1
|
Ricardi MM, Tribelli PM, Costa CS, Pezzoni M. Global transcriptional response of Pseudomonas aeruginosa to UVA radiation. Photochem Photobiol Sci 2024; 23:2029-2044. [PMID: 39470974 DOI: 10.1007/s43630-024-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.
Collapse
Affiliation(s)
- Martiniano M Ricardi
- IFIByNE (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN (CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Probst-Rüd S, Nyangaresi PO, Adeyeye AA, Ackermann M, Beck SE, McNeill K. Synergistic effect of UV-A and UV-C light is traced to UV-induced damage of the transfer RNA. WATER RESEARCH 2024; 252:121189. [PMID: 38295454 DOI: 10.1016/j.watres.2024.121189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
UV light emitting diodes (LEDs) are considered the new frontier of UV water disinfection. As UV technologies continue to evolve, so does the need to understand disinfection mechanisms to ensure that UV treatment continues to adequately protect public health. In this research, two Escherichia coli (E. coli) strains (the wild type K12 MG1655 and K12 SP11 (ThiI E342K)) were irradiated with UV-C at 268 nm both independently and after exposure to UV-A (365 nm). A synergistic effect was found on the viability of the wild type E. coli K12 strain when UV-A irradiation was applied prior to UV-C. Sublethal UV-A doses, which had a negligible effect on cell viability alone, enhanced UV-C inactivation by several orders of magnitude. This indicated a specific cellular response mechanism to UV-A irradiation, which was traced to direct photolysis of the transfer RNA (tRNA), which are critical links in the translation of messenger RNA to proteins. The wild type K12 strain MG1655, containing tRNAs with a thiolated uridine, directly absorbs the UV-A light, which leads to a reduction in protein synthesis, making them more susceptible to UV-C induced damage. However, the K12 strain SP11 (ThiI E342K), with a point mutation in the thiI gene that prevents a post-transcriptional modification of tRNA, experienced less inactivation upon subsequent irradiation by UV-C. The growth rate of cells, which was inhibited by sublethal UV-A doses, was not inhibited in this mutant strain with the modified tRNA. Time-lapse microscopy with microfluidics showed that sub-lethal UV-A caused a transient, reversible, growth arrest in E. coli. However, once the growth resumed, the cell division time resembled that of unirradiated cells. Damage induced by UV-A impaired the recovery of damage induced by UV-C. Depending on the UV-A dose applied, the synergistic effect remained even when there was a time delay of several hours between UV-A and UV-C exposures. The effect of sublethal UV-A was reversible over time; therefore, the synergistic effect was strongest when UV-C was applied immediately after UV-A. Combining UV-A and UV-C irradiation may serve as a practical tool to increase UV disinfection efficacy, which could potentially reduce costs while still adequately protecting public health.
Collapse
Affiliation(s)
- Sandra Probst-Rüd
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland; Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dubendorf, Switzerland
| | | | - Adefolawe A Adeyeye
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Martin Ackermann
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland; Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dubendorf, Switzerland
| | - Sara E Beck
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dubendorf, Switzerland; Department of Civil Engineering, University of British Columbia, Vancouver, Canada.
| | - Kristopher McNeill
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Sandri A, Tessari A, Giannetti D, Cetti A, Lleo MM, Boschi F. UV-A Radiation: Safe Human Exposure and Antibacterial Activity. Int J Mol Sci 2023; 24:ijms24098331. [PMID: 37176038 PMCID: PMC10179708 DOI: 10.3390/ijms24098331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
UV radiation is used for sterilization but has adverse health effects in humans. UV-A radiation has lower antimicrobial effect than UV-B and UV-C but constitutes a lower health risk, opening up the possibility to sanitize environments with human presence in controlled exposure conditions. We investigated this possibility by identifying safe exposure conditions to a UV-A lamp along with efficient sanitization of the environment. The human exposure limits were calculated following the guidelines provided by the International Commission on Non-Ionizing Radiation Protection and the International Commission on Illumination. Antibacterial activity was evaluated on Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The maximum human exposure duration has been identified at different irradiation distance and angle, increasing with the increase of both parameters. Bactericidal activity was observed in all microorganisms and was higher with higher exposure time and at lower distance from the source. Noteworthily, in equal conditions of radiant exposure, the exposure time impacts on the bactericidal activity more than the distance from the source. The modulation of factors such as distance from the source, exposure time and irradiation angle can enable effective antibacterial activity and human safety. Prolonged direct irradiation of the surfaces associated with indirect human exposure represents the condition of greater efficacy and safety.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Aldo Tessari
- FOR ALL Srl, Via 8 Marzo 10-12, Bussolengo, 37012 Verona, Italy
| | | | - Alberto Cetti
- FOR ALL Srl, Via 8 Marzo 10-12, Bussolengo, 37012 Verona, Italy
| | - Maria M Lleo
- Department of Diagnostics and Public Health, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
4
|
Sugio Y, Yamagami R, Shigi N, Hori H. A selective and sensitive detection system for 4-thiouridine modification in RNA. RNA (NEW YORK, N.Y.) 2023; 29:241-251. [PMID: 36411056 PMCID: PMC9891261 DOI: 10.1261/rna.079445.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
4-Thiouridine (s4U) is a modified nucleoside, found at positions 8 and 9 in tRNA from eubacteria and archaea. Studies of the biosynthetic pathway and physiological role of s4U in tRNA are ongoing in the tRNA modification field. s4U has also recently been utilized as a biotechnological tool for analysis of RNAs. Therefore, a selective and sensitive system for the detection of s4U is essential for progress in the fields of RNA technologies and tRNA modification. Here, we report the use of biotin-coupled 2-aminoethyl-methanethiosulfonate (MTSEA biotin-XX) for labeling of s4U and demonstrate that the system is sensitive and quantitative. This technique can be used without denaturation; however, addition of a denaturation step improves the limit of detection. Thermus thermophilus tRNAs, which abundantly contain 5-methyl-2-thiouridine, were tested to investigate the selectivity of the MTSEA biotin-XX s4U detection system. The system did not react with 5-methyl-2-thiouridine in tRNAs from a T. thermophilus tRNA 4-thiouridine synthetase (thiI) gene deletion strain. Thus, the most useful advantage of the MTSEA biotin-XX s4U detection system is that MTSEA biotin-XX reacts only with s4U and not with other sulfur-containing modified nucleosides such as s2U derivatives in tRNAs. Furthermore, the MTSEA biotin-XX s4U detection system can analyze multiple samples in a short time span. The MTSEA biotin-XX s4U detection system can also be used for the analysis of s4U formation in tRNA. Finally, we demonstrate that the MTSEA biotin-XX system can be used to visualize newly transcribed tRNAs in S. cerevisiae cells.
