryonic genome activation (EGA), which occurs at the 2-cell stage in the mouse and 4- to 8-cell stage in humans, occurs during the time window at which embryonic cells are totipotent and thus it is thought that EGA is mechanistically linked to the foundations of totipotency. The molecular mechanisms that lead to the establishment of totipotency and EGA had been elusive for a long time, however, recent advances have been achieved with the establishment of new cell lines with greater developmental potential and the application of novel low-input high-throughput techniques in embryos. These have unveiled several principles of totipotency related to its epigenetic makeup but also to characteristic features of totipotent cells. In this review, we summarize and discuss current views exploring some of the key drivers of totipotency from both in vitro cell culture models and embryogenesis in vivo.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
7
|
Sahin GN, Yildirim RM, Seli E. Embryonic arrest: causes and implications. Curr Opin Obstet Gynecol 2023; 35:184-192. [PMID: 37039141 DOI: 10.1097/gco.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE OF REVIEW Embryonic arrest is a key determinant of the number of euploid blastocysts obtained after IVF. Here, we review factors that are implicated in the developmental arrest of preimplantation embryos and their relevance for assisted reproduction outcomes. RECENT FINDINGS Among the treatment options available to infertile women, IVF is the one associated with most favorable outcomes. The cumulative pregnancy rates in women undergoing IVF are determined by aneuploidy rate (age), ovarian response to stimulation (ovarian reserve), and the rate of embryo developmental arrest. Mutations in maternal effect genes, especially those encoding for subcortical maternal complex, have been implicated in human embryo developmental arrest. In addition, perturbation of biological processes, such as mitochondrial unfolded protein response and long noncoding RNA regulatory pathways, may play a role. However, how each of these factors contributes to embryos' arrest in different cohorts and age groups has not been determined. SUMMARY Arrest of human embryos during preimplantation development is a common occurrence and is partly responsible for the limited number of euploid blastocysts obtained in assisted reproduction cycles. Although genetic and metabolic causes have been implicated, the mechanisms responsible for human embryo developmental arrest remain poorly characterized.
Collapse
Affiliation(s)
- Gizem N Sahin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Raziye M Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- IVIRMA New Jersey, Basking Ridge, New Jersey, USA
| |
Collapse
|
8
|
Uzbekov R, Singina GN, Shedova EN, Banliat C, Avidor-Reiss T, Uzbekova S. Centrosome Formation in the Bovine Early Embryo. Cells 2023; 12:1335. [PMID: 37174735 PMCID: PMC10177215 DOI: 10.3390/cells12091335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Centrosome formation during early development in mice and rats occurs due to the appearance of centrioles de novo. In contrast, in humans and other non-rodent mammals, centrioles are thought to be derived from spermatozoa. Ultrastructural study of zygotes and early embryos of cattle at full series of ultrathin sections show that the proximal centriole of the spermatozoon disappears by the end of the first cleavage division. Centrioles appear in two to four cell embryos in fertilized oocytes and in parthenogenetic embryos. Centriole formation includes the appearance of atypical centrioles with randomly arranged triplets and centrioles with microtubule triplets of various lengths. After the third cleavage, four centriolar cylinders appear for the first time in the blastomeres while each embryo still has two atypical centrioles. Our results showed that the mechanisms of centriole formation in different groups of mammals are universal, differing only in the stage of development in which they occur.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, University of Tours, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Galina N. Singina
- Laboratory of Experimental Embryology, L.K. Ernst Federal Research Center for Animal Husbandry, Moscow Region, 142132 Podolsk, Russia
| | - Ekaterina N. Shedova
- Laboratory of Experimental Embryology, L.K. Ernst Federal Research Center for Animal Husbandry, Moscow Region, 142132 Podolsk, Russia
| | - Charles Banliat
- Ecole Supérieure d’agricultures (ESA), Unité de Recherche sur les Systèmes D’élevage (URSE), 55 rue Rabelais BP, 30748 Angers, France
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Svetlana Uzbekova
- UMR Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| |
Collapse
|
9
|
Ozturk S, Kosebent EG, Talibova G, Bilmez Y, Tire B, Can A. Embryonic poly(A)-binding protein interacts with translation-related proteins and undergoes phosphorylation on the serine, threonine, and tyrosine residues in the mouse oocytes and early embryos. J Assist Reprod Genet 2023; 40:929-941. [PMID: 36823316 PMCID: PMC10224904 DOI: 10.1007/s10815-023-02746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Expression of the embryonic poly(A)-binding protein (EPAB) in frog, mouse, and human oocytes and early-stage embryos is maintained at high levels until embryonic genome activation (EGA) after which a significant decrease occurs in EPAB levels. Studies on the vertebrate oocytes and early embryos revealed that EPAB plays key roles in the translational regulation, stabilization, and protection of maternal mRNAs during oocyte maturation and early embryogenesis. However, it remains elusive whether EPAB interacts with other cellular proteins and undergoes phosphorylation to perform these roles. For this purpose, we identified a group of Epab-interacting proteins and its phosphorylation status in mouse germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, and in 1-cell, 2-cell, and 4-cell preimplantation embryos. In the oocytes and early preimplantation embryos, Epab-interacting proteins were found to play roles in the translation and transcription processes, intracellular signaling and transport, maintenance of structural integrity, metabolism, posttranslational modifications, and chromatin remodeling. Moreover, we discovered that Epab undergoes phosphorylation on the serine, threonine, and tyrosine residues, which are localized in the RNA recognition motifs 2, 3, and 4 or C-terminal. Conclusively, these findings suggest that Epab not only functions in the translational control of maternal mRNAs through binding to their poly(A) tails but also participates in various cellular events through interacting with certain group proteins. Most likely, Epab undergoes a dynamic phosphorylation during the oocyte maturation and the early embryo development to carry out these functions.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey.
| | - Esra Gozde Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Alp Can
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, 06410, Turkey
| |
Collapse
|
10
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Bari MW, Morishita Y, Kishigami S. Heterogeneity of nucleolar morphology in four-cell mouse embryos after IVF: association with developmental potential. Anim Sci J 2023; 94:e13907. [PMID: 38102887 DOI: 10.1111/asj.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In mammals, around fertilization, the nucleolus of embryos transforms into the nucleolus precursor bodies (NPBs), which continue to mature until the blastocyst stage, leading to distinct morphological changes. In our study, we observed two types of nucleolar morphology in mouse in vitro fertilized embryos at the four-cell stage, which we refer to single nucleolus (SN) and multiple nucleoli (MN). To visualize nucleolar morphology, four-cell embryos were immunostained with anti-NOPP140 antibody. These embryos were categorized into five types based on the number of blastomeres carrying SN: SN4/MN0, SN3/MN1, SN2/MN2, SN1/MN3, and SN0/MN4, with percentages of 13, 27, 21, 23 and 9, respectively. Next, using a light microscope, we divided the four-cell in vitro fertilized embryos without fixation into two groups: those with at least two blastomeres displaying SN (SN embryos) and those without (MN embryos). Notably, significantly more SN embryos developed into blastocysts and offspring at 18.5 dpc compared with MN embryos. Furthermore, SN embryos displayed a higher NANOG-positive cell number at the blastocyst stage, significantly lower body and placental weights, resulting in a higher fetal/placental ratio. These findings suggest a close association between nucleolar state at the four-cell stage and subsequent developmental potential.