Collapse
Affiliation(s)
- Yuzuru Sugio
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Naoki Shigi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
5
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
6
|
Pezzoni M, De Troch M, Pizarro RA, Costa CS. Homeophasic Adaptation in Response to UVA Radiation in Pseudomonas aeruginosa: Changes of Membrane Fatty Acid Composition and Induction of desA and desB Expression. Photochem Photobiol 2021; 98:886-893. [PMID: 34695237 DOI: 10.1111/php.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
In bacteria, exposure to changes in environmental conditions can alter membrane fluidity, thereby affecting its essential functions in cell physiology. To adapt to these changes, bacteria maintain appropriate fluidity by varying the composition of the fatty acids of membrane phospholipids, a phenomenon known as homeophasic adaptation. In Pseudomonas aeruginosa, this response is achieved mainly by two mechanisms of fatty acid desaturation: the FabA-FabB and DesA-DesB systems. This study analyzed the effect of ultraviolet-A (UVA) radiation-the major fraction of solar UV radiation reaching the Earth's surface-on the homeophasic process. The prototypical strain PAO1 was grown under sublethal UVA doses or in the dark, and the profiles of membrane fatty acids were compared at early logarithmic, logarithmic and stationary growth phases. In the logarithmic growth phase, it was observed that growth under sublethal UVA doses induced the expression of the desaturase-encoding genes desA and desB and increased the proportion of unsaturated fatty acids; in addition, membrane fluidity could also increase, as suggested by the indices used as indicators of this parameter. The opposite effect was observed in the stationary growth phase. These results demonstrate the relevant role of UVA on the homeophasic response at transcriptional level.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | | | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| |
Collapse
|
7
|
Borek C, Reichle VF, Kellner S. Synthesis and Metabolic Fate of 4-Methylthiouridine in Bacterial tRNA. Chembiochem 2020; 21:2768-2771. [PMID: 32394608 PMCID: PMC7586944 DOI: 10.1002/cbic.202000272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Ribonucleic acid (RNA) is central to many life processes and, to fulfill its function, it has a substantial chemical variety in its building blocks. Enzymatic thiolation of uridine introduces 4-thiouridine (s4 U) into many bacterial transfer RNAs (tRNAs), which is used as a sensor for UV radiation. A similar modified nucleoside, 2-thiocytidine, was recently found to be sulfur-methylated especially in bacteria exposed to antibiotics and simple methylating reagents. Herein, we report the synthesis of 4-methylthiouridine (ms4 U) and confirm its presence and additional formation under stress in Escherichia coli. We used the synthetic ms4 U for isotope dilution mass spectrometry and compared its abundance to other reported tRNA damage products. In addition, we applied sophisticated stable-isotope pulse chase studies (NAIL-MS) and showed its AlkB-independent removal in vivo. Our findings reveal the complex nature of bacterial RNA damage repair.
Collapse
Affiliation(s)
- Christoph Borek
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Valentin F. Reichle
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Stefanie Kellner
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
8
|
Pezzoni M, Pizarro RA, Costa CS. Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:735-750. [PMID: 32496187 DOI: 10.1099/mic.0.000932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa, a versatile bacterium present in terrestrial and aquatic environments and a relevant opportunistic human pathogen, is largely known for the production of robust biofilms. The unique properties of these structures complicate biofilm eradication, because they make the biofilms very resistant to diverse antibacterial agents. Biofilm development and establishment is a complex process regulated by multiple regulatory genetic systems, among them is quorum sensing (QS), a mechanism employed by bacteria to regulate gene transcription in response to population density. In addition, environmental factors such as UVA radiation (400-315 nm) have been linked to biofilm formation. In this work, we further investigate the mechanism underlying the induction of biofilm formation by UVA, analysing the role of QS in this phenomenon. We demonstrate that UVA induces key genes of the Las and Rhl QS systems at the transcriptional level. We also report that pelA and pslA genes, which are essential for biofilm formation and whose transcription depends in part on QS, are significantly induced under UVA exposure. Finally, the results demonstrate that in a relA strain (impaired for ppGpp production), the UVA treatment does not induce biofilm formation or QS genes, suggesting that the increase of biofilm formation due to exposure to UVA in P. aeruginosa could rely on a ppGpp-dependent QS induction.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
9
|
Kvam E, Benner K. Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111899. [PMID: 32485344 DOI: 10.1016/j.jphotobiol.2020.111899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
Abstract
UV-A and visible light are thought to excite endogenous photosensitizers in microbes, thereby initiating complex chemical interactions that ultimately kill cells. Natural solar-based disinfection methods have been adapted into commercial lighting technologies with varying degrees of reported efficacy and associated safety hazards for human exposure. Here we utilize a narrow-spectrum UV-A LED prototype (currently in development for health care applications) to investigate the mechanism of bacterial photoinactivation using 365 nm light. Using a combination of reverse genetics and biochemical investigation, we report mechanistic evidence that 365nm light initiates a chain-reaction of superoxide-mediated damage via auto-excitation of vitamin-based electron carriers, specifically vitamin K2 menaquinones and the FAD flavoprotein in Complex II in the electron transport chain. We observe that photoinactivation is modifiable through supplementation of the environment to bypass cell damage. Lastly, we observe that bacteria forced into metabolic dormancy by desiccation become hypersensitized to the effects of UV-A light, thereby permitting photoinactivation at fluences that are significantly lower than the industry threshold for safe human exposure. In total, these results substantiate the mechanism and potential application of narrow- spectrum UV-A light for bacterial disinfection purposes.
Collapse
Affiliation(s)
- Erik Kvam
- GE Research, One Research Circle, Niskayuna, NY 12309, USA.
| | - Kevin Benner
- GE Current, a Daintree Company, East Cleveland, OH 44112, USA
| |
Collapse
|
10
|
Amar A, Pezzoni M, Pizarro RA, Costa CS. New envelope stress factors involved in σ E activation and conditional lethality of rpoE mutations in Salmonella enterica. MICROBIOLOGY-SGM 2018; 164:1293-1307. [PMID: 30084765 DOI: 10.1099/mic.0.000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) can cause food- and water-borne illness with diverse clinical manifestations. One key factor for S. typhimurium pathogenesis is the alternative sigma factor σE, which is encoded by the rpoE gene and controls the transcription of genes required for outer-membrane integrity in response to alterations in the bacterial envelope. The canonical pathway for σE activation involves proteolysis of the antisigma factor RseA, which is triggered by unfolded outer-membrane porins (OMPs) and lipopolysaccharides (LPS) that have accumulated in the periplasm. This study reports new stress factors that are able to activate σE expression. We demonstrate that UVA radiation induces σE activity in a pathway that is dependent on the stringent response regulator ppGpp. Survival assays revealed that rpoE has a role in the defence against lethal UVA doses that is mediated by functions that are dependent on and independent of the alternative sigma factor RpoS. We also report that the envelope stress generated by phage infection requires a functional rpoE gene for optimal bacterial tolerance and that it is able to induce σE activity in an RseA-dependent fashion. σE activity is also induced by hypo-osmotic shock in the absence of osmoregulated periplasmic glucans (OPGs). It is known that the rpoE gene is not essential in S. typhimurium. However, we report here two cases of the conditional lethality of rpoE mutations in this micro-organism. We demonstrate that rpoE mutations are not tolerated in the absence of OPGs (at low to moderate osmolarity) or LPS O-antigen. The latter case resembles that of the prototypic Escherichia coli strain K12, which neither synthesizes a complete LPS nor tolerates null rpoE mutations.