Collapse
Affiliation(s)
- Md Wasim Bari
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
| | - Yoshiya Morishita
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
| | - Satoshi Kishigami
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
- Center for advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Japan
| |
Collapse
|
12
|
Gassler J, Kobayashi W, Gáspár I, Ruangroengkulrith S, Mohanan A, Gómez Hernández L, Kravchenko P, Kümmecke M, Lalic A, Rifel N, Ashburn RJ, Zaczek M, Vallot A, Cuenca Rico L, Ladstätter S, Tachibana K. Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science 2022; 378:1305-1315. [PMID: 36423263 DOI: 10.1126/science.abn7478] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Life begins with a switch in genetic control from the maternal to the embryonic genome during zygotic genome activation (ZGA). Despite its importance, the essential regulators of ZGA remain largely unknown in mammals. On the basis of de novo motif searches, we identified the orphan nuclear receptor Nr5a2 as a key activator of major ZGA in mouse two-cell embryos. Nr5a2 is required for progression beyond the two-cell stage. It binds to its motif within SINE B1/Alu retrotransposable elements found in cis-regulatory regions of ZGA genes. Chemical inhibition suggests that 72% of ZGA genes are regulated by Nr5a2 and potentially other orphan nuclear receptors. Nr5a2 promotes chromatin accessibility during ZGA and binds nucleosomal DNA in vitro. We conclude that Nr5a2 is an essential pioneer factor that regulates ZGA.
Collapse
Affiliation(s)
- Johanna Gassler
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Imre Gáspár
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | | | - Adarsh Mohanan
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Laura Gómez Hernández
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Maximilian Kümmecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Aleksandar Lalic
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Nikita Rifel
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Robert John Ashburn
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Maciej Zaczek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Antoine Vallot
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Laura Cuenca Rico
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
13
|
Bekaert B, Boel A, Cosemans G, De Witte L, Menten B, Heindryckx B. CRISPR/Cas gene editing in the human germline. Semin Cell Dev Biol 2022; 131:93-107. [PMID: 35305903 DOI: 10.1016/j.semcdb.2022.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
Abstract
The ease and efficacy of CRISPR/Cas9 germline gene editing in animal models paved the way to human germline gene editing (HGGE), by which permanent changes can be introduced into the embryo. Distinct genes can be knocked out to examine their function during embryonic development. Alternatively, specific sequences can be introduced which can be applied to correct disease-causing mutations. To date, it has been shown that the success of HGGE is dependent on various experimental parameters and that various hurdles (i.e. loss-of-heterozygosity and mosaicism) need to be overcome before clinical applications should be considered. Due to the shortage of human germline material and the ethical constraints concerning HGGE, alternative models such as stem cells have been evaluated as well, in terms of their predictive value on the genetic outcome for HGGE approaches. This review will give an overview of the state of the art of HGGE in oocytes and embryos, and its accompanying challenges.
Collapse
Affiliation(s)
- B Bekaert
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - A Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - L De Witte
- Center for Medical Genetics Ghent, Ghent University, Department of Biomolecular Medicine, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Ghent University, Department of Biomolecular Medicine, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
14
|
What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy? Cell Death Differ 2022; 29:1079-1093. [PMID: 35388168 DOI: 10.1038/s41418-022-00987-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
In many human cancers the control of apoptosis is dysregulated, for instance as a result of the overexpression of pro-survival BCL-2 proteins. This promotes tumorigenesis by protecting nascent neoplastic cells from stress and renders malignant cells resistant to anti-cancer agents. Therefore, several BH3 mimetic drugs targeting distinct pro-survival proteins have been developed. The BCL-2 inhibitor Venetoclax/ABT-199, has been approved for treatment of certain blood cancers and tens of thousands of patients have already been treated effectively with this drug. To advance the clinical development of MCL-1 and BCL-XL inhibitors, a more detailed understanding of their distinct and overlapping roles in the survival of malignant as well as non-transformed cells in healthy tissues is required. Here, we discuss similarities and differences in pro-survival BCL-2 protein structure, subcellular localisation and binding affinities to the pro-apoptotic BCL-2 family members. We summarise the findings from gene-targeting studies in mice to discuss the specific roles of distinct pro-survival BCL-2 family members during embryogenesis and the survival of non-transformed cells in healthy tissues in adults. Finally, we elaborate how these findings align with or differ from the observations from the clinical development and use of BH3 mimetic drugs targeting different pro-survival BCL-2 proteins.
Collapse
|
15
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
|
16
|
Abstract
The zygotic genome is transcriptionally silent immediately after fertilization. In mice, initial activation of the zygotic genome occurs in the middle of the one-cell stage. At the mid-to-late two-cell stage, a burst of gene activation occurs after the second round of DNA replication, and the profile of transcribed genes changes dramatically. These two phases of gene activation are called minor and major zygotic gene activation (ZGA), respectively. As they mark the beginning of the gene expression program, it is important to elucidate gene expression regulation during these stages. This article reviews the outcomes of studies that have clarified the profiles and regulatory mechanisms of ZGA.
Collapse
Affiliation(s)
- Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
17
|
Bakhmet EI, Tomilin AN. Key features of the POU transcription factor Oct4 from an evolutionary perspective. Cell Mol Life Sci 2021; 78:7339-7353. [PMID: 34698883 PMCID: PMC11072838 DOI: 10.1007/s00018-021-03975-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023]
Abstract
Oct4, a class V POU-domain protein that is encoded by the Pou5f1 gene, is thought to be a key transcription factor in the early development of mammals. This transcription factor plays indispensable roles in pluripotent stem cells as well as in the acquisition of pluripotency during somatic cell reprogramming. Oct4 has also been shown to play a role as a pioneer transcription factor during zygotic genome activation (ZGA) from zebrafish to human. However, during the past decade, several studies have brought these conclusions into question. It was clearly shown that the first steps in mouse development are not affected by the loss of Oct4. Subsequently, the role of Oct4 as a genome activator was brought into doubt. It was also found that the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) could proceed without Oct4. In this review, we summarize recent findings, reassess the role of Oct4 in reprogramming and ZGA, and point to structural features that may underlie this role. We speculate that pluripotent stem cells resemble neural stem cells more closely than previously thought. Oct4 orthologs within the POUV class hold key roles in genome activation during early development of species with late ZGA. However, in Placentalia, eutherian-specific proteins such as Dux overtake Oct4 in ZGA and endow them with the formation of an evolutionary new tissue-the placenta.
Collapse
Affiliation(s)
- Evgeny I Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Alexey N Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
18
|
Wang Y, Feng T, Zhu M, Shi X, Wang Z, Liu S, Zhang X, Zhang J, Zhao S, Zhang J, Ling X, Liu M. PABPN1L assemble into "ring-like" aggregates in the cytoplasm of MII oocytes and is associated with female infertility†. Biol Reprod 2021; 106:83-94. [PMID: 34726234 DOI: 10.1093/biolre/ioab203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 10% - 15% of families worldwide. However, the pathogenesis of female infertility caused by abnormal early embryonic development is not clear. A resent study showed that PABPN1L recruited BTG4 to mRNA 3'-poly(A) tails and was essential for maternal mRNA degradation. Here, we generated an PABPN1L-antibody and found "ring-like" PABPN1L aggregates in the cytoplasm of MII oocytes. PABPN1L-EGFP proteins spontaneously formed"ring-like" aggregates in vitro. This phenomenon is similar with CCR4-NOT catalytic subunit, CNOT7, when it starts deadenylation process in vitro. We constructed two mouse model (Pabpn1l -/- and Pabpn1l tm1a/tm1a) simulating the intron1-exon2 abnormality of human PABPN1L and found that the female was sterile and the male was fertile. Using RNA-Seq, we observed a large-scale up-regulation of RNA in zygotes derived from Pabpn1l-/- MII oocytes. We found that 9222 genes were up-regulated instead of being degraded in the Pabpn1l-♀/+♂zygote. Both the Btg4 and Cnot61 genes are necessary for the deadenylation process and Pabpn1l -/- resembled both the Btg4 and Cnot6l knockouts, where 71.2% genes stabilized in the Btg4-♀/+♂ zygote and 84.2% genes stabilized in the Cnot6l-♀/+♂zygote were also stabilized in Pabpn1l-♀/+♂ zygote. BTG4/CNOT7/CNOT6L was partially co-located with PABPN1L in MII oocytes. The above results suggest that PABPN1L is widely associated with CCR4-NOT-mediated maternal mRNA degradation and PABPN1L variants on intron1-exon2 could be a genetic marker of female infertility. Summary sentence. "Ring-like" PABPN1L aggregates was found in the cytoplasm of MII oocytes and in vitro; intron1-exon2 abnormality of Pabpn1l leads female sterile in mice.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Tianhao Feng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Mingcong Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaodan Shi
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Zerui Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
19
|
Wang F, Chamani IJ, Luo D, Chan K, Navarro PA, Keefe DL. Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development. J Assist Reprod Genet 2021; 38:3145-3153. [PMID: 34618297 DOI: 10.1007/s10815-021-02331-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate whether inhibition of LINE-1 affects telomere reprogramming during 2-cell embryo development. METHODS Mouse zygotes were cultured with or without 1 µM azidothymidine (AZT) for up to 15 h (early 2-cell, G1/S) or 24 h (late 2-cell, S/G2). Gene expression and DNA copy number were determined by RT-qPCR and qPCR respectively. Immunostaining and telomeric PNA-FISH were performed for co-localization between telomeres and ZSCAN4 or LINE-1-Orf1p. RESULTS LINE-1 copy number was remarkably reduced in later 2-cell embryos by exposure to 1 µM AZT, and telomere lengths in late 2-cell embryos with AZT were significantly shorter compared to control embryos (P = 0.0002). Additionally, in the absence of LINE-1 inhibition, Dux, Zscan4, and LINE-1 were highly transcribed in early 2-cell embryos, as compared to late 2-cell embryos (P < 0.0001), suggesting that these 2-cell genes are activated at the early 2-cell stage. However, in early 2-cell embryos with AZT treatment, mRNA levels of Dux, Zscan4, and LINE-1 were significantly decreased. Furthermore, both Zscan4 and LINE-1 encoded proteins localized to telomere regions in 2-cell embryos, but this co-localization was dramatically reduced after AZT treatment (P < 0.001). CONCLUSIONS Upon inhibition of LINE-1 retrotransposition in mouse 2-cell embryos, Dux, Zscan4, and LINE-1 were significantly downregulated, and telomere elongation was blocked. ZSCAN4 foci and their co-localization with telomeres were also significantly decreased, indicating that ZSCAN4 is an essential component of the telomere reprogramming that occurs in mice at the 2-cell stage. Our findings also suggest that LINE-1 may directly contribute to telomere reprogramming in addition to regulating gene expression.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Isaac J Chamani
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Danxia Luo
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kasey Chan
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paula Andrea Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
20
|
Goszczynski DE, Tinetti PS, Choi YH, Hinrichs K, Ross PJ. Genome activation in equine in vitro-produced embryos. Biol Reprod 2021; 106:66-82. [PMID: 34515744 DOI: 10.1093/biolre/ioab173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Embryonic genome activation is a critical event in embryo development, in which the transcriptional program of the embryo is initiated. The timing and regulation of this process are species-specific. In vitro embryo production is becoming an important clinical and research tool in the horse; however, very little is known about genome activation in this species. The objective of this work was to identify the timing of genome activation, and the transcriptional networks involved, in in vitro-produced horse embryos. RNA-Seq was performed on oocytes and embryos at eight stages of development (MII, zygote, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst; n = 6 per stage, 2 from each of 3 mares). Transcription of seven genes was initiated at the 2-cell stage. The first substantial increase in gene expression occurred at the 4-cell stage (minor activation), followed by massive gene upregulation and downregulation at the 8-cell stage (major activation). An increase in intronic nucleotides, indicative of transcription initiation, was also observed at the 4-cell stage. Co-expression network analyses identified groups of genes that appeared to be regulated by common mechanisms. Investigation of hub genes and binding motifs enriched in the promoters of co-expressed genes implicated several transcription factors. This work represents, to the best of our knowledge, the first genomic evaluation of embryonic genome activation in horse embryos.
Collapse
Affiliation(s)
- D E Goszczynski
- Department of Animal Science, University of California, Davis, CA, USA
| | - P S Tinetti
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Y H Choi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Goszczynski DE, Tinetti PS, Choi YH, Ross PJ, Hinrichs K. Allele-specific expression analysis reveals conserved and unique features of preimplantation development in equine ICSI embryos. Biol Reprod 2021; 105:1416-1426. [PMID: 34515759 DOI: 10.1093/biolre/ioab174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Embryonic genome activation and dosage compensation are major genetic events in early development. Combined analysis of single embryo RNA-seq data and parental genome sequencing was used to evaluate parental contributions to early development and investigate X-chromosome dynamics. In addition, we evaluated dimorphism in gene expression between male and female embryos. Evaluation of parent-specific gene expression revealed a minor increase in paternal expression at the 4-cell stage that increased at the 8-cell stage. We also detected eight genes with allelic expression bias that may have an important role in early development, notably NANOGNB. The main actor in X-chromosome inactivation, XIST, was significantly upregulated at the 8-cell, morula, and blastocyst stages in female embryos, with high expression at the latter. Sexual dimorphism in gene expression was identified at all stages, with strong representation of the X-chromosome in females from the 16-cell to the blastocyst stage. Female embryos showed biparental X-chromosome expression at all stages after the 4-cell stage, demonstrating the absence of imprinted X-inactivation at the embryo level. The analysis of gene dosage showed incomplete dosage compensation (0.5 < X:A < 1) in MII oocytes and embryos up to the 4-cell stage, an increase of the X:A ratio at the 16-cell and morula stages after genome activation, and a decrease of the X:A ratio at the blastocyst stage, which might be associated with the beginning of X-chromosome inactivation. This study represents the first critical analysis of parent- and sex-specific gene expression in early equine embryos produced in vitro.