Collapse
Affiliation(s)
- Agustina Amar
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Magdalena Pezzoni
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
11
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
12
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
13
|
Gomes AA, Silva-Júnior ACT, Oliveira EB, Asad LMBO, Reis NCSC, Felzenszwalb I, Kovary K, Asad NR. Reactive oxygen species mediate lethality induced by far-UV inEscherichia colicells. Redox Rep 2013; 10:91-5. [PMID: 15949129 DOI: 10.1179/135100005x38833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The involvement of reactive oxygen species (ROS) in the induction of DNA damage to Escherichia coli cells caused by UVC (254 nm) irradiation was studied. We verified the expression of the soxS gene induced by UVC (254 nm) and its inhibition by sodium azide, a singlet oxygen (1O2) scavenger. Additional results showed that a water-soluble carotenoid (norbixin) protects against the lethal effects of UVC. These results suggest that UVC radiation can also cause ROS-mediated lethality.
Collapse
Affiliation(s)
- A A Gomes
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Protective effect of low UVA irradiation against the action of lethal UVA on Pseudomonas aeruginosa: Role of the relA gene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 116:95-104. [DOI: 10.1016/j.jphotobiol.2012.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022]
|
15
|
Silva-Júnior ACT, Asad LMBO, Felzenszwalb I, Asad NR. The role of Fpg protein in UVC-induced DNA lesions. Redox Rep 2012; 17:95-100. [PMID: 22732937 DOI: 10.1179/1351000212y.0000000006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We previously demonstrated that reactive oxygen species (ROS) could be involved in ultraviolet-C (UVC)-induced DNA damage in Escherichia coli cells. In the present study, we evaluated the involvement of the GO system proteins in the repair of the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxoG, GO) lesion, which is ROS-induced oxidative damage. We first found that the mutant strain Δfur, which produces an accumulation of iron, and the cells treated with 2,2'-dipyridyl, a iron chelator, were both as resistant to UVC-induced lethality as the wild strain. The 8-oxoG could be mediated by singlet oxygen ((1)O(2)). The Fpg protein repaired this lesion when it was linked to C (cytosine), whereas the MutY protein repaired 8-oxoG when it was linked to A (adenine). The survival assay showed that the Fpg protein, but not the MutY protein, was important to UVC-induced lethality and interacted with the UvrA protein, a nucleotide excision repair (NER) protein involved in UVC repair. The GC-TA reversion assay in the mutant strains from the '8-oxoG-repair' GO system showed that UVC-induced mutagenesis in the fpg mutants, but not in the MutY strain. The transformation assay demonstrated that the Fpg protein is important in UVC repair. These results suggest that UVC could also cause indirect ROS-mediated DNA damage and the Fpg protein plays a predominant role in repairing this indirect damage.
Collapse
Affiliation(s)
- A C T Silva-Júnior
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
16
|
Silva-Júnior ACT, Asad LMBO, Felzenszwalb I, Asad NR. Mutagenicity induced by UVC in Escherichia coli cells: reactive oxygen species involvement. Redox Rep 2012; 16:187-92. [PMID: 22005338 DOI: 10.1179/1351000211y.0000000010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We previously demonstrated that reactive oxygen species (ROS) could be involved in the DNA damage induced by ultraviolet-C (UVC). In this study, we evaluated singlet oxygen ((1)O(2)) involvement in UVC-induced mutagenesis in Escherichia coli cells. First, we found that treatment with sodium azide, an (1)O(2) chelator, protected cells against UVC-induced lethality. The survival assay showed that the fpg mutant was more resistant to UVC lethality than the wild-type strain. The rifampicin mutagenesis assay showed that UVC mutagenesis was inhibited five times more in cells treated with sodium azide, and stimulated 20% more fpg mutant. These results suggest that (1)O(2) plays a predominant role in UVC-induced mutagenesis. (1)O(2) generates a specific mutagenic lesion, 8-oxoG, which is repaired by Fpg protein. This lesion was measured by GC-TA reversion in the CC104 strain, its fpg mutant (BH540), and both CC104 and BH540 transformed with the plasmid pFPG (overexpression of Fpg protein). This assay showed that mutagenesis was induced 2.5-fold in the GC-TA strain and 7-fold in the fpg mutant, while the fpg mutant transformed with pFPG was similar to GC-TA strain. This suggests that UVC can also cause ROS-mediated mutagenesis and that the Fpg protein may be involved in this repair.
Collapse
Affiliation(s)
- A C T Silva-Júnior
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
17
|
Costa CS, Pezzoni M, Fernández RO, Pizarro RA. Role of the Quorum Sensing Mechanism in the Response of Pseudomonas aeruginosa to Lethal and Sublethal UVA Irradiation. Photochem Photobiol 2010; 86:1334-42. [DOI: 10.1111/j.1751-1097.2010.00800.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Endonuclease IV is the main base excision repair enzyme involved in DNA damage induced by UVA radiation and stannous chloride. J Biomed Biotechnol 2010; 2010:376218. [PMID: 20300433 PMCID: PMC2840410 DOI: 10.1155/2010/376218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/16/2009] [Accepted: 12/23/2009] [Indexed: 11/18/2022] Open
Abstract
Stannous chloride (SnCl2) and UVA induce DNA lesions through ROS. The aim of this work was to study the toxicity induced by UVA preillumination, followed by SnCl2 treatment. E. coli BER mutants were used to identify genes which could play a role in DNA lesion repair generated by these agents. The survival assays showed (i) The nfo mutant was the most sensitive to SnCl2; (ii) lethal synergistic effect was observed after UVA pre-illumination, plus SnCl2 incubation, the nfo mutant being the most sensitive; (iii) wild type and nfo mutants, transformed with pBW21 plasmid (nfo+) had their survival increased following treatments. The alkaline agarose gel electrophoresis assays pointed that (i) UVA induced DNA breaks and fpg mutant was the most sensitive; (ii) SnCl2-induced DNA strand breaks were higher than those from UVA and nfo mutant had the slowest repair kinetics; (iii) UVA + SnCl2 promoted an increase in DNA breaks than SnCl2 and, again, nfo mutant displayed the slowest repair kinetics. In summary, Nfo protects E. coli cells against damage induced by SnCl2 and UVA + SnCl2.
Collapse
|
19
|
Yuan J, O'Donoghue P, Ambrogelly A, Gundllapalli S, Sherrer RL, Palioura S, Simonović M, Söll D. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett 2009; 584:342-9. [PMID: 19903474 DOI: 10.1016/j.febslet.2009.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/26/2022]
Abstract
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNA(Pyl) and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNA(Sec) and Pyl-tRNA(Pyl) formation as well as the distribution of the Pyl-decoding trait.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
HEIHOFF K, REDMOND RW, BRASLAVSKY SE, ROUGÉE M, SALET C, FAVRE A, BENSASSON RV. QUANTUM YIELDS OF TRIPLET AND O2(1∆g) FORMATION OF 4-THIOURIDINE IN WATER AND ACETONITRILE. Photochem Photobiol 2008. [DOI: 10.1111/php.1990.51.6.635] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Eder E, Kütt W, Deininger C. In vitro induction of micronuclei by monofunctional methanesulphonic acid esters. Chem Biol Interact 2006; 164:76-84. [PMID: 17011536 DOI: 10.1016/j.cbi.2006.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/22/2006] [Accepted: 08/24/2006] [Indexed: 11/30/2022]
Abstract
Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.