Collapse
Affiliation(s)
- D E Goszczynski
- Department of Animal Science, University of California, Davis, CA, USA
| | - P S Tinetti
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Y H Choi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
22
|
Kobayashi W, Tachibana K. Awakening of the zygotic genome by pioneer transcription factors. Curr Opin Struct Biol 2021; 71:94-100. [PMID: 34256217 DOI: 10.1016/j.sbi.2021.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 10/20/2022]
Abstract
After fertilization, the genome of the totipotent embryo is transcriptionally inactive and then initiates bursts of transcription termed zygotic genome activation (ZGA). Despite the fundamental importance of initiating an embryonic transcription program for the start of life, the essential regulators and molecular mechanisms triggering ZGA in most organisms are poorly understood. One mechanism centers on pioneer factors that function in cellular reprogramming and differentiation. Recent studies revealed that not only a single but multiple pioneer factors bind cooperatively to the genome to open chromatin, resulting in changes in epigenetic modifications and triggering ZGA. Here, we review recent insights into the functions of pioneer factors during ZGA and discuss the potential relevance to three-dimensional chromatin organization during embryonic development.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
23
|
Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 2021; 148:268308. [PMID: 34013332 PMCID: PMC8254863 DOI: 10.1242/dev.190793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e−/−) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e−/− embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development. Summary: Combined use of a PB [Act-RFP] transgenesis model, selective pharmacological inhibition and expression analyses verified the essential role of eIF4E in the transition from maternal to embryonic control of mouse development.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jianan Tang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xu Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Min-Min Hua
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Miao Liu
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Chang
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Christopher O'Neill
- Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Xingliang Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.,Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
24
|
Aljahdali A, Airina RKRI, Velazquez MA, Sheth B, Wallen K, Osmond C, Watkins AJ, Eckert JJ, Smyth NR, Fleming TP. The duration of embryo culture after mouse IVF differentially affects cardiovascular and metabolic health in male offspring. Hum Reprod 2021; 35:2497-2514. [PMID: 33020802 PMCID: PMC7603862 DOI: 10.1093/humrep/deaa205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
STUDY QUESTION Do the long-term health outcomes following IVF differ depending upon the duration of embryo culture before transfer? SUMMARY ANSWER Using a mouse model, we demonstrate that in male but not female offspring, adverse cardiovascular (CV) health was more likely with prolonged culture to the blastocyst stage, but metabolic dysfunction was more likely if embryo transfer (ET) occurred at the early cleavage stage. WHAT IS KNOWN ALREADY ART associate with increased risk of adverse CV and metabolic health in offspring, and these findings have been confirmed in animal models in the absence of parental infertility issues. It is unclear which specific ART treatments may cause these risks. There is increasing use of blastocyst, versus cleavage-stage, transfer in clinical ART which does not appear to impair perinatal health of children born, but the longer-term health implications are unknown. STUDY DESIGN, SIZE, DURATION Five mouse groups were generated comprising: (i) natural mating (NM)—naturally mated, non-superovulated and undisturbed gestation; (ii) IV-ET-2Cell—in-vivo derived two-cell embryos collected from superovulated mothers, with immediate ET to recipients; (iii) IVF-ET-2Cell—IVF generated embryos, from oocytes from superovulated mothers, cultured to the two-cell stage before ET to recipients; (iv) IV-ET-BL—in-vivo derived blastocysts collected from superovulated mothers, with immediate ET to recipients; (v) IVF-ET-BL—IVF generated embryos, from oocytes from superovulated mothers, cultured to the blastocyst stage before ET to recipients. Both male and female offspring were analysed for growth, CV and metabolic markers of health. There were 8–13 litters generated for each group for analyses; postnatal data were analysed by multilevel random effects regression to take account of between-mother and within-mother variation and litter size. PARTICIPANTS/MATERIALS, SETTINGS, METHODS C57/BL6 female mice (3–4 weeks old) were used for oocyte production; CBA males for sperm with human tubal fluid medium were used for IVF. Embryos were transferred (ET) to MF1 pseudo-pregnant recipients at the two-cell stage or cultured in synthetic oviductal medium enriched with potassium medium to the blastocyst stage before ET. Control in-vivo embryos from C57BL6 × CBA matings were collected and immediately transferred at the two-cell or blastocyst stage. Postnatal assays included growth rate up to 27 weeks; systolic blood pressure (SBP) at 9, 15 and 21 weeks; lung and serum angiotensin-converting enzyme (ACE) activity at time of cull (27 weeks); glucose tolerance test (GTT; 27 weeks); basal glucose and insulin levels (27 weeks); and lipid accumulation in liver cryosections using Oil Red O imaging (27 weeks). MAIN RESULTS AND THE ROLE OF CHANCE Blastocysts formed by IVF developed at a slower rate and comprised fewer cells that in-vivo generated blastocysts without culture (P < 0.05). Postnatal growth rate was increased in all four experimental treatments compared with NM group (P < 0.05). SBP, serum and lung ACE and heart/body weight were higher in IVF-ET-BL versus IVF-ET-2Cell males (P < 0.05) and higher than in other treatment groups, with SBP and lung ACE positively correlated (P < 0.05). Glucose handling (GTT AUC) was poorer and basal insulin levels were higher in IVF-ET-2Cell males than in IVF-ET-BL (P < 0.05) with the glucose:insulin ratio more negatively correlated with body weight in IVF-ET-2Cell males than in other groups. Liver/body weight and liver lipid droplet diameter and density in IVF-ET-2Cell males were higher than in IVF-ET-BL males (P < 0.05). IVF groups had poorer health characteristics than their in-vivo control groups, indicating that outcomes were not caused specifically by background techniques (superovulation, ET). No consistent health effects from duration of culture were identified in female offspring. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Results from experimental animal models cannot be extrapolated to humans. Nevertheless, they are valuable to develop conceptual models, in this case, in the absence of confounding parental infertility, in assessing the safety of ART manipulations. WIDER IMPLICATIONS OF THE FINDINGS The study indicates that longer duration of embryo culture after IVF up to blastocyst before ET leads to increased dysfunction of CV health in males compared with IVF and shorter cleavage-stage ET. However, the metabolic health of male offspring was poorer after shorter versus longer culture duration. This distinction indicates that the origin of CV and metabolic health phenotypes after ART may be different. The poorer metabolic health of males after cleavage-stage ET coincides with embryonic genome activation occurring at the time of ET. STUDY FUNDING/COMPETING INTEREST(S) This work was supported through the European Union FP7-CP-FP Epihealth programme (278418) and FP7-PEOPLE-2012-ITN EpiHealthNet programme (317146) to T.P.F., the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/F007450/1) to T.P.F., and the Saudi government, University of Jeddah and King Abdulaziz University to A.A. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Anan Aljahdali
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.,University of Jeddah, Jeddah, Saudi Arabia
| | - R K Raja Ili Airina
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Bhavwanti Sheth
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Katrina Wallen
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Judith J Eckert
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Neil R Smyth
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Tom P Fleming
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
25
|
Zhang H, Yan K, Sui L, Li P, Du Y, Hu J, Li M, Yang X, Liang X. Low-level pyruvate inhibits early embryonic development and maternal mRNA clearance in mice. Theriogenology 2021; 166:104-111. [PMID: 33721681 DOI: 10.1016/j.theriogenology.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
Energy homeostasis and accomplishment of maternal-to-zygotic transition (MZT), which involves the timed processes of maternal mRNA clearance and zygotic genome activation (ZGA), are essential for mammalian embryogenesis. However, how energy substrates regulate maternal mRNA clearance and the underlying mechanisms have not yet been fully elucidated. Here, we found that mouse embryos were arrested at the 2-cell stage when the pyruvate level was reduced to one-fifth of the control level. Moreover, we observed that the mitochondrial contents and ROS levels were reduced. Interestingly, some maternal mRNA, including transcripts involved in the maternal factor-mediated mRNA decay (M-decay) pathway, was vastly degraded from 1-cell to 2-/4-cell embryos when cultured with control pyruvate levels, but the clearance of these transcripts was hindered when the pyruvate level was reduced. In contrast, some transcripts involved in the zygotic factor-mediated mRNA decay (Z-decay) pathway were vastly downregulated by the reduction in pyruvate. This effect was possibly due to a reduction in global transcription, as the embryos cultured with low-level pyruvate had lower transcription activity than embryos cultured with control pyruvate level. In summary, our findings demonstrate that low-level pyruvate inhibits maternal mRNA clearance, possibly by disrupting the M- and Z-decay pathways, extending our current understanding of the energy requirements of embryogenesis.