Collapse
Affiliation(s)
- Erwin Eder
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
22
|
Berney M, Weilenmann HU, Egli T. Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environ Microbiol 2006; 8:1635-47. [PMID: 16913923 DOI: 10.1111/j.1462-2920.2006.01057.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Escherichia coli growing in continuous culture under continuous UVA irradiation exhibits growth inhibition with a subsequent adaptation to the stress. Transcriptome analysis was performed during transient growth inhibition and in the UVA light-adapted growth state. The results indicate that UVA light induces stringent response and an additional response that includes the upregulation of the synthesis of valine, isoleucine, leucine, phenylalanine, histidine and glutamate. The induction of several SOS response-genes strongly points to DNA damage as a result of UVA exposure. The involvement of oxidative stress was observed with the induction of ahpCF. Taken together it supports the hypothesis of the production of reactive oxygen species by UVA light. In the UVA-adapted cell population strong repression of the acid tolerance response was found. We identified the enzyme chorismate mutase as a possible chromophore for UVA light-inactivation and found strong repression of the pyrBI operon and the gene mgtA encoding for an ATP-dependent Mg2+ transporter. Furthermore, our results indicate that the role of RpoS may not be as important in the adaptation of E. coli to UVA light as it was implicated by previous results with starved cells, but that RpoS might be of crucial importance for the resistance under transient light exposure.
Collapse
Affiliation(s)
- Michael Berney
- Swiss Federal Institute for Aquatic Science and Technology, Eawag, PO Box 611, CH-8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
23
|
Eder E, Espinosa-Gonzalez J, Mayer A, Reichenberger K, Boerth D. Autoxidative Activation of the Nematocide 1,3-Dichloropropene to Highly Genotoxic and Mutagenic Derivatives: Consideration of Genotoxic/Carcinogenic Mechanisms. Chem Res Toxicol 2006; 19:952-9. [PMID: 16841964 DOI: 10.1021/tx060074+] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,3-Dichloropropene (1,3-DCP) is used as a soil nematocide worldwide. Technical grade 1,3-DCP is genotoxic/mutagenic and carcinogenic. Talcott and King reported that mutagenic activity is lost after purification of 1,3-DCP samples via silica gel column chromatography. We found that mutagenicity and SOS repair in Escherichia coli, strain PM 21, are strongly reduced after purification via silica gel and that mutagenicity and induction of SOS repair depend on oxidative impurities and secondary products. Both isomers (E and Z) of 1,3-DCP are oxidized to 1,3-dichloropropene epoxide (1,3-DCP-Ox). The epoxide is subjected to rapid internal rearrangement to 2,3-dichloropropanal (2,3-DCPA), which spontaneously eliminates HCl and forms the extremely mutagenic, genotoxic, and carcinogenic 2-chloroacrolein (alpha-chloroacrolein) alpha-ClA. Thus, the genotoxic/mutagenic effects of unpurified 1,3-DCP samples mainly depend on alpha-ClA. The underlying genotoxic and mutagenic mechanism is formation of promutagenic exocyclic 1,N(2)-propanodeoxyguanosine adducts of alpha-ClA. Pure 1,3-DCP samples have only a very low S(N)1 reactivity as measured in trifluoroacetic acid solvolysis reactions, hydrolysis, and computed reactivities but possess a moderate S(N)2 reactivity as determined in alkylation tests with the nucleophiles 4-(p-nitrobenzyl)pyridine (NBP) and N-methyl-mercaptoimidazole (MMI). Evidently, the low S(N)1 reactivity is not sufficient to form necessary amounts of O(6)-alkylguanine DNA adducts required for back-mutation in Salmonella typhimurium strain TA1535. The S(N)2 reactivity may, however, lead to other DNA adducts, e.g., N7-guanine adducts, which can induce error prone repair in S. typhimurium strain TA100 and thus lead to back-mutation in this strain. Application of 1,3-DCP samples in agriculture must be considered as a mutagenic risk because the samples can be oxidized and form the extremely mutagenic alpha-ClA. As a consequence, it is questionable whether any stabilizers can prevent oxidation during application.
Collapse
Affiliation(s)
- Erwin Eder
- Department of Toxicology, University of Würzburg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Paes-Leme AA, Motta ES, De Mattos JCP, Dantas FJS, Bezerra RJAC, Caldeira-de-Araujo A. Assessment of Aloe vera (L.) genotoxic potential on Escherichia coli and plasmid DNA. JOURNAL OF ETHNOPHARMACOLOGY 2005; 102:197-201. [PMID: 16054315 DOI: 10.1016/j.jep.2005.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 05/12/2005] [Accepted: 06/07/2005] [Indexed: 05/03/2023]
Abstract
Aloe vera is a tropical plant, known in Brazil as babosa and several reputable suppliers produce a stabilized aloe gel for topic use. Since people use Aloe vera topically, they could be exposed to solar ultraviolet light in addition and it might cause a cross damage effect between these agents. The aim of this work was to investigate the biological effects of Aloe vera pulp extract, associated or not to UVA radiation, on Escherichia coli-deficient repair mutants and plasmid DNA, in order to test its genotoxic potential. Data obtained from analysis of survival fractions, bacterial transformation and agarose gel electrophoresis suggest that Aloe vera has genotoxic properties, but it seems not to be able to damage the cell membrane.
Collapse
Affiliation(s)
- Alessandra A Paes-Leme
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofísica e Biometria, IBRAG, UERJ, Avenue 28 de Setembro, 87, Rio de Janeiro 20551-030, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Robertson JM, J. Robertson PK, Lawton LA. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A Chem 2005. [DOI: 10.1016/j.jphotochem.2005.04.033] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Oppezzo OJ, Pizarro RA. Inhibition of sulfur incorporation to transfer RNA by ultraviolet-A radiation in Escherichia coli. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2003; 71:69-75. [PMID: 14705641 DOI: 10.1016/j.jphotobiol.2003.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
tRNA sulfurtransferase activity was assayed in Escherichia coli cell extracts obtained from bacterial suspensions exposed to a sub-lethal dose of ultraviolet-A radiation (fluence 148 kJ m(-2)) imparted at a low fluence rate (41 W m(-2)). We found that the irradiation reduced the enzymatic activity to one fourth of the control value, indicating that ultraviolet-A exposure inhibits the synthesis of 4-thiouridine, the most abundant thionucleoside in E. coli tRNA. Changes in the tRNA content of 4-thiouridine and its derived photoproduct 5-(4'-pyrimidin 2'-one) cytosine were studied in bacteria growing under ultraviolet-A irradiation. In these conditions the accumulation of photoproduct was limited, and the kinetics of this process was non-coincident with disappearance of 4-thiouridine. The results, which are compatible with the fact that ultraviolet-A induces an inhibition of the 4-thiouridine synthesis, suggest that the effect of radiation on tRNA modification is relevant to tRNA photo-inactivation in growing bacteria.