Collapse
Affiliation(s)
- Hengye Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Pan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ya Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Mengqi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
26
|
Hu Y, Huang K, Zeng Q, Feng Y, Ke Q, An Q, Qin LJ, Cui Y, Guo Y, Zhao D, Peng Y, Tian D, Xia K, Chen Y, Ni B, Wang J, Zhu X, Wei L, Liu Y, Xiang P, Liu JY, Xue Z, Fan G. Single-cell analysis of nonhuman primate preimplantation development in comparison to humans and mice. Dev Dyn 2021; 250:974-985. [PMID: 33449399 DOI: 10.1002/dvdy.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic programs underlying preimplantation development and early lineage segregation are highly conserved across mammals. It has been suggested that nonhuman primates would be better model organisms for human embryogenesis, but a limited number of studies have investigated the monkey preimplantation development. In this study, we collect single cells from cynomolgus monkey preimplantation embryos for transcriptome profiling and compare with single-cell RNA-seq data derived from human and mouse embryos. RESULTS By weighted gene-coexpression network analysis, we found that cynomolgus gene networks have greater conservation with human embryos including a greater number of conserved hub genes than that of mouse embryos. Consistently, we found that early ICM/TE lineage-segregating genes in monkeys exhibit greater similarity with human when compared to mouse, so are the genes in signaling pathways such as LRP1 and TCF7 involving in WNT pathway. Last, we tested the role of one conserved pre-EGA hub gene, SIN3A, using a morpholino knockdown of maternal RNA transcripts in monkey embryos followed by single-cell RNA-seq. We found that SIN3A knockdown disrupts the gene-silencing program during the embryonic genome activation transition and results in developmental delay of cynomolgus embryos. CONCLUSION Taken together, our study provided new insight into evolutionarily conserved and divergent transcriptome dynamics during mammalian preimplantation development.
Collapse
Affiliation(s)
- Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Qiao Zeng
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Feng
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qiong Ke
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lian-Ju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - YuGui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Guo
- The Second Affiliated Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Dicheng Zhao
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Peng
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Tian
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Chen
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Bin Ni
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Jinmei Wang
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Xianmin Zhu
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Peng Xiang
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Jia-Yin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhigang Xue
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
27
|
Yu L, Zhang H, Guan X, Qin D, Zhou J, Wu X. Loss of ESRP1 blocks mouse oocyte development and leads to female infertility. Development 2021; 148:dev196931. [PMID: 33318146 DOI: 10.1242/dev.196931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023]
Abstract
Alternative splicing (AS) contributes to gene diversification, but the AS program during germline development remains largely undefined. Here, we interrupted pre-mRNA splicing events controlled by epithelial splicing regulatory protein 1 (ESRP1) and found that it induced female infertility in mice. Esrp1 deletion perturbed spindle organization, chromosome alignment and metaphase-to-anaphase transformation in oocytes. The first polar body extrusion was blocked during oocyte meiosis owing to abnormal activation of spindle assembly checkpoint and insufficiency of anaphase-promoting complex/cyclosome in Esrp1-knockout oocytes. Esrp1-knockout hampered follicular development and ovulation; eventually, premature ovarian failure occurred in six-month-old Esrp1-knockout mouse. Using single-cell RNA-seq analysis, 528 aberrant AS events of maternal mRNA transcripts were revealed and were preferentially associated with microtubule cytoskeletal organization. Notably, we found that loss of ESRP1 disturbed a comprehensive set of gene-splicing sites - including those within Trb53bp1, Rac1, Bora, Kif2c, Kif23, Ndel1, Kif3a, Cenpa and Lsm14b - that potentially caused abnormal spindle organization. Collectively, our findings provide the first report elucidating the ESRP1-mediated AS program of maternal mRNA transcripts, which may contribute to oocyte meiosis and female fertility in mice.
Collapse
Affiliation(s)
- Luping Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiru Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuebing Guan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Zhou
- Department of Pediatric Laboratory, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
van der Weijden VA, Rüegg AB, Bernal-Ulloa SM, Ulbrich SE. Embryonic diapause in mammals and dormancy in embryonic stem cells with the European roe deer as experimental model. Reprod Fertil Dev 2021; 33:76-81. [PMID: 38769673 DOI: 10.1071/rd20256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
In species displaying embryonic diapause, the developmental pace of the embryo is either temporarily and reversibly halted or largely reduced. Only limited knowledge on its regulation and the inhibition of cell proliferation extending pluripotency is available. In contrast with embryos from other diapausing species that reversibly halt during diapause, embryos of the roe deer Capreolus capreolus slowly proliferate over a period of 4-5 months to reach a diameter of approximately 4mm before elongation. The diapausing roe deer embryos present an interesting model species for research on preimplantation developmental progression. Based on our and other research, we summarise the available knowledge and indicate that the use of embryonic stem cells (ESCs) would help to increase our understanding of embryonic diapause. We report on known molecular mechanisms regulating embryonic diapause, as well as cellular dormancy of pluripotent cells. Further, we address the promising application of ESCs to study embryonic diapause, and highlight the current knowledge on the cellular microenvironment regulating embryonic diapause and cellular dormancy.