Collapse
Affiliation(s)
- Oscar J Oppezzo
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650 General San Martín, Buenos Aires, Argentina.
| | | |
Collapse
|
27
|
Oppezzo OJ, Pizarro RA. Transient reduction in the tRNA 4-thiouridine content induced by ultraviolet A during post-irradiation growth in Enterobacter cloacae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2002; 66:207-12. [PMID: 11960731 DOI: 10.1016/s1011-1344(02)00272-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of previous exposure to ultraviolet-A radiation (UVA) was studied on the susceptibility of Enterobacter cloacae to undergo the growth delay effect. Comparison of growth curves corresponding to irradiated and control cells showed that a previous treatment with UVA almost abolished the growth delay effect. UV absorption spectra of tRNA, and reverse phase HPLC analysis of hydrolysed tRNA, demonstrated a low content of 4-thiouridine in E. cloacae cells grown after UVA exposure at low doses. Since 4-thiouridine is the UVA target responsible for initiation of growth delay, this observation explained the influence of previous exposure to UVA on the susceptibility of this organism to undergo growth delay. A similar but weaker alteration was found when Escherichia coli was assayed. The results suggest that, in addition to cross-linking with cytidine residues, the content of 4-thiouridine in tRNA may be modified by UVA by an unknown mechanism.
Collapse
Affiliation(s)
- Oscar J Oppezzo
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650 General San Martín, Buenos Aires, Argentina.
| | | |
Collapse
|
28
|
Fernández RO, Pizarro RA. Pseudomonas aeruginosa UV-A-induced lethal effect: influence of salts, nutritional stress and pyocyanine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1999; 50:59-65. [PMID: 10443032 DOI: 10.1016/s1011-1344(99)00071-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The presence of NaCl in plating media shows an important protection against the Pseudomonas aeruginosa UV-A-induced lethal effect, contrasting with the known sensitizing action of salts on UV-A-irradiated Escherichia coli cells. MgSO4 exhibits a similar protection, but lower concentrations than for NaCl are needed to achieve the same effect. NaCl protection from lethal effects involves an osmotic mechanism, while MgSO4 could act by a different process. On the other hand, when cells grown in a complete medium are then incubated for 20 min in a synthetic medium and irradiated with UV-A, a very marked protection is obtained. This protection is dependent on protein synthesis, since treatment with tetracycline, during the nutritional stress, blocks its induction. These results offer a new example of cross-protection among different stressing agents. In our experimental conditions, natural phenazines of P. aeruginosa are not present in the cells, ruling out the possibility that these pigments act as photosensitizers. Conversely, pyocyanine (the major phenazine produced by this microorganism) prevents the UV-A killing effect in a concentration-dependent way when present in the irradiation media. Finally, UV-A irradiation induces, as in E. coli, the accumulation of guanosine tetraphosphate and guanosine pentaphosphate, although the physiological meaning of this finding has yet to be determined.
Collapse
Affiliation(s)
- R O Fernández
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.
| | | |
Collapse
|
29
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
30
|
Komeda K, Iwamoto S, Kominami S, Ohnishi T. Induction of cell killing, mutation and umu gene expression by 6-mercaptopurine or 2-thiouracil with UVA irradiation. Photochem Photobiol 1997; 65:115-8. [PMID: 9066290 DOI: 10.1111/j.1751-1097.1997.tb01885.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When Escherichia coli cells were irradiated by UVA in the presence of 6-mercaptopurine (6-MP) or 2-thiouracil (S2Ura), two kinds of repair-deficient strains of recA- and uvrA- were killed more efficiently than the parental wild-type strain having normal repair capacities. In addition, these agents with UVA exposure greatly induced the incidence of mutations in the uvrA- strain as compared with the wild-type strain but not the recA- strain. Furthermore, the induction of expression of umuDC genes was investigated in two Salmonella typhimurium strains, TA1535 and TA1538, carrying a pSK1002 plasmid. In these systems, it is easy to measure beta-galactosidase activities for the induced activities of SOS responses. These agents with UVA exposure also induced expression of the umuDC genes. These results suggest that 6-MP and S2Ura with UVA induce DNA damage which is repairable by the excision repair mechanism.
Collapse
Affiliation(s)
- K Komeda
- Department of Pharmacology, Nara Medical University, Japan
| | | | | | | |
Collapse
|
31
|
Shennan MG, Palmer CM, Schellhorn HE. Role of Fapy glycosylase and UvrABC excinuclease in the repair of UVA (320-400 nm)-mediated DNA damage in Escherichia coli. Photochem Photobiol 1996; 63:68-73. [PMID: 8577867 DOI: 10.1111/j.1751-1097.1996.tb02993.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In contrast to the damage caused by far-UV, the damage caused by UVA (320-400 nm) is largely oxygen dependent, suggesting near-UV-mediated DNA damage involves reactive oxygen species. The DNA repair enzymes that recognize oxidized bases may, therefore, be an important part of the cell's near-UV defense repertoire. To evaluate the relative importance of Fpg (Fapy) glycosylase (an enzyme known to remove oxidized bases) and the DNA damage-inducible UvrABC excinuclease in recovery from near-UV-induced stress, we have constructed fpg- and uvrA- derivatives of Escherichia coli and tested the response (survival) of these strains to both UVA and far-UV radiation. Relative to control strains, the fpg- derivatives were found to be consistently more sensitive to the lethal effects of UVA, but not far-UV radiation. In contrast, uvrA- mutants were more sensitive than control strains to both UVA and far-UV radiation. Thymine dimers, known to be produced by far-UV and corrected by UvrABC, were not generated by the UVA fluences used in this study, suggesting that some other UVA-induced lesion(s) is recognized and repaired by this excinuclease.
Collapse
Affiliation(s)
- M G Shennan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
32
|
Rahman S, Bose B, Chatterjee SN. On the induction of protective responses in Salmonella typhimurium strain TA1535/pSK1002 by UVA (365 nm). Photochem Photobiol 1995; 61:471-8. [PMID: 7770509 DOI: 10.1111/j.1751-1097.1995.tb02347.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exposure to UVA (365 nm) led to growth delay, loss of viability and inhibition of 3H-thymidine incorporation into the cells of Salmonella typhimurium strain TA1535 containing multiple copies of a plasmid pSK1002 carrying a umuC'-'lacZ fusion gene. Ultraviolet-A induced umu gene expression, as monitored by the estimation of beta-galactosidase, in a linear fluence-dependent manner. The induction of umu gene expression increased with the increase of postirradiation incubation period of the cells in the LB-ampicillin (LBA) medium at 37 degrees C and leveled off from 2 h onward. The induction of gene expression depended on concomitant protein synthesis and represented the induction of the SOS response in the particular S. typhimurium cells used. The exposure to low fluences (sublethal) of UVA also led to the induction of an adaptive response in the same bacterial cells, which made them resistant to subsequent challenge by a much higher fluence of the same radiation. The adaptive response, as monitored by the assays of viability and beta-galactosidase units, increased with the period of exposure to sublethal fluences of UVA, attained a maximum at the UVA exposure of 4.5 kJ/m2 (15 min) and thereafter gradually decreased with further increase of UVA exposure period. Modulation studies involving D2O, LBA growth medium, different scavengers of free radicals and quenchers of activated oxygen species indicated the involvement of both hydroxyl free radicals and singlet oxygen in the UVA-induced umu gene expression.