Collapse
Affiliation(s)
- Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Sandra M Bernal-Ulloa
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland; and Corresponding author
| |
Collapse
|
29
|
Basak T, Dey AK, Banerjee R, Paul S, Maiti TK, Ain R. Sequestration of eIF4A by angiomotin: A novel mechanism to restrict global protein synthesis in trophoblast cells. STEM CELLS (DAYTON, OHIO) 2020; 39:210-226. [PMID: 33237582 DOI: 10.1002/stem.3305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022]
Abstract
Enrichment of angiomotin (AMOT) in the ectoplacental cone of E7.5 murine placenta prompted our investigation on the role of AMOT in trophoblast differentiation. We show here that AMOT levels increased in mouse placenta during gestation and also upon induction of differentiation in trophoblast stem cell ex vivo. Proteomic data unravelling AMOT-interactome in trophoblast cells indicated a majority of AMOT interactors to be involved in protein translation. In-depth analysis of AMOT-interactome led to identification of eukaryotic translation initiation factor 4A (eIF4A) as the most plausible AMOT interactor. Loss of function of AMOT enhanced, whereas, gain in function resulted in decline of global protein synthesis in trophoblast cells. Bioinformatics analysis evaluating the potential energy of AMOT-eIF4A binding suggested a strong AMOT-eIF4A interaction using a distinct groove encompassing amino acid residue positions 238 to 255 of AMOT. Co-immunoprecipitation of AMOT with eIF4A reaffirmed AMOT-eIF4A association in trophoblast cells. Deletion of 238 to 255 amino acids of AMOT resulted in abrogation of AMOT-eIF4A interaction. In addition, 238 to 255 amino acid deletion of AMOT was ineffective in eliciting AMOT's function in reducing global protein synthesis. Interestingly, AMOT-dependent sequestration of eIF4A dampened its loading to the m7 -GTP cap and hindered its interaction with eIF4G. Furthermore, enhanced AMOT expression in placenta was associated with intrauterine growth restriction in both rats and humans. These results not only highlight a hitherto unknown novel function of AMOT in trophoblast cells but also have broad biological implications as AMOT might be an inbuilt switch to check protein synthesis in developmentally indispensable trophoblast cells.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Rachana Banerjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Paul
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
30
|
Origin and function of the yolk sac in primate embryogenesis. Nat Commun 2020; 11:3760. [PMID: 32724077 PMCID: PMC7387521 DOI: 10.1038/s41467-020-17575-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human embryogenesis is hallmarked by two phases of yolk sac development. The primate hypoblast gives rise to a transient primary yolk sac, which is rapidly superseded by a secondary yolk sac during gastrulation. Moreover, primate embryos form extraembryonic mesoderm prior to gastrulation, in contrast to mouse. The function of the primary yolk sac and the origin of extraembryonic mesoderm remain unclear. Here, we hypothesise that the hypoblast-derived primary yolk sac serves as a source for early extraembryonic mesoderm, which is supplemented with mesoderm from the gastrulating embryo. We discuss the intricate relationship between the yolk sac and the primate embryo and highlight the pivotal role of the yolk sac as a multifunctional hub for haematopoiesis, germ cell development and nutritional supply.
Collapse
|
31
|
Esencan E, Kallen A, Zhang M, Seli E. Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB). Biol Reprod 2020; 100:1147-1157. [PMID: 30806655 DOI: 10.1093/biolre/ioz034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/23/2019] [Accepted: 02/23/2019] [Indexed: 12/20/2022] Open
Abstract
Transcription ceases upon stimulation of oocyte maturation and gene expression during oocyte maturation, fertilization, and early cleavage relies on translational activation of maternally derived mRNAs. Two key mechanisms that mediate translation of mRNAs in oocytes have been described in detail: cytoplasmic polyadenylation-dependent and -independent. Both of these mechanisms utilize specific protein complexes that interact with cis-acting sequences located on 3'-untranslated region (3'-UTR), and both involve embryonic poly(A) binding protein (EPAB), the predominant poly(A) binding protein during early development. While mechanistic details of these pathways have primarily been elucidated using the Xenopus model, their roles are conserved in mammals and targeted disruption of key regulators in mouse results in female infertility. Here, we provide a detailed account of the molecular mechanisms involved in translational activation during oocyte and early embryo development, and the role of EPAB in this process.
Collapse
Affiliation(s)
- Ecem Esencan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Amanda Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Man Zhang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Vallot A, Tachibana K. The emergence of genome architecture and zygotic genome activation. Curr Opin Cell Biol 2020; 64:50-57. [PMID: 32220807 PMCID: PMC7374442 DOI: 10.1016/j.ceb.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 01/15/2023]
Abstract
The fusion of two transcriptionally silent gametes, egg and sperm, generates a totipotent zygote that activates zygotic transcription to support further development. Although the molecular details of zygotic genome activation (ZGA) are not well understood in most species, an emerging concept is that one or more pioneer transcription factors trigger zygotic transcription. Concomitantly, extensive changes in 3D chromatin organization occur during development. In this review, we discuss recent advances in understanding when and how genome architecture emerges in early metazoan embryos, how the zygotic genome is activated, and how these events might be coordinated. We also highlight some of the unknowns that may be critical to address in the future.
Collapse
Affiliation(s)
- Antoine Vallot
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria; Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
33
|
ElInati E, Zielinska AP, McCarthy A, Kubikova N, Maciulyte V, Mahadevaiah S, Sangrithi MN, Ojarikre O, Wells D, Niakan KK, Schuh M, Turner JMA. The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes. Nat Commun 2020; 11:2598. [PMID: 32451402 PMCID: PMC7248069 DOI: 10.1038/s41467-020-16441-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/27/2020] [Indexed: 11/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are toxic to mammalian cells. However, during meiosis, more than 200 DSBs are generated deliberately, to ensure reciprocal recombination and orderly segregation of homologous chromosomes. If left unrepaired, meiotic DSBs can cause aneuploidy in gametes and compromise viability in offspring. Oocytes in which DSBs persist are therefore eliminated by the DNA-damage checkpoint. Here we show that the DNA-damage checkpoint eliminates oocytes via the pro-apoptotic BCL-2 pathway members Puma, Noxa and Bax. Deletion of these factors prevents oocyte elimination in recombination-repair mutants, even when the abundance of unresolved DSBs is high. Remarkably, surviving oocytes can extrude a polar body and be fertilised, despite chaotic chromosome segregation at the first meiotic division. Our findings raise the possibility that allelic variants of the BCL-2 pathway could influence the risk of embryonic aneuploidy. If left unrepaired, meiotic DSBs are toxic to mammalian cells, thus oocytes in which DSBs persist are eliminated by the DNA-damage checkpoint. Here the authors provide insights into the roles of PUMA, NOXA and BAX during DNA damage checkpoint that eliminates Dmc1−/− and Msh5−/− oocytes.
Collapse
Affiliation(s)
- Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Agata P Zielinska
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Nada Kubikova
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,IVI-RMA, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Shantha Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mahesh N Sangrithi
- Duke-NUS Graduate Medical School, Singapore, 119077, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Obah Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,IVI-RMA, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Melina Schuh
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
34
|
Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Rep 2020; 27:282-293.e4. [PMID: 30943408 DOI: 10.1016/j.celrep.2019.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Mammalian histone methyltransferase G9a (also called EHMT2) deposits H3K9me2 on chromatin and is essential for postimplantation development. However, its role in oogenesis and preimplantation development remains poorly understood. We show that H3K9me2-enriched chromatin domains in mouse oocytes are generally depleted of CG methylation, contrasting with their association in embryonic stem and somatic cells. Oocyte-specific disruption of G9a results in reduced H3K9me2 enrichment and impaired reorganization of heterochromatin in oocytes, but only a modest reduction in CG methylation is detected. Furthermore, in both oocytes and 2-cell embryos, G9a depletion has limited impact on the expression of genes and retrotransposons. Although their CG methylation is minimally affected, preimplantation embryos derived from such oocytes show abnormal chromosome segregation and frequent developmental arrest. Our findings illuminate the functional importance of G9a independent of CG methylation in preimplantation development and call into question the proposed role for H3K9me2 in CG methylation protection in zygotes.
Collapse
|
35
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
36
|
Rho NY, Ashkar FA, Revay T, Madan P, Rho GJ, King WA, Favetta LA. De novo transcription of thyroid hormone receptors is essential for early bovine embryo development in vitro. Reprod Fertil Dev 2019; 30:779-788. [PMID: 29179810 DOI: 10.1071/rd17165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone receptor (THR) α and THRβ mediate the genomic action of thyroid hormones (THs) that affect bovine embryo development. However, little is known about THRs in the preimplantation embryo. The aim of the present study was to investigate the importance of THRs in in vitro preimplantation bovine embryos. THR transcripts and protein levels were detected in developing preimplantation embryos up to the blastocyst stage. Embryonic transcription of THRs was inhibited by α-amanitin supplementation, and both maternal and embryonic transcription were knocked down by short interference (si) RNA microinjection. In the control group, mRNA and protein levels of THRs increased after fertilisation. In contrast, in both the transcription inhibition and knockdown groups there were significant (P<0.05) decreases in mRNA expression of THRs from the 2-cell stage onwards. However, protein levels of THRs were not altered at 2-cell stage, although they did exhibit a significant (P<0.05) decrease from the 4-cell stage. Moreover, inhibition of de novo transcripts of THRs using siRNA led to a significant (P<0.01) decrease in the developmental rate and cell number, as well as inducing a change in embryo morphology. In conclusion, THRs are transcribed soon after fertilisation, before major activation of the embryonic genome, and they are essential for bovine embryo development in vitro.
Collapse
Affiliation(s)
- N-Y Rho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F A Ashkar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - T Revay
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - G-J Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - L A Favetta
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
37
|
Zuidema D, Sutovsky P. The domestic pig as a model for the study of mitochondrial inheritance. Cell Tissue Res 2019; 380:263-271. [DOI: 10.1007/s00441-019-03100-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
|
38
|
Johnson M. Human in vitro fertilisation and developmental biology: a mutually influential history. Development 2019; 146:146/17/dev183145. [PMID: 31488509 DOI: 10.1242/dev.183145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article describes the origins and development of in vitro fertilisation (IVF) and how it was influenced by, and influenced, basic research in developmental biology. It describes the technical and social challenges that confronted the pioneers in this field of study, and the considerable progress that has been made since those early days. It also considers how IVF has contributed, and continues to contribute, to our understanding of early human development.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Anatomy, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
39
|
Ozturk S. The translational functions of embryonic poly(A)‐binding protein during gametogenesis and early embryo development. Mol Reprod Dev 2019; 86:1548-1560. [DOI: 10.1002/mrd.23253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Saffet Ozturk
- Department of Histology and EmbryologyAkdeniz University School of MedicineAntalya Turkey
| |
Collapse
|
40
|
Schultz RM, Stein P, Svoboda P. The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod 2019; 99:160-174. [PMID: 29462259 DOI: 10.1093/biolre/ioy013] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
Collapse
Affiliation(s)
- Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Anatomy, Physiology, Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
41
|
Zhang M, Zhou C, Wei Y, Xu C, Pan H, Ying W, Sun Y, Sun Y, Xiao Q, Yao N, Zhong W, Li Y, Wu K, Yuan G, Mitalipov S, Chen ZJ, Yang H. Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biol 2019; 20:101. [PMID: 31118069 PMCID: PMC6532253 DOI: 10.1186/s13059-019-1703-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Base editing installs a precise nucleotide change in specific gene loci without causing a double-strand break. Its efficiency in human embryos is generally low, limiting its utility in functional genetic studies. Here, we report that injecting base editors into human cleaving two-cell and four-cell embryos results in much higher (up to 13-fold) homozygotic nucleotide substitution efficiency as opposed to MII oocytes or zygotes. Furthermore, as a proof-of-principle study, a point mutation can be efficiently corrected by our method. Our study indicates that human cleaving embryos provide an efficient base editing window for robust gene disruption and correction.
Collapse
Affiliation(s)
- Meiling Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chunlong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hong Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yidi Sun
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
| | - Qingquan Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Yao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
| | - Wanxia Zhong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
| | - Yun Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250021, Shandong, China
| | - Gao Yuan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250021, Shandong, China
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest, Bond Avenue, Portland, OR, 97239, USA.
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China.
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.
- The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250021, Shandong, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
42
|
Sybirna A, Wong FCK, Surani MA. Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Curr Top Dev Biol 2019; 135:35-89. [PMID: 31155363 DOI: 10.1016/bs.ctdb.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primordial germ cells (PGCs) are embryonic precursors of sperm and egg that pass on genetic and epigenetic information from one generation to the next. In mammals, they are induced from a subset of cells in peri-implantation epiblast by BMP signaling from the surrounding tissues. PGCs then initiate a unique developmental program that involves comprehensive epigenetic resetting and repression of somatic genes. This is orchestrated by a set of signaling molecules and transcription factors that promote germ cell identity. Here we review significant findings on mammalian PGC biology, in particular, the genetic basis for PGC specification in mice and human, which has revealed an evolutionary divergence between the two species. We discuss the importance and potential basis for these differences and focus on several examples to illustrate the conserved and divergent roles of critical transcription factors in mouse and human germline.
Collapse
Affiliation(s)
- Anastasiya Sybirna
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederick C K Wong
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
43
|
Maternal DCAF13 Regulates Chromatin Tightness to Contribute to Embryonic Development. Sci Rep 2019; 9:6278. [PMID: 31000741 PMCID: PMC6472424 DOI: 10.1038/s41598-019-42179-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Maternal-zygotic transition (MZT) is critical for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stage of embryogenesis. However, the spatiotemporal dynamic regulation of MZT by maternal factors is largely unknown. Here, we reported a novel maternal factor, DCAF13, which was highly expressed in growing oocyte nucleolus and had key maternal effects on oocyte and zygotic chromatin tightness during maternal to zygotic transition. DCAF13 specifically deleted in oocytes resulted in loose chromatin structure in fully grown germinal vesicle oocytes. Despite normal nuclear maturation in maternal DCAF13-deleted oocytes, the chromosomes at MII stage were not properly condensed. Consequently, the nuclear and nucleolar structure reorganized abnormally, and transcription was inactive in zygotic embryos. RNA-seq analysis of MII oocytes and 2-cell embryos demonstrated that the transcriptomes between knockout and control oocyte were similar, but the maternal DCAF13 deleted two-cell embryos showed a significant decrease in transcription. In addition, the maternal DCAF13-deleted embryos displayed arrest at the two-cell stage, which could not be rescued by injecting flag-Dcaf13 mRNA in the zygote. This revealed that DCAF13 was a unique maternal effect factor regulating the nucleolus.
Collapse
|
44
|
Liu Y, Xu S, Lian X, Su Y, Zhong Y, Lv R, Mo K, Zhu H, Xiaojiang W, Xu L, Wang S. Atypical GATA protein TRPS1 plays indispensable roles in mouse two-cell embryo. Cell Cycle 2019; 18:437-451. [PMID: 30712485 DOI: 10.1080/15384101.2019.1577650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zygotic genome activation (ZGA) is one of the most critical events at the beginning of mammalian preimplantation embryo development (PED). The mechanisms underlying mouse ZGA remain unclear although it has been widely studied. In the present study, we identified that tricho-rhino-phalangeal syndrome 1 (TRPS1), an atypical GATA family member, is an important factor for ZGA in mouse PED. We found that the Trps1 mRNA level peaked at the one-cell stage while TRPS1 protein did so at the two/four-cell stage. Knockdown of Trps1 by the microinjection of Trps1 siRNA reduced the developmental rate of mouse preimplantation embryos by approximately 30%, and increased the expression of ZGA marker genes MuERV-L and Zscan4d via suppressing the expression of major histone markers H3K4me3 and H3K27me3. Furthermore, Trps1 knockdown decreased the expression of Sox2 but increased Oct4 expression. We conclude that TRPS1 may be indispensable for zygotic genome activation during mouse PED.