Collapse
Affiliation(s)
- S Rahman
- Biophysics Division, Saha Institute of Nuclear Physics, Calcutta, India
| | | | | |
Collapse
|
33
|
Björk GR. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:263-338. [PMID: 7538683 DOI: 10.1016/s0079-6603(08)60817-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, Sweden
| |
Collapse
|
34
|
Blazek ER, Alderfer JL, Tabaczynski WA, Stamoudis VC, Churchill ME, Peak JG, Peak MJ. A 5-4 pyrimidine-pyrimidone photoproduct produced from mixtures of thymine and 4-thiouridine irradiated with 334 nm light. Photochem Photobiol 1993; 57:255-65. [PMID: 8451287 DOI: 10.1111/j.1751-1097.1993.tb02284.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleoside 4-thiouridine, present in some bacterial tRNA species, is known to be a chromophore and a target for near-UV light-induced growth delay and also mediates both photoprotection and near-UV cell killing in various bacterial strains. To investigate the photoreaction of 4-thiouridine with DNA or its precursors, we irradiated aqueous mixtures of thymine and 4-thiouridine with 334 nm light and then separated photoproducts using two or more stages of reversed-phase high performance liquid chromatography. The two equally abundant major photoproducts were analyzed by UV absorbance spectrophotometry, fast-atom bombardment and electron-impact mass spectrometry, and 1H- and 13C-NMR spectroscopy, and have been identified as two diastereomers of 6-hydroxy-5-[1-(beta-D-erythro-pentofuranosyl)-4'-pyrimidin-2'- one]dihydrothymine (O6hThy[5-4]Pdo), of molecular weight = 370.32. These two diastereomers, although stable at room temperature or below, are interconvertible by heating (90 degrees C for 5 min) in aqueous solution. The possible biological significance of this photoproduct is discussed, and an application as a crosslinker for oligonucleotides to selectively block replication is suggested.
Collapse
Affiliation(s)
- E R Blazek
- Department of Therapeutic Radiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612
| | | | | | | | | | | | | |
Collapse
|
35
|
Claycamp HG, McCormick ML, DeRose CM, Elwell JH, Oberley LW. Superoxide dismutase and media dependence of far-UV radiation resistance in thiol-treated cells. Int J Radiat Biol 1990; 58:449-61. [PMID: 1975607 DOI: 10.1080/09553009014551801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pretreatment of wild-type Escherichia coli K12 cells with dithiothreitol (DTT) induces far-UV radiation resistance after the thiol is removed (Claycamp 1988). The present study shows that a 1 h treatment of cells with DTT in minimal medium followed by a 0.5 h incubation in buffer (37 degrees C) results in a dose reduction factor (DRF) calculated at F37 of 1.81. When the thiol pretreatment was in rich medium, sensitization occurs with DRF = 0.729. This sensitization could be reversed to protection by inhibiting extracellular thiol oxidation in rich medium with the chelator, DETAPAC, such that the thiol oxidation rate was equivalent to that of DTT in minimal medium. Both thiol-induced resistance and sensitization produced changes predominantly in the shoulders of the survival curves. Furthermore, for either protection or sensitization, at least one form of endogenous superoxide dismutase (SOD) was required: in SOD-deficient cells (sodAsodB) the DRFs were 1.08 and 0.882 for minimal and rich media, respectively. These results suggest that different targets are involved in thiol-induced UV protection and sensitization: DNA and extracellular targets (e.g. the membrane), respectively. The results augment observations of alternate and multiple repair pathways inducible by oxygen radicals and may help understanding non-physicochemical thiol protection mechanisms.
Collapse
Affiliation(s)
- H G Claycamp
- Radiation Biology Program, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
36
|
Duran N, Marcucci MC, Gatti MS, Leite LC. Different lethal effects by enzyme-generated triplet indole-3-aldehyde in different Escherichia coli strains. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1990; 4:371-8. [PMID: 2111383 DOI: 10.1016/1011-1344(90)85016-p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Strains of Escherichia coli which lack 4-thiouridine (S4U) exhibit a higher survival rate than their wild-type parents which contain S4U after treatment with enzyme-generated triplet indole-3-aldehyde. In a similar manner to results obtained with monochromatic 334 nm UV light, the survival is related to single-strand breakage of DNA in E. coli containing the pBR 322 plasmid. The effects of the excited states generated by an enzymatic system suggest that S4U is an important chromophore in the lethal effects observed. The results also suggest that the energy transferred from triplet indole-3-aldehyde to S4U may also be passed from S4U of t-RNA to DNA, possibly through a singlet oxygen intermediate generated by excited S4U, resulting in a decrease in the survival rate of E. coli containing S4U. These results emphasize the importance of excited states in biological systems.
Collapse
Affiliation(s)
- N Duran
- Instituto de Quimica, Biological Chemistry Laboratory, Universidade Estadual de Campinas, Brazil
| | | | | | | |
Collapse
|
37
|
Eder E, Favre A, Stichtmann C, Deininger C. Induction of sfiA SOS function by peroxides using three different E. coli strains. Toxicol Lett 1989; 48:225-34. [PMID: 2506679 DOI: 10.1016/0378-4274(89)90048-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five peroxides and two related compounds were tested for genotoxicity by the SOS Chromotest using 3 different E. coli strains (PQ37, PM21, GC4798). All tested hydroperoxides (hydrogen peroxide, tert-butylhydroperoxide, cumene hydroperoxide) were clearly positive in all strains. From a comparison of results obtained from the different strains it can be concluded that neither DNA lesions leading to the induction of excision repair nor covalent binding of radicals to DNA is responsible for the induction of sfiA-SOS function by hydroperoxides. Among the remaining compounds tested, only dibenzoylperoxide gave a clearly positive result in strain PQ37 whereas di-tert-butylperoxide and azobisisobutyronitrile showed only borderline activity. When using strains PM21 and GC4798, none of the latter compounds was positive. Paraquat was inactive in all strains.