Collapse
Affiliation(s)
- Yue Liu
- a Key Laboratory of Stem Cell Engineering and Regenerative Medicine , Fujian Province University
| | - Songhua Xu
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Xiuli Lian
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Yang Su
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Yuhuan Zhong
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Ruimin Lv
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Kaien Mo
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Huimin Zhu
- c Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences , Fujian Medical University , Fuzhou , P. R. China.,d Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences , Fujian Medical University , Fuzhou , P. R. China
| | - Wang Xiaojiang
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Lixuan Xu
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Shie Wang
- a Key Laboratory of Stem Cell Engineering and Regenerative Medicine , Fujian Province University.,b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| |
Collapse
|
45
|
Fu B, Ma H, Liu D. Endogenous Retroviruses Function as Gene Expression Regulatory Elements During Mammalian Pre-implantation Embryo Development. Int J Mol Sci 2019; 20:ijms20030790. [PMID: 30759824 PMCID: PMC6387303 DOI: 10.3390/ijms20030790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/13/2023] Open
Abstract
Pre-implantation embryo development encompasses several key developmental events, especially the activation of zygotic genome activation (ZGA)-related genes. Endogenous retroviruses (ERVs), which are regarded as “deleterious genomic parasites”, were previously considered to be “junk DNA”. However, it is now known that ERVs, with limited conservatism across species, mediate conserved developmental processes (e.g., ZGA). Transcriptional activation of ERVs occurs during the transition from maternal control to zygotic genome control, signifying ZGA. ERVs are versatile participants in rewiring gene expression networks during epigenetic reprogramming. Particularly, a subtle balance exists between ERV activation and ERV repression in host–virus interplay, which leads to stage-specific ERV expression during pre-implantation embryo development. A large portion of somatic cell nuclear transfer (SCNT) embryos display developmental arrest and ZGA failure during pre-implantation embryo development. Furthermore, because of the close relationship between ERV activation and ZGA, exploring the regulatory mechanism underlying ERV activation may also shed more light on the enigma of SCNT embryo development in model animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| |
Collapse
|
46
|
Morishita N, Ochi M, Horiuchi T. Development of golden hamster embryos effectively produced by injection of sperm heads sonicated in Tris-HCl buffer with EGTA. Reprod Med Biol 2019; 18:83-90. [PMID: 30655725 PMCID: PMC6332760 DOI: 10.1002/rmb2.12253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To investigate the effects of sperm treatment medium-TCM199 or EGTA in Tris-HCl buffer (TBS + EGTA)-for sonication of frozen-thawed hamster spermatozoa in terms of sperm chromosome integrity and development of hamster oocytes injected with the sperm heads (ICSI). METHODS Frozen-thawed hamster spermatozoa were separated into heads and tails by sonication in TCM199 or TBS + EGTA. Sperm heads were injected into mouse oocytes to assess hamster sperm chromosomes. We further compared the development of hamster ICSI embryos produced by injecting sonicated sperm heads in TCM199 vs TBS + EGTA. RESULTS Sperm chromosome integrity was greater following sonication of frozen-thawed hamster spermatozoa in TBS + EGTA than in TCM199 (89.7% vs 69.0%). Embryonic development was improved following hamster oocyte injection with sperm heads sonicated in TBS + EGTA compared to in TCM199 (8-cell: 84.1% vs 65.4%; morula: 78.4% vs 43.2%; blastocyst: 42.0% vs 17.3%). Gene expression of zygotic genome activation in 2-cell embryos was significantly higher with TBS + EGTA than with TCM199. We transferred 43 morulae/blastocysts from the TBS + EGTA group to foster mothers, and 4 (9.3%) developed into live offspring. CONCLUSION These results showed that the rapid injection of hamster sperm heads separated by sonication in TBS + EGTA effectively produced more ICSI embryos during a short time.
Collapse
Affiliation(s)
- Nami Morishita
- Department of Life SciencesPrefectural University of HiroshimaShobaraHiroshimaJapan
- IVF laboratoryOchi Yume Clinic NagoyaNagoyaJapan
| | | | - Toshitaka Horiuchi
- Department of Life SciencesPrefectural University of HiroshimaShobaraHiroshimaJapan
| |
Collapse
|
47
|
Dean DD, Agarwal S, Tripathi P. Connecting links between genetic factors defining ovarian reserve and recurrent miscarriages. J Assist Reprod Genet 2018; 35:2121-2128. [PMID: 30219969 PMCID: PMC6289926 DOI: 10.1007/s10815-018-1305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Approximately 1-2% of the women faces three or more successive spontaneous miscarriages termed as recurrent miscarriage (RM). Many clinical factors have been attributed so far to be the potential risk factors in RM, including uterine anomalies, antiphospholipid syndrome, endocrinological abnormalities, chromosomal abnormalities, and infections. However, in spite of extensive studies, reviews, and array of causes known to be associated with RM, about 50% cases encountered by treating physicians remains unknown. The aims of this study were to evaluate recent publications and to explore oocyte-specific genetic factors that may have role in incidence of recurrent miscarriages. METHOD Recent studies have identified common molecular factors contributing both in establishment of ovarian reserve and in early embryonic development. Also, studies have pointed out the relationship between the age-associated depletion of OR and increase in the risk of miscarriages, thus suggestive of an interacting biology. Here, we have gathered literature evidences in establishing connecting links between genetic factors associated with age induced or pathological OR depletion and idiopathic RM, which are the two extreme ends of female reproductive pathology. CONCLUSION In light of connecting etiological link between infertility and RM as reviewed in this study, interrogating the oocyte-specific genes with suspected roles in reproductive biology, in cases of unexplained RM, may open new possibilities in widening our understanding of RM pathophysiology.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Poonam Tripathi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| |
Collapse
|
48
|
Ladstätter S, Tachibana K. Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 2018; 218:70-82. [PMID: 30257850 PMCID: PMC6314560 DOI: 10.1083/jcb.201807044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Ladstätter and Tachibana discuss changes in DNA methylation, chromatin accessibility, and topological architecture occurring during the reprogramming to totipotency in the early embryo. The early embryo is the natural prototype for the acquisition of totipotency, which is the potential of a cell to produce a whole organism. Generation of a totipotent embryo involves chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications. Understanding embryonic chromatin architecture and how this is related to the epigenome and transcriptome will provide invaluable insights into cell fate decisions. Recently emerging low-input genomic assays allow the exploration of regulatory networks in the sparsely available mammalian embryo. Thus, the field of developmental biology is transitioning from microscopy to genome-wide chromatin descriptions. Ultimately, the prototype becomes a unique model for studying fundamental principles of development, epigenetic reprogramming, and cellular plasticity. In this review, we discuss chromatin reprogramming in the early mouse embryo, focusing on DNA methylation, chromatin accessibility, and higher-order chromatin structure.
Collapse
Affiliation(s)
- Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
49
|
Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci 2018; 75:2777-2792. [PMID: 29748894 PMCID: PMC11105623 DOI: 10.1007/s00018-018-2833-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.
Collapse
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Amy Winship
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
50
|
Laing L, Viana J, Dempster E, Uren Webster T, van Aerle R, Mill J, Santos E. Sex-specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:16-25. [DOI: 10.1016/j.cbpa.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
|