Collapse
Affiliation(s)
- E Eder
- Institute of Toxicology, University of Würzburg, F.R.G
| | | | | | | |
Collapse
|
38
|
Connolly DM, Winkler ME. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J Bacteriol 1989; 171:3233-46. [PMID: 2656644 PMCID: PMC210042 DOI: 10.1128/jb.171.6.3233-3246.1989] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The miaA tRNA modification gene was cloned and located by insertion mutagenesis and DNA sequence analysis. The miaA gene product, tRNA delta 2-isopentenylpyrophosphate (IPP) transferase, catalyzes the first step in the biosynthesis of 2-methylthio-N6-(delta 2-isopentenyl)-adenosine (ms2i6A) adjacent to the anticodon of several tRNA species. The translation start of miaA was deduced by comparison with mod5, which encodes a homologous enzyme in yeasts. Minicell experiments showed that Escherichia coli IPP transferase has a molecular mass of 33.5 kilodaltons (kDa). Transcriptional fusions, plasmid and chromosomal cassette insertion mutations, and RNase T2 mapping of in vivo miaA transcription were used to examine the relationship between miaA and mutL, which encodes a polypeptide necessary for methyl-directed mismatch repair. The combined results showed that miaA, mutL, and a gene that encodes a 47-kDa polypeptide occur very close together, are transcribed in the same direction in the order 47-kDa polypeptide gene-mutL-miaA, and likely form a complex operon containing a weak internal promoter. Three additional relationships were demonstrated between mutagenesis and the miaA gene or ms2i6A tRNA modification. First, miaA transcription was induced by 2-aminopurine. Second, chromosomal miaA insertion mutations increased the spontaneous mutation frequency with a spectrum distinct from mutL mutations. Third, limitation of miaA+ bacteria for iron, which causes tRNA undermodification from ms2i6A to i6A, also increased spontaneous mutation frequency. These results support the notion that complex operons organize metabolically related genes whose primary functions appear to be completely different. In addition, the results are consistent with the idea that mechanisms exist to increase spontaneous mutation frequency when cells need to adapt to environmental stress.
Collapse
Affiliation(s)
- D M Connolly
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | |
Collapse
|
39
|
Yakobson B, Hrynko TA, Peak MJ, Winocour E. Replication of adeno-associated virus in cells irradiated with UV light at 254 nm. J Virol 1989; 63:1023-30. [PMID: 2536816 PMCID: PMC247794 DOI: 10.1128/jvi.63.3.1023-1030.1989] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Irradiation of simian virus 40 (ori mutant)-transformed Chinese hamster embryo cells (OD4 line) with UV light induced a cellular capacity which supported a full cycle of helper-independent adeno-associated virus replication. Monochromatic UV light at 254 nm was about 1,000-fold more effective than UV light at 313 nm, indicating that cellular nucleic acid is the primary chromophore in the UV-induced process leading to permissiveness for adeno-associated virus replication. The UV irradiation and the infection could be separated for up to 12 h without substantial loss of permissiveness. During this time interval, the induction process was partly sensitive to cycloheximide, suggesting a requirement for de novo protein synthesis.
Collapse
Affiliation(s)
- B Yakobson
- Department of Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
40
|
Eisenstark A. Bacterial genes involved in response to near-ultraviolet radiation. ADVANCES IN GENETICS 1989; 26:99-147. [PMID: 2683610 DOI: 10.1016/s0065-2660(08)60224-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A model of the possible pathways of activities following NUV treatment was presented in Section I and in Fig. 1. Some of the components are firmly established, some are speculative, and many are difficult to evaluate because of insufficient experimental information. Perhaps the most relevant experiments, especially concerning ozone depletion, would be to determine the mutational specificity of NUV. By selecting lacI mutants after exposing cells to NUV, and sequencing the bases of this gene, this is now feasible. There are some problems, however. The mutation frequency is normally so low that it might be difficult to distinguish NUV mutants from spontaneous mutants. However, by irradiating cells having a uvrA or uvrB mutation, the frequency of mutation above background can be increased considerably. There remains the problem as to what fraction of the observed mutations results from oxidative damage. Some of this could be clarified by comparing mutation spectra of cells treated with NUV and cells subjected to excess oxidative damage and determining what fraction results from other avenues of lesion formation in DNA. Different species of reactive oxygen could cause different kinds of DNA lesions, and, fortunately, use of appropriate mutants should allow us to sort out any differences in specificity of lesions. Also, by appropriate manipulation of quantities of endogenous photosensitizers, it might be possible to sort out the specific mutations that are caused by photodynamic action. Another avenue of research is to explore the pathways by which NUV lesions are repaired, and whether such repair is error prone or error free. Again, the use of mutants such as xthA, uvr, and polA should assist in our understanding of the specificity of the mutational events. There are now a number of examples of global control mechanisms whereby cells abruptly shift their protein synthesis pattern under environmental stress. It is important to understand whether NUV stress results in induction of one or more of the known regulatory genes, or whether another regulon might be involved. One particular aspect of regulation that remains unsolved is the role of the katF gene, which is known to regulate the xthA and katE, but it may also regulate other genes as well. A number of striking physiological events occur even at very low fluences of NUV irradiation of cells. In part, this may be related to regulon induction. However, some of these events are in need of special exploration, such as changes at the membrane level.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Eisenstark
- Division of Biological Sciences, University of Missouri, Columbia 65211
| |
Collapse
|
41
|
Boullard A, Giacomoni PU. Effect of UV irradiation at defined wavelengths on the tertiary structure of double-stranded covalently closed circular DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1988; 2:491-501. [PMID: 3150002 DOI: 10.1016/1011-1344(88)85078-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Double-stranded, covalently closed, supercoiled circular DNA from phage fd (replicative form) was irradiated with increasing doses of UV light at 254 nm, 290 nm, 313 nm and 365 nm, and subjected to electrophoresis on agarose slab gels. Increasing the doses of UV light at 254 and 290 nm promotes a smooth reduction in the electrophoretic mobility of the sample, as would be expected if the major effect of light at these two wavelengths were to induce the formation of photoproducts leading to the unwinding of the double strand. At high doses, UV light at 290 nm introduces single-strand breaks (1.2 kJ m-2 per nick per million phosphodiester bonds). UV light at 313 nm promotes an abrupt change in the electrophoretic mobility, as would be expected if the effect of this wavelength were to induce single-strand breaks, leading to the transformation of the supercoiled molecules in their relaxed form (23 kJ m-2 in order to introduce one nick per million phosphodiester bonds). UV light at 365 nm also promotes single-strand breaks in DNA (140 kJ m-2 per nick per million phosphodiester bonds).
Collapse
Affiliation(s)
- A Boullard
- Laboratoire de Recherches Fondamentales de L'Oreal, Aulnay-Sous-Bois, France
| | | |
Collapse
|
42
|
Cadet J, Vigny P. Biochemical and chemical assays for monitoring the formation of DNA base photolesions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1988; 2:282-6. [PMID: 3149995 DOI: 10.1016/1011-1344(88)80012-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Cadet
- Département de Recherche Fondamentale, Centre d'Etudes Nucléaires, Grenoble, France
| | | |
Collapse
|
43
|
Nassi L, Schiffmann D, Favre A, Adam W, Fuchs R. Induction of the SOS function sfiA in E. coli by systems which generate triplet ketones. Mutat Res 1988; 198:53-60. [PMID: 3280984 DOI: 10.1016/0027-5107(88)90039-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Generation of triplet ketones, either chemically through thermal decomposition of 3-hydroxymethyl-3,4,4-trimethyl-1,2-dioxetane and 3-[N-(pyridino)carbamoyl]methyl-3,4,4-trimethyl-1,2-dioxetane++ + or enzymatically via the aerobic oxidation of isobutyraldehyde trimethylsilyl enol ether catalyzed by horse-radish peroxidase, triggers the SOS function sfiA in E. coli. Although the observed effects are relatively weak and the triplet ketone scavenger tryptophan was ineffective in this system, our results provide evidence for the involvement of triplet ketones in this type of DNA damage. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- L Nassi
- Department of Biochemistry, University of Sao Paulo, Brasil
| | | | | | | | | |
Collapse
|
44
|
Blondel MO, Favre A. tRNAPhe and tRNAPro are the near-ultraviolet molecular targets triggering the growth delay effect. Biochem Biophys Res Commun 1988; 150:979-86. [PMID: 2449211 DOI: 10.1016/0006-291x(88)90725-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The illumination of Escherichia coli cells with UVA light, 320 nm less than or equal to lambda less than or equal to 380 nm, triggers a transient growth and division delay. The built-in 4-thiouridine chromophore which absorbs light at 340 nm leads to the quantitative 8-13 crosslinking of a number of tRNA species corresponding to 50% of the bulk tRNA molecules. Determination of the tRNA acylation level by the various aminoacids shows that only the tRNA species acylated by Phe and Pro are strikingly affected in vivo. Both acylation levels decrease to less than 10% of their initial value during the illumination period, remain stable all along the growth lag and increase concomitantly with cell mass when growth resumes. Hence tRNA(Phe) and tRNA(Pro) are the UVA light molecular targets triggering growth delay and related effects of biological significance such as cell volume reduction, photoprotection and protection against UV mutagenesis (antiphotomutagenesis).
Collapse
Affiliation(s)
- M O Blondel
- Institut Jacques Monod, CNRS, Université Paris VII, France
| | | |
Collapse
|
45
|
Caldeira de Araujo A, Favre A. Partial tRNA deacylation specifically triggers Escherichia coli cell volume reduction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1987; 1:13-31. [PMID: 3149980 DOI: 10.1016/1011-1344(87)80003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Limitation of Escherichia coli cell growth rate either by means of continuous 366 nm illumination, which is known to decrease the in vivo acylation level of some tRNA species, or by means of specific inhibitors of tRNA acylation allows the division rate to remain unchanged for a few generations, resulting in cell volume reduction. In contrast the cell volume remains stable or increases after treatment with inhibitors of DNA replication and transcription, or with drugs acting at any other step of protein synthesis. The conclusion that limiting acylation of some tRNA species is the triggering event is confirmed by the use of thermosensitive mutants of aminoacyl-tRNA synthetases or of tRNA (the divE strain mutated in the tRNA1Ser gene). Other cellular responses modulate the expression of cell volume reduction. The relA+ stringent response helps expression of the effect but does not appear to be strictly required. However, cell volume reduction may be masked under conditions triggering the SOS response. The data suggest that tRNA acylation is one of the major steps where cells sense change in their nutrient environment.
Collapse
|
46
|
Eisenstark A. Mutagenic and lethal effects of near-ultraviolet radiation (290-400 nm) on bacteria and phage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1987; 10:317-337. [PMID: 3315655 DOI: 10.1002/em.2850100311] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite decades of study of the effect of near-ultraviolet radiation (NUV) on bacterial cells, insights into mechanisms of deleterious alterations and subsequent recovery are just now emerging. These insights are based on observations that 1) damage by NUV may be caused by a reactive oxygen molecule, since H2O2 may be a photoproduct of NUV; 2) some, but not all, of the effects of NUV and H2O2 are interchangeable; 3) there is an inducible regulon (oxyR) that responds to oxidative stress and is involved in protection against NUV; 4) a number of NUV-sensitive mutants are defective either in the capacity to detoxify reactive oxygen molecules or to repair DNA damage caused by NUV; and 5) recovery from NUV damage may not directly involve induction of the SOS response. Since several distinctly different photoreceptors and targets are involved, it is unknown whether NUV lethality and mutagenesis result from an accumulation of damages or whether there is a particularly critical photoeffect. To fully understand the mechanisms involved, it is important to identify the chromophore(s) of NUV, the mechanism of toxic oxygen species generation, the role of the oxidative defense regulon (oxyR), the specific lesions in the DNA, and the enzymatic events of subsequent repair.
Collapse
Affiliation(s)
- A Eisenstark
- Division of Biological Sciences, University of Missouri, Columbia 65211
| |
Collapse
|
47
|
Favre A, Moreno G, Blondel MO, Kliber J, Vinzens F, Salet C. 4-Thiouridine photosensitized RNA-protein crosslinking in mammalian cells. Biochem Biophys Res Commun 1986; 141:847-54. [PMID: 2432896 DOI: 10.1016/s0006-291x(86)80250-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monkey kidney cells (CV-1) cultivated in the presence of 0.1 mM 4-thiouridine (S4U) and subsequently illuminated at 365 nm exhibit a marked RNA synthesis inhibition. Maximal effect (approximately 40%) was obtained for a 4 h S4U incubation and a 45 KJ/m2 dose. Under these conditions up to 20% of total cellular RNA is retained at the interphase during phenol-chloroform extraction. The fraction of RNA crosslinked to proteins amounts to 50% of the 3H-uridine labeled RNA synthesized during S4U incorporation and less than 10% for the control samples. This strongly suggests that S4U incorporated within the RNA chains acts as a photoaffinity probe. The data above provide the basis of a method for studying in vivo RNA-protein interactions under non destructive conditions.
Collapse
|
48
|
Favre A, Chams V, Caldeira de Araujo A. Photosensitized UVA light induction of the SOS response in Escherichia coli. Biochimie 1986; 68:857-64. [PMID: 3019435 DOI: 10.1016/s0300-9084(86)80101-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several of the factors controlling the extent of the ultraviolet light (and particularly of UVA 320 nm less than lambda less than 380 nm) induced SOS response in E. coli have been studied using a sfiA::lacZ fusion. The decreased 254 nm induced sfiA expression level triggered by a UVA-induced growth delay (Caldeira de Araujo A. & Favre A. (1986) Embo J., 5, 175-179), is closely mimicked by a transient chloramphenicol protein synthesis inhibition. In a nuvA mutant strain (lacking the growth delay effect), UVA light triggers a 30-40% lower SOS response at temperatures higher than 20 degrees C when illumination is performed under anaerobic conditions: endogenous oxygen-mediated photosensitized reactions appear to contribute to the SOS response. In contrast to the temperature independence of the sfiA induction levels obtained after 254 nm irradiation, the UVA induced response is 30-60% lower when the temperature (T) increases from a value lower than 10 degrees C to a value higher than 20 degrees C. This indicates that detoxifying enzymes play a role at T greater than 20 degrees C. Also the in vitro photooxydation of NADH to give NAD+ is described and its possible role in endogenous photosensibilizations discussed. To explain the contrasted mutagenic efficiencies of UVA light treatment when applied to cells in buffer at high fluences, and to growing cells at low fluence rates, we propose that intrinsically the UVA-induced DNA damages are able to trigger the SOS response (cyclobutyl pyrimidine dimers and some O2-dependent lesions) but also constitute premutagenic sites (some lesions leading to alkali-labile DNA breaks).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|